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Fixpoint logics

Fixpoint logics can express dynamic, recursive properties.

Example

binary relation R, unary relation P

“from w, it is possible to R-reach some P-element”

[Reach-P](w)
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Fixpoint logics

Fixpoint logics can express dynamic, recursive properties.

Example

binary relation R, unary relation P

“from w, it is possible to R-reach some P-element”

[Hpy, . 3z(Ryz A (Pz v Yz))](w)
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LFP

LFP: extension of first-order logic with fixpoint formulas [Ifpy ,.¢(y, Y)](w)
for Y(y, Y) positive in Y (of arity m = |y|).

For all structures I, the formula  induces a monotone operation
PA™) — P(A m)
Vi gy(V):={acA” :2,aVE g}

= there is a unique least fixpoint [Ifpy ,.¥(y, ¥)]a = U, Yy

0

Yo =2
vy = pa(vd)
W = U Yo

a<A
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LFP

LFP: extension of first-order logic with fixpoint formulas [Ifpy ,.¢(y, Y)](w)
for Y(y, Y) positive in Y (of arity m = |y|).

For all structures I, the formula  induces a monotone operation
PA™) — P(A m)
Vi gy(V):={acA” :2,aVE g}

= there is a unique least fixpoint [Ifpy ,.¥(y, ¥)]a = U, Yy

0

Yo =0
vy = YY)
W = U Yo

a<A

Semantics of fixpoint operator: 2, a k [Ifpy,.¢(y,V)](w) iff ael], Yy
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“from w, it is possible to R-reach some P-element”

[fpy, . 3z(Ryz A (Pz Vv YZ))](w)

A —— Ay ———3 (3 - oeeevmeeenns >ak_)
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“from w, it is possible to R-reach some P-element”

[fpy, . 3z(Ryz A (Pz Vv YZ))](w)

A —— Ay ———3 (3 - oeeevmeeenns >ak_)

“from w, it is possible to R-reach x’; i.e. “(w, x) is in the transitive closure of R”

[Hpy, . 3z(Ryz A (z = x v Yz))](w)

(Free first-order variable x in the fixpoint predicate is called a parameter.)
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Some decidable fragments of LFP (fixpoint extension of FO)

The family of “guarded” fixpoint logics has decidable satisfiability.

Guarded fixpoint logic (GFP): Andréka, van Benthem, Németi '95-'98; Gradel, Walukiewicz '99
Unary negation fixpoint logic (UNFP): ten Cate, Segoufin "

Guarded negation fixpoint logic (GNFP): Barany, ten Cate, Segoufin ‘11
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Guarded negation fixpoint logic (GNFP)

Let o be a signature of relations and constants.

Syntax of GNFP[ o]

pu=Rt | Yt|ore | ove | Fywixy)) | Gix)A-p(x) |
[prY,y ° G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.
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Guarded negation fixpoint logic (GNFP)

Let o be a signature of relations and constants.

Syntax of GNFP[ o]

pu=Rt | Yt|ore | ove | Fywixy)) | Gix)A-p(x) |
[prY,y ° G(y) A (p(y, Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

Restrictions on fixpoint operator:

m must define a guarded relation
(tuples in the fixpoint must be guarded by an atom from o or =)

B cannot use parameters
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Satisfiability
These guarded fixpoint logics all have the tree-like model property

(models with tree decompositions of bounded tree-width)

= amenable to tree automata techniques
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Satisfiability

These guarded fixpoint logics all have the tree-like model property
(models with tree decompositions of bounded tree-width)

= amenable to tree automata techniques

Theorem (Gradel, Walukiewicz '99; Barany, Segoufin, ten Cate ‘11; Barany, Bojariczyk '12)

Satisfiability and finite satisfiability are decidable for guarded fixpoint logics
(2EXPTIME in general, EXPTIME for fixed-width formulas in GFP).

Idea: Reduce to tree automaton emptiness test.

7/15



In GNFP:

[fpy, . 3z(Ryz A (Pz v YZ))](w)
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In GNFP:

[fpy, .y =y A 3z(Ryz A (Pz v Yz))](w)
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In GNFP:

[fpy, .y =y A 3z(Ryz A (Pz v Yz))](w)

Not in GNFP:

[py, .y =y A3z(Ryz A (z = x v Yz))](w)
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Can we go further?

