Two-way cost automata and cost logics over infinite trees

Achim Blumensath ${ }^{1}$, Thomas Colcombet ${ }^{2}$, Denis Kuperberg ${ }^{3}$, Pawel Parys ${ }^{3}$, and Michael Vanden Boom ${ }^{4}$
${ }^{1}$ TU Darmstadt, ${ }^{2}$ Université Paris Diderot,
${ }^{3}$ University of Warsaw, ${ }^{4}$ University of Oxford

CSL-LICS 2014
Vienna, Austria

Boundedness questions

Finite power property [Simon '78, Hashiguchi '79]
given regular language L of finite words,
is there $n \in \mathbb{N}$ such that $L^{*}=\{\epsilon\} \cup L^{1} \cup L^{2} \cup \cdots \cup L^{n}$?

Star-height problem [Hashiguchi '88, Kirsten '05]
given regular language L of finite words and $n \in \mathbb{N}$,
is there a regular expression for L with at most n nestings of Kleene star?

Fixpoint closure boundedness [Blumensath+Otto+Weyer '09]
given an MSO formula $\varphi(x, X)$ positive in X, is there $n \in \mathbb{N}$ such that the least fixpoint of φ over finite words is always reached within n iterations?

Boundedness questions

The theory of regular cost functions is an extension of the theory of regular languages that can be used to solve these boundedness questions in a uniform way.

Boundedness questions

The theory of regular cost functions is an extension of the theory of regular languages that can be used to solve these boundedness questions in a uniform way.

Boundedness problem

Instance: function $f: \mathcal{D} \rightarrow \mathbb{N} \cup\{\infty\}$
(D is set of words or trees over some fixed finite alphabet A)
Question: Is there $n \in \mathbb{N}$ such that for all structures $s \in \mathcal{D}, f(s) \leq n$?

Cost functions over finite words [Colcombet'09]

Cost functions over finite words

Cost monadic second-order logic (CMSO)

| Atomic formulas: | $a(x)$ | $x \in X$ |
| :--- | :---: | :---: |$\underbrace{|X| \leq N}_{$| must occur |
| :---: |
| positively |$}$

Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas:

$$
a(x) \quad x \in X
$$

$$
\underbrace{|X| \leq N}_{\begin{array}{c}
\text { mustoccur } \\
\text { positively }
\end{array}}
$$

Constructors:

$\underbrace{\exists X}$
monadic
second-order quantification

Semantics $\llbracket \varphi \rrbracket: \mathbb{A}^{*} \rightarrow \mathbb{N} \cup\{\infty\}$
$\llbracket \varphi \rrbracket(u):=\inf \{n: u \vDash \varphi[n / N]\}$

Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas
$a(x) \quad x \in X$
$\underbrace{|X| \leq N}_{\begin{array}{c}\text { must occur } \\ \text { positively }\end{array}}$
Constructors:

$$
\underbrace{\wedge, \vee, \neg}_{\begin{array}{c}
\text { Boolean } \\
\text { connectives }
\end{array}}
$$

Semantics $\llbracket \varphi \rrbracket: \mathbb{A}^{*} \rightarrow \mathbb{N} \cup\{\infty\}$
$\llbracket \varphi \rrbracket(u):=\inf \{n: u \vDash \varphi[n / N]\}$

Example

If φ is in MSO, then $\llbracket \varphi \rrbracket(u):= \begin{cases}0 & \text { if } u \vDash \varphi \\ \infty & \text { otherwise }\end{cases}$

Cost functions over finite words

Cost monadic second-order logic (CMSO)

Atomic formulas:

$$
a(x) \quad x \in X
$$

$$
\underbrace{|X| \leq N}_{\begin{array}{c}
\text { most occur } \\
\text { positively }
\end{array}}
$$

Constructors:

$$
\underbrace{}_{\begin{array}{c}
\text { Boolean } \\
\text { onnectives }
\end{array}, \stackrel{\rightharpoonup}{\wedge, \tau}}
$$

quantification

Semantics $\llbracket \varphi \rrbracket: \mathbb{A}^{*} \rightarrow \mathbb{N} \cup\{\infty\}$
$\llbracket \varphi \rrbracket(u):=\inf \{n: u \vDash \varphi[n / N]\}$

