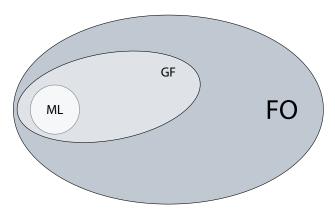
Interpolation with decidable fixpoint logics

Michael Benedikt¹, Balder ten Cate², **Michael Vanden Boom**¹

¹University of Oxford ²LogicBlox and UC Santa Cruz

LICS 2015 Kyoto, Japan

Some decidable fragments of first-order logic

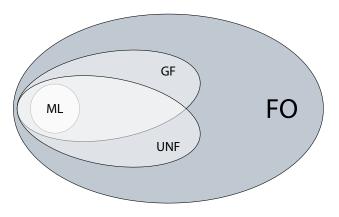


constrain quantification

 $\begin{aligned} \exists x (G(xy) \land \psi(xy)) \\ \forall x (G(xy) \rightarrow \psi(xy)) \end{aligned}$

[Andréka, van Benthem, Németi '95-'98]

Some decidable fragments of first-order logic



constrain quantification $\exists x(G(xy) \land \psi(xy))$ $\forall x(G(xy) \rightarrow \psi(xy))$

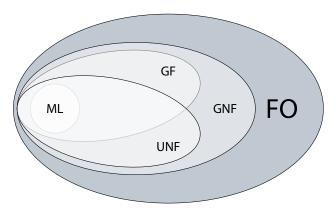
[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists \mathbf{x}(\psi(\mathbf{x}\mathbf{y})) \\ \neg \psi(\mathbf{x})$

[ten Cate, Segoufin '11]

Some decidable fragments of first-order logic



constrain quantification $\exists x(G(xy) \land \psi(xy))$

 $\exists \mathbf{x}(G(\mathbf{x}\mathbf{y}) \land \psi(\mathbf{x}\mathbf{y})) \\ \forall \mathbf{x}(G(\mathbf{x}\mathbf{y}) \rightarrow \psi(\mathbf{x}\mathbf{y}))$

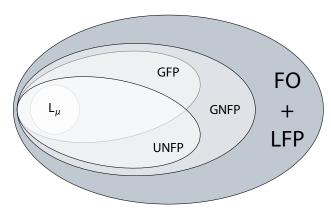
[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists x(\psi(xy)) \\ G(xy) \land \neg \psi(xy)$

[ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11]

Some decidable fragments of FO+LFP



constrain quantification

 $\exists x (G(xy) \land \psi(xy)) \\ \forall x (G(xy) \rightarrow \psi(xy))$

[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists x(\psi(xy)) \\ G(xy) \land \neg \psi(xy)$

[ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11] Guarded logics are expressive. For instance, UNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including ALC, ALCHJO, ELJ;
- monadic Datalog.

Guarded logics are expressive. For instance, UNFP captures:

- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including ALC, ALCHJO, ELJ;
- monadic Datalog.

Guarded logics have many nice model theoretic properties.

- GF, UNF, and GNF have finite models.
- GFP, UNFP, and GNFP have tree-like models (models of bounded tree-width).

Guarded logics are expressive. For instance, UNFP captures:

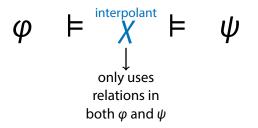
- mu-calculus, even with backwards modalities;
- positive existential FO (i.e. unions of conjunctive queries);
- description logics including ALC, ALCHIO, ELI;
- monadic Datalog.

Guarded logics have many nice model theoretic properties.

- GF, UNF, and GNF have finite models.
- GFP, UNFP, and GNFP have tree-like models (models of bounded tree-width).

Some guarded logics have interpolation...

