
Automata-logic connection

for guarded logics

Michael Vanden Boom

University of Oxford

CiE 2015 - Special Session on Automata, Logic, and InBnite Games

July 2015

Including joint work with

Michael Benedikt, Balder ten Cate, and Thomas Colcombet

1 / 21



Guarded logics

FOML

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

Guarded logics extend modal logic

while still retaining many of its nice properties, e.g. decidable satisBability.

2 / 21



Guarded logics

FOML

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

Guarded logics extend modal logic

while still retaining many of its nice properties, e.g. decidable satisBability.

2 / 21



Guarded logics

FOML

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

[Bárány, ten Cate, SegouBn ’11]

Guarded logics extend modal logic

while still retaining many of its nice properties, e.g. decidable satisBability.

2 / 21



Guarded logics

FOML

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

[Bárány, ten Cate, SegouBn ’11]

Guarded logics extend modal logic

while still retaining many of its nice properties, e.g. decidable satisBability.

2 / 21



Guarded logics

FO

+

LFP

Lµ

GFP

GNFP

UNFP

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

[Bárány, ten Cate, SegouBn ’11]

These guarded Bxpoint logics extend the modal µ-calculus

while still retaining many of its nice properties, e.g. decidable satisBability.

3 / 21



Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have Bnite model property

(but Bxpoint extensions do not).

GFP, UNFP, and GNFP have tree-like models

(models of bounded tree-width).

⇒ amenable to techniques using tree automata

4 / 21



Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have Bnite model property

(but Bxpoint extensions do not).

GFP, UNFP, and GNFP have tree-like models

(models of bounded tree-width).

⇒ amenable to techniques using tree automata

4 / 21



Exploiting model theoretic properties of these guarded logics

GF, UNF, and GNF have Bnite model property

(but Bxpoint extensions do not).

GFP, UNFP, and GNFP have tree-like models

(models of bounded tree-width).

⇒ amenable to techniques using tree automata

4 / 21



The plan for this talk

Construct automata for deciding satisBability of GFP sentences.

[Grädel+Walukiewicz ’99]

Describe how these automata can be adapted to decide certain

boundedness problems. [Benedikt, Colcombet, ten Cate, VB. ’15]

5 / 21



Guarded Bxpoint logic (GFP)

Fix some relational signature σ .

Syntax for GFP[σ]

φ ∶∶= Rx ∣ ¬Rx ∣ Yx ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(G(xy) ∧ φ(xy)) ∣ ∀y(G(xy) → φ(xy)) ∣
[lfpY ,y .φ(y, Y , Z)](x) where Y only occurs positively in φ ∣
[gfpY ,y

.φ(y, Y , Z)](x) where Y only occurs positively in φ

where R is a relation in σ or =, and

the guards G(xy) are atomic formulas that use all of the variables xy.

Examples

φ1(x) ∶= ∀y(Sxy → ∃z(Ryz ∧ Py ∧ Pz))
φ2 ∶= ∀x(∃y(Rxy ∧ ¬Ryx)) ≡ ∀x(x = x → (∃y(Rxy ∧ ¬Ryx))

φ3(y) ∶= [lfpY ,y . Py ∨ ∃z(Ryz ∧ Yz)](y)

6 / 21



Guarded Bxpoint logic (GFP)

Fix some relational signature σ .

Syntax for GFP[σ]

φ ∶∶= Rx ∣ ¬Rx ∣ Yx ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(G(xy) ∧ φ(xy)) ∣ ∀y(G(xy) → φ(xy)) ∣
[lfpY ,y .φ(y, Y , Z)](x) where Y only occurs positively in φ ∣
[gfpY ,y

.φ(y, Y , Z)](x) where Y only occurs positively in φ

where R is a relation in σ or =, and

the guards G(xy) are atomic formulas that use all of the variables xy.

Examples

φ1(x) ∶= ∀y(Sxy → ∃z(Ryz ∧ Py ∧ Pz))
φ2 ∶= ∀x(∃y(Rxy ∧ ¬Ryx)) ≡ ∀x(x = x → (∃y(Rxy ∧ ¬Ryx))

φ3(y) ∶= [lfpY ,y . Py ∨ ∃z(Ryz ∧ Yz)](y)

6 / 21



Tree-like models for GFP

Theorem (Grädel ’99)

Every satisBable φ ∈ GFP of width k has amodel of tree width at most k − 1.