Example

Maximum length of a block of a 's

$$
\varphi:=\forall X((\operatorname{block}(X) \wedge \forall x(x \in X \rightarrow a(x)) \rightarrow|X| \leq N)
$$

Cost functions over finite words [Colcombet'09]

Cost functions over finite words [Colcombet'09]

Cost functions over finite words [Colcombet'09]

language universality, inclusion, and emptiness decidable
finite power property, star height problem, fixpoint closure boundedness, ... decidable

Theory of regular cost functions

The theory of regular cost functions is a robust decidable extension of the theory of regular languages over:
finite words [Colcombet '09, Bojanczyk+Colcombet '06]
infinite words [Kuperberg+VB'12, Colcombet unpublished]
finite trees [Colcombet+Löding '10]

Theory of regular cost functions

The theory of regular cost functions is a robust decidable extension of the theory of regular languages over:
\checkmark finite words [Colcombet '09, Bojanczyk+Colcombet '06]
infinite words [Kuperberg+VB'12, Colcombet unpublished]
\checkmark finite trees [Colcombet+Löding '10]
? infinite trees

Motivating open problem

Mostowski index problem

Instance: regular language L of infinite trees, and set $\{i, i+1, \ldots, j\}$
Question: Is there a nondeterministic parity automaton \mathcal{A} using only priorities $\{i, i+1, \ldots, j\}$ such that $L=L(\mathcal{A})$?

Motivating open problem

Mostowski index problem

Instance: regular language L of infinite trees, and set $\{i, i+1, \ldots, j\}$
Question: Is there a nondeterministic parity automaton \mathcal{A} using only priorities $\{i, i+1, \ldots, j\}$ such that $L=L(\mathcal{A})$?

Reduced to deciding boundedness for certain cost functions over infinite trees [Colcombet+Löding '08]

Cost functions over infinite trees

Regular Cost Functions
alternating cost-parity automata

QW Cost Functions
quasi-weak cost automata

Boundedness decidable [Kuperberg+VB'11]
weak cost automata WCMSO

Cost functions over infinite trees

Regular Cost Functions
alternating cost-parity automata

QW Cost Functions
quasi-weak cost automata QWCMSO

Boundedness decidable [Kuperberg+VB'11]
weak cost automata WCMSO

Cost functions over infinite trees

Regular Cost Functions
alternating 2-way/1-way cost-parity automata

QW Cost Functions
2-way/1-way qw cost automata QWCMSO

Boundedness decidable [Kuperberg+VB'11]

Cost parity automata on infinite trees

$$
\mathcal{A = \langle A , Q , q _ { 0 } , \delta , \Omega \rangle}
$$

n-acceptance game $\mathcal{A} \times t$

- Positions in the game are $Q \times \operatorname{dom}(t)$.
- Eve and Adam select the next position in the play based on δ.
- Eve is trying to ensure the play has counter value at most n and the maximum priority occurring infinitely often in the play is even.

Semantics

$\llbracket \mathcal{A} \rrbracket(t):=\inf \{n:$ Eve wins the n-acceptance game $\mathcal{A} \times t\}$

Weak cost automata and logic over infinite trees

Weak cost automaton

alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost automata and logic over infinite trees

Weak cost automaton

alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost monadic second-order logic (WCMSO)
Syntax like CMSO, but interpret second-order quantification over finite sets

Weak cost automata and logic over infinite trees

Weak cost automaton

alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost monadic second-order logic (WCMSO)
Syntax like CMSO, but interpret second-order quantification over finite sets

Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton

alternating cost-parity automaton such that in any cycle with both even and odd priorities,
 there is a counter which is incremented but not reset

Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton

alternating cost-parity automaton such that in any cycle with both even and odd priorities,
 there is a counter which is incremented but not reset

Quasi-weak cost monadic second-order logic (QWCMSO)
Add bounded expansion operator to WCMSO:

$$
z \in \mu^{N} Y .\{x: \varphi(x, Y)\}
$$

where Y occurs positively in $\varphi(x, Y)$, and this operator occurs positively in the enclosing formula.

