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Boundedness questions

Finite power property [Simon '78, Hashiguchi '79]

given regular language L of finite words,
isthere n € N'suchthatL* = {e}ul' UL?U---UL™?

Star-height problem [Hashiguchi ‘88, Kirsten '05]

given regular language L of finite words and n € N,
is there a regular expression for L with at most n nestings of Kleene star?

Fixpoint closure boundedness [Blumensath+Otto+Weyer '09]

given an MSO formula ¢(x, X) positive in X,
is there n € N such that the least fixpoint of ¢ over finite words
is always reached within n iterations?

2/14



Boundedness questions

The theory of regular cost functions is an extension of the theory of

regular languages that can be used to solve these boundedness questions
in a uniform way.
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Boundedness questions

The theory of regular cost functions is an extension of the theory of

regular languages that can be used to solve these boundedness questions
in a uniform way.

Boundedness problem

Instance: functionf : D - N U {co}

(D is set of words or trees over some fixed finite alphabet A)

Question: Is there n € N such that for all structures s € D, f(s) < n?
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Cost functions over finite words [Colcombet’09]

Regular Cost Functions

nondeterministic cost automata
cost MSO
BS expressions
stabilization monoids

Boundedness decidable
[Colcombet’09, Bojariczyk+Colcombet’06]
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Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas:

Constructors:

a(x)

AV,
——

Boolean
connectives

xXeX

Ax
—~

first-order
quantification

|X| <N
——
must occur
positively

X
~
monadic

second-order
quantification
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Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas: a(x) x€eX |X| <N
| —
must occur
positively
Constructors: AV, = Ix ax
— < ~~
Boolean first-order monadic
connectives quantification second-order

quantification

Semantics [¢] : A* - N U {00}
[@](u) :=inf{n:uk @[n/N]}

Example
0 ifuko

If @ isin MSO, then [o](u) := {oo otherwise

5/14



Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas: a(x) xeX |X| <N
%_J
must occur
positively
Constructors: AV, = dx ax
— —~ ~
Boolean first-order monadic
connectives quantification second-order

quantification

Semantics [¢] : A* » N u {co}
[@](u) == inf{n : uE @[n/N]}

Example
Maximum length of a block of a’s

@ := VX ((block(X) A Vx(x € X = a(x)) = |X| = N)
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Cost functions over finite words [Colcombet’09]

Regular Cost Functions

nondeterministic cost automata
cost MSO
BS expressions
stabilization monoids

Boundedness decidable
[Colcombet’09, Bojariczyk+Colcombet’06]

language universality, finite power property,
inclusion, and emptiness star height problem,
decidable fixpoint closure boundedness, ...
decidable
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Theory of regular cost functions

The theory of regular cost functions is a robust decidable extension of the
theory of regular languages over:

v ﬁnite words [Colcombet ‘09, Bojanczyk+Colcombet '06]
v inﬁnite words [Kuperberg+VB'12, Colcombet unpublished]

v finite trees [Colcombet+Ldding "10]
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The theory of regular cost functions is a robust decidable extension of the
theory of regular languages over:

v ﬁnite words [Colcombet ‘09, Bojanczyk+Colcombet '06]
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Motivating open problem

Mostowski index problem
Instance: regular language L of infinite trees, and set {i,i + 1,...,}

Question: Is there a nondeterministic parity automaton A using only
priorities {i,i +1,...,j} such that L = L(A)?
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Motivating open problem

Mostowski index problem

Instance: regular language L of infinite trees, and set {i,i + 1,...,}

Question: Is there a nondeterministic parity automaton A using only
priorities {i,i +1,...,j} such that L = L(A)?

Reduced to deciding boundedness for certain cost functions over infinite
trees [Colcombet+L6ding '08]
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Cost functions over infinite trees

Regular Cost Functions

alternating cost-parity automata

QW Cost Functions

quasi-weak cost automata

Boundedness decidable
[Kuperberg+VB11]

special case

of Mostowski
index problem
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Cost functions over infinite trees

Regular Cost Functions

alternating 2-way/1-way cost-parity automata

QW Cost Functions

2-way/1-way qw cost automata
QWCMSO

Boundedness decidable
[Kuperberg+VB11]

special case

of Mostowski
index problem
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Cost parity automata on infinite trees

Az R0 9Q)

6 describes possible moves Q:Q0-P
for Eve and Adam, for a finite set of
and associated counter actions priorities P

(increment, reset, leave unchanged)

n-acceptance game A x t

» Positions in the game are Q x dom(t).
» Eve and Adam select the next position in the play based on 6.

» Eveis trying to ensure the play has counter value at most n and the
maximum priority occurring infinitely often in the play is even.

Semantics
[A](t) := inf {n : Eve wins the n-acceptance game A X t}
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Weak cost automata and logic over infinite trees

Weak cost automaton

alternating cost-parity automaton such that 2
no cycle visits both even and priorities
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Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton I
alternating cost-parity automaton such that 2
in any cycle with both even and priorities,

there is a counter which is incremented but not reset
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Quasi-weak cost automata and logic over infinite trees

Q

Quasi-weak cost automaton

alternating cost-parity automaton such that
in any cycle with both even and priorities,
there is a counter which is incremented but not reset

Quasi-weak cost monadic second-order logic (QWCMSO)
Add bounded expansion operator to WCMSO:

ze 'Y {x: o(x,Y)}

where Y occurs positively in ¢(x, Y),

and this operator occurs positively in the enclosing formula.
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Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton I
alternating cost-parity automaton such that 2
in any cycle with both even and priorities,

there is a counter which is incremented but not reset

Quasi-weak cost monadic second-order logic (QWCMSO)
Add bounded expansion operator to WCMSO:
ze 'Y {x: o(x,Y)}

where Y occurs positively in ¢(x, Y),
and this operator occurs positively in the enclosing formula.

Example

Maximal size of block of a’s on a branch starting at the root:
w[root(wW) Aw € uNX.{x : Ayz[b(x,y,2) Vv (alx,y,z) Ay € X Az € X)]}]
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Bounded expansion operator and 2-way automata

Game for testing
ze"Yix : o(x,Y)}forn e N.

Initial position x := z.
Game from position x:

» Eve chooses set Y such that
@(x, V) holds
(if it is not possible, she loses).
» Adam chooses somenewy € Y \
(if it is not possible, he loses).
» Game continues in next round
withx =y

If the game exceeds n rounds,
Adam wins.
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Regular Cost Functions

alternating 2-way/1-way cost-parity automata
cost u-calculus

QW Cost Functions

2-way/1-way qw cost automata
alternation-free cost u-calculus
QWCMSO

Boundedness decidable
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