
Fixpoint logics with tree-like models

Michael Vanden Boom

University of Oxford

Oxford Information Systems Seminar

November 2015

Including joint work with

Michael Benedikt, Pierre Bourhis, Balder ten Cate, and Thomas Colcombet

1 / 18



Fixpoint logics

Fixpoint logics give mechanism to express

dynamic, recursive properties.

Example

binary relation R, unary relation P

“from x, it is possible to R-reach some P-element”

[Reach-P](x) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](x)

2 / 18



Least Bxpoint

Consider ψ(y, Y) positive in Y (of aritym = ∣y∣).

For all structures A, the formula ψ induces amonotone operation

P(Am)⟶ P(Am)
V⟼ ψA(V) ∶= {a ∈ Am ∶ A, a, V ⊧ ψ}

⇒ there is a unique least Bxpoint [lfp
Y ,y .ψ(y, Y)]A ∶= ⋃

α
ψ
α

A

ψ
0

A ∶= ∅

ψ
α+1

A ∶= ψA(ψαA)
ψ
λ

A ∶= ⋃
α<λ

ψ
α

A

Semantics of Bxpoint operator: A, a ⊧ [lfp
Y ,y .ψ(y, Y)](x) i> a ∈ ⋃

α
ψ
α

A

3 / 18



Least Bxpoint

Consider ψ(y, Y) positive in Y (of aritym = ∣y∣).

For all structures A, the formula ψ induces amonotone operation

P(Am)⟶ P(Am)
V⟼ ψA(V) ∶= {a ∈ Am ∶ A, a, V ⊧ ψ}

⇒ there is a unique least Bxpoint [lfp
Y ,y .ψ(y, Y)]A ∶= ⋃

α
ψ
α

A

ψ
0

A ∶= ∅

ψ
α+1

A ∶= ψA(ψαA)
ψ
λ

A ∶= ⋃
α<λ

ψ
α

A

Semantics of Bxpoint operator: A, a ⊧ [lfp
Y ,y .ψ(y, Y)](x) i> a ∈ ⋃

α
ψ
α

A

3 / 18



Some decidable fragments of Brst-order logic

FOK

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

4 / 18



Some decidable fragments of Brst-order logic

FOK

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

4 / 18



Some decidable fragments of Brst-order logic

FOK

GF

GNF

UNF

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

[Bárány, ten Cate, SegouBn ’11]

4 / 18



Some decidable fragments of LFP (Bxpoint extension of FO)

LFPLµ

GFP

GNFP

UNFP

constrain

quantiBcation

∃x(G(xy) ∧ ψ(xy))
∀x(G(xy) → ψ(xy))

[Andréka, van Benthem,

Németi ’95-’98]

constrain

negation

∃x(ψ(xy))
¬ψ(x)

constrain

negation

∃x(ψ(xy))
G(xy) ∧ ¬ψ(xy)

[ten Cate, SegouBn ’11]

[Bárány, ten Cate, SegouBn ’11]

Guarded Bxpoints: tuples in Bxpoint are guarded by atom in original signature.

(UNFP has only monadic Bxpoints, which are trivially guarded.)

5 / 18



Guarded negation Bxpoint logic (GNFP)

Fix some signature σ of relations and constants.

Syntax of GNFP[σ]

φ ∶∶= Rt ∣ Yt ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(ψ(xy)) ∣ G(x) ∧ ¬ψ(x) ∣
[lfp

Y ,y . G(y) ∧ φ(y, Y , Z)](t) where Y only occurs positively in φ

where R and G are relations in σ or =, and t is a tuple over variables and constants.

Examples

unions of conjunctive queries (in GNF)

frontier-guarded tgds (in GNF):

∀xyz ((Rxy ∧ Ryz) → ∃w(Twyz)) ≡ ¬∃xyz (Rxy ∧ Ryz ∧ ¬∃w(Twyz))
description logics including ALC, ALCHIO, ELI (in GNF)

mu-calculus, even with backwards modalities

monadic Datalog

6 / 18



Guarded negation Bxpoint logic (GNFP)

Fix some signature σ of relations and constants.

Syntax of GNFP[σ]

φ ∶∶= Rt ∣ Yt ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(ψ(xy)) ∣ G(x) ∧ ¬ψ(x) ∣
[lfp

Y ,y . G(y) ∧ φ(y, Y , Z)](t) where Y only occurs positively in φ

where R and G are relations in σ or =, and t is a tuple over variables and constants.

