Expressive Power of Cost Logics over Infinite Words

Denis Kuperberg¹ Michael Vanden Boom²

¹LIAFA/CNRS/Université Paris 7, Denis Diderot, France

²Department of Computer Science, University of Oxford, England

ICALP 2012, Warwick

Cost functions

Cost automata and logics define functions $f : \mathscr{D} \to \mathbb{N} \cup \{\infty\}$ (\mathscr{D} could be words or trees over some fixed finite alphabet)

Only consider functions up to the **boundedness relation** \approx " $f \approx g$ ": for all $U \subseteq \mathcal{D}$, f(U) bounded iff g(U) bounded

Cost functions

Cost automata and logics define functions $f : \mathscr{D} \to \mathbb{N} \cup \{\infty\}$ (\mathscr{D} could be words or trees over some fixed finite alphabet)

Only consider functions up to the **boundedness relation** \approx " $f \approx g$ ": for all $U \subseteq \mathcal{D}$, f(U) bounded iff g(U) bounded

Cost functions

Cost automata and logics define functions $f : \mathscr{D} \to \mathbb{N} \cup \{\infty\}$ (\mathscr{D} could be words or trees over some fixed finite alphabet)

Only consider functions up to the **boundedness relation** \approx " $f \approx g$ ": for all $U \subseteq \mathcal{D}$, f(U) bounded iff g(U) bounded

A cost function is an equivalence class of \approx .

Regular cost functions over finite words [Colcombet'09]

Regular Cost Functions

Cost Automata Cost MSO BS Expressions Stabilization Monoids

 $\mathbf{f} \approx \mathbf{g} \; \mathbf{decidable}$ [Colcombet'09, Bojańczyk+Colcombet'06]

Regular cost functions over finite words [Colcombet'09]

Regular cost functions over finite words [Colcombet'09]

Classical picture over infinite words

Do these classical results hold for regular cost functions over infinite words?

Classical picture over infinite words

Do these classical results hold for regular cost functions over infinite words?

Classical picture over infinite words

Do these classical results hold for regular cost functions over infinite words?

CMSO nondeterministic *B*-Büchi automata CWMSO weak alternating *B*-automata quasi-weak alternating *B*-automata

First-Order Fragment

CFO CLTL very-weak alternating *B*-automata (with one counter)

B-Büchi automata over infinite words

Nondeterministic finite-state automaton $\mathcal A$

- + Büchi acceptance condition (visit accepting state infinitely often)
- + finite set of counters (initialized to 0, values range over $\mathbb N)$
- + counter operations (increment I, reset R, no change ε)

B-semantic

 $\llbracket \mathcal{A} \rrbracket : \mathbb{A}^{\omega} \to \mathbb{N} \cup \{\infty\}$

B-Büchi automata over infinite words

Nondeterministic finite-state automaton $\mathcal A$

- + Büchi acceptance condition (visit accepting state infinitely often)
- + finite set of counters (initialized to 0, values range over \mathbb{N})
- + counter operations (increment I, reset R, no change ε)

B-semantic

 $\llbracket A \rrbracket(u) := \inf\{n : \exists \text{ accepting run with counter values at most } n\}$

Example

 $\llbracket \mathcal{A} \rrbracket (u) = \min \text{ length of block of } a \text{'s surrounded by } b \text{'s in } u$ $a, b : \varepsilon \qquad a : I \qquad a, b : \varepsilon$ $b : \varepsilon \qquad b : \varepsilon \qquad b : \varepsilon$

B-Büchi automata over infinite words

Nondeterministic finite-state automaton $\mathcal A$

- + Büchi acceptance condition (visit accepting state infinitely often)
- + finite set of counters (initialized to 0, values range over $\mathbb N)$
- + counter operations (increment I, reset R, no change ε)

B-semantic

 $\llbracket A \rrbracket(u) := \inf\{n : \exists \text{ accepting run with counter values at most } n\}$

Example

If no counter operations used, then

$$\llbracket \mathcal{A}
rbracket(u) = \chi_{L(\mathcal{A})}(u) = egin{cases} 0 & ext{if } u \in L(\mathcal{A}) \ \infty & ext{otherwise} \end{cases}$$

Cost first-order logic (CFO)

 $\mathsf{FO} + \forall^{\leq \mathbf{N}} x. \psi$ appearing positively

- ▶ *N* is variable representing the error value (ranging over \mathbb{N})
- $(u, n) \models \forall^{\leq N} x. \psi(x)$ iff $\psi(i)$ is false in at most *n* positions *i*

