Deciding the weak definability of Büchi definable tree languages

Thomas Colcombet¹, Denis Kuperberg¹, Christof Löding², <u>Michael Vanden Boom³</u>

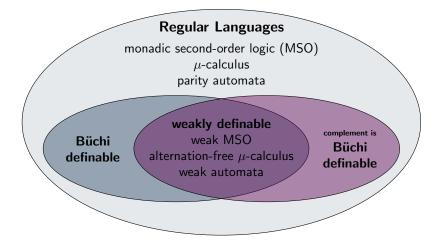
¹CNRS and LIAFA, Université Paris Diderot, France

²Informatik 7, RWTH Aachen University, Germany

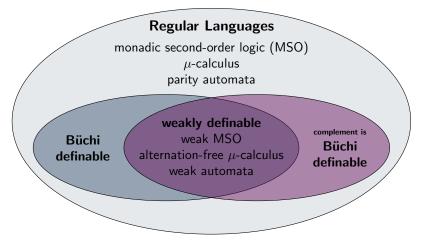
³Department of Computer Science, University of Oxford, England

CSL 2013 Turin, Italy

Regular languages of infinite trees



Regular languages of infinite trees



Weak automaton $\langle \mathbb{A}, Q, q_0, \delta, F \rangle$

alternating Büchi automaton such that no cycle visits both accepting and non-accepting states

Weak definability decision problem

INPUT: parity automaton \mathcal{U}

OUTPUT: YES if there exists weak automaton \mathcal{W} with $L(\mathcal{W}) = L(\mathcal{U})$, NO otherwise

Theorem [Niwiński+Walukiewicz '05]

The weak definability problem is decidable if L(U) is **deterministic**.

Weak definability decision problem

- INPUT: parity automaton \mathcal{U}
- OUTPUT: YES if there exists weak automaton \mathcal{W} with $L(\mathcal{W}) = L(\mathcal{U})$, NO otherwise

Theorem [Niwiński+Walukiewicz '05]

The weak definability problem is decidable if L(U) is **deterministic**.

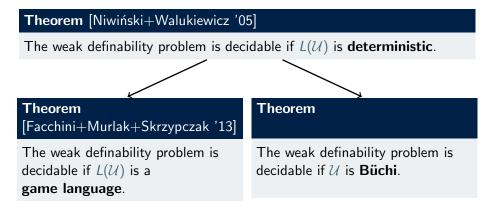
Theorem [Facchini+Murlak+Skrzypczak '13]

The weak definability problem is decidable if L(U) is a **game language**.

Weak definability decision problem

INPUT: parity automaton \mathcal{U}

OUTPUT: YES if there exists weak automaton \mathcal{W} with $L(\mathcal{W}) = L(\mathcal{U})$, NO otherwise



Finite state automaton ${\cal A}$

+ finite set of counters (initialized to 0, values range over \mathbb{N})

+ counter operations on transitions (increment i, reset r, no change ε)

Semantics

$$\llbracket \mathcal{A} \rrbracket : \mathsf{structures} \to \mathbb{N} \cup \{\infty\}$$

$$\llbracket \mathcal{A} \rrbracket(s) := \min\{n : \exists \text{ accepting run of } \mathcal{A} \text{ on } s$$

with counter values at most n

Finite state automaton ${\cal A}$

- + finite set of counters (initialized to 0, values range over \mathbb{N})
- + counter operations on transitions (increment i, reset r, no change ε)

Semantics

$$\llbracket \mathcal{A} \rrbracket$$
 : structures $\rightarrow \mathbb{N} \cup \{\infty\}$

$$\llbracket \mathcal{A} \rrbracket(s) := \min\{n : \exists \text{ accepting run of } \mathcal{A} \text{ on } s$$

with counter values at most n

Boundedness with respect to language K (written $\llbracket \mathcal{A} \rrbracket \approx \chi_K$)

 $\llbracket \mathcal{A} \rrbracket \approx \chi_{\mathcal{K}} \text{ if there is bound } n \in \mathbb{N} \text{ such that } \llbracket \mathcal{A} \rrbracket(s) \leq n \text{ if } s \in \mathcal{K} \text{ and } \\ \llbracket \mathcal{A} \rrbracket(s) = \infty \text{ if } s \notin \mathcal{K}$

Many problems for a regular language L have been reduced to deciding \approx for special types of cost automata

Finite power property
 [Simon '78, Hashiguchi '79]

is there some *n* such that $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$?