Examples

unions of conjunctive queries (in GNF)

frontier-guarded tgds (in GNF):

∀xyz ((Rxy ∧ Ryz) → ∃w(Twyz)) ≡ ¬∃xyz (Rxy ∧ Ryz ∧ ¬∃w(Twyz))

description logics including ALC, ALCHIO, ELI (in GNF)

mu-calculus, even with backwards modalities

monadic Datalog

6 / 18



Guarded negation Bxpoint logic (GNFP)

Fix some signature σ of relations and constants.

Syntax of GNFP[σ]

φ ∶∶= Rt ∣ Yt ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(ψ(xy)) ∣ G(x) ∧ ¬ψ(x) ∣
[lfp

Y ,y . G(y) ∧ φ(y, Y , Z)](t) where Y only occurs positively in φ

where R and G are relations in σ or =, and t is a tuple over variables and constants.

Examples

unions of conjunctive queries (in GNF)

frontier-guarded tgds (in GNF):

∀xyz ((Rxy ∧ Ryz) → ∃w(Twyz)) ≡ ¬∃xyz (Rxy ∧ Ryz ∧ ¬∃w(Twyz))
description logics including ALC, ALCHIO, ELI (in GNF)

mu-calculus, even with backwards modalities

monadic Datalog

6 / 18



Guarded negation Bxpoint logic (GNFP)

Fix some signature σ of relations and constants.

Syntax of GNFP[σ]

φ ∶∶= Rt ∣ Yt ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(ψ(xy)) ∣ G(x) ∧ ¬ψ(x) ∣
[lfp

Y ,y . G(y) ∧ φ(y, Y , Z)](t) where Y only occurs positively in φ

where R and G are relations in σ or =, and t is a tuple over variables and constants.

Examples

unions of conjunctive queries (in GNF)

frontier-guarded tgds (in GNF):

∀xyz ((Rxy ∧ Ryz) → ∃w(Twyz)) ≡ ¬∃xyz (Rxy ∧ Ryz ∧ ¬∃w(Twyz))
description logics including ALC, ALCHIO, ELI (in GNF)

mu-calculus, even with backwards modalities

monadic Datalog

6 / 18



Guarded negation Bxpoint logic (GNFP)

Fix some signature σ of relations and constants.

Syntax of GNFP[σ]

φ ∶∶= Rt ∣ Yt ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃y(ψ(xy)) ∣ G(x) ∧ ¬ψ(x) ∣
[lfp

Y ,y . G(y) ∧ φ(y, Y , Z)](t) where Y only occurs positively in φ

where R and G are relations in σ or =, and t is a tuple over variables and constants.

Examples

unions of conjunctive queries (in GNF)

frontier-guarded tgds (in GNF):

∀xyz ((Rxy ∧ Ryz) → ∃w(Twyz)) ≡ ¬∃xyz (Rxy ∧ Ryz ∧ ¬∃w(Twyz))
description logics including ALC, ALCHIO, ELI (in GNF)

mu-calculus, even with backwards modalities

monadic Datalog

6 / 18



GNFP example

[lfp
Z ,xy . Sxy ∧ ∃uv(Rxu ∧ Ryv ∧ (Zuv ∨ (Pu ∧ Pv)))](xy)

a1

b1

a2

b2

a3

b3

ak

bk

ak+1

bk+1

7 / 18



Some nice computational properties for guarded Bxpoint logics

Decidable satisBability and Bnite satisBability

(2EXPTIME in general, EXPTIME for Bxed-width formulas in GFP)

[Grädel,Walukiewicz ’99 ; Bárány, SegouBn, ten Cate ’11; Bárány, Bojańczyk ’12]

Decidable boundedness

(given ψ(y, Y) positive in Y , is there n ∈ N such that for all A, ψ
n

A = ψ
n+1

A ? )

[Blumensath, Otto,Weyer ’14 ; Bárány, ten Cate, Otto ’12 ; Benedikt, ten Cate, Colcombet, VB. ’15]

Constructive interpolation for UNFP

[Benedikt, ten Cate, VB. ’15]

8 / 18



Some nice computational properties for guarded Bxpoint logics

Decidable satisBability and Bnite satisBability

(2EXPTIME in general, EXPTIME for Bxed-width formulas in GFP)

[Grädel,Walukiewicz ’99 ; Bárány, SegouBn, ten Cate ’11; Bárány, Bojańczyk ’12]

Decidable boundedness

(given ψ(y, Y) positive in Y , is there n ∈ N such that for all A, ψ
n

A = ψ
n+1

A ? )

[Blumensath, Otto,Weyer ’14 ; Bárány, ten Cate, Otto ’12 ; Benedikt, ten Cate, Colcombet, VB. ’15]

Constructive interpolation for UNFP

[Benedikt, ten Cate, VB. ’15]

