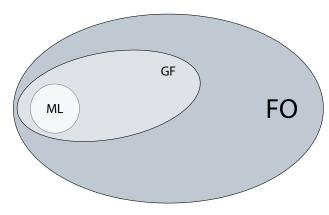
Automata-logic connection for guarded logics

Michael Vanden Boom

University of Oxford

CiE 2015 - Special Session on Automata, Logic, and Infinite Games July 2015

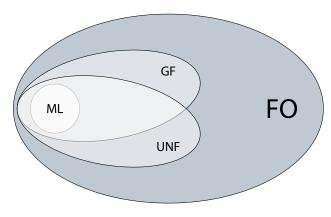
Including joint work with Michael Benedikt, Balder ten Cate, and Thomas Colcombet



constrain quantification

 $\exists x (G(xy) \land \psi(xy)) \\ \forall x (G(xy) \rightarrow \psi(xy))$

[Andréka, van Benthem, Németi '95-'98]



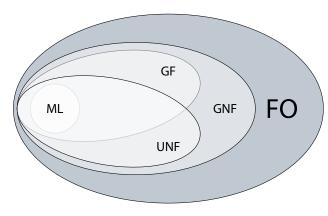
constrain quantification $\exists x(G(xy) \land \psi(xy))$ $\forall x(G(xy) \rightarrow \psi(xy))$

[Andréka, van Benthem, Németi '95-'98]

> constrain negation

 $\exists \mathbf{x}(\psi(\mathbf{x}\mathbf{y})) \\ \neg \psi(\mathbf{x})$

[ten Cate, Segoufin '11]



constrain quantification

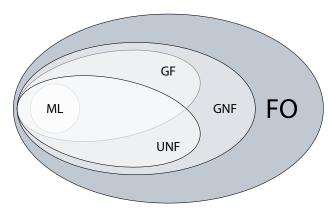
 $\exists \mathbf{x}(G(\mathbf{x}\mathbf{y}) \land \psi(\mathbf{x}\mathbf{y})) \\ \forall \mathbf{x}(G(\mathbf{x}\mathbf{y}) \rightarrow \psi(\mathbf{x}\mathbf{y}))$

[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists x(\psi(xy)) \\ G(xy) \land \neg \psi(xy)$

[ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11]



constrain quantification $\exists x(G(xy) \land \psi(xy))$

 $\exists \mathbf{x}(G(\mathbf{x}\mathbf{y}) \land \psi(\mathbf{x}\mathbf{y})) \\ \forall \mathbf{x}(G(\mathbf{x}\mathbf{y}) \rightarrow \psi(\mathbf{x}\mathbf{y}))$

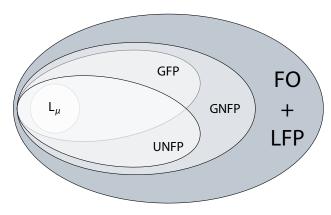
[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists x(\psi(xy)) \\ G(xy) \land \neg \psi(xy)$

[ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11]

Guarded logics extend modal logic while still retaining many of its nice properties, e.g. **decidable satisfiability**.



constrain quantification

 $\exists \mathbf{x}(G(\mathbf{x}\mathbf{y}) \land \psi(\mathbf{x}\mathbf{y})) \\ \forall \mathbf{x}(G(\mathbf{x}\mathbf{y}) \rightarrow \psi(\mathbf{x}\mathbf{y}))$

[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists x(\psi(xy)) \\ G(xy) \land \neg \psi(xy)$

[ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11]

These guarded fixpoint logics extend the modal μ -calculus while still retaining many of its nice properties, e.g. **decidable satisfiability**.

Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have **finite model property** (but fixpoint extensions do not).

Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have **finite model property** (but fixpoint extensions do not).

GFP, UNFP, and GNFP have **tree-like models** (models of bounded tree-width).

Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have **finite model property** (but fixpoint extensions do not).