Star-height problem

[Hashiguchi '88, Kirsten '05, Colcombet+Löding '08]

given n, is there a regular expression for L with at most n nestings of Kleene star?

Parity-index problem

[reduction in Colcombet+Löding '08, decidability open]

given i < j, is there a nondeterministic parity automaton for *L* which uses only priorities $\{i, i + 1, ..., j\}$? Many problems for a regular language L have been reduced to deciding \approx for special types of cost automata

Finite power property
 [Simon '78, Hashiguchi '79]
 distance

is there some *n* such that $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$?

Star-height problem

[Hashiguchi '88, Kirsten '05, Colcombet+Löding '08]

given n, is there a regular expression for L with at most n desert nestings of Kleene star?

Parity-index problem

[reduction in Colcombet+Löding '08, decidability open]

given i < j, is there a nondeterministic parity automaton for *L* which uses only priorities $\{i, i + 1, ..., j\}$? cost-parity

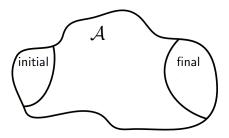
nested

distance-

Reduction to boundedness (example)

Finite power property decision problem

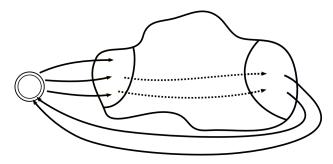
INPUT: Finite state automaton \mathcal{A} over finite words with $L = L(\mathcal{A})$ OUTPUT: YES if there is $n \in \mathbb{N}$ with $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$, NO otherwise



Reduction to boundedness (example)

Finite power property decision problem

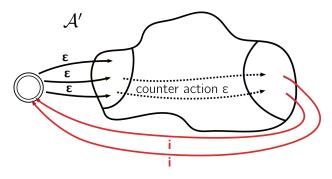
INPUT: Finite state automaton \mathcal{A} over finite words with $L = L(\mathcal{A})$ OUTPUT: YES if there is $n \in \mathbb{N}$ with $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$, NO otherwise



Reduction to boundedness (example)

Finite power property decision problem

INPUT: Finite state automaton \mathcal{A} over finite words with $L = L(\mathcal{A})$ OUTPUT: YES if there is $n \in \mathbb{N}$ with $L^* = \{\epsilon\} \cup L^1 \cup L^2 \cup \cdots \cup L^n$, NO otherwise



Finite power property holds iff $\llbracket \mathcal{A}' \rrbracket \approx \chi_{L^*}$

Given nondeterministic Büchi automata ${\mathcal U}$ and ${\mathcal V}$

▶ fix some tree t and let \(\rho_U\) and \(\rho_V\) be runs of U and \(\mathcal{V}\) on t, with accepting states marked with \(\begin{bmatrix} \)

 divide each branch in the composed run into blocks containing accepting state for V followed by accepting state for U Given nondeterministic Büchi automata ${\mathcal U}$ and ${\mathcal V}$

▶ fix some tree t and let \(\rho_U\) and \(\rho_V\) be runs of U and \(\mathcal{V}\) on t, with accepting states marked with \(\begin{bmatrix} \)

 divide each branch in the composed run into blocks containing accepting state for V followed by accepting state for U Given nondeterministic Büchi automata ${\mathcal U}$ and ${\mathcal V}$

► fix some tree t and let \(\rho_U\) and \(\rho_V\) be runs of U and \(\mathcal{V}\) on t, with accepting states marked with \(\begin{bmatrix} \)

 divide each branch in the composed run into blocks containing accepting state for V followed by accepting state for U

Theorem [Rabin '70]

If there are at least $m = |Q_U| \cdot |Q_V|$ blocks on every branch in the composed run, then $L(U) \cap L(V) \neq \emptyset$.