8 / 18



Some nice computational properties for guarded Bxpoint logics

Decidable satisBability and Bnite satisBability

(2EXPTIME in general, EXPTIME for Bxed-width formulas in GFP)

[Grädel,Walukiewicz ’99 ; Bárány, SegouBn, ten Cate ’11; Bárány, Bojańczyk ’12]

Decidable boundedness

(given ψ(y, Y) positive in Y , is there n ∈ N such that for all A, ψ
n

A = ψ
n+1

A ? )

[Blumensath, Otto,Weyer ’14 ; Bárány, ten Cate, Otto ’12 ; Benedikt, ten Cate, Colcombet, VB. ’15]

Constructive interpolation for UNFP

[Benedikt, ten Cate, VB. ’15]

8 / 18



Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).

A structure A has tree width k − 1 if it can

be covered by (overlapping) bags of size

at most k, arranged in a tree t s.t.

every fact appears in some bag in t;

for each element, the set of bags with

this element is connected in t.

C1

C3C2 C4

⋮⋮⋮ ⋮

⇒We can reason about tree encodings rather than relational structures.

9 / 18



Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).

A structure A has tree width k − 1 if it can

be covered by (overlapping) bags of size

at most k, arranged in a tree t s.t.

every fact appears in some bag in t;

for each element, the set of bags with

this element is connected in t.

a1 a2

a2 a3a1 a4 a5

⋮⋮⋮ ⋮

⇒We can reason about tree encodings rather than relational structures.

9 / 18



Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).

A structure A has tree width k − 1 if it can

be covered by (overlapping) bags of size

at most k, arranged in a tree t s.t.

every fact appears in some bag in t;

for each element, the set of bags with

this element is connected in t.

There is a natural encoding of these

tree-like models (of some bounded tree

width) as trees over a Bnite alphabet.

a1 a2

a2 a3a1 a4 a5

⋮⋮⋮ ⋮

⇒We can reason about tree encodings rather than relational structures.

9 / 18



Why so many nice properties?

These guarded logics all have tree-like models (bounded tree width).

A structure A has tree width k − 1 if it can

be covered by (overlapping) bags of size

at most k, arranged in a tree t s.t.

every fact appears in some bag in t;

for each element, the set of bags with

this element is connected in t.

There is a natural encoding of these

tree-like models (of some bounded tree

width) as trees over a Bnite alphabet.

a1 a2

a2 a3a1 a4 a5

⋮⋮⋮ ⋮

⇒We can reason about tree encodings rather than relational structures.

9 / 18



Interpolation

φ ⊧ ψ

φ ⊧ θ ⊧ ψ

only uses

relations

common to

φ and ψ

interpolant

Craig interpolation: θ depends on φ and ψ

Uniform interpolation: θ depends only on φ and common signature

(not on a particular ψ)

10 / 18



Interpolation

φ ⊧ ψ

φ ⊧ θ ⊧ ψ

only uses

relations

common to

φ and ψ

interpolant

Craig interpolation: θ depends on φ and ψ

Uniform interpolation: θ depends only on φ and common signature

(not on a particular ψ)

10 / 18



Interpolation

φ ⊧ ψ

φ ⊧ θ ⊧ ψ

only uses

relations

common to

φ and ψ

interpolant

Craig interpolation: θ depends on φ and ψ

Uniform interpolation: θ depends only on φ and common signature

(not on a particular ψ)

10 / 18



Interpolation

φ ⊧ ψ

φ ⊧ θ ⊧ ψ

only uses

relations

common to

φ and ψ

interpolant

Craig interpolation: θ depends on φ and ψ

Uniform interpolation: θ depends only on φ and common signature

(not on a particular ψ)

10 / 18



Uniform interpolation example

“P holds at x, and from every position y where P holds,

there is an R-neighbor z where P holds”

φ(x) ∶= Px ∧ ∀y(Py → ∃z(Ryz ∧ Pz))
≡ Px ∧ ¬∃y(Py ∧ ¬∃z(Ryz ∧ Pz))

Uniform interpolant of φ over subsignature {R}
“there is an inBnite R-path from x”

¬[lfp
Y ,y . ∀z(Ryz → Yz)](x)

≡ ¬[lfp
Y ,y . ¬∃z(Ryz ∧ ¬Yz)](x)

11 / 18



Uniform interpolation example

“P holds at x, and from every position y where P holds,

there is an R-neighbor z where P holds”

φ(x) ∶= Px ∧ ∀y(Py → ∃z(Ryz ∧ Pz))
≡ Px ∧ ¬∃y(Py ∧ ¬∃z(Ryz ∧ Pz))

Uniform interpolant of φ over subsignature {R}
“there is an inBnite R-path from x”

¬[lfp
Y ,y . ∀z(Ryz → Yz)](x)

≡ ¬[lfp
Y ,y . ¬∃z(Ryz ∧ ¬Yz)](x)

11 / 18



Why study interpolation?

