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Abstract

Weighted threshold games are coalitional games in which
each player has a weight (intuitively corresponding todts v

ing power), and a coalition is successful if the sum of its
weights exceeds a given threshold. Key questions in coali-
tional games include finding coalitions that are stablelfin t
sense that no member of the coalition has any rational incen-
tive to leave it), and finding a division of payoffs to coaliti
members (an imputation) that is fair. We investigate the-com
putational complexity of such questions for weighted thres
old games. We study theore theleast core and thenucle-
olus distinguishing those problems that are polynomial-time
computable from those that are NP-hard, and providing pseu-
dopolynomial and approximation algorithms for the NP-hard
problems.

Introduction

Coalitional games provide a simple but rich mathematical
framework within which issues related to cooperation in
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practice. For example, the voting system of the European
Union is a combination of weighted threshold games (Bil-
baoet al. 2002).

From previous research, we know that for weighted
threshold games it is #P-hard to compute the Shapley value
of a given player, and that it is NP-hard to determine whether
this value is zero (Matsui & Matsui 2001; Deng & Papadim-
itriou 1994; Prasad & Kelly 1990). It is also known that
there is a pseudopolynomial time algorithm for computing
the Shapley value by dynamic programming (Garey & John-
son 1990; Matsui & Matsui 2000). However, even approx-
imating the Shapley value within a constant factor is in-
tractable unless P=NP — see Remark 11. In this paper, we
focus on three solution concepts — theacleolus thecore,
and its natural relaxation, theast core Although the com-
plexity of determining non-emptiness of the core has been
studied for a variety of representations, comparativety li
tle research has considered the least core and the nucleolus

multi-agent systems can be investigated (Deng & Papadim- Following a brief statement of the relevant definitions from
itriou 1994; leong & Shoham 2005; Conitzer & Sandholm coalitional game theory, we show that the problem of deter-
2006). Crudely, a coalitional game can be understood as a Mining whether the core is empty is solvable in polynomial
game in which players can benefit from cooperation. The {ime, and that the nucleolus can be computed in polynomial
key questions in such games relatentoich coalitions will ~ timeé when the core is non-empty. Next, we show that it
form, andhow the benefits of cooperation will be shared IS NP-hard to construct an imputation in the least core of a
With respect to the former question, solution concepts such Weighted threshold game, or to determine whether a given
as the core have been formulated, in an attempt to charac-Imputationis in the least core, or to determine, for a given
terise “stable” coalitions. With respect to the latter diges whether the least core is thecore. We mitigate these hard-

the Shapley value is perhaps the best-known attempt to char- €SS results by giving a fully polynomial-time approxima-
acterise a fair distribution of coalitional value. tion scheme for the least core. F_urthermore, we shpw that

From a computational perspective, the key issues relating &/l three problems can be solvedpseudopolynomial time
to coalitional games are, first, how such games should be thatis, the problems can be solved in polynomial time for
represented (since the obvious representation is exponen- Weighted threshold games in which the weights are at most
tially large in the number of players, and is hence infeasi- Pelynomially large in the number of players. We then show
ble); and second, the extent to which cooperative solution that it is NP-hard to determine whether the nucleolus pay-
concepts can befficiently computed off of a given agent i$), which implies that it is NP-hard to

In this paper we consider the computational complexity of COMPpute the nucleolus payment of an agent, or to approxi-
solution concepts foweighted threshold game& weighted mate this nucleolus payment Wl_thln a constant factor. Nev-
threshold game is one in which each player is given a nu- ertheless, we show that, for a wide class of weighted thresh-
meric weight, and a coalition takes the valuéf the sum old games, it is possible to easily approximate the nucteolu
of its weights exceeds a particular threshold, and the value Payment of a minimal winning coalition.

0 otherwise. Weighted threshold games are widely used in Throughout the paper, we assume some familiarity with

computational complexity (Papadimitriou 1994) and ap-
proximation algorithms (Ausiellet al. 1999).
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Intelligence (www.aaai.org). All rights reserved.