A structure A has tree width

k − 1 if it can be covered by

(overlapping) bags of size at

most k, arranged in a tree t s.t.

every guarded set appears

in some bag node in t, and

for each element, the set of

bags with this element

is connected.

φ has width k if the max

number of free variables in

any subformula is k.

C1

C3C2 C4

⋮⋮⋮ ⋮

7 / 21



Tree-like models for GFP

Theorem (Grädel ’99)

Every satisBable φ ∈ GFP of width k has amodel of tree width at most k − 1.

A structure A has tree width

k − 1 if it can be covered by

(overlapping) bags of size at

most k, arranged in a tree t s.t.

every guarded set appears

in some bag node in t, and

for each element, the set of

bags with this element

is connected.

φ has width k if the max

number of free variables in

any subformula is k.

a1 a2

a2 a3a1 a4 a5

⋮⋮⋮ ⋮

7 / 21



Tree-like models for GFP

Theorem (Grädel ’99)

Every satisBable φ ∈ GFP of width k has amodel of tree width at most k − 1.

A structure A has tree width

k − 1 if it can be covered by

(overlapping) bags of size at

most k, arranged in a tree t s.t.

every guarded set appears

in some bag node in t, and

for each element, the set of

bags with this element

is connected.

φ has width k if the max

number of free variables in

any subformula is k.

a1 a2

a2 a3a1 a4 a5

⋮⋮⋮ ⋮
7 / 21



Encoding structures of tree width k − 1

Fix a set K = {a, b, c, . . .} of names of size 2k.

LetK ∶= {C ∶ C is a σ-structure with universe C ⊆ K of size at most k}.

AK-tree is an

unranked inBnite tree with

arbitrary branching

(possibly inBnite), and

node labels C ∈ K.

K-trees are consistent if

neighboring nodes agree on

any shared names.

A consistentK-tree t encodes

a σ-structure D(t).

C1

C3C2 C4

⋮⋮⋮ ⋮

8 / 21



Encoding structures of tree width k − 1

Fix a set K = {a, b, c, . . .} of names of size 2k.

LetK ∶= {C ∶ C is a σ-structure with universe C ⊆ K of size at most k}.

AK-tree is an

unranked inBnite tree with

arbitrary branching

(possibly inBnite), and

node labels C ∈ K.

K-trees are consistent if

neighboring nodes agree on

any shared names.

A consistentK-tree t encodes

a σ-structure D(t).

a b

b ca c d

⋮⋮⋮ ⋮

8 / 21



Encoding structures of tree width k − 1

Fix a set K = {a, b, c, . . .} of names of size 2k.

LetK ∶= {C ∶ C is a σ-structure with universe C ⊆ K of size at most k}.

AK-tree is an

unranked inBnite tree with

arbitrary branching

(possibly inBnite), and

node labels C ∈ K.

K-trees are consistent if

neighboring nodes agree on

any shared names.

A consistentK-tree t encodes

a σ-structure D(t).

a b

b ca c d

⋮⋮⋮ ⋮

8 / 21



Alternating parity automata on inBnite unranked trees

A = ⟨A,Q, q0, δ,Ω⟩

δ describes possible moves

for Eve and Adam

Ω ∶ Q → P

for a Bnite set P ⊆ N

of priorities

Acceptance game A × t

Positions in the game are Q × dom(t).
Eve and Adam select the next position in the play based on δ.

Eve is trying to ensure the play satisBes the parity condition:

the maximum priority occurring inBnitely often in the play is even.

L(A) ∶= {t ∶ Eve has awinning strategy in A × t}

9 / 21



Alternating parity automata on inBnite unranked trees

A = ⟨A,Q, q0, δ,Ω⟩

δ describes possible moves

for Eve and Adam

Ω ∶ Q → P

for a Bnite set P ⊆ N

of priorities

Acceptance game A × t

Positions in the game are Q × dom(t).
Eve and Adam select the next position in the play based on δ.

Eve is trying to ensure the play satisBes the parity condition:

the maximum priority occurring inBnitely often in the play is even.

L(A) ∶= {t ∶ Eve has awinning strategy in A × t}

9 / 21



Example

LetA ∶= {♠,♢}.

L ∶= {t ∶ there is some♠ in t s.t.

every downward path from this♠ has inBnitely-many♢}.