Interpolation implies several results about going from

semantic properties to syntactic properties

(e.g., Beth deBnability, preservation theorems, etc.)

Interpolation is related to query rewriting over views.

Interpolation is related to modularity.

Very little was known about interpolation for Bxpoint logics over

general relational structures, where relations can have arbitrary arity.

K GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 ? ? ?

12 / 18



Why study interpolation?

Interpolation implies several results about going from

semantic properties to syntactic properties

(e.g., Beth deBnability, preservation theorems, etc.)

Interpolation is related to query rewriting over views.

Interpolation is related to modularity.

Very little was known about interpolation for Bxpoint logics over

general relational structures, where relations can have arbitrary arity.

K GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7

12 / 18



Why study interpolation?

Interpolation implies several results about going from

semantic properties to syntactic properties

(e.g., Beth deBnability, preservation theorems, etc.)

Interpolation is related to query rewriting over views.

Interpolation is related to modularity.

Very little was known about interpolation for Bxpoint logics over

general relational structures, where relations can have arbitrary arity.

K GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7

12 / 18



Why study interpolation?

Interpolation implies several results about going from

semantic properties to syntactic properties

(e.g., Beth deBnability, preservation theorems, etc.)

Interpolation is related to query rewriting over views.

Interpolation is related to modularity.

Very little was known about interpolation for Bxpoint logics over

general relational structures, where relations can have arbitrary arity.

K GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7

12 / 18



Interpolation for L
µ
and UNFP

Theorem (D’Agostino, Hollenberg ’00)

Lµ has e>ective uniform interpolation.

Let UNFP
k

denote the k-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

UNFP has e>ective Craig interpolation.

Proof strategy: Exploit tree-like models and ideas / results from

[Grädel,Walukiewicz ’99 ; Grädel, Hirsch, Otto ’00 ; D’Agostino, Hollenberg ’00].

13 / 18



Interpolation for L
µ
and UNFP

Theorem (D’Agostino, Hollenberg ’00)

Lµ has e>ective uniform interpolation.

Let UNFP
k

denote the k-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

UNFP has e>ective Craig interpolation.

Proof strategy: Exploit tree-like models and ideas / results from

[Grädel,Walukiewicz ’99 ; Grädel, Hirsch, Otto ’00 ; D’Agostino, Hollenberg ’00].

13 / 18



Interpolation for L
µ
and UNFP

Theorem (D’Agostino, Hollenberg ’00)

Lµ has e>ective uniform interpolation.

Let UNFP
k

denote the k-variable fragment of UNFP (in normal form...).

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

UNFP has e>ective Craig interpolation.

Proof strategy: Exploit tree-like models and ideas / results from

[Grädel,Walukiewicz ’99 ; Grädel, Hirsch, Otto ’00 ; D’Agostino, Hollenberg ’00].

13 / 18



Uniform interpolation for UNFP
k

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

Proof structure:

Relational

structures

Encodings of

tree-like models

of width k

UNFP
k

φ Lµ φ̂

Lµ θ̂
over subsignature

encoding

UNFP
k

θ
over subsignature

[D’Agostino, Hollenberg’00]

14 / 18



Uniform interpolation for UNFP
k

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

Proof structure:

Relational

structures

Encodings of

tree-like models

of width k

UNFP
k

φ Lµ φ̂

Lµ θ̂
over subsignature

encoding

UNFP
k

θ
over subsignature

[D’Agostino, Hollenberg’00]

14 / 18



Uniform interpolation for UNFP
k

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

Proof structure:

Relational

structures

Encodings of

tree-like models

of width k

UNFP
k

φ Lµ φ̂

Lµ θ̂
over subsignature

encoding

UNFP
k

θ
over subsignature

[D’Agostino, Hollenberg’00]

14 / 18



Uniform interpolation for UNFP
k

Theorem (Benedikt, ten Cate, VB. ’15)

UNFP
k

has e>ective uniform interpolation.

Proof structure:

Relational

structures

Encodings of

tree-like models

of width k

UNFP
k

φ Lµ φ̂

Lµ θ̂
over subsignature

encoding

UNFP
k

θ
over subsignature

[D’Agostino, Hollenberg’00]

14 / 18



Summary of interpolation results

UNFP has e>ective interpolation,

and the construction takes advantage

of its tree-like models.

