Effective interpolation and preservation in guarded logics

Michael Benedikt ${ }^{1}$, Balder ten Cate ${ }^{2}$, Michael Vanden Boom ${ }^{1}$

${ }^{1}$ University of Oxford $\quad{ }^{2}$ LogicBlox and UC Santa Cruz

CSL-LICS 2014

Vienna, Austria

Some decidable fragments of first order logic

Some decidable fragments of first order logic

Some decidable fragments of first order logic

constrain
 number of variables

constrain quantification

 $\exists x . a(x y) \wedge \psi(x y)$ $\forall x . a(x y) \rightarrow \psi(x y)$| | ML | FO^{2} | GF |
| :--- | :---: | :---: | :---: |
| finite model property | \checkmark | \checkmark | \checkmark |
| tree-like model property | \checkmark | \times | \checkmark |
| Craig interpolation | \checkmark | X | X |
| Loś-Tarski preservation | \checkmark | X | \checkmark |

Some decidable fragments of first order logic

constrain

 number of variables
constrain quantification

$$
\begin{gathered}
\exists x . a(x y) \wedge \psi(x y) \\
\forall x \cdot a(x y) \rightarrow \psi(x y)
\end{gathered}
$$

constrain negation $\exists x . \psi(x y)$ $a(x y) \wedge \neg \psi(x y)$

	ML	FO^{2}	GF	GNF
finite model property	\checkmark	\checkmark	\checkmark	\checkmark
tree-like model property	\checkmark	x	\checkmark	\checkmark
Craig interpolation	\checkmark	X	\times	\checkmark
Loś-Tarski preservation	\checkmark	x	\checkmark	\checkmark

Interpolation

$$
\varphi \quad \vDash \quad \psi
$$

Interpolation

Interpolation example
$\exists x y z(T x y z \wedge R x y \wedge R y z \wedge R z x) \quad \vDash \quad \exists x y(R x y \wedge((S x \wedge S y) \vee(\neg S x \wedge \neg S y)))$
"there is a T-guarded 3-cycle using $R^{\prime \prime}$

Interpolation example

```
\existsxyz(Txyz ^Rxy^Ryz^Rzx) F \exists |xy(Rxy^ ((Sx^Sy) \vee (\negSx^\negSy)))
```

"there is a T-guarded
3-cycle using $R^{\prime \prime}$

Interpolation example

```
\existsxyz(Txyz ^Rxy^Ryz^Rzx) F \exists |xy(Rxy^ ((Sx^Sy) \vee (\negSx^\negSy)))
```

"there is a T-guarded
3-cycle using $R^{\prime \prime}$

Interpolation example

```
\existsxyz(Txyz^Rxy ^Ryz ^Rzx) \vDash \exists |xy(Rxy ^((Sx^Sy)\vee (\negSx ^\negSy)))
"there is a T-guarded
    3-cycle using R"
```



```
interpolant \(x:=\exists x y z(R x y \wedge R y z \wedge R z x)\)
"there is a 3-cycle using \(R\) "
```


Interpolation example

```
\existsxyz(Txyz^Rxy^Ryz^Rzx) F \exists |xy(Rxy^ ((Sx^Sy)\vee(\negSx^\negSy)))
```

"there is a T-guarded

3-cycle using $R^{\prime \prime}$

GNF interpolant $X:=\exists x y z(R x y \wedge R y z \wedge R z x)$
"there is a 3-cycle using R "

Interpolation

$$
\varphi \quad \vDash \underset{\substack{\downarrow \\ \text { only uses } \\ \text { relations in } \\ \text { both } \varphi \text { and } \psi}}{\underset{\text { interpolant }}{ } \in \mathbb{L}}
$$

Theorem (Barany+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \vDash \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Interpolation

$$
\varphi \quad \vDash \underset{\substack{\downarrow \\ \text { only uses } \\ \text { relations in } \\ \text { both } \varphi \text { and } \psi}}{\underset{\text { interpolant }}{ } \in} \vDash \Psi
$$

Theorem (Barany+Benedikt+ten Cate '13)
Given GNF formulas φ and ψ such that $\varphi \vDash \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Even when input is in GF, no idea how to compute interpolants (or other rewritings related to interpolation and preservation).

