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Abstract

Weighted threshold games are coalitional games in which
each player has a weight (intuitively corresponding to its vot-
ing power), and a coalition is successful if the sum of its
weights exceeds a given threshold. Key questions in coali-
tional games include finding coalitions that are stable (in the
sense that no member of the coalition has any rational incen-
tive to leave it), and finding a division of payoffs to coalition
members (an imputation) that is fair. We investigate the com-
putational complexity of such questions for weighted thresh-
old games. We study thecore, the least core, and thenucle-
olus, distinguishing those problems that are polynomial-time
computable from those that are NP-hard, and providing pseu-
dopolynomial and approximation algorithms for the NP-hard
problems.

Introduction
Coalitional games provide a simple but rich mathematical
framework within which issues related to cooperation in
multi-agent systems can be investigated (Deng & Papadim-
itriou 1994; Ieong & Shoham 2005; Conitzer & Sandholm
2006). Crudely, a coalitional game can be understood as a
game in which players can benefit from cooperation. The
key questions in such games relate towhich coalitions will
form, andhow the benefits of cooperation will be shared.
With respect to the former question, solution concepts such
as the core have been formulated, in an attempt to charac-
terise “stable” coalitions. With respect to the latter question,
the Shapley value is perhaps the best-known attempt to char-
acterise a fair distribution of coalitional value.

From a computational perspective, the key issues relating
to coalitional games are, first, how such games should be
represented, (since the obvious representation is exponen-
tially large in the number of players, and is hence infeasi-
ble); and second, the extent to which cooperative solution
concepts can beefficiently computed.

In this paper we consider the computational complexity of
solution concepts forweighted threshold games. A weighted
threshold game is one in which each player is given a nu-
meric weight, and a coalition takes the value1 if the sum
of its weights exceeds a particular threshold, and the value
0 otherwise. Weighted threshold games are widely used in
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practice. For example, the voting system of the European
Union is a combination of weighted threshold games (Bil-
baoet al. 2002).

From previous research, we know that for weighted
threshold games it is #P-hard to compute the Shapley value
of a given player, and that it is NP-hard to determine whether
this value is zero (Matsui & Matsui 2001; Deng & Papadim-
itriou 1994; Prasad & Kelly 1990). It is also known that
there is a pseudopolynomial time algorithm for computing
the Shapley value by dynamic programming (Garey & John-
son 1990; Matsui & Matsui 2000). However, even approx-
imating the Shapley value within a constant factor is in-
tractable unless P=NP — see Remark 11. In this paper, we
focus on three solution concepts — thenucleolus, thecore,
and its natural relaxation, theleast core. Although the com-
plexity of determining non-emptiness of the core has been
studied for a variety of representations, comparatively lit-
tle research has considered the least core and the nucleolus.
Following a brief statement of the relevant definitions from
coalitional game theory, we show that the problem of deter-
mining whether the core is empty is solvable in polynomial
time, and that the nucleolus can be computed in polynomial
time when the core is non-empty. Next, we show that it
is NP-hard to construct an imputation in the least core of a
weighted threshold game, or to determine whether a given
imputation is in the least core, or to determine, for a givenǫ,
whether the least core is theǫ-core. We mitigate these hard-
ness results by giving a fully polynomial-time approxima-
tion scheme for the least core. Furthermore, we show that
all three problems can be solved inpseudopolynomial time:
that is, the problems can be solved in polynomial time for
weighted threshold games in which the weights are at most
polynomially large in the number of players. We then show
that it is NP-hard to determine whether the nucleolus pay-
off of a given agent is0, which implies that it is NP-hard to
compute the nucleolus payment of an agent, or to approxi-
mate this nucleolus payment within a constant factor. Nev-
ertheless, we show that, for a wide class of weighted thresh-
old games, it is possible to easily approximate the nucleolus
payment of a minimal winning coalition.

Throughout the paper, we assume some familiarity with
computational complexity (Papadimitriou 1994) and ap-
proximation algorithms (Ausielloet al. 1999).



