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Abstract

Over the past half decade, we have been exploring the use of
logic in the specification and analysis of computational eco-
nomic mechanisms. We believe that this approach has the
potential to bring the same benefits to the design and analysis
of computational economic mechanisms that the use of tem-
poral logics and model checking have brought to the specifi-
cation and analysis of reactive systems. In this paper, we give
a survey of our work. We first discuss the use ofcooperation
logicssuch as Alternating-time Temporal Logic (ATL ) for the
specification and verification of mechanisms such as social
choice procedures. We motivate the approach, and then dis-
cuss the work we have done on extensions toATL to support
incomplete information, preferences, and quantification over
coalitions. We then discuss is the use ofATL -like cooperation
logics in the development of social laws.

Introduction
In recent years, there has been a dramatic increase of in-
terest in the study and application ofeconomic mechanisms
in computer science and artificial intelligence (Sandholm
1999; Nisan & Ronen 1999). For example, auctions are a
well-known type of economic mechanism, used for resource
allocation, which have achieved particular prominence in
computer science (Krishna 2002; Cramton, Shoham, &
Steinberg 2006). There are a number of reasons for this
rapid growth of interest. The influence of multi-agent sys-
tems research is surely one (Bond & Gasser 1988; Weiß
1999; Wooldridge 2002), but perhaps more fundamentally, it
is increasingly recognised that a truly deep understandingof
many (perhaps most) distributed and networked systems can
only come after acknowledging that they have the character-
istics of economic systems, in the following sense. Consider
an online auction system, such as eBay (EBAY 2001). At
one level of analysis, this is simply a distributed system: it
consists of various nodes, which interact with one-another
by exchanging data, according to some protocols. Dis-
tributed systems have been very widely studied in computer
science, and we have a variety of techniques for engineering
and analysing them (see, e.g., (Ben-Ari 1990)). However,
while this analysis is of course legitimate, and no doubt im-
portant, it is surely missing a big, and very important part of
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the picture. The participants in such online auctions areself
interested. They are acting in the systemstrategically, in or-
der to obtain the best outcome for themselves that they can.
For example, the seller is typically trying to maximise sell-
ing price, while the buyer is trying to minimise it. Thus, if
we only think of such a system as a distributed system, then
our ability to predict and understand its behaviour is going
to be rather limited. We also need to understand it from an
economicperspective. In the area of multi-agent systems,
we take these considerations one stage further, and start to
think about the issues that arise when the participants in the
system are themselves computer programs, acting on behalf
of their users or owners (Wooldridge 2002).

A number of very natural issues arise if we start to con-
sider the design ofcomputational mechanisms(Rosenschein
& Zlotkin 1994; Sandholm 1999; Kraus 2001). In this paper,
we address ourselves to the following:

• How can we specify the desirable properties of computa-
tional mechanisms?

• How can we verify that these mechanisms behave as we
intended?

The starting point for our research is thatlogic has proven to
be an extremely successful and powerful tool in the specifi-
cation and analysis of protocols in computer science. There
is thus some reason for supposing that it might be of simi-
lar value in the specification and analysis of computational
mechanisms.Temporal logicshave been perhaps the most
successful formalism in the specification and verification
of conventional reactive and distributed systems (Emerson
1990), and the associated verification technology ofmodel
checkingfor temporal logics has proven to be enormously
successful (Clarke, Grumberg, & Peled 2000; Holzmann
2003). However, conventional temporal logics are not well
suited for expressing the properties of economic, game-like
systems. They are intended for expressing liveness and
safety properties, not for expressingstrategicproperties.

Our work over the past half decade has focused on the use
of cooperation logicsfor automated mechanism design and
analysis. Cooperation logics were developed independently
and more-or-less simultaneously by several researchers in
the late 1990s (Alur, Henzinger, & Kupferman 1997; Pauly
2002). As we shall see, although cooperation logics are in
fact descended from conventional temporal logics, they are



ideal for expressing the strategic properties of systems. Our
aims in this paper are, first, to motivate this research program
in more detail, and second, to survey the progress we have
made. Our work in this area is based around two directions,
and the paper is structured accordingly. In the following
section, we motivate and then introduce cooperation logics
for social choice mechanisms. We then go on to consider
how such logics can be used in the design ofsocial laws. We
then present some conclusions and future research issues.