Quasi-weak cost automata and logic over infinite trees

Quasi-weak cost automaton

alternating cost-parity automaton such that in any cycle with both even and odd priorities,
 there is a counter which is incremented but not reset

Quasi-weak cost monadic second-order logic (QWCMSO)

Add bounded expansion operator to WCMSO:

$$
z \in \mu^{N} Y .\{x: \varphi(x, Y)\}
$$

where Y occurs positively in $\varphi(x, Y)$, and this operator occurs positively in the enclosing formula.

Example

Maximal size of block of a 's on a branch starting at the root:
$\exists w\left[\operatorname{root}(w) \wedge w \in \mu^{N} X .\{x: \exists y z[b(x, y, z) \vee(a(x, y, z) \wedge y \in X \wedge z \in X)]\}\right]$

Bounded expansion operator and 2-way automata

Game for testing
$z \in \mu^{N} Y .\{x: \varphi(x, Y)\}$ for $n \in \mathbb{N}$.
Initial position $x:=z$.
Game from position x :

- Eve chooses set Y such that $\varphi(x, Y)$ holds (if it is not possible, she loses).
- Adam chooses some new $y \in Y$ (if it is not possible, he loses).
- Game continues in next round with $x:=y$

If the game exceeds n rounds, Adam wins.

Bounded expansion operator and 2-way automata

Game for testing
$z \in \mu^{N} Y .\{x: \varphi(x, Y)\}$ for $n \in \mathbb{N}$.
Initial position $x:=z$.
Game from position x :

- Eve chooses set Y such that $\varphi(x, Y)$ holds (if it is not possible, she loses).
- Adam chooses some new $y \in Y$ (if it is not possible, he loses).
- Game continues in next round with $x:=y$

If the game exceeds n rounds, Adam wins.

Bounded expansion operator and 2-way automata

Game for testing
$z \in \mu^{N} Y .\{x: \varphi(x, Y)\}$ for $n \in \mathbb{N}$.
Initial position $x:=z$.
Game from position x :

- Eve chooses set Y such that $\varphi(x, Y)$ holds
(if it is not possible, she loses).
- Adam chooses some new $y \in Y$ (if it is not possible, he loses).
- Game continues in next round with $x:=y$

If the game exceeds n rounds, Adam wins.

Bounded expansion operator and 2-way automata

Game for testing
$z \in \mu^{N} Y .\{x: \varphi(x, Y)\}$ for $n \in \mathbb{N}$.
Initial position $x:=z$.
Game from position x :

- Eve chooses set Y such that $\varphi(x, Y)$ holds (if it is not possible, she loses).
- Adam chooses some new $y \in Y$ (if it is not possible, he loses).
- Game continues in next round with $x:=y$

If the game exceeds n rounds, Adam wins.

Bounded expansion operator and 2-way automata

Game for testing
$z \in \mu^{N} Y .\{x: \varphi(x, Y)\}$ for $n \in \mathbb{N}$.
Initial position $x:=z$.
Game from position x :

- Eve chooses set Y such that $\varphi(x, Y)$ holds (if it is not possible, she loses).
- Adam chooses some new $y \in Y$ (if it is not possible, he loses).
- Game continues in next round with $x:=y$

If the game exceeds n rounds, Adam wins.

Bounded expansion operator and 2-way automata

Game for testing
$z \in \mu^{N} Y .\{x: \varphi(x, Y)\}$ for $n \in \mathbb{N}$.
Initial position $x:=z$.
Game from position x :

- Eve chooses set Y such that $\varphi(x, Y)$ holds
(if it is not possible, she loses).
- Adam chooses some new $y \in Y$ (if it is not possible, he loses).
- Game continues in next round with $x:=y$

If the game exceeds n rounds, Adam wins.

Summary

Regular Cost Functions

alternating 2-way/1-way cost-parity automata cost μ-calculus

QW Cost Functions

2-way/1-way qw cost automata alternation-free cost μ-calculus QWCMSO

Boundedness decidable

weak cost automata WCMSO