Construct A ∶= ⟨A,Q, q0 , δ,Ω⟩ recognizing Lwith

Q ∶= {q0 , r♠ , r♢} and Ω ∶ q0 , r♠ ↦ 1; r♢ ↦ 2.

In state q0 , Eve chooses a neighbor of the current node.

If she sees an♠, Eve can choose to switch to state r♠.

In state r♠ or r♢ when reading letter l ∈ {♠,♢},

Adam selects a child in the tree and moves to state rl .

(Recall that Eve is trying to ensure that the parity condition is satisBed:

the maximum priority visited inBnitely often is even.)

10 / 21



Example

LetA ∶= {♠,♢}.

L ∶= {t ∶ there is some♠ in t s.t.

every downward path from this♠ has inBnitely-many♢}.

Construct A ∶= ⟨A,Q, q0 , δ,Ω⟩ recognizing Lwith

Q ∶= {q0 , r♠ , r♢} and Ω ∶ q0 , r♠ ↦ 1; r♢ ↦ 2.

In state q0 , Eve chooses a neighbor of the current node.

If she sees an♠, Eve can choose to switch to state r♠.

In state r♠ or r♢ when reading letter l ∈ {♠,♢},

Adam selects a child in the tree and moves to state rl .

(Recall that Eve is trying to ensure that the parity condition is satisBed:

the maximum priority visited inBnitely often is even.)

10 / 21



Automata for GFP

Fix sentence φ ∈ GFP[σ] of width k.

Proposition

There is a 1-way parity automaton CK that checks if aK-tree is consistent.

There is a 2-way parity automaton Cφ ∶= ⟨K,Q, q0 , δ,Ω⟩ that runs on

consistentK-trees t and accepts i> φ holds in σ-structure D(t).

State set Q ∶= cl(φ, K) (subformulas of φ with names from K substituted for free vars)

and initial state q0 ∶= φ.

Transition function δ in state q ∈ Q at a position labelled Cwith universe C:

If q is Ra or ¬Ra, then move to⊤ if C ⊧ q, and move to⊥ otherwise.

If q is ψ1 ∨ ψ2, then Eve can choose to switch to state ψ1 or ψ2.

If q is ψ1 ∧ ψ2, then Adam can choose to switch to state ψ1 or ψ2.

11 / 21



Automata for GFP

Fix sentence φ ∈ GFP[σ] of width k.

Proposition

There is a 1-way parity automaton CK that checks if aK-tree is consistent.

There is a 2-way parity automaton Cφ ∶= ⟨K,Q, q0 , δ,Ω⟩ that runs on

consistentK-trees t and accepts i> φ holds in σ-structure D(t).

State set Q ∶= cl(φ, K) (subformulas of φ with names from K substituted for free vars)

and initial state q0 ∶= φ.

Transition function δ in state q ∈ Q at a position labelled Cwith universe C:

If q is Ra or ¬Ra, then move to⊤ if C ⊧ q, and move to⊥ otherwise.

If q is ψ1 ∨ ψ2, then Eve can choose to switch to state ψ1 or ψ2.

If q is ψ1 ∧ ψ2, then Adam can choose to switch to state ψ1 or ψ2.

11 / 21



Automata for GFP

Fix sentence φ ∈ GFP[σ] of width k.

Proposition

There is a 1-way parity automaton CK that checks if aK-tree is consistent.

There is a 2-way parity automaton Cφ ∶= ⟨K,Q, q0 , δ,Ω⟩ that runs on

consistentK-trees t and accepts i> φ holds in σ-structure D(t).

State set Q ∶= cl(φ, K) (subformulas of φ with names from K substituted for free vars)

and initial state q0 ∶= φ.

Transition function δ in state q ∈ Q at a position labelled Cwith universe C:

If q is Ra or ¬Ra, then move to⊤ if C ⊧ q, and move to⊥ otherwise.

If q is ψ1 ∨ ψ2, then Eve can choose to switch to state ψ1 or ψ2.

If q is ψ1 ∧ ψ2, then Adam can choose to switch to state ψ1 or ψ2.

11 / 21



Automata for GFP

Fix sentence φ ∈ GFP[σ] of width k.

Proposition

There is a 1-way parity automaton CK that checks if aK-tree is consistent.

There is a 2-way parity automaton Cφ ∶= ⟨K,Q, q0 , δ,Ω⟩ that runs on

consistentK-trees t and accepts i> φ holds in σ-structure D(t).