Preliminary Definitions

We assume numbers are rationals, and unless explicitly
stated otherwise (specifically, in Theorem 6), we assume
that rational values are represented in binary. (Our result
extend straightforwardly to any “sensible” representatib

real numbers, but we use rationals to avoid tangential repre
sentational issues.) This allows us to use the machinery of
polynomial-time reductions and NP-hardness. In all of our
proofs, “polynomial” means “polynomial in the size of the
input”. Some of the problems we consider araction prob-
lems rather than decision problems (Papadimitriou 1994,
Chapter 10). We use the standard notion of NP-hardness for
function computation: when we say itis NP-hard to compute
a function, we mean that the existence of a polynomial-time
algorithm for computing the function would imply P=NP.

We briefly review relevant definitions from coalitional
game theory (Osborne & Rubinstein 1994, pp.255-298). A
(rational valuedgoalitional gameconsists of a seft of play-
ers, or agents, and a total function: 2/ — Q, which
assigns a rational value to every coalition (subset of the
agents). Intuitivelyy(.S) is the value that could be obtained
by coalition S C I if they chose to cooperate, or form a
coalition. The question diiowthe agents cooperate to ob-
tain this value is not modeled at this level of analysis, and
the question of how this value &ividedamongst coalition
members is similarly ignored for now. Thyeand coalition
is the setl of all agents. Often, the value of a coalition is
enhanced by the addition of a new participant, so the value
of the grand coalition is maximum amongst coalition values.
By rescaling, we may assume this valué.is

An imputationis a division of this unit of value amongst
the agents. The goal is typically to find an imputation which
is “fair” in the sense that agents which contribute more to
the grand coalition receive a larger share of the value of the
coalition. There are many ways to formalise the notion of
fairness. These are known salution conceptsin this pa-
per, we study three solution concepts: ttare the least
core, and thenucleolus

A weighted threshold ganis a coalitional gamé given
by a set of agentd = {1,...,n}, their non-negative
weightsw = {wy,...,w,}, and athresholdT’; we write
G = (I;w;T). For a coalitionS C I, its valuer(S) is
1if Y, .qw; > T, otherwise,(S) = 0. Without loss of
generality, we assume that the value of the grand coalition
{1,...,n}is 1. Thatis) ;. w; > T.

For a weighted threshold game, iamputationis a vector
of non-negative rational numbe(s,, . . ., p,), one for each
agentin/, suchthad,_, p; = 1. We refer top; as thepay-
off of agenti. We writew(.S) to denote) _,_ 5 w;. Similarly,

p(S) denotes ;¢ ;.

Given an imputatiop = (p1, ..., pn), theexcesg(p, S)
of a coalitionS underp is defined ap(S) — v(S). The
coreis a set of imputations defined as follows. An imputa-
tion p is in thecoreif it is the case that for everyg C I,
e(p,S) > 0. Informally, p is in the core if it is the case that
no coalition can improve its payoff by breaking away from
the grand coalition because its paypff5) according to the
imputation is at least as high as the vaiy&) that it would

get by breaking away.

The excess vectoof an imputationp is the vector
(e(p,S1),.-.,e(p,San)), WhereSy, ..., Son is a list of all
subsets off ordered so that(p, S1) < e(p,S2) < -+ <
e(p,San). In other words, the excess vector lists the ex-
cesses of all coalitions from the smallest (which may be
negative) to the largest. Thaucleolusis the imputation
(21,...,zy,) that has the lexicographically largest ex-
cess vector. Intuitively, the nucleolus is a good imputatio
because it balances the excesses of the coalitions, making
them as equal as possible. Itis easy to see that the nucleolus
is in the core whenever the core is non-empty. Furthermore,
the core is non-empty if and onlyif; > 0.

A natural relaxation of the notion of the core is tleast
core  We say that an imputatiop is in the e-core if
e(p,S) > —eforall S C I itisin the least core, if it is
in the e-core for some > 0 and thee'-core is empty for
anye¢ < e. Clearly, the least core is always non-empty and
contains the nucleolus.

