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Some decidable fragments of Brst-order logic

FOML

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)
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Some decidable fragments of FO+LFP

FO

+

LFP

Lµ

GFP

GNFP

UNFP
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Why study guarded logics?

Guarded logics are expressive. For instance, UNFP captures:

mu-calculus, even with backwards modalities;

positive existential FO (i.e. unions of conjunctive queries);

description logics including ALC, ALCHIO, ELI;

monadic Datalog.

Guarded logics have many nice model theoretic properties.

GF, UNF, and GNF have Bnite models.

GFP, UNFP, and GNFP have tree-like models

(models of bounded tree-width).

Some guarded logics have interpolation...
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Interpolation

φ ⊧ ψ

φ ⊧ χ ⊧ ψ

only uses

relations in

both φ and ψ

interpolant
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Interpolation example

∃xyz(Txyz ∧ Rxy ∧ Ryz ∧ Rzx) ⊧ ∃xy(Rxy ∧ ((Sx ∧ Sy) ∨ (¬Sx ∧ ¬Sy)))

“there is a T-guarded

3-cycle using R”

a

b

ca

b

c

interpolant χ ∶= ∃xyz(Rxy ∧ Ryz ∧ Rzx)
“there is a 3-cycle using R”
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Why study interpolation?

Interpolation is a benchmark property ofML and Lµ .

Interpolation implies several results about going from

semantic properties to syntactic properties

(e.g., Beth deBnability, preservation theorems, etc.)

Interpolation is related to query rewriting over views.

Interpolation is related to modularity in description logics.
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Interpolation results

Very little is known about interpolation for Bxpoint logics

over general relational structures, where relations can have arbitrary arity.

ML GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 ? ? ?
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Interpolation results

Very little is known about interpolation for Bxpoint logics

over general relational structures, where relations can have arbitrary arity.

ML GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7

Contribution: bootstrapping fromML / Lµ extended to interpolation
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Uniform interpolation

Theorem (D’Agostino, Hollenberg ’00)

Lµ has e>ective uniform interpolation.

A uniform interpolant χ depends only on the antecedent φ and the

signature of the consequent (rather than a particular consequent ψ).

Given φ and a sub-signature σ,

there is a formula χ over σ such that

for all ψ with φ ⊧ ψ and common signature σ, φ ⊧ χ ⊧ ψ.

Let UNFP
k

denote the k-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

UNFP has e>ective Craig interpolation.
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Uniform interpolation example

“S holds at x, and from every position y where S holds,

there is an R-neighbor z where S holds”

φ(x) ∶= Sx ∧ ∀y(Sy → ∃z(Ryz ∧ Sz))
≡ Sx ∧ ¬∃y(Sy ∧ ¬∃z(Ryz ∧ Sz))

Uniform interpolant of φ over subsignature {R}
“there is an inBnite R-path from x”

[gfpY ,y . ∃z(Ryz ∧ Yz)](x)
≡ ¬[lfpY ,y . ¬∃z(Ryz ∧ ¬Yz)](x)
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Uniform interpolation for UNFP
k

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

Proof strategy: Exploit tree-like model property and results from modal

world.

([Grädel,Walukiewicz ’99], [Grädel, Hirsch, Otto ’00], [D’Agostino, Hollenberg ’00])
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Conclusion

UNFP is an expressive, decidable Bxpoint logic

with e>ective interpolation.

ML GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7
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Encoding structures of tree width k − 1

Fix a set K = {1, . . . , k} of names for elements.

LetKσ ,k ∶= {C ∶ C is a σ-structure with universe C ⊆ K of size at most k}.

AKσ ,k-tree is an

unranked inBnite tree with

arbitrary branching

(possibly inBnite),

node labels C ∈ Kσ ,k ,

edge labels are partial

functions f ∶ K → K

describing relationship

between names.

Kσ ,k-trees are consistent if

neighboring nodes agree on

any shared names.

A consistentKσ ,k-tree t

encodes a σ-structure D(t).

C1

C3C2 C4

⋮⋮⋮ ⋮

f2
f1 f3

f4 f5 f7 f8
f9f6
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