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Some decidable fragments of Brst order logic

FOML

FO
2

GF

GNF

constrain

number of variables

constrain

quantiBcation

∃x.α(xy) ∧ ψ(xy)
∀x.α(xy) → ψ(xy)

constrain

negation

∃x.ψ(xy)
α(xy) ∧ ¬ψ(xy)

ML

FO
2

GF GNF

Bnite model property 3

3 3 3

tree-like model property 3

7 3 3

Craig interpolation 3

7 7 3

Loś-Tarski preservation 3

7 3 3
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Interpolation

φ ⊧ ψ

φ ⊧ χ ⊧ ψ

only uses

relations in

both φ and ψ

interpolant
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Interpolation example

∃xyz(Txyz ∧ Rxy ∧ Ryz ∧ Rzx) ⊧ ∃xy(Rxy ∧ ((Sx ∧ Sy) ∨ (¬Sx ∧ ¬Sy)))

“there is a T-guarded

3-cycle using R”

a

b

ca

b

c

interpolant χ ∶= ∃xyz(Rxy ∧ Ryz ∧ Rzx)
“there is a 3-cycle using R”
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Interpolation

φ ⊧ ψ

φ ⊧ χ ⊧ ψ

only uses

relations in

both φ and ψ

interpolant

Theorem (Barany+Benedikt+ten Cate ’13)

Given GNF formulas φ and ψ such that φ ⊧ ψ, there is a GNF interpolant χ

(but model theoretic proof implies no bound on size of χ).

Even when input is in GF, no idea how to compute interpolants

(or other rewritings related to interpolation and preservation).Theorem (Constructive interpolation for GNF)

Given GNF formulas φ and ψ such that φ ⊧ ψ, we can construct a

GNF interpolant χ of doubly exponential DAG-size (in size of input).
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Mosaics

Amosaic τ(a) for φ is a collection of subformulas of φ

over some guarded set a of parameters.

τ1(ab)
Raa

¬Sa
∃z(Rbz ∧ Sz)

Sb

Rba

⋯

τ2(bc)
Sb

¬Rbb
Rbc ∧ Sc

Rcb

Sc

⋯

τ3(d)
Sd

¬Sd

∃yz(Ryz ∧ Sz)
∀z(Rdz)
Rdd ∨ Sd

⋯
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Mosaics

Amosaic τ(a) for φ is a collection of subformulas of φ

over some guarded set a of parameters.

τ1(ab)

a b

τ2(bc)

b c

τ3(d)
Internally

inconsistent

(e.g. Sd & ¬Sd)

Internally consistent mosaics are windows

into a (guarded) piece of a structure.

6 / 14



Linking mosaics

Mosaics can be linked together to fulBll an existential requirement if they

agree on all formulas that use only shared parameters.

τ1

a b

∃z(Rbz ∧ Sz)

τ2

b c

We say a set S of mosaics is saturated if every existential requirement in a

mosaic τ ∈ S is fulBlled in τ or in some linked τ
′
∈ S.
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Mosaics

Fix some set P of size 2 ⋅ width(φ) and let Mφ be the set of mosaics for φ

over parameters P. The size of Mφ is doubly exponential in the size of φ.

Theorem

φ is satisBable i> there is a saturated set S of internally consistent mosaics

from Mφ that contains some τ with φ ∈ τ.

τ4τ3τ2τ1S = , , , }{

τ3

τ4

τ1

τ2

⋮
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Mosaic elimination algorithm for satisBability testing

Stage 1.

Eliminate mosaics with internal

inconsistencies.

Stage i + 1.

Eliminate mosaics with existential

requirements that can only be

fulBlled using mosaics eliminated in

earlier stages.

Continue until Bxpoint M
′
reached.

The set M
′
is a saturated set of

internally consistent mosaics.

τ1

τ2

τ3

τ5

τ4

τ6

τ7

Mφ

Theorem

φ is satisBable i> there is some mosaic τ ∈ M
′
with φ ∈ τ.
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Mosaics for interpolation

Assume φL ⊧ φR.

Idea: Construct interpolant from proof that φL ∧ ¬φR is unsatisBable.

Consider mosaics for φL ∧ ¬φR.

Annotate each mosaic and each formula with a provenance L or R.

L ∶ τ1(ab) R ∶ τ2(bc) L ∶ τ3(d)

Linking must respect the provenance annotations.
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Mosaics for interpolation

Assume φL ⊧ φR.

Test satisBability of φL ∧ ¬φR

using mosaic elimination.

Assign amosaic interpolant θτ

to each eliminated mosaic τ

such that τL ⊧ θτ and θτ ⊧ ¬τR.

Mosaic interpolants θτ describe

why the mosaic τ was eliminated.

τ1

τ2

τ3

τ5

τ4

τ6

τ7

MφL∧¬φR

θ5

θ6

θ7

Theorem

An interpolant χ for φL ⊧ φR of at most doubly exponential DAG-size can be

constructed from the mosaic interpolants.
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Stronger interpolation theorems

Challenge: ensure interpolant χ is in GNF (and satisBes other properties)

Solution: place further restrictions on the formulas in the mosaics

Lyndon interpolation: χ respects polarity of relations

A relation R occurs positively (respectively, negatively) in χ i> R occurs

positively (respectively, negatively) in both φL and φR.

Relativized interpolation: χ respects quantiBcation pattern

If the quantiBcation in φL and φR is relativized to a distinguished set of

unary predicatesU, then χ isU-relativized.

i.e. quantiBcation is of the form ∃x (Ux ∧ ψ(xy)) for U ∈ U
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E>ective preservation theorems

φ is monotone if A ⊧ φ implies that A
′
⊧ φ for anyA

′
obtained from A by

adding tuples to the interpretation of some relation.

φ is positive if every relation appears within the scope of an even number

of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive

GNF formula φ
′
of doubly exponential DAG-size.

φ is preserved under extensions if A ⊧ φ and A ⊆ B implies B ⊧ φ.

φ is in existential GNF if no quantiBer is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an

equivalent existential GNF formula φ
′
of doubly exponential DAG-size.
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Summary

GNF is an expressive fragment of FO with good

computational and model-theoretic properties.

Proved constructive interpolation and preservation theorems for GNF.

Adapted mosaic method to prove interpolation.

More in the paper:

Proved matching lower bounds for constructive interpolation results.

Analyzed special cases when input is in GF or the unary negation fragment

(UNF).
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Shape of interpolants

Mosaic interpolants θτ satisfy τL ⊧ θτ and θτ ⊧ ¬τR.

They describe why the mosaic τ was eliminated

Stage 1:

L ∶ Rab L ∶ ¬Rab ⇒ θτ ∶= ⊥
Internal R ∶ Rab R ∶ ¬Rab ⇒ θτ ∶= ⊤
inconsistency L ∶ Rab R ∶ ¬Rab ⇒ θτ ∶= Rab

R ∶ Rab L ∶ ¬Rab ⇒ θτ ∶= ¬Rab

Stage i + 1:

UnfulBlled L ∶ ∃z [G(bz) ∧ ψ(bz)] ⇒ θτ ∶= ⋁
τ
′(bc)

∃z [ ⋀
τ
′′
⊇τ

′

θτ
′′(bz)]

“there is amosaic τ
′
that can be linked to τ to fulBl the requirement,

but no matter what R-formulas are added, the resulting mosaic τ
′′

has already been eliminated”
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