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Abstract. Cost monadic logic has been introduced recently as a quan-
titative extension to monadic second-order logic. A sentence in the logic
defines a function from a set of structures to N∪{∞}, modulo an equiv-
alence relation which ignores exact values but preserves boundedness
properties. The rich theory associated with these functions has already
been studied over finite words and trees.
We extend the theory to infinite trees for the weak form of the logic
(where second-order quantification is interpreted over finite sets). In par-
ticular, we show weak cost monadic logic is equivalent to weak cost au-
tomata, and finite-memory strategies suffice in the infinite two-player
games derived from such automata. We use these results to provide a
decision procedure for the logic and to show there is a function definable
in cost monadic logic which is not definable in weak cost monadic logic.

1 Introduction

A fundamental result in the theory of regular languages is the equivalence be-
tween monadic second-order logic (MSO) and finite-state automata, which Büchi
exploited in order to provide a decision procedure for the logic. Recently, Col-
combet [3] has proposed a quantitative extension to MSO called cost monadic
second-order logic (cost MSO). In this setting, a cost MSO sentence defines a
function from some domain (like words or trees over a finite alphabet) to N∪{∞},
modulo an equivalence relation ≈ which ignores exact values but preserves the
existence of bounds over any subset of the domain. Mirroring the classical re-
sult, there is an equivalent automaton model called cost automata which can be
used to help decide whether the functions definable by cost MSO sentences (over
finite words [3] or finite trees [7]) are equivalent up to ≈.

This “theory of regular cost functions” is a strict extension to the theory of
regular languages, which retains the equivalences, closure properties, and decid-
ability of the classical theory. It captures the theory of regular languages since we
can identify each language with its characteristic function mapping structures
in the language to 0 and everything else to ∞; it is a strict extension since cost
MSO can count some behaviour within the input structure (e.g. the number of
positions labelled with some symbol). The theory has been studied over finite
words [3, 4] and finite trees [5, 7]. This paper is an initial step in extending the
theory to infinite trees when restricting to weak cost monadic logic (written cost
WMSO) in which second-order quantifiers are interpreted over finite sets.
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1.1 Motivation

The motivation for studying the logic and automata considered in this paper
comes from problems that can be reduced to questions of boundedness. The most
famous language-theoretic problem like this is the “star-height problem”: given a
regular language L and natural number n, is there some regular expression (using
concatenation, union, and Kleene star) for L which uses at most n nestings of
Kleene-star operations? Hashiguchi [8] first showed that this problem is decidable
over finite words and Kirsten [9] gave an alternative proof. Colcombet and Löding
have shown that this problem is also decidable over finite trees [5].

In each case, finite-state automata enriched with counting features were used
(distance, nested distance-desert, and cost automata). The star-height problem
was then reduced to a question of “limitedness”: given some automaton with
counting features, is the function it computes bounded over all accepted struc-
tures? Because limitedness is a special case of deciding ≈, this theory of regular
cost functions is a useful framework for reasoning about this sort of problem.

Kirsten [9] and Colcombet [3] cite problems in areas as diverse as speech
recognition, databases, and model theory which have been solved using a similar
approach. One open problem is the “parity-index problem”. It asks: given a
regular language L of infinite trees and i < j, is there a parity automaton using
only priorities {i, i+ 1, . . . , j}? Colcombet and Löding [6] have shown that this
problem is reducible to limitedness for a “cost-parity automaton” over infinite
trees, but the decidability of limitedness for these automata remains open. Thus,
understanding the theory of regular cost functions over infinite trees is desirable.

1.2 Contributions

We show that the results over finite trees from [7] can be lifted to infinite trees
when restricting to cost WMSO. The main contribution is proving cost WMSO
is effectively equivalent to alternating “weak cost automata” and that these au-
tomata can be simulated by a type of non-deterministic automata. This is used
to prove the relation ≈ is decidable for functions definable in cost WMSO. An-
other consequence (similar to the classical theory) is a separation result showing
there is a function definable in MSO which is not definable in cost WMSO.