Preliminary Definitions
We assume numbers are rationals, and unless explicitly
stated otherwise (specifically, in Theorem 6), we assume
that rational values are represented in binary. (Our results
extend straightforwardly to any “sensible” representation of
real numbers, but we use rationals to avoid tangential repre-
sentational issues.) This allows us to use the machinery of
polynomial-time reductions and NP-hardness. In all of our
proofs, “polynomial” means “polynomial in the size of the
input”. Some of the problems we consider arefunction prob-
lems, rather than decision problems (Papadimitriou 1994,
Chapter 10). We use the standard notion of NP-hardness for
function computation: when we say it is NP-hard to compute
a function, we mean that the existence of a polynomial-time
algorithm for computing the function would imply P=NP.

We briefly review relevant definitions from coalitional
game theory (Osborne & Rubinstein 1994, pp.255–298). A
(rational valued)coalitional gameconsists of a setI of play-
ers, or agents, and a total functionν : 2I 7→ Q, which
assigns a rational value to every coalition (subset of the
agents). Intuitively,ν(S) is the value that could be obtained
by coalitionS ⊆ I if they chose to cooperate, or form a
coalition. The question ofhow the agents cooperate to ob-
tain this value is not modeled at this level of analysis, and
the question of how this value isdividedamongst coalition
members is similarly ignored for now. Thegrand coalition
is the setI of all agents. Often, the value of a coalition is
enhanced by the addition of a new participant, so the value
of the grand coalition is maximum amongst coalition values.
By rescaling, we may assume this value is1.

An imputationis a division of this unit of value amongst
the agents. The goal is typically to find an imputation which
is “fair” in the sense that agents which contribute more to
the grand coalition receive a larger share of the value of the
coalition. There are many ways to formalise the notion of
fairness. These are known assolution concepts. In this pa-
per, we study three solution concepts: thecore, the least
core, and thenucleolus.

A weighted threshold gameis a coalitional gameG given
by a set of agentsI = {1, . . . , n}, their non-negative
weightsw = {w1, . . . , wn}, and athresholdT ; we write
G = (I;w; T ). For a coalitionS ⊆ I, its valueν(S) is
1 if

∑

i∈S wi ≥ T ; otherwise,ν(S) = 0. Without loss of
generality, we assume that the value of the grand coalition
{1, . . . , n} is 1. That is,

∑

i∈I wi ≥ T .
For a weighted threshold game, animputationis a vector

of non-negative rational numbers(p1, . . . , pn), one for each
agent inI, such that

∑

i∈I pi = 1. We refer topi as thepay-
off of agenti. We writew(S) to denote

∑

i∈S wi. Similarly,
p(S) denotes

∑

i∈S pi.
Given an imputationp = (p1, . . . , pn), theexcesse(p, S)

of a coalitionS underp is defined asp(S) − ν(S). The
core is a set of imputations defined as follows. An imputa-
tion p is in thecore if it is the case that for everyS ⊆ I,
e(p, S) ≥ 0. Informally,p is in the core if it is the case that
no coalition can improve its payoff by breaking away from
the grand coalition because its payoffp(S) according to the
imputation is at least as high as the valueν(S) that it would

get by breaking away.
The excess vectorof an imputationp is the vector

(e(p, S1), . . . , e(p, S2n)), whereS1, . . . , S2n is a list of all
subsets ofI ordered so thate(p, S1) ≤ e(p, S2) ≤ · · · ≤
e(p, S2n). In other words, the excess vector lists the ex-
cesses of all coalitions from the smallest (which may be
negative) to the largest. Thenucleolusis the imputation
x = (x1, . . . , xn) that has the lexicographically largest ex-
cess vector. Intuitively, the nucleolus is a good imputation
because it balances the excesses of the coalitions, making
them as equal as possible. It is easy to see that the nucleolus
is in the core whenever the core is non-empty. Furthermore,
the core is non-empty if and only ifx1 ≥ 0.

A natural relaxation of the notion of the core is theleast
core. We say that an imputationp is in the ǫ-core if
e(p, S) ≥ −ǫ for all S ⊆ I; it is in the least core, if it is
in the ǫ-core for someǫ ≥ 0 and theǫ′-core is empty for
anyǫ′ < ǫ. Clearly, the least core is always non-empty and
contains the nucleolus.

Another solution concept for a coalitional game is the
Shapley value. It is the imputationp, pi = φ(i), with

φ(i) =
∑

S : i∈S⊆I

(|I| − |S|)!(|S| − 1)!

|I|!
(ν(S)− ν(S \ {i})).