State set Q ∶= cl(φ, K) (subformulas of φ with names from K substituted for free vars)

and initial state q0 ∶= φ.

Transition function δ in state q ∈ Q at a position labelled Cwith universe C:

If q is Ra or ¬Ra, then move to⊤ if C ⊧ q, and move to⊥ otherwise.

If q is ψ1 ∨ ψ2, then Eve can choose to switch to state ψ1 or ψ2.

If q is ψ1 ∧ ψ2, then Adam can choose to switch to state ψ1 or ψ2.

11 / 21



Automata for GFP

Transition function δ in state q ∈ Q at a position labelled Cwith universe C

If q is ∃x(G(ax) ∧ ψ(ax)) and a ⊆ C, then Eve can choose to

- stay in the same node, choose some b ⊆ C such that C ⊧ G(ab), and

move to state ψ(ab), or

- move to some neighbor (parent or child), and stay in state q.

If q is ∃x(G(ax) ∧ ψ(ax)) and a /⊆ C, then move to state⊥.

If q is ∀x(G(ax) → ψ(ax)) and a ⊆ C, then Adam can choose to

- stay in the same node, choose some b ⊆ C such that C ⊧ G(ab), and

move to state ψ(ab), or

- move to some neighbor (parent or child), and stay in state q.

If q is ∀x(G(ax) → ψ(ax)) and a /⊆ C, then move to state⊤.

Assume there is a subformula η of the form [fpY ,y .ψ(y, Y , Z)](x).
If q is η(a) or Ya, then the automaton moves to state ψ(a, Y , Z).

12 / 21



Automata for GFP

Transition function δ in state q ∈ Q at a position labelled Cwith universe C

If q is ∃x(G(ax) ∧ ψ(ax)) and a ⊆ C, then Eve can choose to

- stay in the same node, choose some b ⊆ C such that C ⊧ G(ab), and

move to state ψ(ab), or

- move to some neighbor (parent or child), and stay in state q.

If q is ∃x(G(ax) ∧ ψ(ax)) and a /⊆ C, then move to state⊥.

If q is ∀x(G(ax) → ψ(ax)) and a ⊆ C, then Adam can choose to

- stay in the same node, choose some b ⊆ C such that C ⊧ G(ab), and

move to state ψ(ab), or

- move to some neighbor (parent or child), and stay in state q.

If q is ∀x(G(ax) → ψ(ax)) and a /⊆ C, then move to state⊤.

Assume there is a subformula η of the form [fpY ,y .ψ(y, Y , Z)](x).
If q is η(a) or Ya, then the automaton moves to state ψ(a, Y , Z).

12 / 21



Automata for GFP

Transition function δ in state q ∈ Q at a position labelled Cwith universe C

If q is ∃x(G(ax) ∧ ψ(ax)) and a ⊆ C, then Eve can choose to

- stay in the same node, choose some b ⊆ C such that C ⊧ G(ab), and

move to state ψ(ab), or

- move to some neighbor (parent or child), and stay in state q.

If q is ∃x(G(ax) ∧ ψ(ax)) and a /⊆ C, then move to state⊥.

If q is ∀x(G(ax) → ψ(ax)) and a ⊆ C, then Adam can choose to

- stay in the same node, choose some b ⊆ C such that C ⊧ G(ab), and

move to state ψ(ab), or

- move to some neighbor (parent or child), and stay in state q.

If q is ∀x(G(ax) → ψ(ax)) and a /⊆ C, then move to state⊤.

Assume there is a subformula η of the form [fpY ,y .ψ(y, Y , Z)](x).
If q is η(a) or Ya, then the automaton moves to state ψ(a, Y , Z).

12 / 21



Automata for GFP

Ordering Yj > ⋅ ⋅ ⋅ > Y1 of Bxpoint variables based on nesting

(roughly speaking, outer Bxpoint variables appear higher in this ordering).

Priority assignment Ω ∶ Q → {0, 1 . . . , 2j}

Bxpoint variable Yi ↦ {2i − 1 if Yi corresponds to least Bxpoint

2i if Yi corresponds to greatest Bxpoint

existential requirement or⊥ ↦ 1

everything else ↦ 0

Parity condition requires that max priority visited inBnitely often is even

⇒ existential requirement is always witnessed and

least Bxpoint is only unfolded a Bnite number of times

(before an outer Bxpoint is unfolded).