The main difficulty compared to the finite-tree case in [7] is the simulation re-
sult for weak cost automata. It relies on the fact that certain “weak cost games”
(games derived from weak cost automata) admit finite-memory strategies. Prov-
ing this result over infinite trees is more difficult because of the interplay between
the traditional acceptance condition and the cost features of the game.

1.3 Organisation

In Sect. 2 we provide background on trees, cost WMSO, and cost functions. We
then present in Sect. 3 the general framework for reasoning about cost automata
acting on infinite trees using infinite two-player games. Using this framework,
we prove the results mentioned above for cost WMSO and weak cost automata
in Sect. 4. We conclude in Sect. 5.



2 Cost Monadic Logic

2.1 Trees

Let N be the set of non-negative integers and N∞ := N∪{∞}, ordered such that
0 < 1 < · · · < ∞. For i ≤ j, we write [i, j] to denote {i, i + 1, . . . , j}. We fix
a finite alphabet A which is ranked : each symbol a ∈ A has some arity j ∈ N
denoted by a ∈ Aj . Let r be the maximum arity of the labels in A. The set TA
of infinite A-labelled ranked trees is the set of partial functions t : [1, r]∗ → A
such that the domain of t (denoted pos(t)) is prefix-closed, t(ε) ∈ A is the label
at the root, and if t(x) ∈ Aj then t(xi) is defined if and only if i ≤ j.

2.2 Cost Monadic Logic

Cost monadic second-order logic, or cost MSO, is a quantitative extension to
MSO (see e.g., [14] for an introduction to monadic second-order logic). As usual,
the logic can be defined over any relational structure, but we describe here the
logic over A-labelled ranked trees. In addition to first-order variables which range
over nodes and second-order monadic variables which range over sets of nodes,
cost MSO uses a single additional variable N called the bound variable which
ranges over N. The atomic formulas in cost MSO are the usual atomic formulas
from MSO (namely, the membership relation x ∈ X and relations a(x, x1, . . . , xk)
which assert that a ∈ Ak is the label at position x with children x1, . . . , xk from
left to right), as well as new predicates |X| ≤ N where X is any second-order
variable and N is the bound variable. Arbitrary cost MSO formulas can be built
inductively in the usual way by applying boolean connectives or by quantifying
(existentially or universally) over first- or second-order variables. We additionally
require that predicates of the form |X| ≤ N appear positively in the formula
(i.e. within the scope of an even number of negations).

If we fix a value n for N , then the semantic of |X| ≤ N is what one would
expect: the predicate is satisfied if and only if the valuation of X has cardinality
at most n. If this value for N is not specified, then a sentence ϕ in cost monadic
logic defines a function [[ϕ]], from TA to N∞ (the natural numbers extended with
a special infinity symbol ∞). The function is

[[ϕ]](t) := inf{n : t, n |= ϕ}

where t, n |= ϕ if t satisfies ϕ when all occurrences of N take value n. By
convention, inf ∅ =∞, so in case ϕ is a pure MSO sentence (with no instances of
the predicates |X| ≤ N), [[ϕ]](t) is 0 if t satisfies the sentence ϕ and∞ otherwise.

In Sect. 4, we will focus our attention on cost weak monadic second-order
logic (written weak cost monadic logic or cost WMSO) which restricts the
second-order quantification to finite sets, as usual. WMSO (and consequently
cost WMSO) is still a very expressive logic (e.g. CTL embeds into it) but as
we will see in Sect. 4, it has some nice properties that make working with the
corresponding automata and games easier than in the full logic. We pause to
give an example of a typical function definable in cost WMSO.



Example 1. Let A = A2 = {a, b, c}. We seek to define the function which, for
trees with infinitely many a’s, outputs the maximum number of b’s along a single
branch (and otherwise assigns value ∞). A suitable cost WMSO sentence ϕ is

∀X.∃x.
(
¬(x ∈ X) ∧ a(x)

)
∧ ∀Z.