The Core and the Least Core
We start by considering the core — perhaps the best known
and most-studied solution concept in coalitional game the-
ory. Intuitively, the core of a coalitional game contains
imputations such that no sub-coalition could obtain a bet-
ter imputation for themselves by defecting from the grand
coalition. Asking whether the grand coalition is stable thus
amounts to asking whether the core of the game is non-
empty.

Name EMPTYCORE.
Instance Weighted threshold game(I;w; T ).
Question Is the core empty?

The following theorem shows that EMPTYCORE is solv-
able in polynomial time, and that computing the nucleolus
can be done in polynomial time when the core is non-empty.

Theorem 1. The core of a weighted threshold gameG =
(I, {w1, . . . , wn}, T ) is non-empty if and only if there is an
agenti that is present in all winning coalitions, i.e.,i ∈
∩ν(S)=1S. Moreover, if the core ofG is non-empty, then the
nucleolus ofG is given byxi = 1/k if i ∈ ∩ν(S)=1S and
xi = 0 otherwise, wherek = |{i : i ∈ ∩ν(S)=1S}|.

Proof. The first part is straightforward, so we prove that
if the core ofG is non-empty, then the imputationx de-
scribed in the statement of the theorem is indeed the nucle-
olus of G. Let M = {i : i ∈ ∩ν(S)=1S}. Any impu-
tation (p1, . . . , pn) that haspi > 0 for somei 6∈ M is not
in the core ofG, as there exists a setS with ν(S) = 1,
i 6∈ S, for which we havee(p, S) ≤ −pi. Hence, as the
nucleolusx is always in the core, it satisfiesxi = 0 for
all i 6∈ M . Now, consider a vectorp with pi = 0 for



i 6∈ M , and suppose thatpi 6= 1/k for somei ∈ M .
Let j = argmin{pi | i ∈ M}. We havepj < 1/k. Let
t = |{S : ν(S) = 1}| + |{S : S ⊆ I \ M}|. The
excess vectors forp andx start with t zeros, followed by
pj and1/k, respectively. Hence, the excess vector forp is
lexicographically smaller than the excess vector forx.

Remark 2. It is easy to check if there is a agent that is
present in all winning coalitions. Namely, for each agent
i, we check ifw(I \ {i}) ≥ T ; if this is not the case,
i ∈ ∩w(S)≥T S.

Consider the following computational problems.

Name LEASTCORE.
Instance Weighted threshold game(I;w; T ), and rational

valueǫ ≥ 0.
Question Is theǫ-core of(I;w; T ) non-empty?

The smallestǫ for which (G, ǫ) is a “yes”-instance of
LEASTCORE corresponds to the least core ofG.

Name IN-LEASTCORE.
Instance Weighted threshold game(I;w; T ), imputation

p.
Question Is p in the least core of(I;w; T )?

Name CONSTRUCT-LEASTCORE.
Instance Weighted threshold game(I;w; T ).
Output An imputationp in the least core of(I;w; T ).

We now show that the problems LEASTCORE, IN-
LEASTCORE, and CONSTRUCT-LEASTCORE are NP-hard.
We reduce from the well-known NP-complete PARTITION
problem, in which we are given positive integersa1, . . . , an

such that
∑n

i=1 ai = 2K, and asked whether there is a sub-
set of indicesJ such that

∑

i∈J ai = K (Garey & Johnson
1990, p.223).

Given an instance(a1, . . . , an; K) of PARTITION, let I =
{1, . . . , n, n + 1} be a set of agents. LetG = (I;w; T )
be the weighted threshold game withT = K, wi = ai for
i = 1, . . . , n andwn+1 = K. We will use the following
lemmas.
Lemma 3. For a “yes”-instance ofPARTITION, the least
core of G is its 2/3-core, and any imputationq =
(q1, . . . , qn+1) in the least core satisfiesqn+1 = 1/3.

Proof. Consider the imputationp given bypi = wi

3K
for i =

1, . . . , n+1 (this is a valid imputation, as
∑n+1

i=1 wi = 3K).
For any setS with ν(S) = 1 we have

∑

i∈S wi ≥ K, so
∑

i∈S pi ≥ 1/3 ande(p, S) ≥ −2/3; for any setS with
ν(S) = 0 we havee(p, S) ≥ 0. We conclude that the least
core ofG is contained in its2/3-core, i.e., the least core of
G is its ǫ-core for someǫ ≤ 2/3.

