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Least fixpoint
Consider g(y, Y) positive in Y (of arity m = |y|).

For all structures I, the formula ¢ induces a monotone operation
PA") — P(AT)
Vi py(V):={acA" :,a,VE g}

= there is a unique least fixpoint [Ifpy, ,.¥(y, ¥)]a = U, Wy

Yy =@
v = vy
v = v

a<A
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Boundedness problem

Boundedness problem for £

Input: ¢(y, Y) € £ positive in Y

Question: is there n € N s.t. for all structures 21, gy = ¥h ?
(i.e. the least fixpoint is always reached within n iterations)
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Some prior results

Boundedness is undecidable for

m binary predicate in positive
existential FO (i.e. Datalog)
[Hillebrand, Kanellakis, Mairson, Vardi '95]

m monadic predicate in existential FO
with inequalities
[Gaifman, Mairson, Sagiv, Vardi '87]

m monadic predicate in FO?
[Kolaitis, Otto 98]
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Guarded logics

Guarded logics are expressive. For instance, GNFP captures:
m mu-calculus, even with backwards modalities;
m positive existential FO (i.e. unions of conjunctive queries);
m description logics including ALC, ALCHIO, ELT;
|

monadic Datalog.
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monadic Datalog.

Guarded logics have many nice model theoretic properties.
m GF, UNF, and GNF have finite models.

m GFP, UNFP, and GNFP have tree-like models
(models of bounded tree-width).

Guarded logics have nice computational properties.

m Satisfiability is decidable, and is 2EXPTIME-complete
(even EXPTIME-complete for fixed-width GFP).
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Boundedness for guarded logics

(We say @(x) is answer-guarded if it is of the form G(x) A ¢'(x).)

Corollary to tree-like model property

For ¢ in GFP or answer-guarded GNFP:
Y is bounded over all structures iff @ is bounded over tree-like structures.
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Cost automata

Cost automaton A
classical automaton + finite set of counters with operations i, r, and &
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Cost automaton A
classical automaton + finite set of counters with operations i, r, and &

Semantics [A] : trees »> N U {oo}

[AT(t) :== min {n : run p of A on t such that
p satisfies the acceptance condition and
keeps counters below n}

For all ¢ € GNFP[o], we can construct a 2-way cost automaton A, such that

Y is bounded
iff 3 n € NsuchthatV treest, [Ay]l(t) < n.
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Boundedness for cost automata

Boundedness problem for cost automata

Input: cost automaton B

Question: is there n € N such that for all trees t, [ B|(t) < n?

Decidability of boundedness is not known in general for cost automata
over infinite trees...

..but we are interested in special types of cost automata:
1 counter that is only incremented or left unchanged (never reset).

Theorem

For some special types of 2-way cost automata, the boundedness problem
is decidable in elementary time.
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This yields elementary time algorithms for:
m deciding boundedness for some Datalog-like languages

m deciding FO-rewritability of [Ifpy ,.¢/](y) for ¢ in answer-guarded GNF or GF
(using [Barany, ten Cate, Otto "12])

m deciding FO-rewritability of CQs over guarded and frontier-guarded TGDs
(using [Barany, Benedikt, ten Cate "13])
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Conclusion

Boundedness is decidable
in elementary time for guarded logics.

Contributions

m General translation from GNFP to automata that can be used for
satisfiability testing and boundedness questions.

m Finer analysis of complexity of some cost automata constructions.
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Bringing cost capabilities to guarded logics
Syntax of cGNFP[0]
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Syntax of cGNFP[0]
@ = e | [pryly.G(y)Aqo(y, Y,Z)](X) for ¢ positive in Y

where prN operators only appear positively in the formula.

Semantics [¢] : o-structures - N U {00}
TeT(A) := min {n e N : 2 satisfies ¢ when [prl,\,lly.([/] replaced by w”}
where ¢°:= 1 and ¢ :=y[p" /Y]

Example

N
oly) := [fpy,.Sy v 3z(Ryz A Yz)](y)
[el(21, a) := minimum length of R-chain to reach S from a
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