Cost function: $\llbracket \varphi \rrbracket(u) := \inf \{ n \in \mathbb{N} : (u, n) \models \varphi \}$

Cost first-order logic (CFO)

 $\mathsf{FO} + \forall^{\leq \mathbf{N}} x. \psi$ appearing positively

- ▶ *N* is variable representing the error value (ranging over \mathbb{N})
- $(u, n) \models \forall^{\leq N} x. \psi(x)$ iff $\psi(i)$ is false in at most *n* positions *i*

Cost monadic second-order logic (CMSO) CFO + second-order quantification over sets

Cost weak monadic second-order logic (CWMSO) same syntax as CMSO, but second-order quantification interpreted only over finite sets

Cost function: $\llbracket \varphi \rrbracket(u) := \inf \{ n \in \mathbb{N} : (u, n) \models \varphi \}$

Examples

Let
$$u \in \{a, b\}^{\omega}$$
.

• number of a in u = $[\forall \leq N x.b(x)](u)$

Examples

Let $u \in \{a, b\}^{\omega}$.

- number of a in u= $[\forall \leq N x.b(x)](u)$
- ▶ min length of block of a (surrounded by b) in u= $[\exists x. \exists y. x < y \land b(x) \land b(y) \land \forall^{\leq N} z. (z \leq x \lor z \geq y)](u)$

Cost linear temporal logic (CLTL) LTL + $\psi_1 \mathbf{U}^{\leq N} \psi_2$ (appearing positively)

$$(u, n) \models \psi_1 \bigcup^{\leq N} \psi_2: \qquad u \stackrel{\psi_1 \quad \psi_1 \quad \times \quad \psi_1 \quad \times \quad \psi_1 \quad \psi_1 \quad \psi_1 \quad \psi_2}{\longmapsto}$$

 ψ_2 is true at some position in the future, and ψ_1 is false in at most ${\it n}$ positions before then

$$\llbracket \varphi \rrbracket(u) := \inf \{ n \in \mathbb{N} : (u, n) \models \varphi \}$$

Cost linear temporal logic (CLTL) LTL + $\psi_1 \mathbf{U}^{\leq N} \psi_2$ (appearing positively)

 ψ_2 is true at some position in the future, and ψ_1 is false in at most ${\it n}$ positions before then

$$\llbracket \varphi \rrbracket (u) := \inf \{ n \in \mathbb{N} : (u, n) \models \varphi \}$$

• number of a in u= $\llbracket b \mathbf{U}^{\leq N} (\mathbf{G}b) \rrbracket (u)$

Cost linear temporal logic (CLTL) LTL + $\psi_1 \mathbf{U}^{\leq N} \psi_2$ (appearing positively)

 ψ_2 is true at some position in the future, and ψ_1 is false in at most ${\it n}$ positions before then

$$\llbracket \varphi \rrbracket(u) := \inf \{ n \in \mathbb{N} : (u, n) \models \varphi \}$$

- number of a in u= $\llbracket b \mathbf{U}^{\leq N} (\mathbf{G}b) \rrbracket (u)$
- min length of block of a (surrounded by b) in $u = [[F(b \land X(\bot U^{\leq N} b))]](u)$

Summary over infinite words

Summary over infinite words

CMSO nondeterministic *B*-Büchi automata CWMSO weak alternating *B*-automata quasi-weak alternating *B*-automata

First-Order Fragment

CFO CLTL very-weak alternating *B*-automata (with one counter)

Conclusion

Can classical theorems about regular languages be extended to regular cost functions?

- ► finite words and trees: yes [Colcombet'09,Colcombet+Löding'10]
- ► infinite words: yes [Colcombet] and [Kuperberg+VB]

Conclusion

Can classical theorems about regular languages be extended to regular cost functions?

- ▶ finite words and trees: yes [Colcombet'09,Colcombet+Löding'10]
- ► infinite words: yes [Colcombet] and [Kuperberg+VB]
- ▶ infinite trees: open but partial results in [VB'11, Kuperberg+VB'11]

Parity index problem

given regular language L of infinite trees and a set of priorities P, is there a nondeterministic parity automaton using only priorities P which recognizes L?

Weak definability problem

given a regular language L of infinite trees, is there a weak alternating automaton which recognizes L?

open in general case, but reduced to deciding \approx for regular cost functions over infinite trees [Colcombet+Löding'08]