GFP, UNFP, and GNFP have **tree-like models** (models of bounded tree-width).

 \Rightarrow amenable to techniques using tree automata

Construct automata for deciding **satisfiability** of GFP sentences. [Grädel+Walukiewicz '99]

Describe how these automata can be adapted to decide certain **boundedness** problems. [Benedikt, Colcombet, ten Cate, VB. '15]

Fix some relational signature σ .

Syntax for $GFP[\sigma]$

 $\varphi ::= Rx \mid \neg Rx \mid Yx \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y (G(xy) \land \varphi(xy)) \mid \forall y (G(xy) \rightarrow \varphi(xy)) \mid [Ifp_{Y,y}.\varphi(y, Y, Z)](x) \text{ where } Y \text{ only occurs positively in } \varphi \mid [gfp_{Y,y}.\varphi(y, Y, Z)](x) \text{ where } Y \text{ only occurs positively in } \varphi$

where *R* is a relation in σ or =, and the **guards** G(xy) are atomic formulas that use all of the variables xy. Fix some relational signature σ .

Syntax for $GFP[\sigma]$

 $\varphi ::= Rx \mid \neg Rx \mid Yx \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y (G(xy) \land \varphi(xy)) \mid \forall y (G(xy) \rightarrow \varphi(xy)) \mid [Ifp_{Y,y}.\varphi(y, Y, Z)](x) \text{ where } Y \text{ only occurs positively in } \varphi \mid [gfp_{Y,y}.\varphi(y, Y, Z)](x) \text{ where } Y \text{ only occurs positively in } \varphi$

where *R* is a relation in σ or =, and the **guards** G(xy) are atomic formulas that use all of the variables xy.

Examples

$$\begin{split} \varphi_{1}(x) &:= \forall y (Sxy \to \exists z (Ryz \land Py \land Pz)) \\ \varphi_{2} &:= \forall x (\exists y (Rxy \land \neg Ryx)) \equiv \forall x (x = x \to (\exists y (Rxy \land \neg Ryx))) \\ \varphi_{3}(y) &:= [\mathbf{lfp}_{Y,y} . Py \lor \exists z (Ryz \land Yz)](y) \end{split}$$

Theorem (Grädel '99)

Every satisfiable $\varphi \in \text{GFP}$ of width k has a model of tree width at most k - 1.

Theorem (Grädel '99)

Every satisfiable $\varphi \in \text{GFP}$ of width k has a model of tree width at most k - 1.

A structure \mathfrak{A} has **tree width** k - 1 if it can be covered by (overlapping) bags of size at most k, arranged in a tree t s.t.

- every guarded set appears in some bag node in t, and
- for each element, the set of bags with this element is connected.

 φ has width k if the max number of free variables in any subformula is k.

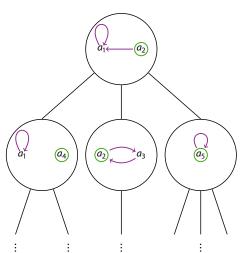
Theorem (Grädel '99)

Every satisfiable $\varphi \in \text{GFP}$ of width k has a model of tree width at most k - 1.

A structure \mathfrak{A} has **tree width** k - 1 if it can be covered by (overlapping) bags of size at most k, arranged in a tree t s.t.

- every guarded set appears in some bag node in t, and
- for each element, the set of bags with this element is connected.

 φ has width k if the max number of free variables in any subformula is k.



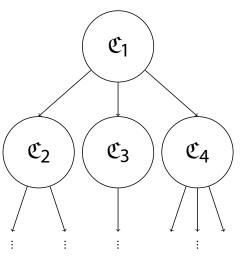
Encoding structures of tree width k - 1

Fix a set $K = \{a, b, c, \ldots\}$ of names of size 2k.