Logic for Social Choice Mechanisms
Social choice mechanismsare a very general class of eco-
nomic mechanism (Arrow, Sen, & Suzumura 2002). So-
cial choice mechanisms are concerned with selecting some
particular outcome from a range of alternatives on behalf
of a collection of participants, known asagents. Typi-
cally, the agents have different preferences over the possi-
ble outcomes, and the mechanism considers these prefer-
ences when choosing the outcome.Voting proceduresare
examples of social choice mechanisms (Brams & Fishburn
2002). Perhaps the best known voting procedure is the “first
past the post” (FPTP) system, (also known as single win-
ner plurality voting), which is used in theUK for electing
political representatives. Here, the possible outcomes cor-
respond to the possible candidates, only one of which can
be elected; voters express their preferences by indicating
their most preferred candidate, and the mechanism states
that the selected outcome will be the one gaining the largest
number of votes. WhileFPTP is simple to understand and
implement, it has of course many well-documented draw-
backs. For example, if there are more than two candidates,
then the outcome selected may not in fact have an overall
majority, meaning that a majority of voters would prefer
some other outcome. Moreover, the mechanism is prone
to strategic manipulation: for example, agents can some-
times benefit by voting against their true preferences if they
believe their most preferred outcome is unlikely to win over-
all. Other social choice mechanisms have been proposed in
an attempt to overcome the limitations of simple voting pro-
cedures such asFPTP – examples include the Borda count
and single transferable vote. The study of such mechanisms
has traditionally been the domain ofsocial choice theoryin
economics (Arrow, Sen, & Suzumura 2002). Perhaps the
most important result in social choice theory, due to Kenneth
Arrow, is a negative one: any social choice mechanism in-
volving more than two alternative outcomes must fail to sat-
isfy one of three basic axioms for such protocols (Campbell
& Kelly 2002)1. Another key negative result, the Gibbard-
Satterthwaite impossibility theorem, says that in any non-
dictatorial social choice mechanism (i.e., in any mechanism
that is not “controlled” by a single agent), it is possible for
an agent to benefit by voting strategically, i.e., voting against
its preferences (Arrow, Sen, & Suzumura 2002). Although
at first sight these results suggest that the further develop-
ment of social choice mechanisms must be a quixotic enter-
prise, it turns out that useful mechanisms can in practice be

1Formally, the criteria are: Pareto optimality, independence of
irrelevant alternatives, and non-dictatorship.

developed for many settings, for example by modifying or
relaxing some of the conditions of Arrow’s theorem (Camp-
bell & Kelly 2002, p.52).

Recently, there has been substantial interest in social
choice mechanisms from within the computer science com-
munity. There are several reasons for this interest; for exam-
ple:

• The multi-agent systems field is concerned with the prob-
lem of building software agents that can interact with one-
another in order to achieve goals, typically on behalf of
users (Wooldridge 2002). Such interaction frequently in-
volves the agentsautonomously reaching agreements with
one another. This then raises the question of what proto-
cols the agents will use to decide how to reach agreement
with one another. The fact that the participants will be
softwareagents (rather than humans) raises a rather dif-
ferent set of concerns to those that arise when considering
the use of mechanisms by humans. For example, an obvi-
ous question is how computationally hard it is for an agent
to determine how to vote so as to obtain the best possible
outcome for itself, and the associated question of whether
it is possible to design a social choice mechanism that is
too computationally complex to manipulate in this way –
see, e.g., (Conitzer 2006) for an example of such issues.

• Given the current international interest in e-government,
and in particular the possibility of increased public in-
volvement in the democratic process via the Internet, the
design of appropriate social choice mechanisms for such
scenarios has become of interest. A typical issue here is
that of authentication: if a member of the public is regis-
tering their vote via the Internet, how can we ensure that
the individual registering the vote really is who they pur-
port to be? Moreover, how can an individual verify that
her vote was indeed counted, without making public the
votes of others?

It is common to refer to social choice mechanisms as “pro-
tocols”, since they involve a number of parties exchang-
ing messages in certain well-defined sequences. However,
whereas protocol designers are typically concerned with
such issues as deadlock-freeness, mutual exclusion over
shared resources, and guaranteed receipt of messages, in an
economic mechanism we are also, and primarily, concerned
with a higher level set of issues, relating to thestrategic
behaviourof the participants. That is, we assume that the
participants in the mechanism will always choose to act in
their best interests, and ask what then follows. This im-
plies the participants will take into account howother par-
ticipants will act in the mechanism, under the assumption
that they too are acting in their best interests. Ultimately,
such strategising may lead to behaviours such as participants
with similar interests colluding with one another, misrepre-
senting their actual preferences, or even being deliberately
deceitful, if it seems this ultimately leads to some benefit for
themselves. Thus, when designing mechanisms for software
agents it is of course essential to consider protocol-levelis-
sues such as deadlock freeness; but the main issues one faces
stem from strategic considerations. The fact that we must
take account of strategic concerns, in addition to protocol-



level issues, makes social choice mechanisms particularly
hard to design and analyse.