(
(∀z.(z ∈ Z → b(z)) ∧ chain(Z))→ |Z| ≤ N

)
.

where chain(Z) is a WMSO formula asserting Z is totally ordered (and hence
the nodes are on the same branch). We write a(x) for ∃x1.∃x2.a(x, x1, x2).

The first conjunct is a typical WMSO formula: “infinitely many a’s” is ex-
pressed as “for all finite sets of nodes, there is an a-labelled node outside”. The
least n that can be substituted for N to satisfy the second conjunct is exactly
the bound on the number of b’s along a single branch (∞ if there is no bound).

2.3 Cost Functions

Given cost WMSO sentences ϕ and ψ, we would like to be able to decide for any
t ∈ TA whether [[ϕ]](t) ≤ [[ψ]](t) or [[ϕ]](t) = [[ψ]](t). This is undecidable even over
words by [10], so we must relax the relation being used. Following [4], we define
relations 4 and ≈. Given f, g : TA → N∞, we say g dominates f (written f 4 g)
if and only if for all U ⊆ TA, g(U) bounded implies f(U) bounded. We write
f ≈ g if and only if f 4 g and g 4 f . Thus, 4 and ≈ are weakenings of ≤ and =
which ignore exact values of f and g, but do preserve boundedness properties.

If we want to be more precise about the relationship between f and g, we
can annotate 4 and ≈ with a correction function α : N → N, a non-decreasing
function which satisfies α(n) ≥ n for all n. We write f 4α g if f(t) ≤ α(g(t))
for all t ∈ TA (with the convention that α(∞) = ∞). Thus, α describes how
much we may need to “stretch” g such that it dominates f . As an example, the
function | · |a which counts the number of a’s in an infinite {a, b}-labelled tree
is not ≈-equivalent to | · |b; however, | · |a ≈α 2| · |a for α(n) = 2n. To compare
single values m,n ∈ N, we also write m 4α n if m ≤ α(n).

With these relations, we can formally define a cost function F to be an equiv-
alence class of ≈, but we will blur the distinction between a particular function
f : TA → N∞ and its equivalence class F . The natural decision procedure in
this setting is the following: given two cost functions f and g, is f 4 g? We re-
mark that the classical language inclusion problem and the limitedness problem
mentioned in the introduction can be seen as a special cases of this procedure.

3 Cost Games

3.1 Objectives

We will use a game-theoretic approach to tree automata (see e.g., [14]).
An objective O is a tuple 〈C, f, goal〉 where C is a finite alphabet of actions,

f : Cω → N∞ maps sequences of actions to a value, and goal ∈ {min,max}
describes how a player seeks to optimize f . Switching the goal (from min to max
or max to min) yields the dual objective O representing the aim of the opponent.



These objectives take the place of classical winning conditions. For example,
with a parity condition, Eve wins if the maximum priority occurring infinitely-
often is even. This is described by the objective 〈Ω,P,min〉 where Ω ⊆ N is a
set of priorities and P (u) is 0 if the maximum infinitely-occurring priority in u is
even (∞ otherwise). Winning for Eve corresponds to minimizing P . The Büchi
condition is a special case where Ω = [1, 2].

We want to enrich the classical objectives with counter actions such that
values come from N∞ (instead of only {0,∞}). A counter γ is initially assigned
value 0 and can be incremented i, reset r to 0, checked c, or left unchanged ε.
We care about the value of the counter at the moment(s) when it is checked.
Given a word uγ over the alphabet {ε, i, r, c}, we define a set C(uγ) ⊆ N which
collects all of the checked values of γ. For instance, C(iriεiicriic) = {2, 3}
since the first time the counter is checked it has value 3 and the second time
it has value 2. In the case of a finite set of counters Γ and a word u over the
alphabet {ε, i, r, c}Γ , C(u) :=

⋃
γ∈Γ C(uγ) (uγ is the γ-projection of u).

