Effective interpolation and preservation in guarded logics

Michael Benedikt¹, Balder ten Cate², Michael Vanden Boom¹

¹University of Oxford ²LogicBlox and UC Santa Cruz

CSL-LICS 2014 Vienna, Austria

	ML
finite model property	 ✓
tree-like model property	✓
Craig interpolation	✓
Loś-Tarski preservation	\checkmark

	ML	FO^2	
finite model property	√	 Image: A second s	
tree-like model property	1	×	
Craig interpolation	1	×	
Loś-Tarski preservation	1	×	

constrain number of variables constrain quantification

 $\exists \mathbf{x}.a(\mathbf{x}\mathbf{y}) \land \psi(\mathbf{x}\mathbf{y})$

 $\forall \boldsymbol{x}.\boldsymbol{a}(\boldsymbol{x}\boldsymbol{y}) \rightarrow \boldsymbol{\psi}(\boldsymbol{x}\boldsymbol{y})$

	ML	FO ²	GF	
finite model property	√	 Image: A second s	1	
tree-like model property	1	×	1	
Craig interpolation	1	×	×	
Loś-Tarski preservation	1	×	1	

	ML	FO ²	GF	GNF	
finite model property	√	 Image: A second s	 Image: A second s	1	-
tree-like model property	1	×	\checkmark	1	
Craig interpolation	1	×	X	1	
Loś-Tarski preservation	1	×	1	1	

$\varphi \models \psi$

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

interpolant $\chi := \exists xyz(Rxy \land Ryz \land Rzx)$

"there is a 3-cycle using R"

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

GNF interpolant $\chi := \exists xyz(Rxy \land Ryz \land Rzx)$

"there is a 3-cycle using R"

Theorem (Barany+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Theorem (Barany+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Even when input is in GF, no idea how to **compute** interpolants (or other rewritings related to interpolation and preservation).

Theorem (Barany+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Theorem (Constructive interpolation for GNF)

Given GNF formulas φ and ψ such that $\varphi \models \psi$, we can construct a GNF interpolant χ of doubly exponential DAG-size (in size of input).

A mosaic $\tau(a)$ for φ is a collection of subformulas of φ over some guarded set a of parameters.

A mosaic $\tau(a)$ for φ is a collection of subformulas of φ over some guarded set a of parameters.

A mosaic $\tau(a)$ for φ is a collection of subformulas of φ over some guarded set a of parameters.

Internally consistent mosaics are windows into a (guarded) piece of a structure.

Mosaics can be **linked** together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

Mosaics can be **linked** together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

Mosaics can be **linked** together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

We say a set *S* of mosaics is **saturated** if every existential requirement in a mosaic $\tau \in S$ is fulfilled in τ or in some linked $\tau' \in S$.

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

τ3

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

Fix some set *P* of size $2 \cdot \text{width}(\varphi)$ and let \mathcal{M}_{φ} be the set of mosaics for φ over parameters *P*. The size of \mathcal{M}_{φ} is doubly exponential in the size of φ .

Theorem

 φ is satisfiable iff there is a saturated set *S* of internally consistent mosaics from \mathcal{M}_{φ} that contains some τ with $\varphi \in \tau$.

Stage 1. Eliminate mosaics with internal inconsistencies.

Stage 1.

Eliminate mosaics with internal inconsistencies.

Stage *i* + 1.

Eliminate mosaics with existential requirements that can only be fulfilled using mosaics eliminated in earlier stages.

Stage 1.

Eliminate mosaics with internal inconsistencies.

Stage *i* + 1.

Eliminate mosaics with existential requirements that can only be fulfilled using mosaics eliminated in earlier stages.

Continue until fixpoint \mathcal{M}' reached. The set \mathcal{M}' is a saturated set of internally consistent mosaics.

Theorem

 φ is satisfiable iff there is some mosaic $\tau \in \mathscr{M}'$ with $\varphi \in \tau$.

Assume $\varphi_{L} \models \varphi_{R}$.

Idea: Construct interpolant from proof that $\varphi_L \wedge \neg \varphi_R$ is unsatisfiable.

Assume $\varphi_{L} \models \varphi_{R}$.

Idea: Construct interpolant from proof that $\varphi_L \wedge \neg \varphi_R$ is unsatisfiable.

Consider mosaics for $\varphi_{\rm L} \wedge \neg \varphi_{\rm R}$.

Annotate each mosaic and each formula with a provenance L or R.

Linking must respect the provenance annotations.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_L \wedge \neg \varphi_R$ using mosaic elimination.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_L \land \neg \varphi_R$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_L \land \neg \varphi_R$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_L \land \neg \varphi_R$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Assume $\varphi_{L} \models \varphi_{R}$.