Let $\mathbb{K} := \{ \mathfrak{C} : \mathfrak{C} \text{ is a } \sigma \text{-structure with universe } C \subseteq K \text{ of size at most } k \}.$

A K-**tree** is an unranked infinite tree with

- arbitrary branching (possibly infinite), and
- node labels $\mathfrak{C} \in \mathbb{K}$.



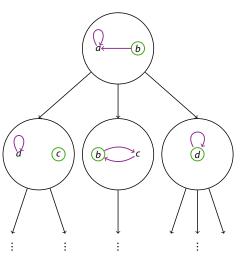
Encoding structures of tree width k - 1

Fix a set $K = \{a, b, c, \ldots\}$ of names of size 2k.

Let $\mathbb{K} := \{ \mathfrak{C} : \mathfrak{C} \text{ is a } \sigma \text{-structure with universe } C \subseteq K \text{ of size at most } k \}.$

A K-**tree** is an unranked infinite tree with

- arbitrary branching (possibly infinite), and
- node labels $\mathfrak{C} \in \mathbb{K}$.



Encoding structures of tree width k - 1

Fix a set $K = \{a, b, c, \ldots\}$ of names of size 2k.

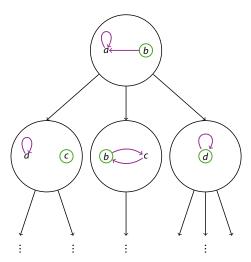
Let $\mathbb{K} := \{ \mathfrak{C} : \mathfrak{C} \text{ is a } \sigma \text{-structure with universe } C \subseteq K \text{ of size at most } k \}.$

A K-tree is an unranked infinite tree with

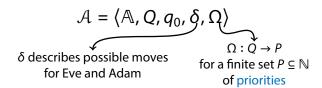
- arbitrary branching (possibly infinite), and
- node labels $\mathfrak{C} \in \mathbb{K}$.

K-trees are **consistent** if neighboring nodes agree on any shared names.

A consistent \mathbb{K} -tree *t* encodes a σ -structure $\mathfrak{D}(t)$.



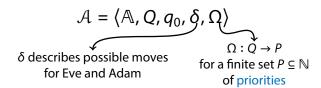
Alternating parity automata on infinite unranked trees



Acceptance game $\mathcal{A} \times t$

- Positions in the game are $Q \times dom(t)$.
- Eve and Adam select the next position in the play based on δ .
- Eve is trying to ensure the play satisfies the parity condition: the maximum priority occurring infinitely often in the play is even.

Alternating parity automata on infinite unranked trees



Acceptance game $\mathcal{A} \times t$

- Positions in the game are $Q \times dom(t)$.
- Eve and Adam select the next position in the play based on δ .
- Eve is trying to ensure the play satisfies the parity condition: the maximum priority occurring infinitely often in the play is even.

 $L(\mathcal{A}) := \{t : \text{Eve has a winning strategy in } \mathcal{A} \times t\}$

Example

Let $\mathbb{A} := \{ \blacklozenge, \diamond \}$.

 $L := \{t : \text{there is some} \blacklozenge \text{ in } t \text{ s.t.} \\ \text{every downward path from this} \blacklozenge \text{ has infinitely-many} \diamondsuit\}.$

Example

Let $\mathbb{A} \coloneqq \{ \blacklozenge, \diamondsuit \}$.

 $L := \{t : \text{there is some } \blacklozenge \text{ in } t \text{ s.t.} \\ \text{every downward path from this } \blacklozenge \text{ has infinitely-many } \diamondsuit\}.$

Construct $\mathcal{A} := \langle \mathbb{A}, Q, q_0, \delta, \Omega \rangle$ recognizing *L* with $Q := \{q_0, r_{\bullet}, r_{\Diamond}\}$ and $\Omega : q_0, r_{\bullet} \mapsto 1; r_{\Diamond} \mapsto 2$.