13 / 21



Complexity of satisBability for GFP

Theorem

(Grädel,Walukiewicz ’99)

SatisBability is decidable for

GFP in 2EXPTIME

(EXPTIME for Bxed width).

Similar techniques yield

2EXPTIME complexity for

GNFP satisBability testing.

φ ∈ GFP

2-way

parity automaton

Aφ ∶= Cφ ∧ CK

L(Aφ) ≠ ∅?

14 / 21



Complexity of satisBability for GFP

Theorem

(Grädel,Walukiewicz ’99)

SatisBability is decidable for

GFP in 2EXPTIME

(EXPTIME for Bxed width).

Similar techniques yield

2EXPTIME complexity for

GNFP satisBability testing.

φ ∈ GFP

2-way

parity automaton

Aφ ∶= Cφ ∧ CK

L(Aφ) ≠ ∅?

EXPTIME

using [Vardi’98]

14 / 21



Complexity of satisBability for GFP

Theorem

(Grädel,Walukiewicz ’99)

SatisBability is decidable for

GFP in 2EXPTIME

(EXPTIME for Bxed width).

Similar techniques yield

2EXPTIME complexity for

GNFP satisBability testing.

φ ∈ GFP

2-way

parity automaton

Aφ ∶= Cφ ∧ CK

L(Aφ) ≠ ∅?

EXPTIME

using [Vardi’98]

14 / 21



Summary

Tree automata are a useful tool to decide satisBability for expressive logics

like GFP and GNFP that have tree-like models.

But we can do more...

15 / 21



Summary

Tree automata are a useful tool to decide satisBability for expressive logics

like GFP and GNFP that have tree-like models.

But we can do more...

15 / 21



Boundedness

Let ψ(y, Y) positive in Y .

For all A, ψ induces amonotone operation V ↦ ψA(V) ∶= {a ∶ A, a, V ⊧ ψ}
⇒ there is a unique least Bxpoint ⋃

α
ψ
α

A.

ψ
0

A ∶= ∅

ψ
α+1

A ∶= ψA(ψα

A)
ψ

λ

A ∶= ⋃
α<λ

ψ
α

A

16 / 21



Boundedness

Let ψ(y, Y) positive in Y .

For all A, ψ induces amonotone operation V ↦ ψA(V) ∶= {a ∶ A, a, V ⊧ ψ}
⇒ there is a unique least Bxpoint ⋃

α
ψ
α

A.

ψ
0

A ∶= ∅

ψ
α+1

A ∶= ψA(ψα

A)
ψ

λ

A ∶= ⋃
α<λ

ψ
α

A

Boundedness problem for L

Input: ψ(y, Y) ∈ L positive in Y

Question: is there n ∈ N s.t. for all structures A, ψ
n

A = ψ
n+1

A ?

(i.e. the least Bxpoint is always reached within n iterations)

16 / 21



Boundedness

Proposition

For ψ in GFP or GNFP of width k, ψ is bounded over all structures

i> ψ is bounded over tree-like structures (of tree width k − 1).

17 / 21



Boundedness

Proposition

For ψ in GFP or GNFP of width k, ψ is bounded over all structures

i> ψ is bounded over tree-like structures (of tree width k − 1).

⇒ boundedness amenable to techniques using tree automata

17 / 21



Boundedness

Proposition

For ψ in GFP or GNFP of width k, ψ is bounded over all structures

i> ψ is bounded over tree-like structures (of tree width k − 1).

⇒ boundedness amenable to techniques using tree automata

Construct 2-way parity automaton Aφ for φ ∶= [lfpX ,x .ψ(x, X)](x) as before.

Add a counter which is incremented each time the least Bxpoint is unfolded

(and is untouched otherwise).

This new automaton Bφ is a cost automaton.

Boundedness of ψ is related to boundedness of function deBned byBφ.

17 / 21



Cost automata on inBnite trees

B = ⟨A,Q, q0, δ,Ω⟩
δ describes possible moves

for Eve and Adam,

and associated counter actions

(increment, reset, leave unchanged)

Ω ∶ Q → P

for a Bnite set P ⊆ N

of priorities

n-acceptance game B × t

Positions in the game are Q × dom(t).
Eve and Adam select the next position in the play based on δ.

Eve is trying to ensure the play has counter value at most n and the

maximum priority occurring inBnitely often in the play is even.