Interpolation

$$
\varphi \quad \vDash \stackrel{\text { interpolant }}{X} \vDash \quad \psi
$$

Theorem (Barany+Benedikt+ten Cate '13)

Given GNF formulas φ and ψ such that $\varphi \vDash \psi$, there is a GNF interpolant χ (but model theoretic proof implies no bound on size of χ).

Theorem (Constructive interpolation for GNF)
Given GNF formulas φ and ψ such that $\varphi \vDash \psi$, we can construct a GNF interpolant X of doubly exponential DAG-size (in size of input).

Mosaics

A mosaic $\tau(a)$ for φ is a collection of subformulas of φ over some guarded set \boldsymbol{a} of parameters.

Mosaics

A mosaic $\tau(\boldsymbol{a})$ for φ is a collection of subformulas of φ over some guarded set \boldsymbol{a} of parameters.

$\tau_{3}(d)$
Internally
inconsistent
(e.g. $S \mathrm{~d} \& \neg \mathrm{~S}$ d)

Mosaics

A mosaic $\tau(\boldsymbol{a})$ for φ is a collection of subformulas of φ over some guarded set \boldsymbol{a} of parameters.

$$
\begin{aligned}
& \tau_{3}(d) \\
& \quad \text { Internally } \\
& \text { inconsistent } \\
& \text { (e.g. } S \mathrm{~d} \& \neg S \mathrm{~d} \text {) }
\end{aligned}
$$

Internally consistent mosaics are windows into a (guarded) piece of a structure.

Linking mosaics

Mosaics can be linked together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

Linking mosaics

Mosaics can be linked together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

Linking mosaics

Mosaics can be linked together to fulfill an existential requirement if they agree on all formulas that use only shared parameters.

We say a set S of mosaics is saturated if every existential requirement in a mosaic $\tau \in S$ is fulfilled in τ or in some linked $\tau^{\prime} \in S$.

Mosaics

Fix some set P of size $2 \cdot \operatorname{width}(\varphi)$ and let \mathscr{M}_{φ} be the set of mosaics for φ over parameters P. The size of \mathscr{M}_{φ} is doubly exponential in the size of φ.

Theorem

φ is satisfiable iff there is a saturated set S of internally consistent mosaics from \mathscr{M}_{φ} that contains some τ with $\varphi \in \tau$.

Mosaics

Fix some set P of size $2 \cdot$ width (φ) and let \mathscr{M}_{φ} be the set of mosaics for φ over parameters P. The size of \mathscr{M}_{φ} is doubly exponential in the size of φ.

Theorem

φ is satisfiable iff there is a saturated set S of internally consistent mosaics from \mathscr{M}_{φ} that contains some τ with $\varphi \in \tau$.
$S=\left\{\left[T_{1},\left[T_{2}, \sqrt{T_{3}}, \sqrt{T_{4}}\right\}\right.\right.$

Mosaics

Fix some set P of size $2 \cdot$ width (φ) and let \mathscr{M}_{φ} be the set of mosaics for φ over parameters P. The size of \mathscr{M}_{φ} is doubly exponential in the size of φ.

Theorem

φ is satisfiable iff there is a saturated set S of internally consistent mosaics from \mathscr{M}_{φ} that contains some τ with $\varphi \in \tau$.

$\mathrm{S}=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\}$

Mosaics

Fix some set P of size $2 \cdot$ width (φ) and let \mathscr{M}_{φ} be the set of mosaics for φ over parameters P. The size of \mathscr{M}_{φ} is doubly exponential in the size of φ.

Theorem

φ is satisfiable iff there is a saturated set S of internally consistent mosaics from \mathscr{M}_{φ} that contains some τ with $\varphi \in \tau$.

$\mathrm{S}=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\}$

Mosaics

Fix some set P of size $2 \cdot$ width (φ) and let \mathscr{M}_{φ} be the set of mosaics for φ over parameters P. The size of \mathscr{M}_{φ} is doubly exponential in the size of φ.

Theorem

φ is satisfiable iff there is a saturated set S of internally consistent mosaics from \mathscr{M}_{φ} that contains some τ with $\varphi \in \tau$.
$S=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\}$

Mosaic elimination algorithm for satisfiability testing

Mosaic elimination algorithm for satisfiability testing

Stage 1.

Eliminate mosaics with internal inconsistencies.

Mosaic elimination algorithm for satisfiability testing

Stage 1.

Eliminate mosaics with internal inconsistencies.