$\varphi \models \psi$



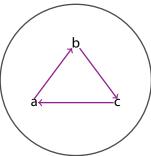
 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"

Interpolation example

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

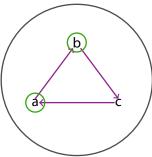
"there is a *T*-guarded 3-cycle using *R*"



Interpolation example

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

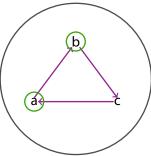
"there is a *T*-guarded 3-cycle using *R*"



Interpolation example

 $\exists xyz(Txyz \land Rxy \land Ryz \land Rzx) \models \exists xy(Rxy \land ((Sx \land Sy) \lor (\neg Sx \land \neg Sy)))$

"there is a *T*-guarded 3-cycle using *R*"



interpolant $\chi := \exists xyz(Rxy \land Ryz \land Rzx)$

"there is a 3-cycle using R"

Interpolation is a benchmark property of ML and L_{μ} .

Interpolation is a benchmark property of ML and L_{μ} .

 Interpolation implies several results about going from semantic properties to syntactic properties (e.g., Beth definability, preservation theorems, etc.) Interpolation is a benchmark property of ML and L_{μ} .

- Interpolation implies several results about going from semantic properties to syntactic properties (e.g., Beth definability, preservation theorems, etc.)
- Interpolation is related to query rewriting over views.
- Interpolation is related to modularity in description logics.

Very little is known about interpolation for fixpoint logics over general relational structures, where relations can have arbitrary arity.

	ML	GF	UNF	GNF	L_{μ}	GFP	UNFP	GNFP
Craig interpolation	\	X	\	1	<	?	?	?

Very little is known about interpolation for fixpoint logics over general relational structures, where relations can have arbitrary arity.

	ML	GF	UNF	GNF	L_{μ}	GFP	UNFP	GNFP
Craig interpolation	\	X	1	1	\	X	\checkmark	X

Very little is known about interpolation for fixpoint logics over general relational structures, where relations can have arbitrary arity.

	ML	GF	UNF	GNF	L_{μ}	GFP	UNFP	GNFP
Craig interpolation	1	X	\checkmark	1	1	X	\checkmark	X

Contribution: bootstrapping from ML / L_{μ} extended to interpolation

Theorem (D'Agostino, Hollenberg '00)

 L_{μ} has effective uniform interpolation.

Theorem (D'Agostino, Hollenberg '00)

 L_{μ} has effective uniform interpolation.

A uniform interpolant χ depends only on the antecedent φ and the signature of the consequent (rather than a particular consequent ψ).

Given φ and a sub-signature σ , there is a formula χ over σ such that for all ψ with $\varphi \models \psi$ and common signature σ , $\varphi \models \chi \models \psi$.

Theorem (D'Agostino, Hollenberg '00)

 L_{μ} has effective uniform interpolation.

A uniform interpolant χ depends only on the antecedent φ and the signature of the consequent (rather than a particular consequent ψ).

Given φ and a sub-signature σ , there is a formula χ over σ such that for all ψ with $\varphi \models \psi$ and common signature σ , $\varphi \models \chi \models \psi$.

Let UNFP^k denote the k-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. '15)

UNFP^k has effective uniform interpolation. UNFP has effective Craig interpolation. "S holds at x, and from every position y where S holds, there is an *R*-neighbor z where S holds"

$$\varphi(x) := Sx \land \forall y (Sy \to \exists z (Ryz \land Sz))$$

$$\equiv Sx \land \neg \exists y (Sy \land \neg \exists z (Ryz \land Sz))$$

"S holds at x, and from every position y where S holds, there is an R-neighbor z where S holds"

$$\varphi(x) := Sx \land \forall y (Sy \to \exists z (Ryz \land Sz))$$

$$\equiv Sx \land \neg \exists y (Sy \land \neg \exists z (Ryz \land Sz))$$

Uniform interpolant of φ over subsignature $\{R\}$ "there is an infinite *R*-path from *x*"

$$[\mathbf{gfp}_{Y,y} : \exists z(Ryz \land Yz)](x)$$

$$\equiv \neg [\mathbf{lfp}_{Y,y} : \neg \exists z(Ryz \land \neg Yz)](x)$$

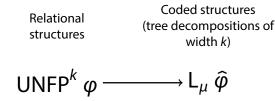
 UNFP^k has effective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal world.