Another solution concept for a coalitional game is the
Shapley valuelt is the imputatiorp, p; = ¢(i), with

>

S :1€SCI

(] = [sphrdst = 1)
1!

(i) = (¥ (S) = v(S\{i}))-

The Core and the Least Core

We start by considering the core — perhaps the best known
and most-studied solution concept in coalitional game the-
ory. Intuitively, the core of a coalitional game contains
imputations such that no sub-coalition could obtain a bet-
ter imputation for themselves by defecting from the grand
coalition. Asking whether the grand coalition is stablesthu
amounts to asking whether the core of the game is non-
empty.

Name EMPTYCORE.
Instance Weighted threshold gam{d; w; T').
Question Is the core empty?

The following theorem shows thatM®TYCORE is solv-
able in polynomial time, and that computing the nucleolus
can be done in polynomial time when the core is non-empty.

Theorem 1. The core of a weighted threshold gafie=
(I,{ws,...,wy},T)is non-empty if and only if there is an
agent; that is present in all winning coalitions, i.ei, €
Nu(s)=15. Moreover, if the core ofr is non-empty, then the
nucleolus ofG is given byx; = 1/kif i € N,(5)=15 and
x; = 0 otherwise, wheré = [{i : i € N,(g)=15}|.

Proof. The first part is straightforward, so we prove that
if the core of G is non-empty, then the imputatian de-
scribed in the statement of the theorem is indeed the nucle-
olus of G. Let M = {i i € Nygy=15}. Any impu-
tation (p1, ..., pn) that hasp; > 0 for some: ¢ M is not

in the core ofG, as there exists a sét with v(S) = 1,

i ¢ S, for which we haves(p, S) < —p;. Hence, as the
nucleolusx is always in the core, it satisfies, = 0 for

all i ¢ M. Now, consider a vectop with p;, = 0 for



i ¢ M, and suppose thai; # 1/k for somei € M.
Letj = argmin{p; | i € M}. We havep; < 1/k. Let
t=|{S v(S) = 1} + {S S C I\ M}. The
excess vectors fop andx start witht zeros, followed by
p; and1/k, respectively. Hence, the excess vectorpas
lexicographically smaller than the excess vectorsfor [

Remark 2. It is easy to check if there is a agent that is
present in all winning coalitions. Namely, for each agent
i, we check ifw(I \ {i}) > T; if this is not the case,
1€ mw(S)zTS-

Consider the following computational problems.

Name LEASTCORE.
Instance Weighted threshold gam@; w; T'), and rational
valuee > 0.
Question Is thee-core of(I; w; T') non-empty?
The smallest for which (G, ¢) is a “yes”-instance of
LEASTCORE corresponds to the least core®@f

Name IN-LEASTCORE.
Instance Weighted threshold gam@; w;T'), imputation

Pp.
Question Is p in the least core of[; w; T')?

Name CONSTRUCFLEASTCORE.
Instance Weighted threshold gam(d; w; T').
Output An imputationp in the least core ofl; w; T').

We now show that the problemsebSTCORE, IN-
LEASTCORE, and GNSTRUCFLEASTCORE are NP-hard.
We reduce from the well-known NP-completef®ITION
problem, in which we are given positive integess. . ., a,
such thafy"; | a;, = 2K, and asked whether there is a sub-
set of indices/ such thaf) _,_ ; a; = K (Garey & Johnson
1990, p.223).

Given an instancéus, . . ., a,; K) of PARTITION, let] =
{1,...,n,n + 1} be a set of agents. L& = (I;w;T)
be the Welghted threshold game with= K, w; = a; for
i =1,...,nandw,y; = K. We will use the following
Iemmas

Lemma 3. For a “yes™-instance of PARTITION, the least
core of G is its 2/3-core, and any imputationy =
(¢q1,---,qn+1) in the least core satisfieg, 1 = 1/3.

