
Two-way cost automata and cost logics

over inBnite trees

Achim Blumensath
1
, Thomas Colcombet

2
,

Denis Kuperberg
3
, Pawel Parys

3
, andMichael Vanden Boom

4

1
TU Darmstadt,

2
Université Paris Diderot,

3
University of Warsaw,

4
University of Oxford

CSL-LICS 2014

Vienna, Austria

1 / 14



Boundedness questions

Finite power property [Simon ’78, Hashiguchi ’79]

given regular language L of Bnite words,

is there n ∈ N such that L
∗
= {є} ∪ L1 ∪ L2 ∪⋯ ∪ Ln

?

Star-height problem [Hashiguchi ’88, Kirsten ’05]

given regular language L of Bnite words and n ∈ N,

is there a regular expression for Lwith at most n nestings of Kleene star?

Fixpoint closure boundedness [Blumensath+Otto+Weyer ’09]

given an MSO formula φ(x, X) positive in X ,

is there n ∈ N such that the least Bxpoint of φ over Bnite words

is always reached within n iterations?

2 / 14



Boundedness questions

The theory of regular cost functions is an extension of the theory of

regular languages that can be used to solve these boundedness questions

in a uniform way.

Boundedness problem

Instance: function f ∶ D → N ∪ {∞}
(D is set of words or trees over some Bxed Bnite alphabetA)

Question: Is there n ∈ N such that for all structures s ∈ D, f (s) ≤ n?

3 / 14



Boundedness questions

The theory of regular cost functions is an extension of the theory of

regular languages that can be used to solve these boundedness questions

in a uniform way.

Boundedness problem

Instance: function f ∶ D → N ∪ {∞}
(D is set of words or trees over some Bxed Bnite alphabetA)

Question: Is there n ∈ N such that for all structures s ∈ D, f (s) ≤ n?

3 / 14



Cost functions over Bnite words [Colcombet’09]

nondeterministic cost automata

cost MSO

BS expressions

stabilization monoids

Regular Cost Functions

Boundedness decidable

[Colcombet’09, Bojańczyk+Colcombet’06]

4 / 14



Cost functions over Bnite words

Cost monadic second-order logic (CMSO)

Atomic formulas: a(x) x ∈ X ∣X∣ ≤ N
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

must occur

positively

Constructors: ∧,∨,¬ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Boolean

connectives

∃xÍÑÏ
Brst-order

quantiBcation

∃XÍÑÒÏ
monadic

second-order

quantiBcation

Semantics JφK ∶ A∗
→ N ∪ {∞}

JφK(u) ∶= inf {n ∶ u ⊧ φ[n/N]}

Example

5 / 14



Cost functions over Bnite words

Cost monadic second-order logic (CMSO)

Atomic formulas: a(x) x ∈ X ∣X∣ ≤ N
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

must occur

positively

Constructors: ∧,∨,¬ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Boolean

connectives

∃xÍÑÏ
Brst-order

quantiBcation

∃XÍÑÒÏ
monadic

second-order

quantiBcation

Semantics JφK ∶ A∗
→ N ∪ {∞}

JφK(u) ∶= inf {n ∶ u ⊧ φ[n/N]}

Example

5 / 14



Cost functions over Bnite words

Cost monadic second-order logic (CMSO)

Atomic formulas: a(x) x ∈ X ∣X∣ ≤ N
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

must occur

positively

Constructors: ∧,∨,¬ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Boolean

connectives

∃xÍÑÏ
Brst-order

quantiBcation

∃XÍÑÒÏ
monadic

second-order

quantiBcation

Semantics JφK ∶ A∗
→ N ∪ {∞}

JφK(u) ∶= inf {n ∶ u ⊧ φ[n/N]}

Example

If φ is in MSO, then JφK(u) ∶= {0 if u ⊧ φ

∞ otherwise

5 / 14



Cost functions over Bnite words

Cost monadic second-order logic (CMSO)

Atomic formulas: a(x) x ∈ X ∣X∣ ≤ N
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

must occur

positively

Constructors: ∧,∨,¬ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Boolean

connectives

∃xÍÑÏ
Brst-order

quantiBcation

∃XÍÑÒÏ
monadic

second-order

quantiBcation

Semantics JφK ∶ A∗
→ N ∪ {∞}

JφK(u) ∶= inf {n ∶ u ⊧ φ[n/N]}

Example

Maximum length of a block of a’s

φ ∶= ∀X ((block(X) ∧ ∀x(x ∈ X → a(x)) → ∣X∣ ≤ N)
5 / 14



Cost functions over Bnite words [Colcombet’09]

nondeterministic cost automata

cost MSO

BS expressions

stabilization monoids

Regular Cost Functions

Boundedness decidable

[Colcombet’09, Bojańczyk+Colcombet’06]