We will use three objectives which combine a classical parity condition with
particular atomic counter actions and valuations. The B-parity objective1 (over

counters Γ and priorities Ω) is CostΓ,ΩB := 〈{ε, ic, r}Γ ×Ω, costΓ,ΩB ,min〉 where

costΓ,ΩB (u) := sup(C(u) ∪ {P (u)})

and P (u) is the function described above which interprets the parity condition
(on the projection of u to its last component). The atomic actions in this case
are ε, ic, and r. For example, if u = ((ic, 2)(ic, 2)(ε, 1)(r, 2)(ic, 1))ω, then

cost
{1},[1,2]
B (u) = sup({1, 2, 3}∪{0}) = 3. The idea is that if the parity condition

is satisfied (as in this example), then the value is the supremum of the checked
counter values; otherwise, the counters are ignored and the value is ∞.

A useful variant of this B-objective is the hB-parity objective. In this case,
the set of counters Γ is totally ordered and whenever a counter is incremented or
reset, all lower counters are reset (we say the counters are hierarchical). Formally,
we let HΓ := {c ∈ {ε, ic, r}Γ : cγ 6= ε implies cγ′ = r for all γ′ < γ} and then

CostΓ,ΩhB := 〈HΓ ×Ω, costΓ,ΩB ,min〉.
The S-parity objective (over counters Γ and priorities Ω) has max as the

goal and atomic actions ε, i, r, and cr. It is CostΓ,ΩS := 〈{ε, i, r, cr}Γ ×
Ω, costΓ,ΩS ,max〉 where costΓ,ΩS (u) := inf(C(u)∪ {P (u)}) and P (u) is 0 (respec-
tively,∞) if P (u) is∞ (respectively, 0). In other words, if the parity condition is
not satisfied then the counters are ignored and the value assigned is 0; otherwise,
the minimum checked value is used (∞ if the counters are never checked).

3.2 Cost Games

A cost game G := 〈V, v0, δ, O〉 consists of a set of positions V , an initial position
v0 ∈ V , an objective O = 〈C, f, goal〉 for Eve, and a control function δ : V →
1 This B and S notation was originally used in [2] to stand for counters which were

bounded and strongly unbounded (whose limit tended towards infinity).



B+(C×V ) (where B+(C×V ) is the set of positive boolean combinations, written
as a disjunction of conjunctions of elements from C× V ).

A play π is an infinite word (vi, ci+1, vi+1)i∈N ∈ (V × C × V )ω such that
v0 is the initial position and (ci+1, vi+1) appears in δ(vi) for all i ∈ N. Given
a set σ of plays, let pref (σ) denote the set of prefixes of plays in σ. We say
(v0, c1, v1), . . . , (vj , cj+1, vj+1) ∈ pref (σ) is a partial play ending in vj+1 (by
convention, we say ε ∈ pref (σ) ends in v0). At a position v ∈ V , the positive
boolean combination given by δ(v) can be viewed as a subgame in which Eve
selects a disjunct in δ(v) and Adam selects a conjunct within this disjunct. For
instance, if there is some partial play π ending in v ∈ V with δ(v) = (c, v) ∨
((c′, v′) ∧ (c′′, v′′)), then Eve can choose a disjunct, say (c′, v′) ∧ (c′′, v′′), and
Adam can choose one of the conjuncts in this disjunct, say (c′′, v′′). The play is
then extended to π · (v, c′′, v′′) and c′′ describes the cost for making this move.

A strategy σ for Eve is a set of plays σ such that if a partial play π ∈ pref (σ)
ends in position v, there must be some disjunct (c′1, v

′
1) ∧ . . . ∧ (c′j , v

′
j) in δ(v)

such that for every conjunct (c′i, v
′
i) for i ∈ [1, j], π · (v, c′i, v′i) ∈ pref (σ). We say

σ is positional (or memoryless) if Eve’s next move depends only on the current
position rather than the history of the play (i.e. for all partial plays π, π′ ∈ σ
ending in v, π · (v, c′, v′) ∈ pref (σ) if and only if π′ · (v, c′, v′) ∈ pref (σ)).