On the other hand, for a “yes”-instance of PARTITION,
there are three disjoint coalitions inI that have value1:
S1 = J , S2 = {1, . . . , n} \ J , andS3 = {n + 1}. Any
imputationp such thatpn+1 6= 1/3 hasp(Si) < 1/3 for
somei = 1, 2, 3 and hencee(p, Si) < −2/3. Hence, any
imputationq that maximizes the minimum excess satisfies
qn+1 = 1/3. Consequently, the value ofǫ that corresponds
to the least core satisfiesǫ = 2/3, and any imputation in the
least core hasqn+1 = 1/3.

Lemma 4. For a “no”-instance of PARTITION, the least
core ofG is its ǫ-core for someǫ < 2/3 and any imputa-
tion q in the least core satisfiesqn+1 > 1/3.

Proof. We will start with the imputationpi = wi

3K
defined in

the proof of the previous lemma, and modify it so as to en-
sure that for a new imputationp′, the excess of each coali-
tion is strictly greater than−2/3. The imputationp′ will
serve as a witness that the least core ofG is its ǫ-core for
ǫ < 2/3. Consequently, for any imputationq in the least
core we havee(q, S) > −2/3 for anyS ⊆ I. In particular,
takingS = {n + 1}, we obtainqn+1 > 1/3.

The imputationp′ is defined as follows:p′i = pi −
1

6nK

for i = 1, . . . , n, p′n+1 = pn+1 + 1
6K

. To see thatp′ is a
valid imputation, note that

∑

i∈I p′i =
∑

i∈I pi = 1, and
p′i = wi

3K
− 1

6nK
> 0. Now, consider any setS such that

ν(S) = 1. If S ⊆ {1, . . . , n}, as our game was constructed
from a “no”-instance of PARTITION, we have

∑

i∈S wi ≥
K + 1. Hence,

∑

i∈S

p′i =
∑

i∈S

(

wi

3K
−

1

6nK

)

=
1

3
+

1

6K
.

Consequently,e(p′, S) > −2/3. On the other hand, ifn +
1 ∈ S, we havep′(S) > 1

3 + 1
6K

, so againe(p′, S) >
−2/3.

Theorem 5. The problemsLEASTCORE, IN-LEASTCORE,
andCONSTRUCT-LEASTCORE are NP-hard.

Proof. By combining Lemmas 3 and 4, we conclude that
if we can decide whether the2/3 − 1/(6K)-core ofG =
(I;w; T ) is nonempty then we can correctly solve PARTI-
TION. Also, if we can construct a solution in the least core,
we can solve PARTITION by looking at its last component
qn+1. Finally, the imputationp, wherepi = wi

3K
, is in the

least core if and only if the gameG was constructed from
a “yes”-instance of PARTITION. Hence, correctly deciding
whetherp is in the least core allows us to solve PARTITION
as well.

Pseudopolynomial time algorithm for the least core
The following theorem gives a pseudopolynomial time al-
gorithm for the problems CONSTRUCT-LEASTCORE, IN-
LEASTCORE and LEASTCORE. This means that all three
problems can be solved in polynomial time if the weights
are bounded (at most polynomially large inn), or (equiva-
lently) if they are represented in unary notation.

Theorem 6. If all weights are represented in unary, the
problemsCONSTRUCT-LEASTCORE, IN-LEASTCORE and
LEASTCORE are in P.

Proof. Consider the following linear program:

max C;

p1 + · · · + pn = 1

pi ≥ 0 for all i = 1, . . . , n
∑

i∈J

pi ≥ C for all J ⊆ I such that
∑

i∈J

wi ≥ T (1)



This linear program attempts to maximize the minimum ex-
cess by computing the greatest lower boundC on the pay-
ment to each winning coalition (i.e., a coalition whose total
weight is at leastT ). Any solution to this linear program is
a vector of the form(p1, . . . , pn, C); clearly, the imputation
(p1, . . . , pn) is in the least core, which coincides with the
(1 − C)-core.