- In state q_0 , Eve chooses a neighbor of the current node. If she sees an \blacklozenge , Eve can choose to switch to state r_{\diamondsuit} .
- In state r_{\diamond} or r_{\diamond} when reading letter $l \in \{\diamondsuit, \diamond\}$, Adam selects a child in the tree and moves to state r_l .

(Recall that Eve is trying to ensure that the **parity condition** is satisfied: the maximum priority visited infinitely often is even.)

Proposition

There is a 1-way parity automaton ${\mathfrak C}_{\mathbb K}$ that checks if a ${\mathbb K}$ -tree is consistent.

There is a 2-way parity automaton $\mathcal{C}_{\varphi} := \langle \mathbb{K}, Q, q_0, \delta, \Omega \rangle$ that runs on consistent \mathbb{K} -trees *t* and accepts iff φ holds in σ -structure $\mathfrak{D}(t)$.

Proposition

There is a 1-way parity automaton $\mathcal{C}_{\mathbb{K}}$ that checks if a \mathbb{K} -tree is consistent.

There is a 2-way parity automaton $\mathcal{C}_{\varphi} := \langle \mathbb{K}, Q, q_0, \delta, \Omega \rangle$ that runs on consistent \mathbb{K} -trees *t* and accepts iff φ holds in σ -structure $\mathfrak{D}(t)$.

State set $Q := cl(\varphi, K)$ (subformulas of φ with names from K substituted for free vars) and **initial state** $q_0 := \varphi$.

Proposition

There is a 1-way parity automaton $\mathcal{C}_{\mathbb{K}}$ that checks if a \mathbb{K} -tree is consistent.

There is a 2-way parity automaton $\mathcal{C}_{\varphi} := \langle \mathbb{K}, Q, q_0, \delta, \Omega \rangle$ that runs on consistent \mathbb{K} -trees *t* and accepts iff φ holds in σ -structure $\mathfrak{D}(t)$.

State set $Q := cl(\varphi, K)$ (subformulas of φ with names from K substituted for free vars) and **initial state** $q_0 := \varphi$.

Transition function δ in state $q \in Q$ at a position labelled \mathfrak{C} with universe *C*:

- If *q* is Ra or $\neg Ra$, then move to \top if $\mathfrak{C} \models q$, and move to \bot otherwise.
- If q is $\psi_1 \lor \psi_2$, then Eve can choose to switch to state ψ_1 or ψ_2 .
- If q is $\psi_1 \wedge \psi_2$, then Adam can choose to switch to state ψ_1 or ψ_2 .

Transition function δ in state $q \in Q$ at a position labelled \mathfrak{C} with universe C

■ If *q* is $\exists x(G(ax) \land \psi(ax))$ and $a \subseteq C$, then Eve can choose to

- stay in the same node, choose some $b \subseteq C$ such that $\mathfrak{C} \models G(ab)$, and move to state $\psi(ab)$, or
- move to some neighbor (parent or child), and stay in state q.
- If *q* is $\exists x(G(ax) \land \psi(ax))$ and $a \notin C$, then move to state \bot .

Transition function δ in state $q \in Q$ at a position labelled \mathfrak{C} with universe C

■ If *q* is $\exists x(G(ax) \land \psi(ax))$ and $a \subseteq C$, then Eve can choose to

- stay in the same node, choose some $b \subseteq C$ such that $\mathfrak{C} \models G(ab)$, and move to state $\psi(ab)$, or
- move to some neighbor (parent or child), and stay in state q.
- If *q* is $\exists x(G(ax) \land \psi(ax))$ and $a \notin C$, then move to state \bot .
- If *q* is $\forall x(G(ax) \rightarrow \psi(ax))$ and $a \subseteq C$, then Adam can choose to
 - stay in the same node, choose some $b \subseteq C$ such that $\mathfrak{C} \models G(ab)$, and move to state $\psi(ab)$, or
 - move to some neighbor (parent or child), and stay in state q.
- If q is $\forall x(G(ax) \rightarrow \psi(ax))$ and $a \notin C$, then move to state \top .