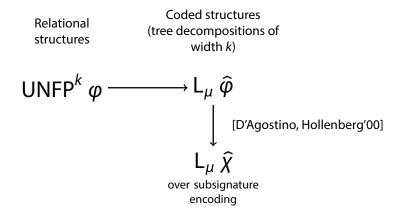
([Grädel, Walukiewicz '99], [Grädel, Hirsch, Otto '00], [D'Agostino, Hollenberg '00])

 UNFP^k has effective uniform interpolation.

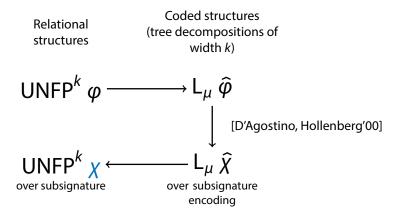
UNFP^k has effective uniform interpolation.



UNFP^k has effective uniform interpolation.



UNFP^k has effective uniform interpolation.



UNFP is an expressive, decidable fixpoint logic with effective interpolation.

	ML	GF	UNF	GNF	L_{μ}	GFP	UNFP	GNFP
Craig interpolation	\checkmark	X	1	1	\checkmark	X	\checkmark	X

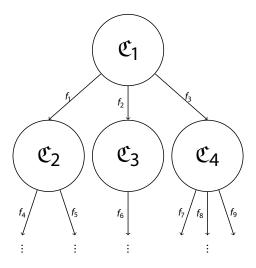
Encoding structures of tree width k - 1

Fix a set $K = \{1, ..., k\}$ of names for elements.

Let $\mathbb{K}_{\sigma,k} := \{ \mathfrak{C} : \mathfrak{C} \text{ is a } \sigma \text{-structure with universe } C \subseteq K \text{ of size at most } k \}.$

A $\mathbb{K}_{\sigma,k}$ -**tree** is an unranked infinite tree with

- arbitrary branching (possibly infinite),
- node labels $\mathfrak{C} \in \mathbb{K}_{\sigma,k}$,
- edge labels are partial functions $f : K \rightarrow K$ describing relationship between names.



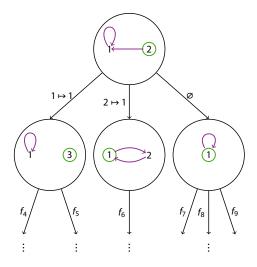
Encoding structures of tree width k - 1

Fix a set $K = \{1, ..., k\}$ of names for elements.

Let $\mathbb{K}_{\sigma,k} := \{ \mathfrak{C} : \mathfrak{C} \text{ is a } \sigma \text{-structure with universe } C \subseteq K \text{ of size at most } k \}.$

A $\mathbb{K}_{\sigma,k}$ -**tree** is an unranked infinite tree with

- arbitrary branching (possibly infinite),
- node labels $\mathfrak{C} \in \mathbb{K}_{\sigma,k}$,
- edge labels are partial functions $f : K \rightarrow K$ describing relationship between names.



Encoding structures of tree width k - 1

Fix a set $K = \{1, ..., k\}$ of names for elements.

Let $\mathbb{K}_{\sigma,k} := \{ \mathfrak{C} : \mathfrak{C} \text{ is a } \sigma \text{-structure with universe } C \subseteq K \text{ of size at most } k \}.$

A $\mathbb{K}_{\sigma,k}$ -**tree** is an unranked infinite tree with

- arbitrary branching (possibly infinite),
- node labels $\mathfrak{C} \in \mathbb{K}_{\sigma,k}$,
- edge labels are partial functions $f : K \rightarrow K$ describing relationship between names.

 $\mathbb{K}_{\sigma,k}$ -trees are **consistent** if neighboring nodes agree on any shared names.

