Fixpoint logics with tree-like models

Michael Vanden Boom

University of Oxford

Oxford Information Systems Seminar November 2015

Including joint work with

Michael Benedikt, Pierre Bourhis, Balder ten Cate, and Thomas Colcombet

Fixpoint logics give mechanism to express dynamic, recursive properties.

Example

binary relation R, unary relation P

"from x, it is possible to R-reach some P-element"

 $[\texttt{Reach}-P](x) := [\mathbf{lfp}_{Y,y} . \exists z(Ryz \land (Pz \lor Yz))](x)$

Least fixpoint

Consider $\psi(\mathbf{y}, Y)$ positive in Y (of arity $m = |\mathbf{y}|$).

For all structures \mathfrak{A} , the formula ψ induces a monotone operation

$$\mathcal{P}(A^{m}) \longrightarrow \mathcal{P}(A^{m})$$
$$V \longmapsto \psi_{\mathfrak{A}}(V) := \left\{ \boldsymbol{a} \in A^{m} : \mathfrak{A}, \boldsymbol{a}, V \vDash \psi \right\}$$

 \Rightarrow there is a unique least fixpoint $[\mathbf{lfp}_{Y,y},\psi(y,Y)]_{\mathfrak{A}} := \bigcup_{\alpha} \psi_{\mathfrak{A}}^{\alpha}$

$$\psi_{\mathfrak{A}}^{0} := \varnothing$$
$$\psi_{\mathfrak{A}}^{a+1} := \psi_{\mathfrak{A}}(\psi_{\mathfrak{A}}^{a})$$
$$\psi_{\mathfrak{A}}^{\lambda} := \bigcup_{q < \lambda} \psi_{\mathfrak{A}}^{a}$$

Least fixpoint

Consider $\psi(\mathbf{y}, Y)$ positive in Y (of arity $m = |\mathbf{y}|$).

For all structures \mathfrak{A} , the formula ψ induces a monotone operation

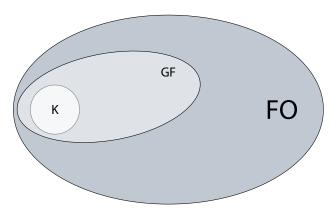
$$\mathcal{P}(A^{m}) \longrightarrow \mathcal{P}(A^{m})$$
$$V \longmapsto \psi_{\mathfrak{A}}(V) := \left\{ \boldsymbol{a} \in A^{m} : \mathfrak{A}, \boldsymbol{a}, V \models \psi \right\}$$

 \Rightarrow there is a unique least fixpoint $[\mathbf{lfp}_{Y,y},\psi(y,Y)]_{\mathfrak{A}} := \bigcup_{\alpha} \psi_{\mathfrak{A}}^{\alpha}$

$$\psi_{\mathfrak{A}}^{0} := \varnothing$$
$$\psi_{\mathfrak{A}}^{a+1} := \psi_{\mathfrak{A}}(\psi_{\mathfrak{A}}^{a})$$
$$\psi_{\mathfrak{A}}^{\lambda} := \bigcup_{q < \lambda} \psi_{\mathfrak{A}}^{a}$$

Semantics of fixpoint operator: $\mathfrak{A}, a \models [Ifp_{Y,y}, \psi(y, Y)](x)$ iff $a \in \bigcup_{\alpha} \psi_{\mathfrak{A}}^{\alpha}$

Some decidable fragments of first-order logic

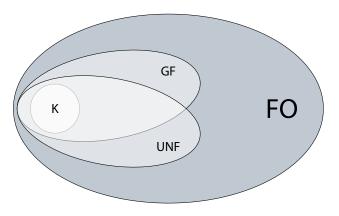


constrain quantification

 $\exists \mathbf{x} (G(\mathbf{x}\mathbf{y}) \land \psi(\mathbf{x}\mathbf{y})) \\ \forall \mathbf{x} (G(\mathbf{x}\mathbf{y}) \rightarrow \psi(\mathbf{x}\mathbf{y}))$

[Andréka, van Benthem, Németi '95-'98]

Some decidable fragments of first-order logic



constrain quantification $\exists x(G(xy) \land \psi(xy))$ $\forall x(G(xy) \rightarrow \psi(xy))$