Transition function δ in state $q \in Q$ at a position labelled \mathfrak{C} with universe C

■ If *q* is $\exists x(G(ax) \land \psi(ax))$ and $a \subseteq C$, then Eve can choose to

- stay in the same node, choose some $b \subseteq C$ such that $\mathfrak{C} \models G(ab)$, and move to state $\psi(ab)$, or
- move to some neighbor (parent or child), and stay in state q.
- If *q* is $\exists x(G(ax) \land \psi(ax))$ and $a \notin C$, then move to state \bot .
- If *q* is $\forall x(G(ax) \rightarrow \psi(ax))$ and $a \subseteq C$, then Adam can choose to
 - stay in the same node, choose some $b \subseteq C$ such that $\mathfrak{C} \models G(ab)$, and move to state $\psi(ab)$, or
 - move to some neighbor (parent or child), and stay in state q.
- If q is $\forall x(G(ax) \rightarrow \psi(ax))$ and $a \notin C$, then move to state \top .

Assume there is a subformula η of the form $[\mathbf{fp}_{Y,y}, \psi(y, Y, Z)](x)$.

■ If q is $\eta(a)$ or Ya, then the automaton moves to state $\psi(a, Y, Z)$.

Automata for GFP

Ordering $Y_j > \cdots > Y_1$ of fixpoint variables based on nesting (roughly speaking, outer fixpoint variables appear higher in this ordering).

Priority assignment $\Omega: Q \rightarrow \{0, 1..., 2j\}$

fixpoint variable $Y_i \mapsto \begin{cases} 2i-1 & \text{if } Y_i \text{ corresponds to least fixpoint} \\ 2i & \text{if } Y_i \text{ corresponds to greatest fixpoint} \end{cases}$ existential requirement or $\bot \mapsto 1$ everything else $\mapsto 0$

Parity condition requires that max priority visited infinitely often is even

⇒ existential requirement is always witnessed and least fixpoint is only unfolded a finite number of times (before an outer fixpoint is unfolded).

Theorem (Grädel, Walukiewicz '99)

Satisfiability is decidable for GFP in 2EXPTIME (EXPTIME for fixed width).

 $\varphi \in \text{GFP}$ 2-way parity automaton $\mathcal{A}_{\varphi} := \mathcal{C}_{\varphi} \wedge \mathcal{C}_{\mathbb{K}}$ $L(\mathcal{A}_{\varphi})^{\dagger} \neq \emptyset?$

Theorem (Grädel, Walukiewicz '99)

Satisfiability is decidable for GFP in 2EXPTIME (EXPTIME for fixed width).

 $\varphi \in \text{GFP}$ 2-way parity automaton $\mathcal{A}_{\varphi} := \mathcal{C}_{\varphi} \wedge \mathcal{C}_{\mathbb{K}}$ EXPTIME using [Vardi'98] $L(\mathcal{A}_{\varphi})^{\downarrow} \neq \emptyset$?

Theorem (Grädel, Walukiewicz '99)

Satisfiability is decidable for GFP in 2EXPTIME (EXPTIME for fixed width).

Similar techniques yield 2EXPTIME complexity for GNFP satisfiability testing.

 $\varphi \in \mathsf{GFP}$ 2-way parity automaton $\mathcal{A}_{\varphi} := \mathcal{C}_{\varphi} \wedge \mathcal{C}_{\mathbb{K}}$ EXPTIME using [Vardi'98] $L(\mathcal{A}_{\omega})^{\dagger} \neq \emptyset?$

Tree automata are a useful tool to decide **satisfiability** for expressive logics like GFP and GNFP that have tree-like models.

Tree automata are a useful tool to decide **satisfiability** for expressive logics like GFP and GNFP that have tree-like models.

But we can do more...