Although the mathematical foundations of social choice
mechanisms have been studied within the game theory com-
munity for some time, their treatment ascomputational ob-
jects, and in particular, their formal specification and auto-
mated verification was not considered until recently. An im-
portant step forward in this regard came with the develop-
ment ofcooperation logicssuch as Alternating-time Tem-
poral Logic (ATL ) (Alur, Henzinger, & Kupferman 2002) for
representing the properties of strategic interaction in multi-
agent systems, and the realisation by Marc Pauly that such
cooperation logics could be used to naturally capture the re-
quirements of many social choice mechanisms.

ATL emerged from the use of Computation Tree Logic
(CTL) for the specification and verification of reactive sys-
tems (Emerson 1990).CTL is a temporal logic that is in-
terpreted over tree-like structures, in which nodes repre-
sent time points and arcs represent transitions between time
points. In distributed/reactive systems applications, the set
of all paths through a tree structure is interpreted as the set of
all possible computations of a system.CTL combinespath
quantifiers“A” and “E” for expressing that a certain series
of events will happen on all paths and on some path respec-
tively, with tense modalitiesfor expressing that something
will happen eventually on some path (♦), always on some
path ( ) and so on. Thus, for example, by usingCTL-like
logics, one may express properties such as “on all possible
computations, the system never enters a fail state”, which is
represented by theCTL formulaA ¬fail.

Although they have proven to be enormously useful in the
specification and verification of reactive systems (Clarke,
Grumberg, & Peled 2000), logics such asCTL are of lim-
ited value for reasoning about systems in which strategic be-
haviour is of concern. The kinds of properties we wish to
express of such systems typically relate to thestrategic pow-
ers that system components have. For example, we might
wish to express the fact that “agents1 and2 can cooperate
to ensure that, no matter what agents 3 and 4 do, the sys-
tem never enters a fail state”. It is not possible to capture
such statements usingCTL-like logics. The best one can do
is either state that something will inevitably happen, or else
that it may possibly happen:CTL-like logics thus have no
notion of agency. Alur, Henzinger, and Kupferman devel-
opedATL in an attempt to remedy this deficiency. The key
insight inATL is that path quantifiers can be replaced byco-
operation modalities: the ATL expression〈〈C〉〉ϕ, whereC
is a group of system components (agents), expresses the fact
thatC can cooperate to ensure that, no matter how other sys-
tem components behave,ϕ will result. Thus〈〈C〉〉ϕ captures
thestrategic ability ofC to bring aboutϕ. So, for example,
the fact that “agents1 and2 can ensure that the system never
enters a fail state, no matter what agents3 and4 do” may be
captured inATL by the following formula:

〈〈1, 2〉〉 ¬fail.

Pauly’s insight was that theATL cooperation modality
construct can be used to express the desirable properties
of social choice mechanisms. To see how this works, con-

sider the following informal requirements for a simple social
choice mechanism (Pauly 2001):

Two individuals,A andB, must choose between two
outcomes,p andq. We want a mechanism that will al-
low them to choose which will satisfy the following re-
quirements: We want an outcome to be possible – that
is, we want the two agents to choose, collectively, either
p or q. We do not want them to be able to bring about
both outcomes simultaneously. Finally, we do not want
either agent to be able to unilaterally dictate an out-
come – we want them both to have “equal power”.

These requirements may be formally and naturally repre-
sented usingATL , as follows:

〈〈A,B〉〉 gp (1)

〈〈A,B〉〉 gq (2)

¬〈〈A,B〉〉 g(p ∧ q) (3)

¬〈〈A〉〉 gp (4)

¬〈〈B〉〉 gp (5)

¬〈〈A〉〉 gq (6)

¬〈〈B〉〉 gq (7)
Property (1) states thatA andB can collectively choosep,
while (2) states that they can chooseq; (3) states that they
cannot choosep andq simultaneously; and properties (4)–
(7) state that neither agent can dictate an outcome.

Now, once we have such a formal specification of the re-
quirements of a mechanism in this way, we can start to ap-
ply the apparatus of automated reasoning developed within
computer science andAI to reason aboutand synthesise
mechanisms:
• The problem ofsynthesisinga mechanism that satisfies

propertiesϕ reduces to aconstructive proof of satisfi-
ability for ϕ: given some requirementsϕ, again ex-
pressed usingATL , try to find some mechanismM such
thatM |=ATL ϕ; if we can exhibit such anM , then
this will serve as our desired mechanism; if there is
no suchM , then announce that the no mechanism cor-
rectly implements the specification. The satisfiability
problem forATL is EXPTIME-complete (Drimmelen 2003;
Waltheret al. 2006), which means that synthesis in this
way is going to be computationally costly.