Unfortunately, the size of this linear program may be ex-
ponential inn, as there is a constraint for each winning
coalition. Nevertheless, we will now show how to solve
it in time polynomial inn and

∑

i∈I wi, by constructing
a separation oraclefor it. A separation oracle for a lin-
ear program is an algorithm that, given an alleged feasible
solution, checks whether it is indeed feasible, and if not,
outputs a violated constraint (Schrijver 2003). It is known
that a linear program can be solved in polynomial time as
long as it has a polynomial-time separation oracle. In our
case, this means that we need an algorithm that given a pair
((p1, . . . , pn), C), checks if there is a winning coalitionJ
such that

∑

i∈J pi < C.
To construct the separation oracle, we will use dynamic

programming to determineP0 = min p(J) over all win-
ning coalitionsJ . If P0 < C, then the constraint that
corresponds toargminw(J)≥T p(J) is violated. LetW =
∑

i∈I wi. For k = 1, . . . , n and w = 1, . . . , W , let
xk,w = min{p(J) | J ⊆ {1, . . . , k}, w(J) = w}. Clearly,
we haveP0 = minw=T,...,W xn,w. It remains to show how
to computexk,w. Fork = 1, we havex1,w = p1 if w = w1

andx1,w = +∞ otherwise. Now, suppose we have com-
putedxk,w for all w = 1, . . . , W . Then we can compute
xk+1,w asmin{xk,w, pk+1 + xk,w−wk

}. The running time
of this algorithm is polynomial inn andW , i.e., in the size
of the input.

Now, consider the application of the linear program for a
weighted threshold gameG = (I;w; T ). The constructed
imputationp is a solution for CONSTRUCT-LEASTCORE
with instanceG. Also, the solution to LEASTCORE with
instanceG, ǫ should be “yes” iffǫ = C − 1. The solution
to IN-LEASTCORE with instanceG, p′ should be “yes” if
and only if every winning coalitionS ⊆ I hasp′(S) ≥ C.
This can be checked in polynomial time using the separation
oracle from the proof of Theorem 6.

Approximation scheme for the least core

In this section, we show that the pseudopolynomial algo-
rithm of the previous section can be converted into an ap-
proximation scheme. More precisely, we construct an algo-
rithm that, given a gameG = (I;w; T ) and aδ > 0, outputs
ǫ′ such that if the least core ofG is equal to itsǫ-core then
ǫ ≤ ǫ′ ≤ ǫ + 2δ. The running time of our algorithm is
polynomial in the size of the input as well as1/δ, i.e., it is
a fully polynomial additive approximation scheme. Subse-
quently, we show that it can be modified into a fully polyno-
mial multiplicative approximation scheme (FPTAS), i.e., an
algorithm that outputsǫ′ satisfyingǫ ≤ ǫ′ ≤ (1 + δ)ǫ.

Consider the linear program (1) in whichC is some fixed
integer multiple ofδ and the goal is to find a feasible solution
for this value ofC or report than none exists. It is known that

problems of this type can be solved in polynomial time as
long as they have a polynomial-time separation oracle. We
will describe a subroutineA that, givenC, either outputs a
feasible solutionp for C − δ or correctly solves the problem
for C. Our algorithm runsA for C = 0, δ, 2δ, . . . , 1 and
outputsǫ′ = 1 − C′, whereC′ is the maximum value ofC
for whichA finds a feasible solution.

Clearly, we haveǫ ≤ 1 − C′. Now, let C∗ = 1 − ǫ be
the optimal solution to the original linear program and let
k∗ = max{k | kδ ≤ C∗}. As k∗δ ≤ C∗, there is a feasible
solution fork∗δ. WhenA is givenk∗δ, it either solves the
linear program correctly, i.e., finds a feasible solution for
k∗δ, or finds a feasible solution fork∗δ − δ. In any case, we
haveC′ ≥ (k∗ − 1)δ ≥ C∗ − 2δ, i.e.,1 − C′ ≤ ǫ + 2δ.