K GF UNF GNF Lµ GFP UNFP GNFP

Craig interpolation 3 7 3 3 3 7 3 7

15 / 18



Can we go further?

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and

MQs and GQs [Rudolph, Krötsch ’13 ; Bourhis, Krötsch, Rudolph ’15]

But still has tree-like models!

16 / 18



Can we go further?

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and

MQs and GQs [Rudolph, Krötsch ’13 ; Bourhis, Krötsch, Rudolph ’15]

But still has tree-like models!

16 / 18



Can we go further?

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and

MQs and GQs [Rudolph, Krötsch ’13 ; Bourhis, Krötsch, Rudolph ’15]

But still has tree-like models!

16 / 18



Can we go further?

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and

MQs and GQs [Rudolph, Krötsch ’13 ; Bourhis, Krötsch, Rudolph ’15]

But still has tree-like models!

16 / 18



Can we go further?

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and

MQs and GQs [Rudolph, Krötsch ’13 ; Bourhis, Krötsch, Rudolph ’15]

But still has tree-like models!

16 / 18



Can we go further?

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

“from y, it is possible to R-reach some P-element”

[Reach-P](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (Pz ∨ Yz))](y)

“from y, it is possible to R-reach x”

[Reach-x](y) ∶= [lfp
Y ,y . ∃z(Ryz ∧ (z = x ∨ Yz))](y)

Subsumes

C2RPQs (conjunctive 2-way regular path queries) and

MQs and GQs [Rudolph, Krötsch ’13 ; Bourhis, Krötsch, Rudolph ’15]

But still has tree-like models!
16 / 18



GNFP
UP

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

Theorem (Benedikt, Bourhis, VB. unpublished)

SatisBability is decidable for φ ∈ GNFP
UP

in (n + 2)-EXPTIME,

where n is “nesting depth of UCQ-shaped formulas with parameters” in φ.

Boundedness is decidable for φ ∈ GNFP
UP

.

Open questions

Does GNFP
UP

have interpolation?

Is Bnite satisBability decidable for GNFP
UP

?

17 / 18



GNFP
UP

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

Theorem (Benedikt, Bourhis, VB. unpublished)

SatisBability is decidable for φ ∈ GNFP
UP

in (n + 2)-EXPTIME,

where n is “nesting depth of UCQ-shaped formulas with parameters” in φ.

Boundedness is decidable for φ ∈ GNFP
UP

.

Open questions

Does GNFP
UP

have interpolation?

Is Bnite satisBability decidable for GNFP
UP

?

17 / 18



GNFP
UP

GNFP
UP

: extend GNFPwith parameters in Bxpoint

(while retaining restrictions on negation).

Theorem (Benedikt, Bourhis, VB. unpublished)

SatisBability is decidable for φ ∈ GNFP
UP

in (n + 2)-EXPTIME,

where n is “nesting depth of UCQ-shaped formulas with parameters” in φ.

Boundedness is decidable for φ ∈ GNFP
UP

.

Open questions

Does GNFP
UP

have interpolation?

Is Bnite satisBability decidable for GNFP
UP

?

17 / 18



Conclusion

Guarded Bxpoint logics are expressive logics

with nice computational properties

coming from their tree-like models.

18 / 18



Examples

Expressible in GNFP

R is symmetric

∀xy(Rxy → Ryx)
≡ ¬∃xy(Rxy ∧ ¬Ryx)

Every element has an R-successor

∀x(∃y(Rxy))
≡ ¬∃x(¬∃y(Rxy))

Every element is on R-cycle of length 3

∀x∃yz(Rxy ∧ Ryz ∧ Rzx)
≡ ¬∃x(¬∃yz(Rxy ∧ Ryz ∧ Rzx))

Not expressible in GNFP

R is total

∀xy(Rxy ∨ Ryx)
≡ ¬∃xy(¬Rxy ∧ ¬Ryx)

Every element has a unique R-successor

∀x∃y(Rxy ∧ ∀z(Rxz → y = z))
≡ ¬∃x(¬∃y(Rxy ∧ ¬∃z(Rxz ∧ y ≠ z)))

Every element is on R-cycle

∀x [lfpx

Y ,y .∃z(Ryz ∧ (z = x ∨ Yz))](x)
≡ ¬∃x [lfpx

Y ,y .∃z(Ryz ∧ (z = x ∨ Yz))](x)



Examples, continued

Expressible in GNFP

R is well-founded:

∀yz (Ryz → [lfp
Y ,y .∀x(Rxy → Yx)](y))

≡ ¬∃yz (Ryz ∧ ¬[lfp
Y ,y .¬∃x(Rxy ∧ ¬Yx)](y))