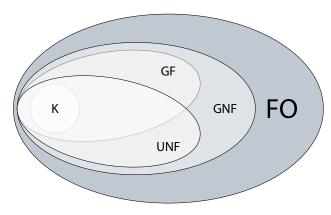
[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists \mathbf{x}(\psi(\mathbf{x}\mathbf{y})) \\ \neg \psi(\mathbf{x})$

[ten Cate, Segoufin '11]

Some decidable fragments of first-order logic



constrain quantification $\exists x(G(xy) \land \psi(xy))$

 $\forall \mathbf{x}(G(\mathbf{x}\mathbf{y}) \to \psi(\mathbf{x}\mathbf{y}))$

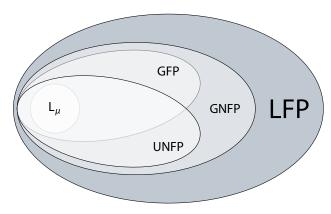
[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists x(\psi(xy)) \\ G(xy) \land \neg \psi(xy)$

[ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11]

Some decidable fragments of LFP (fixpoint extension of FO)



constrain quantification $\exists x(G(xy) \land \psi(xy))$ $\forall x(G(xy) \rightarrow \psi(xy))$

[Andréka, van Benthem, Németi '95-'98]

constrain negation

 $\exists x(\psi(xy)) \\ G(xy) \land \neg \psi(xy)$

[ten Cate, Segoufin '11] [Bárány, ten Cate, Segoufin '11]

Guarded fixpoints: tuples in fixpoint are guarded by atom in original signature. (UNFP has only monadic fixpoints, which are trivially guarded.)

Syntax of $GNFP[\sigma]$

 $\varphi ::= Rt \mid Yt \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y(\psi(xy)) \mid G(x) \land \neg \psi(x) \mid [\mathbf{lfp}_{Y,y} \cdot G(y) \land \varphi(y, Y, Z)](t) \quad \text{where } Y \text{ only occurs positively in } \varphi$

where *R* and *G* are relations in σ or =, and *t* is a tuple over variables and constants.

Syntax of $GNFP[\sigma]$

 $\varphi ::= Rt \mid Yt \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y(\psi(xy)) \mid G(x) \land \neg \psi(x) \mid [\mathbf{lfp}_{Y,y} \cdot G(y) \land \varphi(y, Y, Z)](t) \quad \text{where } Y \text{ only occurs positively in } \varphi$

where *R* and *G* are relations in σ or =, and *t* is a tuple over variables and constants.

- unions of conjunctive queries (in GNF)
- frontier-guarded tgds (in GNF): $\forall xyz ((Rxy \land Ryz) \rightarrow \exists w(Twyz)) \equiv \neg \exists xyz (Rxy \land Ryz \land \neg \exists w(Twyz))$

Syntax of $GNFP[\sigma]$

 $\varphi ::= Rt \mid Yt \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y(\psi(xy)) \mid G(x) \land \neg \psi(x) \mid [\mathbf{lfp}_{Y,y} \cdot G(y) \land \varphi(y, Y, Z)](t) \quad \text{where } Y \text{ only occurs positively in } \varphi$

where *R* and *G* are relations in σ or =, and *t* is a tuple over variables and constants.

- unions of conjunctive queries (in GNF)
- frontier-guarded tgds (in GNF): $\forall xyz ((Rxy \land Ryz) \rightarrow \exists w(Twyz)) \equiv \neg \exists xyz (Rxy \land Ryz \land \neg \exists w(Twyz))$
- description logics including ALC, ALCHJO, ELJ (in GNF)

Syntax of $GNFP[\sigma]$

 $\varphi ::= Rt \mid Yt \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y(\psi(xy)) \mid G(x) \land \neg \psi(x) \mid [\mathbf{lfp}_{Y,y} \cdot G(y) \land \varphi(y, Y, Z)](t) \quad \text{where } Y \text{ only occurs positively in } \varphi$

where *R* and *G* are relations in σ or =, and *t* is a tuple over variables and constants.