The objective O = 〈C, f, goal〉 describes how to assign values. For a play
π = (vi, ci+1, vi+1)i∈N, the value is val(π) := f(πC) where πC := c1c2 . . .. If goal
is min, then the value of a strategy σ for Eve is val(σ) := sup{val(π) : π ∈ σ}
and the value of the game is val(G) := inf{val(σ) : σ is a strategy for Eve in G}.
In other words, Eve seeks to minimize over all strategies the maximum value
of all plays compatible with the strategy. Dually, if goal is max, then val(σ) :=
inf{val(π) : π ∈ σ} and val(G) := sup{val(σ) : σ is a strategy for Eve in G}. We
will refer to games by their objective (e.g. B-parity games).

The dual G of a game G is obtained by switching disjunctions and conjunc-
tions in the control function and using the dual objective (i.e. replacing min with
max, and vice versa). This switches the roles of Adam and Eve.

3.3 Cost Automata

An alternating cost automaton A = 〈Q,A, q0, O, δ〉 has a finite set of states Q,
a ranked alphabet A, an initial state q0 ∈ Q, an objective O = 〈C, f, goal〉, and
a transition function δ which maps (q, a) ∈ Q× Ai to B+([1, i]× C×Q).

Given t ∈ TA, we represent A acting on t via the cost game A × t = 〈Q ×
pos(t), (q0, ε), δ

′, O〉 where δ′((p, x)) = δ(p, t(x))[(c, (q, xk))/(k, c, q)] and φ[s′/s]
represents the formula φ with s′ substituted for all occurrences of s. That is, a
position in the game corresponds to a state of the automaton and a location in
the input tree; the control function δ′ modifies the transition function δ of the
automaton to map to the appropriate positions in the game. We set [[A]](t) :=
val(A× t), so A defines a function [[A]] : TA → N∞. If there is a cost function g
such that [[A]] ≈ g then we say that A recognizes g.



Notice that counter and priority actions occur on transitions. It is straightfor-
ward to translate between transition-labelled automata and the more common
state-labelled automata (at the price of increasing the number of states).

In the simpler case that δ(q, a) for a ∈ Ai is a disjunction of statements of the
form

∧
j∈[1,i](j, cj , qj), then we say that the cost automaton is non-deterministic.

As with cost games, we will describe a cost automaton by its objective. A
fundamental result, however, is that theB-, hB-, and S-objectives are equivalent.

Theorem 1. It is effectively equivalent for a cost function f to be recognizable
by a B-parity automaton, an hB-parity automaton, and an S-parity automaton.

The proof requires results based on composing cost games with “history-
deterministic” cost automata which translate between objectives (in analogy to
the deterministic automata used in the translation between Muller and parity
conditions). This technique was used for finite-duration cost games [7] and can
be adapted to infinite cost games, but we will not develop this idea further here.

If the cost-parity automata are given as non-deterministic S-parity and B-
parity automata, then it is also possible to decide 4.

Lemma 1. The relation f1 4 f2 is decidable for cost functions f1 and f2 over
infinite trees if f1 is given by a non-deterministic S-parity automaton and f2 is
given by a non-deterministic B-parity automaton.

The decision procedure is an adaptation of the proof in [7]. It uses ideas from
the standard algorithm for deciding language inclusion for regular languages of
infinite trees. We construct a product automaton combining f1 and f2 and allow
Eve to “guess” a tree witnessing f1 64 f2 (this is possible since we are working
with non-deterministic automata). In fact, through a series of translations, the
decision of f1 64 f2 is reduced to solving a classical parity game (without costs).

4 Weak Cost Automata

We have defined the general framework for cost games and cost automata over
infinite trees. In this section, we restrict our attention to a subclass of cost
games which are derived from weak cost automata. We are able to show that
this subclass defines the same cost functions as cost WMSO, and that weak
B-games admit finite-memory strategies. Using these results, we show that it is
decidable whether [[ϕ]] 4 [[ψ]] for cost WMSO sentences ϕ and ψ.

