Two-way cost automata and cost logics over infinite trees

Achim Blumensath¹, Thomas Colcombet², Denis Kuperberg³, Pawel Parys³, and **Michael Vanden Boom**⁴

¹TU Darmstadt, ²Université Paris Diderot, ³University of Warsaw, ⁴University of Oxford

> CSL-LICS 2014 Vienna, Austria

Finite power property [Simon '78, Hashiguchi '79]

given regular language *L* of finite words, is there $n \in \mathbb{N}$ such that $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$?

Star-height problem [Hashiguchi '88, Kirsten '05]

given regular language *L* of finite words and $n \in \mathbb{N}$, is there a regular expression for *L* with at most *n* nestings of Kleene star?

Fixpoint closure boundedness [Blumensath+Otto+Weyer '09]

given an MSO formula $\varphi(x, X)$ positive in X, is there $n \in \mathbb{N}$ such that the least fixpoint of φ over finite words is always reached within n iterations? The **theory of regular cost functions** is an extension of the theory of regular languages that can be used to solve these boundedness questions in a uniform way.

The **theory of regular cost functions** is an extension of the theory of regular languages that can be used to solve these boundedness questions in a uniform way.

Boundedness problem

Instance: function $f : \mathcal{D} \rightarrow \mathbb{N} \cup \{\infty\}$

(\mathcal{D} is set of words or trees over some fixed finite alphabet \mathbb{A})

Question: Is there $n \in \mathbb{N}$ such that for all structures $s \in \mathcal{D}$, $f(s) \leq n$?

Cost functions over finite words [Colcombet'09]

Atomic formulas: a(x) $x \in X$

 $|X| \leq N$

must occur positively

Constructors:

monadic second-order quantification

a(x)Atomic formulas: $x \in X$ $|X| \leq N$ must occur positively Constructors: Зx <u>^, v, ¬</u> first-order Boolean monadic quantification second-order connectives quantification

Semantics $\llbracket \varphi \rrbracket : \mathbb{A}^* \to \mathbb{N} \cup \{\infty\}$ $\llbracket \varphi \rrbracket(u) := \inf \{n : u \models \varphi[n/N]\}$

Atomic formulas: a(x) $x \in X$ $|X| \le N$

must occur positively

Constructors:

Semantics $\llbracket \varphi \rrbracket : \mathbb{A}^* \to \mathbb{N} \cup \{\infty\}$ $\llbracket \varphi \rrbracket (u) := \inf \{ n : u \models \varphi \llbracket n/N \rrbracket \}$

Example

If φ is in MSO, then $\llbracket \varphi \rrbracket(u) := \begin{cases} 0 & \text{if } u \models \varphi \\ \infty & \text{otherwise} \end{cases}$

a(x)Atomic formulas: $x \in X$ $|X| \leq N$ must occur positively Constructors: Зx <u>^, v, ¬</u> Boolean first-order monadic quantification second-order connectives quantification

Semantics $\llbracket \varphi \rrbracket : \mathbb{A}^* \to \mathbb{N} \cup \{\infty\}$ $\llbracket \varphi \rrbracket(u) := \inf \{n : u \models \varphi[n/N]\}$

Example Maximum length of a block of *a*'s

$$\varphi := \forall X \left((\texttt{block}(X) \land \forall x (x \in X \to a(x)) \to |X| \le N \right)$$

Cost functions over finite words [Colcombet'09]

Cost functions over finite words [Colcombet'09]

The theory of regular cost functions is a robust decidable extension of the theory of regular languages over:

- ✓ finite words [Colcombet '09, Bojanczyk+Colcombet '06]
- ✓ infinite words [Kuperberg+VB'12, Colcombet unpublished]
- ✓ finite trees [Colcombet+Löding '10]

The theory of regular cost functions is a robust decidable extension of the theory of regular languages over:

- ✓ finite words [Colcombet '09, Bojanczyk+Colcombet '06]
- ✓ infinite words [Kuperberg+VB'12, Colcombet unpublished]
- ✓ finite trees [Colcombet+Löding '10]
 - ? infinite trees

Mostowski index problem

Instance: regular language L of infinite trees, and set $\{i, i + 1, ..., j\}$

Question: Is there a nondeterministic parity automaton \mathcal{A} using only priorities $\{i, i + 1, ..., j\}$ such that $L = L(\mathcal{A})$?

Mostowski index problem

Instance: regular language L of infinite trees, and set $\{i, i + 1, ..., j\}$

Question: Is there a nondeterministic parity automaton \mathcal{A} using only priorities $\{i, i + 1, ..., j\}$ such that $L = L(\mathcal{A})$?