Let $\psi(\mathbf{y}, Y)$ positive in Y.

For all \mathfrak{A}, ψ induces a monotone operation $V \mapsto \psi_{\mathfrak{A}}(V) := \{a : \mathfrak{A}, a, V \models \psi\}$ \Rightarrow there is a unique least fixpoint $\bigcup_a \psi_{\mathfrak{A}}^a$.

$$\psi_{\mathfrak{A}}^{0} := \emptyset$$
$$\psi_{\mathfrak{A}}^{a+1} := \psi_{\mathfrak{A}}(\psi_{\mathfrak{A}}^{a})$$
$$\psi_{\mathfrak{A}}^{\lambda} := \bigcup_{a < \lambda} \psi_{\mathfrak{A}}^{a}$$

Let $\psi(\mathbf{y}, Y)$ positive in Y.

For all \mathfrak{A}, ψ induces a monotone operation $V \mapsto \psi_{\mathfrak{A}}(V) := \{a : \mathfrak{A}, a, V \models \psi\}$ \Rightarrow there is a unique least fixpoint $\bigcup_a \psi_{\mathfrak{A}}^a$.

$$\psi_{\mathfrak{A}}^{0} := \emptyset$$
$$\psi_{\mathfrak{A}}^{a+1} := \psi_{\mathfrak{A}}(\psi_{\mathfrak{A}}^{a})$$
$$\psi_{\mathfrak{A}}^{\lambda} := \bigcup_{\alpha < \lambda} \psi_{\mathfrak{A}}^{\alpha}$$

Boundedness problem for \mathcal{L}

Input: $\psi(\mathbf{y}, Y) \in \mathcal{L}$ positive in *Y*

Question: is there $n \in \mathbb{N}$ s.t. for all structures \mathfrak{A} , $\psi_{\mathfrak{A}}^n = \psi_{\mathfrak{A}}^{n+1}$? (i.e. the least fixpoint is always reached within *n* iterations)

For ψ in GFP or GNFP of width k, ψ is bounded over all structures iff ψ is bounded over tree-like structures (of tree width k - 1).

For ψ in GFP or GNFP of width k, ψ is bounded over all structures iff ψ is bounded over tree-like structures (of tree width k - 1).

 \Rightarrow boundedness amenable to techniques using tree automata

For ψ in GFP or GNFP of width k, ψ is bounded over all structures iff ψ is bounded over tree-like structures (of tree width k - 1).

⇒ boundedness amenable to techniques using tree automata

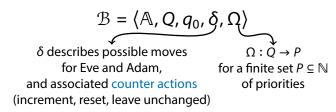
Construct 2-way parity automaton \mathcal{A}_{φ} for $\varphi := [\mathbf{lfp}_{X,x}.\psi(x, X)](x)$ as before.

Add a counter which is incremented each time the least fixpoint is unfolded (and is untouched otherwise).

This new automaton \mathcal{B}_{φ} is a **cost automaton**.

Boundedness of ψ is related to boundedness of function defined by \mathcal{B}_{φ} .

Cost automata on infinite trees



n-acceptance game $\mathcal{B} \times t$

- Positions in the game are $Q \times dom(t)$.
- Eve and Adam select the next position in the play based on δ .
- Eve is trying to ensure the play has counter value at most *n* and the maximum priority occurring infinitely often in the play is even.

```
Semantics \llbracket \mathcal{B} \rrbracket : \mathbb{A}-trees \rightarrow \mathbb{N} \cup \{\infty\}
```

 $\llbracket \mathcal{B} \rrbracket(t) := \inf \{ n : \text{Eve wins the } n \text{-acceptance game } \mathcal{B} \times t \}$

Boundedness problem for cost automata

Input: cost automaton \mathcal{B}

Question: is there $n \in \mathbb{N}$ such that for all trees t, $\llbracket \mathcal{B} \rrbracket(t) \le n$?