Proof. Consider the imputatiop given byp; = 33 fori =

1,...,n+1 (thisis a valid imputation, aE”*ll w; = 3K).
For any setS with v(S) = 1 we have} ,_sw; > K, so
Y icgPi = 1/3 ande(p, S) > —2/3; for any setS with
v(S) = 0 we havee(p, S) > 0. We conclude that the least
core ofG is contained in it2/3-core, i.e., the least core of
G is itse-core for some < 2/3.

On the other hand, for a “yes”-instance oAR¥ITION,
there are three disjoint coalitions ih that have valuel:
Sy =J,5 ={1,...,n}\ J,andS; = {n + 1}. Any
imputationp such thatp,,+1 # 1/3 hasp(S;) < 1/3 for
somei = 1,2,3 and hence(p, S;) < —2/3. Hence, any
imputationq that maximizes the minimum excess satisfies
gn+1 = 1/3. Consequently, the value efthat corresponds
to the least core satisfies= 2/3, and any imputation in the
least core hag, ;1 = 1/3. O

Lemma 4. For a “no’-instance of PARTITION, the least
core of G is its e-core for some& < 2/3 and any imputa-
tion q in the least core satisfieg, 1 > 1/3.

Proof. We will start with the imputatiop; = <7 defined in
the proof of the previous lemma, and modify it so as to en-
sure that for a new imputatiop', the excess of each coali-
tion is strictly greater than-2/3. The imputationp’ will
serve as a witness that the least core-ois its e-core for
e < 2/3. Consequently, for any imputatiaqin the least
core we have(q, S) > —2/3 foranyS C I. In particular,
takingS = {n + 1}, we obtaing,, 1 > 1/3.

The imputationp’ is defined as followsp; =p; —

fori=1,...,n, P, 1 = Pny1 + 6K
valid |mputat|on note tha} ., p; =

1
6nK
To see thap’ is a
> icrpi = 1, and

P = 3% L > 0. Now, consider any sef such that

l(S) 25 If K C {1,...,n}, as our game was constructed
from a “no”-instance of RRTITION, we havezies w; >
K + 1. Hence,

> vi= (
€S €S

Consequently(p’, S) > —2/3. On the other hand, it +
1 € S, we havep/(S) > % + 5, so againe(p’,5) >
—2/3. O

11
6nK 3 6K

Theorem 5. The problem4 EASTCORE, IN-LEASTCORE,
and CONSTRUCTFLEASTCORE are NP-hard.

Proof. By combining Lemmas 3 and 4, we conclude that
if we can decide whether th2/3 — 1/(6K)-core of G =
(I;w;T) is nonempty then we can correctly solver?1-
TION. Also, if we can construct a solution in the least core,
we can solve RRTITION by looking at its Iast component
qn+1- Finally, the imputatiorp, wherep; = 33, is in the
least core if and only if the gam@ was constructed from
a "yes’-instance of RRTITION. Hence, correctly deciding
whetherp is in the least core allows us to solvefTITION

as well. O

Pseudopolynomial time algorithm for the least core

The following theorem gives a pseudopolynomial time al-
gorithm for the problems GNSTRUCFLEASTCORE, IN-
LEASTCORE and LEASTCORE. This means that all three
problems can be solved in polynomial time if the weights
are bounded (at most polynomially largern, or (equiva-
lently) if they are represented in unary notation.

Theorem 6. If all weights are represented in unary, the
problemsCONSTRUCFLEASTCORE, IN-LEASTCORE and
LEAasTCOREare in P.

Proof. Consider the following linear program:

max C}
Pt tpa=1
p; >0foralli=1,...,n

> pi > Cforall J C I'suchthat) w; > T
il

1)

ieJ



This linear program attempts to maximize the minimum ex-
cess by computing the greatest lower bodndn the pay-
ment to each winning coalition (i.e., a coalition whose ltota
weight is at leasf’). Any solution to this linear program is
a vector of the formips, ..., p,, C); clearly, the imputation
(p1,-..,pn) is in the least core, which coincides with the
(1 —C)-core.

