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Cost functions

Cost automata and logics define functions f : D → N ∪ {∞}
(D could be words or trees over some fixed finite alphabet)

Only consider functions up to the boundedness relation ≈
“f ≈ g”: for all U ⊆ D , f (U) bounded iff g(U) bounded

Input structures D
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A cost function is an equivalence class of ≈.



Regular cost functions over finite words [Colcombet’09]
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BS Expressions
Stabilization Monoids

Regular Cost Functions
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Regular cost functions over finite words [Colcombet’09]

Cost Automata
Cost MSO

BS Expressions
Stabilization Monoids

Regular Cost Functions

f ≈ g decidable
[Colcombet’09, Bojańczyk+Colcombet’06]

language equality
decidable

star height problem decidable
[Hashiguchi’88, Kirsten’05]

Given regular language L and n ∈ N,
is there a regular expression for L with

at most n nestings of Kleene star?

Given regular languages
K and L, is K = L?



Classical picture over infinite words

MSO nondeterministic Büchi automata
Weak MSO deterministic Muller automata

weak alternating automata

FO
LTL

very-weak alternating automata

Regular Languages

Star-free Languages

Do these classical results hold for
regular cost functions over infinite words?
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Weak MSO deterministic Muller automata

weak alternating automata

FO
LTL

very-weak alternating automata

Regular Languages

Star-free Languages

Do these classical results hold for
regular cost functions over infinite words?



Cost functions over infinite words

CMSO nondeterministic B-Büchi automata
CWMSO weak alternating B-automata

quasi-weak alternating B-automata

CFO
CLTL

very-weak alternating B-automata
(with one counter)

Regular Cost Functions

First-Order Fragment



B-Büchi automata over infinite words

Nondeterministic finite-state automaton A
+ Büchi acceptance condition (visit accepting state infinitely often)
+ finite set of counters (initialized to 0, values range over N)
+ counter operations (increment I, reset R, no change ε)

B-semantic

JAK : Aω → N ∪ {∞}
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+ Büchi acceptance condition (visit accepting state infinitely often)
+ finite set of counters (initialized to 0, values range over N)
+ counter operations (increment I, reset R, no change ε)

B-semantic

JAK(u) := inf{n : ∃ accepting run with counter values at most n}

Example

JAK(u) = min length of block of a’s surrounded by b’s in u
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B-Büchi automata over infinite words

Nondeterministic finite-state automaton A
+ Büchi acceptance condition (visit accepting state infinitely often)
+ finite set of counters (initialized to 0, values range over N)
+ counter operations (increment I, reset R, no change ε)

B-semantic

JAK(u) := inf{n : ∃ accepting run with counter values at most n}

Example

If no counter operations used, then

JAK(u) = χL(A)(u) =

{
0 if u ∈ L(A)

∞ otherwise



Cost logics

Cost first-order logic (CFO)
FO + ∀≤Nx .ψ appearing positively

I N is variable representing the error value (ranging over N)

I (u, n) |= ∀≤Nx .ψ(x) iff ψ(i) is false in at most n positions i

Cost function: JϕK(u) := inf{n ∈ N : (u, n) |= ϕ}
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Cost first-order logic (CFO)
FO + ∀≤Nx .ψ appearing positively

I N is variable representing the error value (ranging over N)

I (u, n) |= ∀≤Nx .ψ(x) iff ψ(i) is false in at most n positions i

Cost monadic second-order logic (CMSO)
CFO + second-order quantification over sets

Cost weak monadic second-order logic (CWMSO)
same syntax as CMSO, but second-order quantification interpreted
only over finite sets

Cost function: JϕK(u) := inf{n ∈ N : (u, n) |= ϕ}



Examples

Let u ∈ {a, b}ω.

I number of a in u
= J∀≤Nx .b(x)K(u)

I min length of block of a (surrounded by b) in u
= J∃x .∃y .x < y ∧ b(x) ∧ b(y) ∧ ∀≤Nz .(z ≤ x ∨ z ≥ y)K(u)
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Cost linear temporal logic (CLTL)
LTL + ψ1U≤Nψ2 (appearing positively)
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ψ1 ψ1 ψ1 ψ1 ψ1 ψ1× × ψ2

ψ2 is true at some position in the future, and
ψ1 is false in at most n positions before then

JϕK(u) := inf{n ∈ N : (u, n) |= ϕ}

I number of a in u
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= JF(b ∧ X(⊥U≤Nb))K(u)
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Cost functions over infinite words

CMSO ≈ nondeterministic B-Büchi [Colcombet]

CWMSO ≈ weak B-automata [VB’11]

CFO

CLTL

Regular Cost Functions

adapt [Kupferman+Vardi ’01]

adapt Gabbay’s separation theorem
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Conclusion

Can classical theorems about regular languages be extended
to regular cost functions?

I finite words and trees: yes [Colcombet’09,Colcombet+Löding’10]

I infinite words: yes [Colcombet] and [Kuperberg+VB]

I infinite trees: open but partial results in [VB’11, Kuperberg+VB’11]

Parity index problem
given regular language L of infinite trees
and a set of priorities P, is there a
nondeterministic parity automaton using
only priorities P which recognizes L?

Weak definability problem
given a regular language L of infinite
trees, is there a weak alternating
automaton which recognizes L?



open in general case, but
reduced to deciding ≈ for
regular cost functions over
infinite trees
[Colcombet+Löding’08]
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