Boundedness problem for cost automata

```
Input: cost automaton \mathcal{B}
```

```
Question: is there n \in \mathbb{N} such that for all trees t, [<math>\mathcal{B}](t) \leq n?
```

Decidability of boundedness is not known in general for cost automata over infinite trees...

Boundedness problem for cost automata

```
Input: cost automaton \mathcal{B}
```

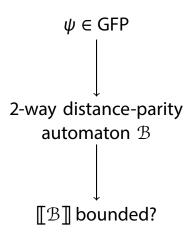
```
Question: is there n \in \mathbb{N} such that for all trees t, [[B]](t) \le n?
```

Decidability of boundedness is not known in general for cost automata over infinite trees...

...but we are interested in special cases using **distance-parity automata**: 1 counter that is only incremented or left unchanged (never reset) for which boundedness is known to be decidable. Complexity of boundedness for guarded logics

Theorem (Benedikt, Colcombet, ten Cate, VB. '15)

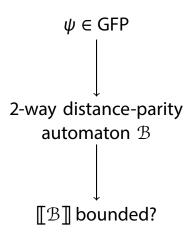
Boundedness for GFP is decidable in elementary time.



Complexity of boundedness for guarded logics

Theorem (Benedikt, Colcombet, ten Cate, VB. '15)

Boundedness for GFP is decidable in elementary time.

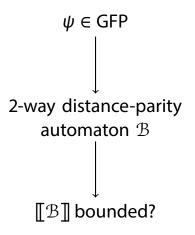


Theorem (Benedikt, Colcombet, ten Cate, VB. '15)

Boundedness for GFP is decidable in elementary time.

Similar techniques yield elementary complexity for GNFP boundedness.

Improves upon results of [Blumensath, Otto, Weyer '14], [Bárány, ten Cate, Otto '12].



Tree automata are a useful tool to decide **satisfiability** for expressive logics like GFP and GNFP that have tree-like models.

Cost automata can be used to decide **boundedness** for these logics (Benedikt, Colcombet, ten Cate, VB. '15)

Tree automata are a useful tool to decide **satisfiability** for expressive logics like GFP and GNFP that have tree-like models.

Cost automata can be used to decide **boundedness** for these logics (Benedikt, Colcombet, ten Cate, VB. '15)

Automata used to prove **uniform interpolation** for L_{μ} , and this automata-logic connection can be used to prove interpolation for UNFP (Benedikt, ten Cate, VB. '15)

For all $\psi(a) \in cl(\varphi, K)$, there is a 2-way localized parity automaton $\mathcal{A}_{\psi(a)}^{\ell}$ running on \mathbb{K} -trees *t* such that

 $\mathcal{A}_{\psi(a)}^{\ell} \operatorname{accepts} t \operatorname{starting} \operatorname{from} v \qquad \text{iff} \qquad \mathfrak{D}(t), [v, a_1], \dots, [v, a_j] \vDash \psi(\mathbf{x}).$

Construct inductively. In general, on input t:

- Eve guesses an annotation t' of t with subformulas from $cl(\varphi, K)$ and checks $\psi(a)$ on t' (assuming annotations are correct),
- Adam can challenge some $\eta(a')$ in the annotation by launching (inductively defined) $\mathcal{A}^{\ell}_{\eta(a')}$.

Theorem (Bárány, ten Cate, Segoufin '11)

Satisfiability is decidable for GNFP in 2EXPTIME (even for fixed width).

Automata approach:

Benedikt, Colcombet, ten Cate, VB. '15

```
\varphi \in \text{GNFP}
2-way localized automata \mathcal{A}_{\psi(q)}^{\epsilon}
         2-way parity automaton
\mathcal{A}_{\varphi} := \mathcal{A}_{\varphi}^{\ell} \wedge \mathcal{C}_{\mathbb{K}}
                              L(\mathcal{A}_{\omega})^{\dagger} \neq \emptyset?
```