Unfortunately, the size of this linear program may be ex-
ponential inn, as there is a constraint for each winning
coalition. Nevertheless, we will now show how to solve
it in time polynomial inn and ), ; w;, by constructing
a separation oraclefor it. A separation oracle for a lin-
ear program is an algorithm that, given an alleged feasible
solution, checks whether it is indeed feasible, and if not,
outputs a violated constraint (Schrijver 2003). It is known
that a linear program can be solved in polynomial time as
long as it has a polynomial-time separation oracle. In our

problems of this type can be solved in polynomial time as
long as they have a polynomial-time separation oracle. We
will describe a subroutingl that, givenC', either outputs a
feasible solutiomp for C' — 4 or correctly solves the problem
for C. Our algorithm runsA4 for C = 0,4,24,...,1 and
outputse’ = 1 — C’, where(C" is the maximum value of’
for which A finds a feasible solution.

Clearly, we havee < 1 — C’. Now, letC* = 1 — ¢ be
the optimal solution to the original linear program and let
k* = max{k | k6 < C*}. Ask*d < C*, there is a feasible
solution fork*§. WhenA is givenk*4d, it either solves the
linear program correctly, i.e., finds a feasible solution fo
k*¢, or finds a feasible solution fdr*§ — §. In any case, we
haveC’ > (k* —1)6 > C* — 20,1.e.,1 — C' < e+ 20.

It remains to describe the subroutide Given aC' = k9,
it attempts to solve the linear program using the ellipsoid
method. However, whenever the ellipsoid method calls the

case, this means that we need an algorithm that given a pair separation oracle for some payoff vectarwe simulate it

((p1,-.-,pn),C), checks if there is a winning coalitios
suchthat,_; p; < C.

To construct the separation oracle, we will use dynamic
programming to determiné&, = min p(.J) over all win-
ning coalitions.J. If Py < C, then the constraint that
corresponds targmin,, ;> p(J) is violated. LetW =
Yierwi. Fork = 1,....nandw = 1,...,W, let
Zpw = min{p(J) | J C {1,...,k},w(J) = w}. Clearly,
we haveP) = min,—r,  w Tn-. It remains to show how
to computery, ,,. Fork = 1, we haver; ,, = p1 if w = wy
andz; ., = +oo otherwise. Now, suppose we have com-
putedzy ., for all w = 1,...,W. Then we can compute
Tht1,w ASMUN{ Tk 1, P41 + Thw—uw, ;- THhe running time
of this algorithm is polynomial im andW, i.e., in the size
of the input.

Now, consider the application of the linear program for a
weighted threshold gam@ = (I; w;T'). The constructed
imputationp is a solution for @NSTRUCFLEASTCORE
with instanceG. Also, the solution to EASTCORE with
instanceG, e should be “yes” iffe = C' — 1. The solution
to IN-LEASTCORE with instance(, p’ should be “yes” if
and only if every winning coalitiort’ C I hasp’(S) > C.
This can be checked in polynomial time using the separation
oracle from the proof of Theorem 6.

Approximation scheme for the least core

In this section, we show that the pseudopolynomial algo-
rithm of the previous section can be converted into an ap-
proximation scheme. More precisely, we construct an algo-
rithm that, given a gamé@ = (I; w;T') and & > 0, outputs
¢’ such that if the least core df is equal to itse-core then
e < € < €+ 26. The running time of our algorithm is
polynomial in the size of the input as well agd, i.e., itis
a fully polynomial additive approximation scheme. Subse-
guently, we show that it can be modified into a fully polyno-
mial multiplicative approximation scheme (FPTAS), i.e, a
algorithm that outputs’ satisfyinge < ¢/ < (1 + d)e.