Reduced to deciding boundedness for certain cost functions over infinite trees [Colcombet+Löding '08]

Cost functions over infinite trees

Cost functions over infinite trees

Cost functions over infinite trees

Cost parity automata on infinite trees

 δ describes possible moves for Eve and Adam, and associated counter actions (increment, reset, leave unchanged) $\Omega: Q \to P$
for a finite set of
priorities P

n-acceptance game $\mathcal{A} \times t$

- Positions in the game are $Q \times dom(t)$.
- Eve and Adam select the next position in the play based on δ .
- Eve is trying to ensure the play has counter value at most n and the maximum priority occurring infinitely often in the play is even.

Semantics

 $\llbracket \mathcal{A} \rrbracket(t) := \inf \{ n : Eve wins the$ *n* $-acceptance game <math>\mathcal{A} \times t \}$

Weak cost automaton

alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost automaton

alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost monadic second-order logic (WCMSO)

Syntax like CMSO, but interpret second-order quantification over finite sets

Weak cost automaton

alternating cost-parity automaton such that no cycle visits both even and odd priorities

Weak cost monadic second-order logic (WCMSO)

Syntax like CMSO, but interpret second-order quantification over finite sets

Quasi-weak cost automaton

alternating cost-parity automaton such that in any cycle with both even and odd priorities, there is a counter which is incremented but not reset

Quasi-weak cost automaton

alternating cost-parity automaton such that in any cycle with both even and odd priorities, there is a counter which is incremented but not reset

Quasi-weak cost monadic second-order logic (QWCMSO)

Add bounded expansion operator to WCMSO:

 $z \in \mu^N Y. \{x : \varphi(x, Y)\}$

where Y occurs positively in $\varphi(x, Y)$, and this operator occurs positively in the enclosing formula.

Quasi-weak cost automaton

alternating cost-parity automaton such that in any cycle with both even and odd priorities, there is a counter which is incremented but not reset

Quasi-weak cost monadic second-order logic (QWCMSO)

Add bounded expansion operator to WCMSO:

 $z \in \mu^N Y. \{x : \varphi(x, Y)\}$

where Y occurs positively in $\varphi(x, Y)$, and this operator occurs positively in the enclosing formula.

Example

Maximal size of block of *a*'s on a branch starting at the root: $\exists w [\texttt{root}(w) \land w \in \mu^N X. \{x : \exists yz [b(x, y, z) \lor (a(x, y, z) \land y \in X \land z \in X)] \}]$

Game for testing $z \in \mu^N Y \{x : \varphi(x, Y)\}$ for $n \in \mathbb{N}$.

Initial position x := z.

Game from position x:

- Eve chooses set Y such that φ(x, Y) holds (if it is not possible, she loses).
- ► Adam chooses some new y ∈ Y (if it is not possible, he loses).
- Game continues in next round with x := y

Game for testing $z \in \mu^N Y.\{x : \varphi(x, Y)\}$ for $n \in \mathbb{N}$.

Initial position x := z.

Game from position x:

- Eve chooses set Y such that φ(x, Y) holds (if it is not possible, she loses).
- ► Adam chooses some new y ∈ Y (if it is not possible, he loses).
- Game continues in next round with x := y

Game for testing $z \in \mu^N Y.\{x : \varphi(x, Y)\}$ for $n \in \mathbb{N}$.

Initial position x := z.

Game from position x:

- Eve chooses set Y such that φ(x, Y) holds (if it is not possible, she loses).
- ► Adam chooses some new y ∈ Y (if it is not possible, he loses).
- Game continues in next round with x := y

Game for testing $z \in \mu^N Y \{x : \varphi(x, Y)\}$ for $n \in \mathbb{N}$.

Initial position x := z.

Game from position x:

- Eve chooses set Y such that φ(x, Y) holds (if it is not possible, she loses).
- ► Adam chooses some new y ∈ Y (if it is not possible, he loses).
- Game continues in next round with x := y

Game for testing $z \in \mu^N Y \{x : \varphi(x, Y)\}$ for $n \in \mathbb{N}$.

Initial position x := z.

Game from position x:

- Eve chooses set Y such that φ(x, Y) holds (if it is not possible, she loses).
- ► Adam chooses some new y ∈ Y (if it is not possible, he loses).
- Game continues in next round with x := y

Game for testing $z \in \mu^N Y.\{x : \varphi(x, Y)\}$ for $n \in \mathbb{N}$.

Initial position x := z.

Game from position x:

- Eve chooses set Y such that φ(x, Y) holds (if it is not possible, she loses).
- ► Adam chooses some new y ∈ Y (if it is not possible, he loses).
- Game continues in next round with x := y

Summary

Regular Cost Functions

alternating 2-way/1-way cost-parity automata cost μ-calculus

QW Cost Functions

2-way/1-way qw cost automata alternation-free cost μ-calculus QWCMSO

Boundedness decidable

weak cost automata

WCMSO