It remains to describe the subroutineA. Given aC = kδ,
it attempts to solve the linear program using the ellipsoid
method. However, whenever the ellipsoid method calls the
separation oracle for some payoff vectorp, we simulate it
as follows. We setδ′ = δ/n and round downp to the near-
est multiple ofδ′, i.e., setp′i = max{jδ′ | jδ′ ≤ pi}. We
have0 ≤ pi − p′i ≤ δ′. Let xi,j = max{w(J) | J ⊆
{1, . . . , j},p′(J) = iδ′}. The valuesxi,j are easy to com-
pute by dynamic programming. ConsiderU = max{xi,n |
i = 1, . . . , (k − 1)n− 1}. This is the maximum weight of a
coalition whose total payoff underp′ is at mostc − δ − δ′.
Since payments increment byδ′ this is the maximum weight
of a coalition whose total payoff is less thanC − δ. If
U < T , the payoff to each winning coalition underp′ is
at leastC − δ; aspi > p′i, the same is true forp. Hence,p
is a feasible solution forC − δ, soA outputsp and stops.

If U ≥ T , there exists a winning coalitionJ such that
p′(J) < C − δ and hencep(J) < C; moreover, thisJ can
be found using standard dynamic programming techniques.
This means that that we have found a violated constraint, i.e.,
successfully simulated the separation oracle and can con-
tinue with the ellipsoid method.

Remark 7. It is easy to verify that if the least core ofG =
(I;w; T ) is its ǫ-core, then we haveǫ ≥ 1/|I|. This means
that the algorithm described above can be converted into an
FPTAS; we omit the details.

The Nucleolus
Consider the following computational problems:

Name NUCLEOLUS.
Instance Weighted threshold game(I;w; T ), agenti ∈ I.
Output The nucleolus payoff of agenti in (I;w; T ).

Name ISZERO-NUCLEOLUS.
Instance Weighted threshold game(I;w; T ), agenti ∈ I.
Question Is the nucleolus payoff of agenti in (I;w; T )

equal to0?

We will show that ISZERO-NUCLEOLUS is NP-hard.
Clearly, this implies that NUCLEOLUS is NP-hard as well.
We start with the following lemma.

Lemma 8. For weighted threshold games, if the Shapley
value of a agent is 0, his nucleolus payoff is 0 as well, i.e.,
φ(i) = 0 impliesxi = 0.



Proof. For the Shapley value of a agenti to be 0, it has to
be the case thatν(S) = ν(S ∪ {i}) for all S ⊆ I. Now,
suppose thatφ(i) = 0, butxi 6= 0, and consider the excess
vector forx. Let e(x, S) be the first element of this vector;
clearly,ν(S) = 1. It is easy to see thati 6∈ S: otherwise,
we would haveν(S \ {i}) = 1 and moreover,x(S \ {i}) =
x(S) − xi < x(S). Now, consider an imputationq given
by qi = xi

2 , qj = xj + xi

2(n−1) for j 6= i. For any non-
empty coalitionT such thati 6∈ T we haveq(T ) > x(T ).
Moreover, asqi 6= 0, using the same argument as forx, we
conclude that the first element of the excess vectore(q, T )
satisfiesi 6∈ T . Hence,

e(q, T ) = q(T )−ν(T ) > x(T )−ν(T ) = e(x, T ) ≥ e(x, S),

a contradiction with the definition of the nucleolus.

Remark 9. The converse of Lemma 8 is not true. Consider
the coalitional game withI = {1, 2, 3}, w = { 1

2 , 1
4 , 1

4} and
T = 3

4 . Winning coalitions are those that contain agent1
and at least one of agents2 and3. The Shapley valueφ(3) is
positive because there is a positive coalition from the coali-
tion S = {1, 3} (see the definition ofφ). However, by Theo-
rem 1, the nucleolus payoffx3 = 0.

Theorem 10. The problemISZERO-NUCLEOLUS is NP-
hard.

Proof. As in the proof of Theorem 5, we construct a
weighted threshold game based on an instance of PARTI-
TION. Given an instanceA = (a1, . . . , an; K) of PARTI-
TION, let G = (I;w; T ) be the weighted threshold game
with I = {1, . . . , n, n + 1}, T = K + 1, wn+1 = 1, and
wi = ai for i = 1, . . . , n. We will show thatxn+1 6= 0 if
and only ifA is a “yes”-instance of PARTITION.

Suppose first thatA is a “no”-instance of PARTITION.
Consider any winning coalitionS ⊆ I such thatn + 1 ∈ S.
We havew(S) ≥ K + 1. Moreover, ifw(S) = K + 1,
thenw(S \ {n+1}) = K, implying that there is a partition.
Hence,w(S) > K +1, or, equivalently,ν(S \{n+1}) = 1.
We conclude that the Shapley value of the(n + 1)st agent is
0. By Lemma 8, this impliesxn+1 = 0.