Consider the linear program (1) in whichis some fixed
integer multiple ob and the goalis to find a feasible solution
for this value ofC or reportthan none exists. Itis known that

as follows. We set’ = §/n and round dowp to the near-
est multiple ofd’, i.e., setp, = max{jo’ | j&' < p;}. We
have0 < p, —p, < ¢'. Letz;; = max{w(J) | J C
{1,...,3},p'(J) = i¢'}. The valuese; ; are easy to com-
pute by dynamic programming. Considér= max{z;., |
i=1,...,(k—1)n—1}. Thisis the maximum weight of a
coalition whose total payoff undgr' is at mostc — § — ¢’.
Since payments increment b¥this is the maximum weight
of a coalition whose total payoff is less than — ¢. If
U < T, the payoff to each winning coalition undgf is
at leastC' — ¢; asp; > p;, the same is true fgp. Hencep
is a feasible solution fof’ — ¢, so.4 outputsp and stops.

If U > T, there exists a winning coalitiod such that
p'(J) < C — ¢ and hence(J) < C; moreover, this] can
be found using standard dynamic programming techniques.
This means that that we have found a violated constraint, i.e
successfully simulated the separation oracle and can con-
tinue with the ellipsoid method.

Remark 7. It is easy to verify that if the least core 6f =
(I;w;T) is its e-core, then we have > 1/|I|. This means
that the algorithm described above can be converted into an
FPTAS; we omit the details.

The Nucleolus
Consider the following computational problems:

Name NUCLEOLUS.
Instance Weighted threshold gani{d; w; T'), agent € 1.
Output The nucleolus payoff of agenin (I; w; 7).

Name |SZERO-NUCLEOLUS.

Instance Weighted threshold gam{d; w; T'), agent € 1.

Question Is the nucleolus payoff of agentin (I;w;T)
equal to0?

We will show that BZERO-NUCLEOLUS is NP-hard.
Clearly, this implies that NcLEoLUs is NP-hard as well.
We start with the following lemma.

Lemma 8. For weighted threshold games, if the Shapley
value of a agent is 0, his nucleolus payoff is 0 as well, i.e.,
¢(i) = 0 impliesz; = 0.



Proof. For the Shapley value of a agento be 0, it has to
be the case that(S) = v(S U {i}) forall S C I. Now,
suppose thab(i) = 0, butz; # 0, and consider the excess
vector forx. Lete(x,.S) be the first element of this vector;
clearly,v(S) = 1. Itis easy to see that¢ S: otherwise,
we would have/(S \ {i}) = 1 and moreover;(S \ {i}) =
z(S) — =z < z(S). Now, consider an imputatiog given
byqg = %, ¢ = x5 + ﬁ for j # 4. For any non-
empty coalitionT such that ¢ T we haveq(T) > z(T).
Moreover, asy; # 0, using the same argument as fgrwe
conclude that the first element of the excess veetqrT")
satisfiesi ¢ T'. Hence,

e(q,T) =q(T)—v(T) > z(T)—v(T) = e(x,T) > e(x, 5),
a contradiction with the definition of the nucleolus. O

Remark 9. The converse of Lemma 8 is not true. Consider
the coalitional game with = {1,2,3}, w = {3, 1, 1} and

T = %. Winning coalitions are those that contain agént
and at least one of agen?sand3. The Shapley valug(3) is
positive because there is a positive coalition from the ieoal
tion S = {1, 3} (see the definition af). However, by Theo-

rem 1, the nucleolus payoff, = 0.

Theorem 10. The problemlSZERO-NUCLEOLUS is NP-
hard.

Proof. As in the proof of Theorem 5, we construct a
weighted threshold game based on an instancea&TR
TION. Given an instancel = (a1, ...,a,; K) of PARTI-
TION, let G = (I;w;T) be the weighted threshold game
with7 ={1,....,.n,n+1},T = K+ 1, w,4+1 = 1, and
w; = a; fori = 1,... n. We will show thatx,,; # 0 if
and only if A is a “yes"-instance of RRTITION.