6 / 14



Cost functions over Bnite words [Colcombet’09]

nondeterministic cost automata

cost MSO

BS expressions

stabilization monoids

Regular Cost Functions

Boundedness decidable

[Colcombet’09, Bojańczyk+Colcombet’06]

language universality,

inclusion, and emptiness

decidable

6 / 14



Cost functions over Bnite words [Colcombet’09]

nondeterministic cost automata

cost MSO

BS expressions

stabilization monoids

Regular Cost Functions

Boundedness decidable

[Colcombet’09, Bojańczyk+Colcombet’06]

language universality,

inclusion, and emptiness

decidable

Bnite power property,

star height problem,

Bxpoint closure boundedness, ...

decidable

6 / 14



Theory of regular cost functions

The theory of regular cost functions is a robust decidable extension of the

theory of regular languages over:

3 Bnite words [Colcombet ’09, Bojanczyk+Colcombet ’06]

3 inBnite words [Kuperberg+VB’12, Colcombet unpublished]

3 Bnite trees [Colcombet+Löding ’10]

? inBnite trees

7 / 14



Theory of regular cost functions

The theory of regular cost functions is a robust decidable extension of the

theory of regular languages over:

3 Bnite words [Colcombet ’09, Bojanczyk+Colcombet ’06]

3 inBnite words [Kuperberg+VB’12, Colcombet unpublished]

3 Bnite trees [Colcombet+Löding ’10]

? inBnite trees

7 / 14



Motivating open problem

Mostowski index problem

Instance: regular language L of inBnite trees, and set {i, i + 1, . . . , j}
Question: Is there a nondeterministic parity automaton A using only

priorities {i, i + 1, . . . , j} such that L = L(A)?

Reduced to deciding boundedness for certain cost functions over inBnite

trees [Colcombet+Löding ’08]

8 / 14



Motivating open problem

Mostowski index problem

Instance: regular language L of inBnite trees, and set {i, i + 1, . . . , j}
Question: Is there a nondeterministic parity automaton A using only

priorities {i, i + 1, . . . , j} such that L = L(A)?

Reduced to deciding boundedness for certain cost functions over inBnite

trees [Colcombet+Löding ’08]

8 / 14



Cost functions over inBnite trees

Regular Cost Functions

alternating cost-parity automata

cost µ-calculus

weak cost automata

WCMSO

QWCost Functions

quasi-weak cost automata

QWCMSO

special case

of Mostowski

index problem

Boundedness decidable

[Kuperberg+VB’11]

9 / 14



Cost functions over inBnite trees

Regular Cost Functions

alternating cost-parity automata

cost µ-calculus

weak cost automata

WCMSO

QWCost Functions

quasi-weak cost automata

QWCMSO

special case

of Mostowski

index problem

Boundedness decidable

[Kuperberg+VB’11]

9 / 14



Cost functions over inBnite trees

Regular Cost Functions

alternating 2-way/1-way cost-parity automata

cost µ-calculus

weak cost automata

WCMSO

QWCost Functions

2-way/1-way qw cost automata

QWCMSO

special case

of Mostowski

index problem

Boundedness decidable

[Kuperberg+VB’11]

9 / 14



Cost parity automata on inBnite trees

A = ⟨A,Q, q0, δ, Ω⟩
δ describes possible moves

for Eve and Adam,

and associated counter actions

(increment, reset, leave unchanged)

Ω ∶ Q → P

for a Bnite set of

priorities P

n-acceptance game A × t

▶ Positions in the game are Q × dom(t).
▶ Eve and Adam select the next position in the play based on δ.

▶ Eve is trying to ensure the play has counter value at most n and the

maximum priority occurring inBnitely often in the play is even.

Semantics

JAK(t) ∶= inf {n ∶ Eve wins the n-acceptance game A × t}

10 / 14



Weak cost automata and logic over inBnite trees

Weak cost automaton

alternating cost-parity automaton such that

no cycle visits both even and odd priorities

1 2

Weak cost monadic second-order logic (WCMSO)

Syntax like CMSO, but interpret second-order quantiBcation over Bnite sets

11 / 14



Weak cost automata and logic over inBnite trees

Weak cost automaton

alternating cost-parity automaton such that

no cycle visits both even and odd priorities

1 2

Weak cost monadic second-order logic (WCMSO)

Syntax like CMSO, but interpret second-order quantiBcation over Bnite sets

11 / 14



Weak cost automata and logic over inBnite trees

Weak cost automaton

alternating cost-parity automaton such that

no cycle visits both even and odd priorities

1 2

Weak cost monadic second-order logic (WCMSO)

Syntax like CMSO, but interpret second-order quantiBcation over Bnite sets

11 / 14



Quasi-weak cost automata and logic over inBnite trees

Quasi-weak cost automaton

alternating cost-parity automaton such that

in any cycle with both even and odd priorities,

there is a counter which is incremented but not reset

1 2

I

Quasi-weak cost monadic second-order logic (QWCMSO)

Add bounded expansion operator to WCMSO:

z ∈ µ
N
Y . {x ∶ φ(x, Y)}

where Y occurs positively in φ(x, Y),
and this operator occurs positively in the enclosing formula.