Test satisfiability of $\varphi_{\rm L} \wedge \neg \varphi_{\rm R}$ using mosaic elimination.

Assign a **mosaic interpolant** θ_{τ} to each eliminated mosaic τ such that $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Theorem

An interpolant χ for $\varphi_L \models \varphi_R$ of at most doubly exponential DAG-size can be constructed from the mosaic interpolants.

Challenge: ensure interpolant χ is in GNF (and satisfies other properties)

Challenge: ensure interpolant χ is in GNF (and satisfies other properties) **Solution:** place further restrictions on the formulas in the mosaics

Challenge: ensure interpolant χ is in GNF (and satisfies other properties) **Solution:** place further restrictions on the formulas in the mosaics

Lyndon interpolation: χ respects polarity of relations

A relation *R* occurs positively (respectively, negatively) in χ iff *R* occurs positively (respectively, negatively) in both $\varphi_{\rm L}$ and $\varphi_{\rm R}$.

Relativized interpolation: χ respects quantification pattern

If the quantification in φ_{L} and φ_{R} is relativized to a distinguished set of unary predicates \mathbb{U} , then χ is \mathbb{U} -relativized. i.e. quantification is of the form $\exists x (Ux \land \psi(xy))$ for $U \in \mathbb{U}$ φ is **monotone** if $\mathfrak{A} \models \varphi$ implies that $\mathfrak{A}' \models \varphi$ for any \mathfrak{A}' obtained from \mathfrak{A} by adding tuples to the interpretation of some relation.

 φ is **positive** if every relation appears within the scope of an even number of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive GNF formula φ' of doubly exponential DAG-size.

 φ is **monotone** if $\mathfrak{A} \models \varphi$ implies that $\mathfrak{A}' \models \varphi$ for any \mathfrak{A}' obtained from \mathfrak{A} by adding tuples to the interpretation of some relation.

 φ is **positive** if every relation appears within the scope of an even number of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive GNF formula φ' of doubly exponential DAG-size.

 φ is **preserved under extensions** if $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{B} \models \varphi$.

 φ is in **existential GNF** if no quantifier is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an equivalent existential GNF formula φ' of doubly exponential DAG-size.

GNF is an expressive fragment of FO with good computational and model-theoretic properties.

Proved constructive interpolation and preservation theorems for GNF.

Adapted **mosaic method** to prove interpolation.

GNF is an expressive fragment of FO with good computational and model-theoretic properties.

Proved constructive interpolation and preservation theorems for GNF.

Adapted **mosaic method** to prove interpolation.

More in the paper:

Proved matching lower bounds for constructive interpolation results.

Analyzed **special cases** when input is in GF or the unary negation fragment (UNF).

Shape of interpolants

Mosaic interpolants θ_{τ} satisfy $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$. They describe why the mosaic τ was eliminated

Stage 1:

	L:Rab	L∶¬Rab	\Rightarrow	$\theta_{\tau} := \bot$
Internal	R: <i>Rab</i>	R∶ <i>¬Rab</i>	\Rightarrow	$\theta_{\tau} \coloneqq \top$
inconsistency	L:Rab	R∶ <i>¬Rab</i>	\Rightarrow	$\theta_{\tau} := Rab$
	R:Rab	L∶¬Rab	\Rightarrow	$\theta_{\tau} := \neg Rab$

Mosaic interpolants θ_{τ} satisfy $\tau_{L} \models \theta_{\tau}$ and $\theta_{\tau} \models \neg \tau_{R}$. They describe why the mosaic τ was eliminated

Stage 1:

	L:Rab	L∶¬Rab	\Rightarrow	$\theta_{\tau} \coloneqq \bot$
Internal	R: <i>Rab</i>	R∶¬ <i>Rab</i>	\Rightarrow	$\theta_{\tau} \coloneqq \top$
inconsistency	L:Rab	R∶¬ <i>Rab</i>	\Rightarrow	$\theta_{\tau} := Rab$
	R:Rab	L∶¬Rab	\Rightarrow	$\theta_{\tau} := \neg Rab$

Stage *i* + 1:

Unfulfilled
$$L: \exists z [G(bz) \land \psi(bz)] \Rightarrow \theta_{\tau} := \bigvee_{\tau'(bc)} \exists z \left[\bigwedge_{\tau'' \supseteq \tau'} \theta_{\tau''}(bz) \right]$$

"there is a mosaic τ' that can be linked to τ to fulfil the requirement, but no matter what R-formulas are added, the resulting mosaic τ'' has already been eliminated"