Suppose first tha#d is a “no”-instance of BRRTITION.
Consider any winning coalitiof C I suchthatn + 1 € S.
We havew(S) > K + 1. Moreover, ifw(S) = K + 1,
thenw(S\ {n+ 1}) = K, implying that there is a partition.
Hencew(S) > K +1, or, equivalentlyy (S\{n+1}) = 1.
We conclude that the Shapley value of thet 1)st agentis
0. By Lemma 8, this implies,,+1 = 0.

Now, suppose thatl is a “yes"-instance of ARTITION.
LetI’” = I — {n + 1} and letJ be a partition ofl’ sat-
isfying w(J) = w(I’ \ J) = K. Consider an imputa-
tion p with p,+; = 0. The setsS; = J U {n + 1} and
So = (I'\ J) U {n + 1} satisfyv(S;) = v(S2) = 1. As
Pn+1 = 0, we havep(S1) + p(S2) = p(J) +p(I"\ J) =1,
somin{e(p, S1), (p,S2)} < —1/2. That s, for any impu-
tation withp,, .1 = 0 the minimum excess is at mostl /2.

On the other hand, under the imputatipn= ;7= the pay-

off of each winning coalition is at Ieag‘ijl1 > 1/2,i.e.,for
this imputation the minimum excess is strictly greater than
—1/2. As we havemingcye(x,S) > mingcye(q,S), we
conclude that:,, 1 # 0. O

Remark 11. Theorem 10 implies that the probleducLE-
OLUS cannot be approximated within any constant factor
unless P=NP. More formally, it is not in the complexity class
APX (Ausielloet al. 1999, p.91) unless P=NP. The same
holds for the problem of computing the Shapley value.

Remark 12. We can use the construction in the proof of
Theorem 5 to show thdlucLEoLUSis NP-hard; however,

it does not imply the NP-hardnessleZERO-NUCLEOLUS.
Conversely, the proof of Theorem 10 does not immediately
imply that the least core-related problems are NP-hard.
Therefore, to prove that all of our problems are NP-hard,
we need both constructions.

Remark 13. While we have proved that the problems con-
sidered in this subsection are NP-hard, it is not clear
that they are in NP. Consider, for examplésSZERO-
NucLEoLus. To verify that the nucleolus payoff of an
agent; is 0, we would have to prove that there is an imputa-
tion x (the nucleolus) withx; = 0, and that any imputation

p with p; > 0 produces an excess vector that is lexicograph-
ically smaller than that ok. The latter condition involves
exponentially-long vectors.

Approximating the Nucleolus

Without loss of generality, we can assume that the sum of
the weights in a weighted threshold gamé.isVe will refer

to such a game asmormalisedweighted threshold game.
Note that any weighted threshold game is equivalentto some
normalised game.

For many normalised weighted threshold games consid-
ered in the literature, the vectar coincides with the nucleo-
lus. For example, consider the gedf constant-sungames.

A normalised weighted threshold garGe= (I; w; T') is in
Cif,foranyS C I, v(S)+v(I\S) = 1. (Peleg 1968) shows
the following. Supposé& = (I;w;T) € C. Letx be the
nucleolus forG and letG’ = (I;x;T). Then the nucleolus
of G’ is also equal t. (Wolsey 1976) shows a simlar result
for the setC’ of symmetricgames. A normalised weighted
threshold gamé&/ = (I; w; T) isinC’ if T = 1/2 and there
is a coalitionS with v(S) = v(I \ 5).

It is not true in general that the vecter coincides with
the nucleolus. It is also not true that is a good approxi-
mation to the nucleolus payaff. For example, in the game
considered in Remark 9 the nucleolus payments 0 but
w3 = i (so these are not related by a constant factor). The
nucleolus payment; can also exceed; by an arbitrary fac-
tor. For example, take an arbitrarily smalt> 0. Consider
the game withl = {1,2},w = {1-4,6},andT’ = 1—4/2.

By Theorem 1z = (0.5,0.5) soxz = 0.5. In any case, it is
clear from Corollary 11 thaty; cannot be a constant-factor
approximation to the nucleolus paymentof an individual
agenti, since that would imply P=NP.