Recall the restrictions on the fixpoint operators in GNFP:

m must define a guarded relation
B cannot use parameters

Which of these restrictions are essential for decidability?
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Can we go further?

Recall the restrictions on the fixpoint operators in GNFP:

m must define a guarded relation
B cannot use parameters

Which of these restrictions are essential for decidability?
Answer: only first one!
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GNFP'?

GNFPY": extend GNFP with unguarded parameters in fixpoint
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GNFPY?

GNFPY": extend GNFP with unguarded parameters in fixpoint

Syntax of GNFP'"[0]

¢ =Rt [ Yt org | ove | Fyuky) | Gx)A-wx) |
[|fpy,y o G(y) A (,D(X, y,Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.
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GNFPY?

GNFPY": extend GNFP with unguarded parameters in fixpoint

Syntax of GNFP'"[0]

¢ =Rt [ Yt org | ove | Fyuky) | Gx)A-wx) |
[|fpy,y o G(y) A (,D(X, y,Y, Z)](t) where Y only occurs positively in ¢

where R and G are relations in o or =, and t is a tuple over variables and constants.

Example

GNFPY? can express the transitive closure of a binary relation R using

[ifpy, . 3z(Ryz A (z = x v Yz))](w)
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Expressivity of GNFP""

GNFPY" also subsumes

C2RPQs (conjunctive 2-way regular path queries)
xyz([R*S1x.y) ALS IRy, 2) A P(2))
MQs and GQs [Rudolph, Krétzsch 13 ; Bourhis, Krotzsch, Rudolph “15]
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Satisfiability for GNFP""

GNFPY still has tree-like models
= still amenable to tree automata techniques

Unlike other guarded logics, satisfiability testing for ¢ € GNFPY is
non-elementary, with running time

o)

2*

where the height of the tower depends only on the parameter depth: the
number of nested parameter changes in the formula.
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Satisfiability for GNFPY

GNFPY still has tree-like models
= still amenable to tree automata techniques

Unlike other guarded logics, satisfiability testing for ¢ € GNFP'" is
non-elementary, with running time

o)

2*

where the height of the tower depends only on the parameter depth: the
number of nested parameter changes in the formula.

Theorem

Satisfiability is decidable for ¢ € GNFPY in (n + 2)-EXPTIME, where n is the
parameter depth of ¢.
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Skirting undecidability

It is known that satisfiability is undecidable for GFP (even without fixpoints)
when certain relations are required to be transitive.
[Gradel '99, Ganzinger et al. '99]
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Skirting undecidability

It is known that satisfiability is undecidable for GFP (even without fixpoints)
when certain relations are required to be transitive.
[Gradel '99, Ganzinger et al. '99]

GNFPY can express the transitive closure of a binary relation R using

[ifpy, . 3z(Ryz A (z = x v Yz))](w).

But it cannot enforce that R is transitive.
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FO-definability

Theorem

Itis decidable whether [Ifpy ,, . G(y) A ¢(x,y, Y)](w) € GNFPY can be
expressed in FO (when ¢ does not use any additional fixpoints).

It is decidable whether a C2RPQ can be expressed in FO.

Idea: Adapt automata for GNFPY", and reduce to a boundedness question
for cost automata (automata with counters).
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Conclusion

We can allow unguarded parameters
in guarded fixpoint logics.

Contributions
We showed that:

> tree automata techniques can be used to analyze GNFPY?

» satisfiability is decidable for GNFP'?, and the key factor impacting the
complexity is the parameter depth

» some boundedness and FO-definability problems are decidable for GNFPY?
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Conclusion

We can allow unguarded parameters
in guarded fixpoint logics.

Contributions

We showed that:

> tree automata techniques can be used to analyze GNFPY?

» satisfiability is decidable for GNFPY", and the key factor impacting the
complexity is the parameter depth

» some boundedness and FO-definability problems are decidable for GNFPY?

Is finite satisfiability decidable for GNFP'"?
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