Now, suppose thatA is a “yes”-instance of PARTITION.
Let I ′ = I − {n + 1} and letJ be a partition ofI ′ sat-
isfying w(J) = w(I ′ \ J) = K. Consider an imputa-
tion p with pn+1 = 0. The setsS1 = J ∪ {n + 1} and
S2 = (I ′ \ J) ∪ {n + 1} satisfyν(S1) = ν(S2) = 1. As
pn+1 = 0, we havep(S1) + p(S2) = p(J) + p(I ′ \ J) = 1,
somin{e(p, S1), (p, S2)} ≤ −1/2. That is, for any impu-
tation withpn+1 = 0 the minimum excess is at most−1/2.
On the other hand, under the imputationqi = wi

2K+1 the pay-

off of each winning coalition is at leastK+1
2K+1 > 1/2, i.e., for

this imputation the minimum excess is strictly greater than
−1/2. As we haveminS⊆I e(x, S) ≥ minS⊆I e(q, S), we
conclude thatxn+1 6= 0.

Remark 11. Theorem 10 implies that the problemNUCLE-
OLUS cannot be approximated within any constant factor
unless P=NP. More formally, it is not in the complexity class
APX (Ausielloet al. 1999, p.91) unless P=NP. The same
holds for the problem of computing the Shapley value.

Remark 12. We can use the construction in the proof of
Theorem 5 to show thatNUCLEOLUS is NP-hard; however,
it does not imply the NP-hardness ofISZERO-NUCLEOLUS.
Conversely, the proof of Theorem 10 does not immediately
imply that the least core-related problems are NP-hard.
Therefore, to prove that all of our problems are NP-hard,
we need both constructions.

Remark 13. While we have proved that the problems con-
sidered in this subsection are NP-hard, it is not clear
that they are in NP. Consider, for example,ISZERO-
NUCLEOLUS. To verify that the nucleolus payoff of an
agenti is 0, we would have to prove that there is an imputa-
tion x (the nucleolus) withxi = 0, and that any imputation
p with pi > 0 produces an excess vector that is lexicograph-
ically smaller than that ofx. The latter condition involves
exponentially-long vectors.

Approximating the Nucleolus
Without loss of generality, we can assume that the sum of
the weights in a weighted threshold game is1. We will refer
to such a game as anormalisedweighted threshold game.
Note that any weighted threshold game is equivalent to some
normalised game.

For many normalised weighted threshold games consid-
ered in the literature, the vectorw coincides with the nucleo-
lus. For example, consider the setC of constant-sumgames.
A normalised weighted threshold gameG = (I;w; T ) is in
C if, for anyS ⊆ I, ν(S)+ν(I\S) = 1. (Peleg 1968) shows
the following. SupposeG = (I;w; T ) ∈ C. Let x be the
nucleolus forG and letG′ = (I;x; T ). Then the nucleolus
of G′ is also equal tox. (Wolsey 1976) shows a simlar result
for the setC′ of symmetricgames. A normalised weighted
threshold gameG = (I;w; T ) is in C′ if T = 1/2 and there
is a coalitionS with ν(S) = ν(I \ S).

It is not true in general that the vectorw coincides with
the nucleolus. It is also not true thatwi is a good approxi-
mation to the nucleolus payoffxi. For example, in the game
considered in Remark 9 the nucleolus paymentx3 is 0 but
w3 = 1

4 (so these are not related by a constant factor). The
nucleolus paymentxi can also exceedwi by an arbitrary fac-
tor. For example, take an arbitrarily smallδ > 0. Consider
the game withI = {1, 2}, w = {1−δ, δ}, andT = 1−δ/2.
By Theorem 1,x = (0.5, 0.5) sox2 = 0.5. In any case, it is
clear from Corollary 11 thatwi cannot be a constant-factor
approximation to the nucleolus paymentxi of an individual
agenti, since that would imply P=NP.

In Theorem 20 we show that, for an appropriate sense of
approximation based oncoalitionsrather than onindividual
agents, the vectorw provides a goodapproximationto the
nucleolus. Our result applies to a large class of weighted
threshold games. We start with a simple lower bound on
nucleolus payments.