In Theorem 20 we show that, for an appropriate sense of
approximation based aoalitionsrather than onndividual
agents the vectorw provides a goocpproximationto the
nucleolus. Our result applies to a large class of weighted
threshold games. We start with a simple lower bound on
nucleolus payments.

Lemma 14. LetG = (I; w;T) be a normalised weighted
threshold game. Wv(S) > T thenz(S) > T.

Proof. A winning coalitionS hase(w,S) = w(S) — 1 >
T — 1. The nucleolus maximizes the minimum payoff to a
winning coalition, see(x,S) > T — 1andx(s) >T. O



A minimalwinning coalition is a coalitiory with w(.S) >
T for which every proper subsét C S hasw(S’) < T.
We will now use Lemma 14 to show that the weight of any
minimal winning coalition is at most twice its nucleolus pay
off.

Lemma 15. LetG = (I; w;T) be a normalised weighted
threshold game. Suppose that every ageat/ hasw; <
T. LetS C I be a minimal winning coalition irG. Then
w(S) < 2z(9).

Proof. Leti be an agent irb. SincesS is minimal, w(S \
{i}) < T. Sow(S) < T4+w; < 2T'. The result now follows
from Lemma 14. O

We do not know whether there is a valdesuch ev-
ery minimal winning coalitionS of a normalised weighted
threshold game satisfie.S) < aw(S). However, it is easy
to see that this is true with = 2if T > 1/2 sincez(S) < 1
and, for a winning coalitiot$, w(S) > T > 1/2. So we get
the following observation.

Observation 16. Let G (I;w;T) be a normalised
weighted threshold game with > 1/2. LetS C I be a
winning coalition inG. Thenz(S) < 2w(S).

If T is less thari /2 but is relatively large compared to the
individual weights, the vectow is still a good approxima-
tion to the nucleolus.

Lemma 17. Consider a normalised weighted threshold
gameG = (I;w;T) that satisfiesv; < T, T > 1; for
some: < 1. For any such game, any minimal winning coali-

tion S C I satisfiesz(S) < 3w(S)

Proof. For any minimal winning coalitiory, we havew(S'\
{i}) < T forany: € S, sow(S) < T +w; < T(1 + ¢).
Now, fix a minimal winning coalitiort,. We havew(Sy) >
T, w(I\ Sy) >1—T(1+¢). We can construct a col-

lection oft = U;(Tl(}i;)J > 70t — 2 disjoint minimal
winning coalitions inl \ S. (For example, we can construct
these coalitions consecutively by adding agents to a curren
coalition one by one until the weight of the coalition under

construction becomes at ledbt) Let these coalitions be

Si,...,S:. Lemma 14 implies:(S;) > T fori =1,...,t.
Hence,x(So) <1 —#T < 2T — = +1 < 2T 4 ¢ =
3T < 3w(So). O

Remark 18. LetG = (I; w;T) be a normalised weighted
threshold game which satisfias < 72 for every agent
1. Then Lemma 17 applies with=T'.

Remark 19. By settinge = 1 in Lemma 17, we can obtain
thatz(S) < 3w(S) for T > 1/2 with the additional restric-
tion thatw; < T for all w;; considering the cas& > 1/2
separately using Observation 16 gives us a stronger result.

Lemma 15, Observation 16 and Lemma 17 give us the fol-
lowing theorem. The theorem shows that, for a wide class of
normalised weighted threshold games, the weight vestor
approximates the nucleolusin the sense that the payoff to
a minimal winning coalition only differs by at most a factor
of 3 in these two imputations.

Theorem 20. LetG = (I; w; T') be a normalised weighted
threshold game. Suppose that every agent/ hasw; < T.

If T > 1/2 then any minimal winning coalitiol§' satisfies
w(S)/2 < z(S) < 2w(S). If there is ane € (0,1] such
thatT > 1; and every agent satisfies; < 7' then any
minimal winning coalitionS satisfiesw(S)/2 < z(5) <
3w(S).
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