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Fixpoint logics

Fixpoint logics can express dynamic, recursive properties.

Example

binary relation R, unary relation P

“from w, it is possible to R-reach some P-element”

[Reach-P](w)
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LFP

LFP: extension of Brst-order logic with Bxpoint formulas [lfp
Y ,y .ψ(y, Y)](w)

for ψ(y, Y) positive in Y (of aritym = ∣y∣).

For all structures A, the formula ψ induces a monotone operation

P(Am)⟶ P(Am)
V⟼ ψA(V) ∶= {a ∈ Am ∶ A, a, V ⊧ ψ}

⇒ there is a unique least Bxpoint [lfp
Y ,y .ψ(y, Y)]A ∶= ⋃
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Semantics of Bxpoint operator: A, a ⊧ [lfp
Y ,y .ψ(y, Y)](w) i> a ∈ ⋃
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Examples

“from w, it is possible to R-reach some P-element”

[lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](w)

a1 a2 a3 ak ak+1

“from w, it is possible to R-reach x”, i.e. “(w, x) is in the transitive closure of R”

[lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](w)

(Free Brst-order variable x in the Bxpoint predicate is called a parameter.)
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Some decidable fragments of LFP (Bxpoint extension of FO)

The family of “guarded” Bxpoint logics has decidable satisBability.

LFPLµ

GFP

GNFP

UNFP

Guarded Bxpoint logic (GFP): Andréka, van Benthem, Németi ’95-’98; Grädel, Walukiewicz ’99

Unary negation Bxpoint logic (UNFP): ten Cate, SegouBn ’11

Guarded negation Bxpoint logic (GNFP): Bárány, ten Cate, SegouBn ’11
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Guarded negation Bxpoint logic (GNFP)

Let σ be a signature of relations and constants.

Syntax of GNFP[σ]

φ ∶∶= R t ∣ Y t ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(ψ(xy)) ∣ G(x) ∧ ¬ψ(x) ∣
[lfp

Y ,y . G(y) ∧ φ(y, Y , Z)](t) where Y only occurs positively in φ

where R and G are relations in σ or =, and t is a tuple over variables and constants.

Restrictions on Bxpoint operator:

must deBne a guarded relation

(tuples in the Bxpoint must be guarded by an atom from σ or =)

cannot use parameters
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SatisBability

These guarded Bxpoint logics all have the tree-like model property

(models with tree decompositions of bounded tree-width)

⇒ amenable to tree automata techniques

Theorem (Grädel, Walukiewicz ’99; Bárány, SegouBn, ten Cate ’11; Bárány, Bojańczyk ’12)

SatisBability and Bnite satisBability are decidable for guarded Bxpoint logics

(2EXPTIME in general, EXPTIME for Bxed-width formulas in GFP).

Idea: Reduce to tree automaton emptiness test.
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Examples

In GNFP:

[lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](w)

Not in GNFP:

[lfp
Y ,y . y = y ∧ ∃z(Ryz ∧ (z = x ∨ Yz))](w)
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Can we go further?

LFPLµ

GFP

GNFP

UNFP

Recall the restrictions on the Bxpoint operators in GNFP:

must deBne a guarded relation

cannot use parameters

Which of these restrictions are essential for decidability?

Answer: only Brst one!
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GNFP
UP

GNFP
UP

: extend GNFP with unguarded parameters in Bxpoint

Syntax of GNFP
UP[σ]

φ ∶∶= Rt ∣ Yt ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(ψ(xy)) ∣ G(x) ∧ ¬ψ(x) ∣
[lfp

Y ,y . G(y) ∧ φ(x, y, Y , Z)](t) where Y only occurs positively in φ

where R and G are relations in σ or =, and t is a tuple over variables and constants.

Example

GNFP
UP
can express the transitive closure of a binary relation R using

[lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](w)
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Expressivity of GNFP
UP

LFPLµ

GFP

GNFP GNFP
UP

UNFP

GNFP
UP
also subsumes

C2RPQs (conjunctive 2-way regular path queries)

∃xyz ( [R∗S](x, y) ∧ [S ∣ R](y, z) ∧ P(z) )
MQs and GQs [Rudolph, Krötzsch ’13 ; Bourhis, Krötzsch, Rudolph ’15]
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SatisBability for GNFP
UP

GNFP
UP

still has tree-like models

⇒ still amenable to tree automata techniques

Unlike other guarded logics, satisBability testing for φ ∈ GNFP
UP

is

non-elementary, with running time

2
2

. . .
2
f (∣φ∣)

where the height of the tower depends only on the parameter depth: the

number of nested parameter changes in the formula.

Theorem

SatisBability is decidable for φ ∈ GNFP
UP

in (n + 2)-EXPTIME, where n is the

parameter depth of φ.
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Skirting undecidability

It is known that satisBability is undecidable for GFP (even without Bxpoints)

when certain relations are required to be transitive.

[Grädel ’99, Ganzinger et al. ’99]

GNFP
UP
can express the transitive closure of a binary relation R using

[lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](w).

But it cannot enforce that R is transitive.
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FO-deBnability

Theorem

It is decidable whether [lfp
Y ,y . G(y) ∧ ψ(x, y, Y)](w) ∈ GNFPUP can be

expressed in FO (when ψ does not use any additional Bxpoints).

It is decidable whether a C2RPQ can be expressed in FO.

Idea: Adapt automata for GNFP
UP

, and reduce to a boundedness question

for cost automata (automata with counters).
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Conclusion

We can allow unguarded parameters

in guarded Bxpoint logics.

Contributions

We showed that:

▶ tree automata techniques can be used to analyze GNFP
UP

▶ satisBability is decidable for GNFP
UP

, and the key factor impacting the

complexity is the parameter depth

▶ some boundedness and FO-deBnability problems are decidable for GNFP
UP

Open question

Is Bnite satisBability decidable for GNFP
UP

?
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