Weak automaton construction [Kupferman+Vardi '99]

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V} with $L(\mathcal{U}) = \overline{L(\mathcal{V})}$

Construct weak automaton \mathcal{W} such that $L(\mathcal{W}) = L(\mathcal{V})$

- Adam selects transition from $\Delta_{\mathcal{U}}$
- Eve selects transition from $\Delta_{\mathcal{V}}$ and direction

Adam
$$\rho_{\mathcal{U}}$$
 q_0 q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8 q_9 \cdots
Eve $\rho_{\mathcal{V}}$ (r_0) r_1 r_2 r_3 (r_4) r_5 r_6 (r_7) (r_8) r_9 \cdots

Weak automaton construction [Kupferman+Vardi '99]

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V} with $L(\mathcal{U}) = \overline{L(\mathcal{V})}$

Construct weak automaton \mathcal{W} such that $L(\mathcal{W}) = L(\mathcal{V})$

- Adam selects transition from $\Delta_{\mathcal{U}}$
- Eve selects transition from $\Delta_{\mathcal{V}}$ and direction
- Accept/reject depending on occurrences of

Adam
$$\rho_{\mathcal{U}}$$
 q_0 q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8 q_9 \cdots
Eve $\rho_{\mathcal{V}}$ r_0 r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9 \cdots

Given nondeterministic Büchi automata \mathcal{U} and \mathcal{V} with $L(\mathcal{U}) = \overline{L(\mathcal{V})}$

Construct weak automaton \mathcal{W} such that $L(\mathcal{W}) = L(\mathcal{V})$

- Adam selects transition from $\Delta_{\mathcal{U}}$
- Eve selects transition from $\Delta_{\mathcal{V}}$ and direction
- Accept/reject depending on occurrences of
- ► Store the block number in the state, up to value m := |Q_U| · |Q_V| once m blocks have been witnessed, stabilize in rejecting state

Adam
$$\rho_{\mathcal{U}}$$
 q_0 q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8 q_9 \cdots
Eve $\rho_{\mathcal{V}}$ r_0 r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9 \cdots
1 2 3

Reduction of weak definability to boundedness

Given nondeterministic Büchi automaton ${\cal U}$

Construct cost automaton Q s.t. $\llbracket Q \rrbracket \approx \chi_{\overline{L(U)}}$ iff L(U) is weakly definable

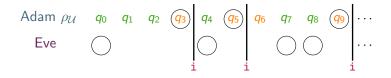
- Adam selects transition from $\Delta_{\mathcal{U}}$
- Eve selects direction and guesses whether to output
- Accept/reject depending on occurrences of

Reduction of weak definability to boundedness

Given nondeterministic Büchi automaton \mathcal{U}

Construct cost automaton Q s.t. $\llbracket Q \rrbracket \approx \chi_{\overline{L(U)}}$ iff L(U) is weakly definable

- Adam selects transition from $\Delta_{\mathcal{U}}$
- Eve selects direction and guesses whether to output ()
- Accept/reject depending on occurrences of
- Store the block number in the counter



Decidability of \approx for cost automata

Decidability of \approx for cost automata over infinite trees is open in general, but is known in some special cases...

Theorem [Kuperberg+VB '11]

The boundedness relation \approx is decidable for **quasi-weak cost automata** over infinite trees.

Quasi-weak cost automaton

alternating cost-Büchi automaton such that in any cycle with both accepting and non-accepting states, there is a counter which is incremented but not reset

Deciding weak definability for Büchi input

Theorem

Given Büchi automaton \mathcal{U} , we can construct a quasi-weak cost automaton \mathcal{Q} such that the following are equivalent:

- L(U) is weakly definable;
- $\llbracket \mathcal{Q} \rrbracket \approx \chi_{\overline{L(\mathcal{U})}}.$

Theorem [Kuperberg+VB '11]

The boundedness relation \approx is decidable for quasi-weak cost automata.

Ļ

Theorem

Given Büchi automaton \mathcal{U} , it is decidable whether $L(\mathcal{U})$ is weakly definable.

Conclusion

Cost automata can be used to help prove the decidability of definability problems for regular languages of infinite trees.

- The weak definability problem is decidable when the input is a Büchi automaton.
- The co-Büchi definability problem is decidable when the input is a parity automaton.

Open question

Is \approx decidable for larger classes of cost automata over infinite trees?