4.1 Weak Cost Automata

A weak B-automaton A = 〈Q,A, q0,Cost
Γ,[1,2]
B , δ〉 is an alternating B-Büchi

automaton such that there is no cycle in δ using both priority 1 and 2. This
corresponds to the standard definition (see e.g., [11]) but adapted to the case
when priorities label transitions rather than states. A B-Büchi game such that
every play stabilizes to moves using only a single priority is called a weak B-game.
If A is a weak B-automaton, then A× t is a weak B-game for all t ∈ TA. Weak
hB- and weak S-automata and games are defined by changing the objective.



Example 2. Let A = A2 = {a, b, c} and consider a 1-counter weak B-automaton

A = 〈{q0, qa, qb, q>},A, q0,Cost
{1},[1,2]
B , δ〉.

We describe informally δ such that A computes the function from Example 1.
Adam can either count the number of b’s on some branch (incrementing and
checking the counter while in state qb), or prove there are only finitely many a’s
in the tree. If there are infinitely many a’s then there is some branch τ such that
an a-labelled node is reachable from each position on τ (but this a-labelled node
does not need to be on τ itself). Eve picks out such a branch (marking it with
q0). At any point on this branch, Adam can move to state qa and force Eve to
witness a reachable a-labelled node. If she can, then the play stabilizes in q>.

The only transitions with priority 1 occur when in state qa. The automaton
can reach qa only from q0; once in qa it can only move to q>. Thus, there is no
cycle in the transition function which visits both priorities, so A is weak.

A useful notion from [12] is an alternating chain, a sequence of states q0 . . . qn
such that there is some p ∈ [1, 2] with q1 reachable from q0 using transitions of
priority p, and for all i ∈ [1, n − 1], qi+1 reachable from qi using transitions of
priority p (respectively, p) if i is even (respectively, odd) (1 = 2 and 2 = 1). We
say the length of q0q1 . . . qn is n. In the example, the automaton has alternating
chains of length at most 2 (q0qaq>). Since the length of these chains is bounded
in weak cost automata, it can serve as an induction parameter in proofs.

4.2 Closure Properties

Instead of closure under union and intersection, weak cost automata are closed
under min and max (the proof requires disjoint-union and product constructions
as in the classical case). More interesting is closure under weak inf-projection
and weak sup-projection. These operations correspond to finite projection in the
classical setting. Let h : A → B be a map from ranked alphabets A and B such
that A ⊇ B and h(b) = b for all b ∈ B. We write h(t′) = t for the natural
extension to trees which relabels each A-labelled vertex of t′ according to h. If t′

contains only finitely many vertices labelled from A\B, then we write hf (t′) = t.
Weak op-projection of some cost function g over the alphabet A is the function
gop,hf

(t) = op {g(t′) : hf (t′) = t} over the alphabet B where op is inf or sup.
Generalizing [11, Lemma 1] and using results from [7], we can show weak B

(respectively, weak S) automata are closed under weak inf-projection (respec-
tively, weak sup-projection). Given a weak cost automaton for g and a tree t,
we simulate it in “non-deterministic mode” on a finite prefix, then switch to
“alternating mode” and run the original weak automaton on the remainder of t.
While in non-deterministic mode, nodes labelled b ∈ B can be relabelled with
some a ∈ h−1(b). By [7], this non-deterministic version on finite trees yields a
value ≈-equivalent to the original alternating automaton. By the semantics of B
(respectively, S) automata, the non-determinism is resolved into taking the infi-
mum (respectively, supremum) of the values of g(t′) for t′ satisfying hf (t′) = t.

Lemma 2. Weak B-automata are closed under min, max, weak inf-projection.
Weak S-automata are closed under min, max, weak sup-projection.



4.3 Equivalence with Logic

It is no coincidence that we could express the cost WMSO sentence from Exam-
ple 1 using the weak B-automaton in Example 2.

Theorem 2. It is effectively equivalent for a cost function f to be definable in
cost WMSO and recognizable by a weak cost automaton.

Proof. (Sketch) To move from logic to automata, we use the standard technique
of showing that each atomic formula is recognizable using a weak cost automaton,
and then proving that these automata are closed under operations corresponding
to other logical constructs (using Theorem 1 and Lemma 2).