- unions of conjunctive queries (in GNF)
- frontier-guarded tgds (in GNF): $\forall xyz ((Rxy \land Ryz) \rightarrow \exists w(Twyz)) \equiv \neg \exists xyz (Rxy \land Ryz \land \neg \exists w(Twyz))$
- description logics including ALC, ALCHJO, ELJ (in GNF)
- mu-calculus, even with backwards modalities

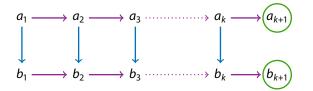
Syntax of $GNFP[\sigma]$

$$\varphi ::= Rt \mid Yt \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists y(\psi(xy)) \mid G(x) \land \neg \psi(x) \mid [\mathbf{lfp}_{Y,y} \cdot G(y) \land \varphi(y, Y, Z)](t) \text{ where } Y \text{ only occurs positively in } \varphi$$

where *R* and *G* are relations in σ or =, and *t* is a tuple over variables and constants.

- unions of conjunctive queries (in GNF)
- frontier-guarded tgds (in GNF): $\forall xyz ((Rxy \land Ryz) \rightarrow \exists w(Twyz)) \equiv \neg \exists xyz (Rxy \land Ryz \land \neg \exists w(Twyz))$
- description logics including ALC, ALCHJO, ELJ (in GNF)
- mu-calculus, even with backwards modalities
- monadic Datalog

 $[\mathbf{Ifp}_{Z,xy} \cdot Sxy \land \exists uv(Rxu \land Ryv \land (Zuv \lor (Pu \land Pv)))](xy)$



Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability (2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)

[Grädel, Walukiewicz '99 ; Bárány, Segoufin, ten Cate '11; Bárány, Bojańczyk '12]

Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability (2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)

[Grädel, Walukiewicz '99 ; Bárány, Segoufin, ten Cate '11; Bárány, Bojańczyk '12]

Decidable boundedness (given $\psi(\mathbf{y}, Y)$ positive in Y, is there $n \in \mathbb{N}$ such that for all $\mathfrak{A}, \psi_{\mathfrak{A}}^{n} = \psi_{\mathfrak{A}}^{n+1}$?) [Blumensath, Otto, Weyer '14; Bárány, ten Cate, Otto '12; Benedikt, ten Cate, Colcombet, VB. '15]

Some nice computational properties for guarded fixpoint logics

Decidable satisfiability and finite satisfiability (2EXPTIME in general, EXPTIME for fixed-width formulas in GFP)

[Grädel, Walukiewicz '99 ; Bárány, Segoufin, ten Cate '11; Bárány, Bojańczyk '12]

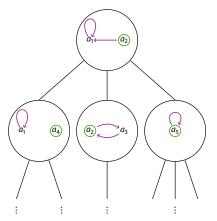
Decidable boundedness (given $\psi(\mathbf{y}, Y)$ positive in Y, is there $n \in \mathbb{N}$ such that for all $\mathfrak{A}, \psi_{\mathfrak{A}}^{n} = \psi_{\mathfrak{A}}^{n+1}$?) [Blumensath, Otto, Weyer '14; Bárány, ten Cate, Otto '12; Benedikt, ten Cate, Colcombet, VB. '15]

Constructive interpolation for UNFP

[Benedikt, ten Cate, VB. '15]

A structure \mathfrak{A} has tree width k - 1 if it can be covered by (overlapping) bags of size at most k, arranged in a tree t s.t.

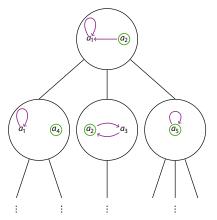
- every fact appears in some bag in t;
- for each element, the set of bags with this element is connected in *t*.



A structure \mathfrak{A} has tree width k - 1 if it can be covered by (overlapping) bags of size at most k, arranged in a tree t s.t.

- every fact appears in some bag in t;
- for each element, the set of bags with this element is connected in *t*.

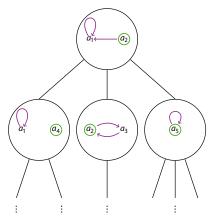
There is a natural encoding of these tree-like models (of some bounded tree width) as trees over a finite alphabet.



A structure \mathfrak{A} has tree width k - 1 if it can be covered by (overlapping) bags of size at most k, arranged in a tree t s.t.

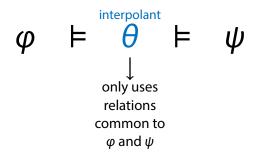
- every fact appears in some bag in t;
- for each element, the set of bags with this element is connected in *t*.

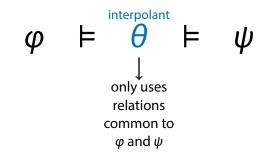
There is a natural encoding of these tree-like models (of some bounded tree width) as trees over a finite alphabet.