Semantics [[B]] ∶ A-trees → N ∪ {∞}
[[B]](t) ∶= inf {n ∶ Eve wins the n-acceptance game B × t}

18 / 21



Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n ∈ N such that for all trees t, [[B]](t) ≤ n?

Decidability of boundedness is not known in general for cost automata

over inBnite trees...

...but we are interested in special cases using distance-parity automata:

1 counter that is only incremented or left unchanged (never reset)

for which boundedness is known to be decidable.

19 / 21



Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n ∈ N such that for all trees t, [[B]](t) ≤ n?

Decidability of boundedness is not known in general for cost automata

over inBnite trees...

...but we are interested in special cases using distance-parity automata:

1 counter that is only incremented or left unchanged (never reset)

for which boundedness is known to be decidable.

19 / 21



Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n ∈ N such that for all trees t, [[B]](t) ≤ n?

Decidability of boundedness is not known in general for cost automata

over inBnite trees...

...but we are interested in special cases using distance-parity automata:

1 counter that is only incremented or left unchanged (never reset)

for which boundedness is known to be decidable.

19 / 21



Complexity of boundedness for guarded logics

Theorem

(Benedikt, Colcombet,

ten Cate, VB. ’15)

Boundedness for GFP is

decidable in elementary time.

Similar techniques yield

elementary complexity for

GNFP boundedness.

Improves upon results of

[Blumensath, Otto,Weyer ’14],

[Bárány, ten Cate, Otto ’12].

ψ ∈ GFP

2-way distance-parity

automaton B

[[B]] bounded?

20 / 21



Complexity of boundedness for guarded logics

Theorem

(Benedikt, Colcombet,

ten Cate, VB. ’15)

Boundedness for GFP is

decidable in elementary time.

Similar techniques yield

elementary complexity for

GNFP boundedness.

Improves upon results of

[Blumensath, Otto,Weyer ’14],

[Bárány, ten Cate, Otto ’12].

ψ ∈ GFP

2-way distance-parity

automaton B

[[B]] bounded?

20 / 21



Complexity of boundedness for guarded logics

Theorem

(Benedikt, Colcombet,

ten Cate, VB. ’15)

Boundedness for GFP is

decidable in elementary time.

Similar techniques yield

elementary complexity for

GNFP boundedness.

Improves upon results of

[Blumensath, Otto,Weyer ’14],

[Bárány, ten Cate, Otto ’12].

ψ ∈ GFP

2-way distance-parity

automaton B

[[B]] bounded?

20 / 21



Summary

Tree automata are a useful tool to decide satisBability for expressive logics

like GFP and GNFP that have tree-like models.

Cost automata can be used to decide boundedness for these logics

(Benedikt, Colcombet, ten Cate, VB. ’15)

Automata used to prove uniform interpolation for Lµ , and this

automata-logic connection can be used to prove interpolation for UNFP

(Benedikt, ten Cate, VB. ’15)

21 / 21



Summary

Tree automata are a useful tool to decide satisBability for expressive logics

like GFP and GNFP that have tree-like models.

Cost automata can be used to decide boundedness for these logics

(Benedikt, Colcombet, ten Cate, VB. ’15)

Automata used to prove uniform interpolation for Lµ , and this

automata-logic connection can be used to prove interpolation for UNFP

(Benedikt, ten Cate, VB. ’15)

21 / 21



Automata for GNFP

Proposition

For all ψ(a) ∈ cl(φ, K), there is a 2-way localized parity automaton A
ℓ

ψ(a)
running onK-trees t such that

A
ℓ

ψ(a) accepts t starting from v i> D(t), [v, a1], . . . , [v, aj] ⊧ ψ(x).

Construct inductively. In general, on input t:

Eve guesses an annotation t
′
of t with subformulas from cl(φ, K) and checks

ψ(a) on t
′
(assuming annotations are correct),

Adam can challenge some η(a′) in the annotation by launching

(inductively deBned) A
ℓ

η(a′).



Complexity of satisBability for GNFP

Theorem

(Bárány, ten Cate, SegouBn ’11)

SatisBability is decidable for

GNFP in 2EXPTIME

(even for Bxed width).

Automata approach:

Benedikt, Colcombet,

ten Cate, VB. ’15

φ ∈ GNFP

2-way localized automataA
ℓ

ψ(a)

2-way parity automaton

Aφ ∶= A
ℓ

φ ∧ CK

L(Aφ) ≠ ∅?


	Appendix