Lemma 14. Let G = (I;w; T ) be a normalised weighted
threshold game. Ifw(S) ≥ T thenx(S) ≥ T .

Proof. A winning coalitionS hase(w, S) = w(S) − 1 ≥
T − 1. The nucleolus maximizes the minimum payoff to a
winning coalition, soe(x, S) ≥ T − 1 andx(s) ≥ T .



A minimalwinning coalition is a coalitionS with w(S) ≥
T for which every proper subsetS′ ⊂ S hasw(S′) < T .
We will now use Lemma 14 to show that the weight of any
minimal winning coalition is at most twice its nucleolus pay-
off.

Lemma 15. Let G = (I;w; T ) be a normalised weighted
threshold game. Suppose that every agenti ∈ I haswi ≤
T . Let S ⊆ I be a minimal winning coalition inG. Then
w(S) < 2x(S).

Proof. Let i be an agent inS. SinceS is minimal,w(S \
{i}) < T . Sow(S) < T +wi < 2T . The result now follows
from Lemma 14.

We do not know whether there is a valueα such ev-
ery minimal winning coalitionS of a normalised weighted
threshold game satisfiesx(S) ≤ αw(S). However, it is easy
to see that this is true withα = 2 if T ≥ 1/2 sincex(S) ≤ 1
and, for a winning coalitionS, w(S) ≥ T ≥ 1/2. So we get
the following observation.

Observation 16. Let G = (I;w; T ) be a normalised
weighted threshold game withT ≥ 1/2. Let S ⊆ I be a
winning coalition inG. Thenx(S) ≤ 2w(S).

If T is less than1/2 but is relatively large compared to the
individual weights, the vectorw is still a good approxima-
tion to the nucleolus.

Lemma 17. Consider a normalised weighted threshold
gameG = (I;w; T ) that satisfieswi ≤ ǫT , T ≥ ǫ

1+ǫ
for

someǫ ≤ 1. For any such game, any minimal winning coali-
tion S ⊆ I satisfiesx(S) ≤ 3w(S)

Proof. For any minimal winning coalitionS, we havew(S\
{i}) < T for any i ∈ S, sow(S) < T + wi < T (1 + ǫ).
Now, fix a minimal winning coalitionS0. We havew(S0) ≥
T , w(I \ S0) > 1 − T (1 + ǫ). We can construct a col-
lection of t = ⌊ 1−T (1+ǫ)

T (1+ǫ) ⌋ ≥ 1
T (1+ǫ) − 2 disjoint minimal

winning coalitions inI \ S. (For example, we can construct
these coalitions consecutively by adding agents to a current
coalition one by one until the weight of the coalition under
construction becomes at leastT .) Let these coalitions be
S1, . . . , St. Lemma 14 impliesx(Si) ≥ T for i = 1, . . . , t.
Hence,x(S0) ≤ 1 − tT ≤ 2T − 1

1+ǫ
+ 1 ≤ 2T + ǫ

1+ǫ
=

3T ≤ 3w(S0).

Remark 18. Let G = (I;w; T ) be a normalised weighted
threshold game which satisfieswi ≤ T 2 for every agenti ∈
I. Then Lemma 17 applies withǫ = T .

Remark 19. By settingǫ = 1 in Lemma 17, we can obtain
thatx(S) ≤ 3w(S) for T ≥ 1/2 with the additional restric-
tion thatwi ≤ T for all wi; considering the caseT ≥ 1/2
separately using Observation 16 gives us a stronger result.

Lemma 15, Observation 16 and Lemma 17 give us the fol-
lowing theorem. The theorem shows that, for a wide class of
normalised weighted threshold games, the weight vectorw
approximates the nucleolusx in the sense that the payoff to
a minimal winning coalition only differs by at most a factor
of 3 in these two imputations.

Theorem 20. LetG = (I;w; T ) be a normalised weighted
threshold game. Suppose that every agenti ∈ I haswi ≤ T .
If T ≥ 1/2 then any minimal winning coalitionS satisfies
w(S)/2 ≤ x(S) ≤ 2w(S). If there is anǫ ∈ (0, 1] such
that T ≥ ǫ

1+ǫ
and every agent satisfieswi ≤ ǫT then any

minimal winning coalitionS satisfiesw(S)/2 ≤ x(S) ≤
3w(S).
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