Stage $i+1$.
Eliminate mosaics with existential requirements that can only be fulfilled using mosaics eliminated in earlier stages.

Mosaic elimination algorithm for satisfiability testing

Stage 1.

Eliminate mosaics with internal inconsistencies.

Stage $i+1$.
Eliminate mosaics with existential requirements that can only be fulfilled using mosaics eliminated in earlier stages.

Continue until fixpoint \mathscr{M}^{\prime} reached. The set \mathscr{M}^{\prime} is a saturated set of internally consistent mosaics.

Theorem

φ is satisfiable iff there is some mosaic $\tau \in \mathscr{M}^{\prime}$ with $\varphi \in \tau$.

Mosaics for interpolation

Assume $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$.

Idea: Construct interpolant from proof that $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$ is unsatisfiable.

Mosaics for interpolation

Assume $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$.
Idea: Construct interpolant from proof that $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$ is unsatisfiable.

Consider mosaics for $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$.
Annotate each mosaic and each formula with a provenance L or R.

$\mathrm{L}: \tau_{3}(d)$
L: Sd
R: $\neg S d$
$R: R d d \wedge S d$
R: $\exists y z(R y z \wedge S z)$
$\mathrm{L}: \forall z(R d z)$
$\mathrm{L}: \operatorname{Rdd} \vee S d$

Linking must respect the provenance annotations.

Mosaics for interpolation

Assume $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$.
Test satisfiability of $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$ using mosaic elimination.

Mosaics for interpolation

Assume $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$.
Test satisfiability of $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$ using mosaic elimination.

Assign a mosaic interpolant θ_{τ} to each eliminated mosaic τ such that $\tau_{\mathrm{L}} \vDash \theta_{\tau}$ and $\theta_{\tau} \vDash \neg \tau_{\mathrm{R}}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Mosaics for interpolation

Assume $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$.
Test satisfiability of $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$ using mosaic elimination.

Assign a mosaic interpolant θ_{τ} to each eliminated mosaic τ such that $\tau_{\mathrm{L}} \vDash \theta_{\tau}$ and $\theta_{\tau} \vDash \neg \tau_{\mathrm{R}}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Mosaics for interpolation

Assume $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$.
Test satisfiability of $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$ using mosaic elimination.

Assign a mosaic interpolant θ_{τ} to each eliminated mosaic τ such that $\tau_{\mathrm{L}} \vDash \theta_{\tau}$ and $\theta_{\tau} \vDash \neg \tau_{\mathrm{R}}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Mosaics for interpolation

Assume $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$.
Test satisfiability of $\varphi_{\mathrm{L}} \wedge \neg \varphi_{\mathrm{R}}$ using mosaic elimination.

Assign a mosaic interpolant θ_{τ} to each eliminated mosaic τ such that $\tau_{\mathrm{L}} \vDash \theta_{\tau}$ and $\theta_{\tau} \vDash \neg \tau_{\mathrm{R}}$.

Mosaic interpolants θ_{τ} describe why the mosaic τ was eliminated.

Theorem

An interpolant χ for $\varphi_{\mathrm{L}} \vDash \varphi_{\mathrm{R}}$ of at most doubly exponential DAG-size can be constructed from the mosaic interpolants.

Stronger interpolation theorems

Challenge: ensure interpolant x is in GNF (and satisfies other properties)

Stronger interpolation theorems

Challenge: ensure interpolant x is in GNF (and satisfies other properties) Solution: place further restrictions on the formulas in the mosaics

Stronger interpolation theorems

Challenge: ensure interpolant X is in GNF (and satisfies other properties) Solution: place further restrictions on the formulas in the mosaics

Lyndon interpolation: χ respects polarity of relations
A relation R occurs positively (respectively, negatively) in χ iff R occurs positively (respectively, negatively) in both φ_{L} and φ_{R}.

Relativized interpolation: χ respects quantification pattern
If the quantification in φ_{L} and φ_{R} is relativized to a distinguished set of unary predicates \mathbb{U}, then X is \mathbb{U}-relativized.
i.e. quantification is of the form $\exists x(U x \wedge \psi(x y))$ for $U \in \mathbb{U}$

Effective preservation theorems

φ is monotone if $\mathfrak{A} \vDash \varphi$ implies that $\mathfrak{A}^{\prime} \vDash \varphi$ for any \mathfrak{A}^{\prime} obtained from \mathfrak{A} by adding tuples to the interpretation of some relation.
φ is positive if every relation appears within the scope of an even number of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive GNF formula φ^{\prime} of doubly exponential DAG-size.