To move from a weak cost automaton to a cost WMSO sentence, we do in-
duction on the maximum length m of alternating chain. If m = 0, we can write
a formula which assigns a value based strictly on the counters (it describes the
existence of finite partial runs of a non-deterministic version of the automaton
over finite trees, given by [7]). Otherwise, if m > 0, we find a finite partial run
such that on each path, the automaton started with a transition of priority 1
but has passed through a transition of priority 2 and hence has reached a po-
sition with alternating chains strictly less than m (this may require converting
between B- and S-versions of the automaton using Theorem 1). The inductive
hypothesis yields formulas which correctly capture the value of the automaton
on the continuations of the run, so we take the conjunction of these formulas
and a formula describing the value on the initial partial run.

4.4 Shape of Strategies

A well-known result in the theory of infinite games is that parity games are
positionally determined (see [14] for an introduction to this area). This means
that from each position either Adam or Eve can win, and if Eve, say, has a
winning strategy, then Eve has a positional strategy which is also winning.

In order to prove results like the decidability of 4, it becomes essential to
have corresponding results about the strategies needed in cost games. Martin’s
theorem immediately implies that cost games are determined; in the cost setting,
this means that the value of the original game and the dual game is the same.

Proposition 1. For all cost games, val(G) = val(G).

There is no bound on the amount of memory Eve would need in order to
achieve the optimal value in a cost game. However, in the cost setting, we just
need to ensure that there is a positional strategy σ for Eve in G such that
val(G) ≈α val(σ). If σ satisfies this condition, it means that by playing posi-
tionally according to σ, the error committed by Eve is bounded by α. It was
shown that positional strategies suffice for finite-duration hB-games [5, 7]. We
now prove a similar result for weak hB-games in which the underlying game
graph has no cycles. This is a reasonable restriction since the cost games A× t
whereA is a weak hB-automaton and t is an infinite tree satisfy this requirement.
(The result no longer holds for infinite game graphs with cycles.)



We start with an arbitrary strategy τ that witnesses a bounded cost n in a
weak hB-game G with an acyclic game graph, alternating chains of length at most
m, and k hierarchical counters. Without loss of generality, we assume that all
edges from a position v in the game have the same priority p (denoted Ω(v) = p).
We consider the corresponding strategy tree T , the tree of all plays consistent
with τ . Let V (respectively, S) denote the set of positions in G (respectively, T ).
Let h : S → V denote the homomorphism which maps a position in the strategy
tree to the corresponding game position. Using an optimal strategy τ , Eve’s
choice at a particular v ∈ V may depend on the history of the play leading
to v. Thus, there may be s, s′ ∈ h−1(v) such that the moves possible from s are
different than from s′; however, because the game graph is acyclic, s, s′, and v
must be at the same depth. A positional strategy σ can be viewed as a mapping
from V to S which for each v selects a single element of h−1(v) for Eve to use
(regardless of the history). To build this map, we use the notion of “signatures”.2

We first define the components of the signature. For the B-condition, we let
βj(s) for 1 ≤ j ≤ k be the number of times a path from s can increment counter j
before it is reset. Note that βj(s) ≤ n for all s ∈ S since T has a bounded cost n.
The strategy should try to minimize βj in order to minimize the cost.

For the weak acceptance condition, let βalt(s) be the maximum length of
alternating chain on a path from s in T . Just minimizing βalt would not guar-
antee that the resulting positional strategy satisfies the weak acceptance con-
dition. Thus, we also define inductively a strictly increasing sequence of depths
(di)i∈N and a function β : S → {0, 1}. The depths (di)i∈N “slice” T based
on reachability of transitions of priority 2. Let d0 := 0. Given di, the depth
di+1 > di is chosen such that every path from every position in the set Si =
{s ∈ S : s is at depth di and Ω(s) = 1} visits priority 2 by depth di+1. This uni-
form choice is possible since (i) there are only finitely many nodes of priority 1
at a particular depth (because cost games have finite branching), and (ii) from
a particular node s with Ω(s) = 1, there is a bound on the length of paths of
priority 1 from s (if not, König’s Lemma would imply that there is an infinite
path of priority 1 in T , which is impossible).