Example

Maximal size of block of a’s on a branch starting at the root:

∃w[root(w) ∧ w ∈ µ
N
X .{x ∶ ∃yz[b(x, y, z) ∨ (a(x, y, z) ∧ y ∈ X ∧ z ∈ X)]}]

12 / 14



Quasi-weak cost automata and logic over inBnite trees

Quasi-weak cost automaton

alternating cost-parity automaton such that

in any cycle with both even and odd priorities,

there is a counter which is incremented but not reset

1 2

I

Quasi-weak cost monadic second-order logic (QWCMSO)

Add bounded expansion operator to WCMSO:

z ∈ µ
N
Y . {x ∶ φ(x, Y)}

where Y occurs positively in φ(x, Y),
and this operator occurs positively in the enclosing formula.

Example

Maximal size of block of a’s on a branch starting at the root:

∃w[root(w) ∧ w ∈ µ
N
X .{x ∶ ∃yz[b(x, y, z) ∨ (a(x, y, z) ∧ y ∈ X ∧ z ∈ X)]}]

12 / 14



Quasi-weak cost automata and logic over inBnite trees

Quasi-weak cost automaton

alternating cost-parity automaton such that

in any cycle with both even and odd priorities,

there is a counter which is incremented but not reset

1 2

I

Quasi-weak cost monadic second-order logic (QWCMSO)

Add bounded expansion operator to WCMSO:

z ∈ µ
N
Y . {x ∶ φ(x, Y)}

where Y occurs positively in φ(x, Y),
and this operator occurs positively in the enclosing formula.

Example

Maximal size of block of a’s on a branch starting at the root:

∃w[root(w) ∧ w ∈ µ
N
X .{x ∶ ∃yz[b(x, y, z) ∨ (a(x, y, z) ∧ y ∈ X ∧ z ∈ X)]}]

12 / 14



Bounded expansion operator and 2-way automata

Game for testing

z ∈ µ
N
Y .{x ∶ φ(x, Y)} for n ∈ N.

Initial position x ∶= z.

Game from position x:

▶ Eve chooses set Y such that

φ(x, Y) holds

(if it is not possible, she loses).

▶ Adam chooses some new y ∈ Y

(if it is not possible, he loses).

▶ Game continues in next round

with x ∶= y

If the game exceeds n rounds,

Adam wins.

13 / 14



Bounded expansion operator and 2-way automata

Game for testing

z ∈ µ
N
Y .{x ∶ φ(x, Y)} for n ∈ N.

Initial position x ∶= z.

Game from position x:

▶ Eve chooses set Y such that

φ(x, Y) holds

(if it is not possible, she loses).

▶ Adam chooses some new y ∈ Y

(if it is not possible, he loses).

▶ Game continues in next round

with x ∶= y

If the game exceeds n rounds,

Adam wins.

13 / 14



Bounded expansion operator and 2-way automata

Game for testing

z ∈ µ
N
Y .{x ∶ φ(x, Y)} for n ∈ N.

Initial position x ∶= z.

Game from position x:

▶ Eve chooses set Y such that

φ(x, Y) holds

(if it is not possible, she loses).

▶ Adam chooses some new y ∈ Y

(if it is not possible, he loses).

▶ Game continues in next round

with x ∶= y

If the game exceeds n rounds,

Adam wins.

13 / 14



Bounded expansion operator and 2-way automata

Game for testing

z ∈ µ
N
Y .{x ∶ φ(x, Y)} for n ∈ N.

Initial position x ∶= z.

Game from position x:

▶ Eve chooses set Y such that

φ(x, Y) holds

(if it is not possible, she loses).

▶ Adam chooses some new y ∈ Y

(if it is not possible, he loses).

▶ Game continues in next round

with x ∶= y

If the game exceeds n rounds,

Adam wins.

13 / 14



Bounded expansion operator and 2-way automata

Game for testing

z ∈ µ
N
Y .{x ∶ φ(x, Y)} for n ∈ N.

Initial position x ∶= z.

Game from position x:

▶ Eve chooses set Y such that

φ(x, Y) holds

(if it is not possible, she loses).

▶ Adam chooses some new y ∈ Y

(if it is not possible, he loses).

▶ Game continues in next round

with x ∶= y

If the game exceeds n rounds,

Adam wins.

13 / 14



Bounded expansion operator and 2-way automata

Game for testing

z ∈ µ
N
Y .{x ∶ φ(x, Y)} for n ∈ N.

Initial position x ∶= z.

Game from position x:

▶ Eve chooses set Y such that

φ(x, Y) holds

(if it is not possible, she loses).

▶ Adam chooses some new y ∈ Y

(if it is not possible, he loses).

▶ Game continues in next round

with x ∶= y

If the game exceeds n rounds,

Adam wins.

13 / 14



Summary

Regular Cost Functions

alternating 2-way/1-way cost-parity automata

cost µ-calculus

weak cost automata

WCMSO

QWCost Functions

2-way/1-way qw cost automata

alternation-free cost µ-calculus

QWCMSO

special case

of Mostowski

index problem

Boundedness decidable

14 / 14