Effective preservation theorems

φ is monotone if $\mathfrak{A} \vDash \varphi$ implies that $\mathfrak{A}^{\prime} \vDash \varphi$ for any \mathfrak{A}^{\prime} obtained from \mathfrak{A} by adding tuples to the interpretation of some relation.
φ is positive if every relation appears within the scope of an even number of negations.

Corollary (Monotone = Positive)

If φ is monotone and in GNF, then we can construct an equivalent positive GNF formula φ^{\prime} of doubly exponential DAG-size.
φ is preserved under extensions if $\mathfrak{A} \vDash \varphi$ and $\mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{B} \vDash \varphi$. φ is in existential GNF if no quantifier is in the scope of a negation.

Corollary (Analog of Loś-Tarski)

If φ is preserved under extensions and in GNF, then we can construct an equivalent existential GNF formula φ^{\prime} of doubly exponential DAG-size.

Summary

GNF is an expressive fragment of FO with good computational and model-theoretic properties.

Proved constructive interpolation and preservation theorems for GNF.
Adapted mosaic method to prove interpolation.

Summary

GNF is an expressive fragment of FO with good computational and model-theoretic properties.

Proved constructive interpolation and preservation theorems for GNF.
Adapted mosaic method to prove interpolation.

More in the paper:
Proved matching lower bounds for constructive interpolation results.
Analyzed special cases when input is in GF or the unary negation fragment (UNF).

Shape of interpolants

Mosaic interpolants θ_{τ} satisfy $\tau_{\mathrm{L}} \vDash \theta_{\tau}$ and $\theta_{\tau} \vDash \neg \tau_{\mathrm{R}}$. They describe why the mosaic τ was eliminated

Stage 1:

	$\mathrm{L}: \operatorname{Rab}$	$\mathrm{L}: \neg R a b$	$\Rightarrow \theta_{\tau}:=\perp$
Internal	$\mathrm{R}: \operatorname{Rab}$	$\mathrm{R}: \neg \operatorname{Rab} \Rightarrow$	$\Rightarrow \theta_{\tau}:=\top$
inconsistency	$\mathrm{L}: \operatorname{Rab}$	$\mathrm{R}: \neg \operatorname{Rab} \Rightarrow$	$\Rightarrow \theta_{\tau}:=\operatorname{Rab}$
	$\mathrm{R}: \operatorname{Rab}$	$\mathrm{L}: \neg R a b \Rightarrow$	$\Rightarrow \theta_{\tau}:=\neg R a b$

Shape of interpolants

Mosaic interpolants θ_{τ} satisfy $\tau_{\mathrm{L}} \vDash \theta_{\tau}$ and $\theta_{\tau} \vDash \neg \tau_{\mathrm{R}}$.
They describe why the mosaic τ was eliminated
Stage 1:

	$\mathrm{L}: \operatorname{Rab}$	$\mathrm{L}: \neg R a b$	$\Rightarrow \theta_{\tau}:=\perp$	
Internal	$\mathrm{R}: \operatorname{Rab}$	$\mathrm{R}: \neg \operatorname{Rab}$	\Rightarrow	$\theta_{\tau}:=\top$
inconsistency	$\mathrm{L}: \operatorname{Rab}$	$\mathrm{R}: \neg R a b$	\Rightarrow	$\theta_{\tau}:=\operatorname{Rab}$
	$\mathrm{R}: \operatorname{Rab}$	$\mathrm{L}: \neg R a b \Rightarrow$	$\Rightarrow \theta_{\tau}:=\neg R a b$	

Stage $i+1$:
Unfulfilled $\quad \mathrm{L}: \exists \boldsymbol{z}[G(b z) \wedge \psi(b z)] \quad \Rightarrow \quad \theta_{\tau}:=\bigvee_{\tau^{\prime}(b \boldsymbol{c})} \exists z\left[\bigwedge_{\tau^{\prime \prime} \supseteq \tau^{\prime}} \theta_{\tau^{\prime \prime}}(b z)\right]$
"there is a mosaic τ ' that can be linked to τ to fulfil the requirement, but no matter what R-formulas are added, the resulting mosaic $\tau^{\prime \prime}$ has already been eliminated"