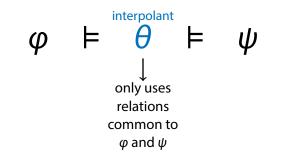
 \Rightarrow We can reason about tree encodings rather than relational structures.

$\varphi \models \psi$





Craig interpolation: θ depends on φ and ψ



Craig interpolation: θ depends on φ and ψ

Uniform interpolation: θ depends only on φ and common signature (not on a particular ψ)

"P holds at x, and from every position y where P holds, there is an R-neighbor z where P holds"

$$\varphi(x) := Px \land \forall y (Py \to \exists z (Ryz \land Pz))$$
$$\equiv Px \land \neg \exists y (Py \land \neg \exists z (Ryz \land Pz))$$

"P holds at x, and from every position y where P holds, there is an R-neighbor z where P holds"

$$\begin{aligned} \varphi(x) &:= Px \land \forall y (Py \to \exists z (Ryz \land Pz)) \\ &\equiv Px \land \neg \exists y (Py \land \neg \exists z (Ryz \land Pz)) \end{aligned}$$

Uniform interpolant of φ over subsignature $\{R\}$ "there is an infinite *R*-path from *x*"

$$\neg [\mathbf{Ifp}_{Y,y} : \forall z(Ryz \to Yz)](x) \\ \equiv \neg [\mathbf{Ifp}_{Y,y} : \neg \exists z(Ryz \land \neg Yz)](x)$$

 Interpolation implies several results about going from semantic properties to syntactic properties (e.g., Beth definability, preservation theorems, etc.)

Why study interpolation?

- Interpolation implies several results about going from semantic properties to syntactic properties (e.g., Beth definability, preservation theorems, etc.)
- Interpolation is related to query rewriting over views.

Why study interpolation?

- Interpolation implies several results about going from semantic properties to syntactic properties (e.g., Beth definability, preservation theorems, etc.)
- Interpolation is related to query rewriting over views.
- Interpolation is related to modularity.

Why study interpolation?

- Interpolation implies several results about going from semantic properties to syntactic properties (e.g., Beth definability, preservation theorems, etc.)
- Interpolation is related to query rewriting over views.
- Interpolation is related to modularity.
- Very little was known about interpolation for fixpoint logics over general relational structures, where relations can have arbitrary arity.

Theorem (D'Agostino, Hollenberg '00)

 L_{μ} has effective uniform interpolation.

Theorem (D'Agostino, Hollenberg '00)

 L_{μ} has effective uniform interpolation.

Let UNFP^k denote the k-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. '15)

UNFP^k has effective uniform interpolation. UNFP has effective Craig interpolation.

Theorem (D'Agostino, Hollenberg '00)

 L_{μ} has effective uniform interpolation.

Let $UNFP^k$ denote the *k*-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. '15)

UNFP^k has effective uniform interpolation. UNFP has effective Craig interpolation.

Proof strategy: Exploit tree-like models and ideas / results from [Grädel, Walukiewicz '99 ; Grädel, Hirsch, Otto '00 ; D'Agostino, Hollenberg '00].

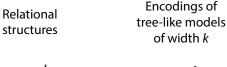
Theorem (Benedikt, ten Cate, VB. '15)

 UNFP^k has effective uniform interpolation.

Theorem (Benedikt, ten Cate, VB. '15)

UNFP^k has effective uniform interpolation.

Proof structure:



$$\mathsf{UNFP}^k \varphi \longrightarrow \mathsf{L}_\mu \widehat{\varphi}$$

Theorem (Benedikt, ten Cate, VB. '15)

 UNFP^k has effective uniform interpolation.

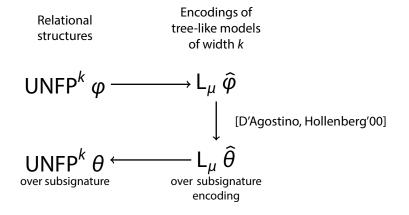
Proof structure:

Encodings of Relational tree-like models structures of width k UNFP^k φ - $\rightarrow L_{\mu} \tilde{\varphi}$ [D'Agostino, Hollenberg'00] over subsignature encoding

Theorem (Benedikt, ten Cate, VB. '15)

 UNFP^k has effective uniform interpolation.

Proof structure:



UNFP has effective interpolation, and the construction takes advantage of its tree-like models.