Let s be a node between di and di+1. We set β(s) := 0 if every path from
s can reach priority 2 by di+1. Otherwise, if Ω(s) = 1 and some path from s
cannot reach a node s′ with Ω(s′) = 2 by di+1, then β(s) := 1. The strategy
should minimize βalt and β in order to ensure that plays stabilize in priority 2.

The signature for s ∈ S is sig(s) := 〈βalt(s), β(s), βk(s), βk−1(s), . . . , β1(s)〉.
Let σ : V → S be the positional strategy which maps v to the element in
h−1(v) with the lexicographically-least signature. It turns out that minimizing
this signature ensures the weak acceptance condition is satisfied and the value
of the play is still bounded.

Theorem 3. If G is a weak hB-game with an acyclic game graph, alternating
chains of length at most m, and k hierarchical counters, then there is a positional
strategy σ (defined above) such that val(G) ≈α val(σ) for α(n) = 2m(n+ 1)k.

2 We do not use infinite ordinals in the definition of these signatures so, in that sense,
it is simpler than many of the classical proofs which use this approach.



It is possible to generalize this technique to show that weak B-games and
and B-Büchi games admit finite-memory strategies.

Theorem 4. For all k ∈ N, there exists αk such that for any G which is a weak
B-game (or its dual) or a B-Büchi game, if G has an acyclic game graph and k
counters then there is a finite-memory strategy σ such that val(G) ≈αk

val(σ).

4.5 Results

Taking advantage of Theorems 3 and 4, we can show that it is possible to simulate
a weak cost automaton with a non-deterministic automaton. The idea is that the
non-deterministic version guesses a finite-memory strategy in the weak cost game
corresponding to the original weak automaton, and then computes its value.

Theorem 5. If a cost function f is recognizable by a weak cost automaton A
then a non-deterministic B-Büchi automaton B and non-deterministic S-Büchi
automaton S can be effectively constructed from A such that f ≈ [[B]] ≈ [[S]].

The decidability for cost WMSO follows from Theorems 2, 5, and Lemma 1.

Corollary 1. The relation [[ϕ]] 4 [[ψ]] is decidable for any cost WMSO sentences
ϕ and ψ over infinite trees.

Another nice consequence of Theorem 5 is a separation result. Rabin [13]
showed there is a language of infinite trees definable in MSO not definable in
WMSO. The separating language L consists of infinite trees over the alphabet
{a, b} on which every branch has finitely many b’s. A similar result holds in the
cost setting (and the separating function is the characteristic function of L).

Proposition 2. There is a cost function over infinite trees definable in cost
MSO (in fact, in pure MSO) which is not definable in cost WMSO.

5 Conclusion

We have extended the framework of cost games and cost automata to infinite
trees, building on the work from the finite-tree case [7]. In doing so, we were able
to prove that the relations 4 and ≈ are decidable for cost WMSO, an expressive
fragment of cost MSO. The proof relies crucially on the fact that finite-memory
strategies suffice in the cost games derived from weak cost automata.

The natural extension of this work would be to show that full cost MSO is
decidable over infinite trees. This paper and the work by Colcombet and Löding
in [7] have already set the stage for such a result. The missing link is a proof
that finite-memory strategies suffice in cost-parity games. As explained in [6],
this is a challenging open problem because of the complex interplay between an
arbitrary parity condition and the actions of the counters in the cost game.

Another interesting direction would be to compare cost WMSO with the
extension of WMSO with the unboundedness operator U, where UX.ϕ(X) ex-
presses “there is no bound on the size of sets X satisfying ϕ”. This logic has been



studied over infinite words in [1] where an equivalent automaton model called de-
terministic max automata are introduced. These automata lack non-determinism
but allow an explicit max operation on counters. It would be interesting to find
a similar deterministic model for cost automata over infinite words.
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