	K	GF	UNF	GNF	L_{μ}	GFP	UNFP	GNFP
Craig interpolation	1	X	<	\	<	X	\	X

Can we go further?

GNFP^{UP}: extend GNFP with parameters in fixpoint (while retaining restrictions on negation).

"from y, it is possible to R-reach some P-element" $[\operatorname{Reach}-P](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (Pz \lor Yz))](y)$

"from y, it is possible to R-reach x" $[\operatorname{Reach}-x](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (z = x \lor Yz))](y)$

Can we go further?

GNFP^{UP}: extend GNFP with parameters in fixpoint (while retaining restrictions on negation).

"from y, it is possible to R-reach some P-element" $[\operatorname{Reach}-P](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (Pz \lor Yz))](y)$

"from y, it is possible to R-reach x" $[\operatorname{Reach}-x](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (z = x \lor Yz))](y)$

"from y, it is possible to R-reach some P-element" $[\operatorname{Reach}-P](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (Pz \lor Yz))](y)$

"from y, it is possible to R-reach x" $[\operatorname{Reach}-x](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (z = x \lor Yz))](y)$

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and MQs and GQs [Rudolph, Krötsch '13; Bourhis, Krötsch, Rudolph '15]

"from y, it is possible to R-reach some P-element" $[\operatorname{Reach}-P](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (Pz \lor Yz))](y)$

"from y, it is possible to R-reach x" $[\operatorname{Reach}-x](y) := [\mathbf{lfp}_{Y,y} \cdot \exists z(Ryz \land (z = x \lor Yz))](y)$

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and MQs and GQs [Rudolph, Krötsch '13; Bourhis, Krötsch, Rudolph '15]

But still has tree-like models!

Theorem (Benedikt, Bourhis, VB. unpublished)

Satisfiability is decidable for $\varphi \in \text{GNFP}^{\text{UP}}$ in (n + 2)-EXPTIME, where *n* is "nesting depth of UCQ-shaped formulas with parameters" in φ .

Boundedness is decidable for $\varphi \in \text{GNFP}^{\text{UP}}$.

Theorem (Benedikt, Bourhis, VB. unpublished)

Satisfiability is decidable for $\varphi \in \text{GNFP}^{\text{UP}}$ in (n + 2)-EXPTIME, where *n* is "nesting depth of UCQ-shaped formulas with parameters" in φ .

Boundedness is decidable for $\varphi \in \text{GNFP}^{\text{UP}}$.

Open questions

Does GNFP^{UP} have interpolation?

Is finite satisfiability decidable for GNFP^{UP}?

Guarded fixpoint logics are expressive logics with nice computational properties coming from their tree-like models.

Examples

Expressible in GNFP

R is symmetric

$$\forall xy(Rxy \rightarrow Ryx) \\ \equiv \neg \exists xy(Rxy \land \neg Ryx)$$

Every element has an R-successor

 $\forall x(\exists y(Rxy)) \\ \equiv \neg \exists x(\neg \exists y(Rxy))$

Every element is on *R*-cycle of length 3

 $\forall x \exists yz (Rxy \land Ryz \land Rzx) \\ \equiv \neg \exists x (\neg \exists yz (Rxy \land Ryz \land Rzx))$

Not expressible in GNFP

R is total

 $\forall xy(Rxy \lor Ryx) \\ \equiv \neg \exists xy(\neg Rxy \land \neg Ryx)$

Every element has a unique *R*-successor

 $\forall x \exists y (Rxy \land \forall z (Rxz \rightarrow y = z))$ = $\neg \exists x (\neg \exists y (Rxy \land \neg \exists z (Rxz \land y \neq z)))$

Every element is on R-cycle

$$\forall x [\mathbf{Ifp}_{Y,y}^{x} \exists z (Ryz \land (z = x \lor Yz))](x) \\ \equiv \neg \exists x [\mathbf{Ifp}_{Y,y}^{x} \exists z (Ryz \land (z = x \lor Yz))](x)$$

Expressible in GNFP

R is well-founded:

$$\forall yz \left(Ryz \to [\mathbf{lfp}_{Y,y}, \forall x (Rxy \to Yx)](y) \right)$$

= $\neg \exists yz \left(Ryz \land \neg [\mathbf{lfp}_{Y,y}, \neg \exists x (Rxy \land \neg Yx)](y) \right)$