• The problem of checking whether a mechanismM sat-
isfies propertyϕ, whereϕ is expressed using the lan-
guage ofATL as in formulae (1)–(7), above, reduces to a
model checking problem: check whetherM |=ATL ϕ, cf.
(Clarke, Grumberg, & Peled 2000). Alur and colleagues
demonstrated that, for anexplicit staterepresentation of
models, (i.e., where we “explicitly enumerate” the states
of a model in the input), the model checking problem for
ATL is PTIME-complete, and hence tractable (Alur, Hen-
zinger, & Kupferman 2002); this is usually interpreted as
a positive result. However, if we assume a representa-
tion of models such as those actually used byATL model
checkers (Aluret al. 1998), then the complexity of model
checking rises dramatically – it is in fact just as hard as the
satisfiability problem (Hoek, Lomuscio, & Wooldridge
2005).



This approach – specifying the desirable properties of a
mechanism using such a logic – is theLogic for Automated
Mechanism Design and Analysisparadigm, of which the first
contours were sketched in (Pauly & Wooldridge 2003). In
this paper, a number of social choice mechanisms were for-
mally specified usingATL , and existingATL model check-
ing tools (Alur et al. 1998) were used to formally – and
automatically – analyse properties of candidate mechanisms
with respect to these specifications. For example, consider
the following mechanism, intended to permit the agents to
select between the outcomes in accordance with these re-
quirements.

The two agents vote on the outcomes, i.e., they each
choose eitherp or q. If there is a consensus, then the
consensus outcome is selected; if there is no consensus,
(i.e., if the two agents vote differently), then an outcome
p or q is selected non-deterministically.

Notice that, given this simple mechanism, the agents re-
ally can collectively choose the outcome, by cooperating. If
they do not cooperate, however, then an outcome is chosen
for them.

Having formally set out the desirable properties that we
wish a mechanism to satisfy, and having described a mecha-
nism that we believe satisfies these properties, our next step
is to formally verify that the mechanism does indeed sat-
isfy them. We do this via model checking: we express the
mechanism as a model suitable for theATL model checking
systemMOCHA, and then, usingMOCHA, we check whether
the requirements are realised in this model.

A MOCHA model of the mechanism is given in Figure 1.
While space restrictions preclude a detailed introductionto
the modelling language ofMOCHA, it is nevertheless worth
briefly describing the key features of this representation.We
model the scenario via three agents, which inMOCHA termi-
nology are calledmodules:

• AgentA andAgentB correspond to theA andB in our
scenario. Each agent controls (i.e., has exclusive write
access to) a variable that is used to record their vote. Thus
voteA records the vote ofAgentA, where a value of
false in this variable means voting for outcomeP, while
true implies voting forQ. The “program” of each agent
is made up of two remaining guarded commands, which
simply present the agent with a choice of voting either
way.

• TheEnvironment module is used to model the mech-
anism itself. This module simply looks at the two votes,
and if they are the same, sets the variableoutcome to
be the consensus outcome; if the two votes are different,
then the guarded commands definingEnvironment’s
behaviour say that an outcome will be selected non-
deterministically.

Notice that in translating this simple mechanism in a form
suitable forMOCHA, it has not been possible to remain en-
tirely neutral with respect to all issues. For example, the
way we have coded the mechanism means that it is in prin-
ciple possible for one agent to see another agent’s vote (i.e.,

-- voteA == false ... agent A votes for outcome P

-- voteA == true ... agent A votes for outcome Q

module AgentA

interface voteA : bool

atom controls voteA

init update

[] true -> voteA’ := false

[] true -> voteA’ := true

endatom

endmodule

-- voteB == false ... agent B votes for outcome P

-- voteB == true ... agent B votes for outcome Q

module AgentB

interface voteB : bool

atom controls voteB

init update

[] true -> voteB’ := false

[] true -> voteB’ := true

endatom

endmodule

-- outcome == false ... P is selected

-- outcome == true ... Q is selected

module Environment

interface outcome : bool

external voteA, voteB : bool

atom controls outcome awaits voteA, voteB

init update

-- if votes are the same, go with selected outcome

[] (voteA’ = voteB’) -> outcome’ := (voteA’ & voteB’)

-- otherwise select outcome non-deterministically

[] ∼(voteA’ = voteB’) -> outcome’ := true

[] ∼(voteA’ = voteB’) -> outcome’ := false

endatom

endmodule -- Environment

System := (AgentA || AgentB || Environment)

Figure 1: A simple social choice mechanism, defined in the
ReactiveModules language of the MOCHA model checker.

votes are common knowledge), even though, in the imple-
mentation given here, agents do not make any use of this
information. The informal description of the mechanism –
and indeed, the original requirements – said nothing about
whether votes (and hence preferences) should remain hid-
den or should be common knowledge, and in fact, we could
have coded the scenario in such a way that an agent’s vote
was visible only to theEnvironment module. But the
point is that we have been forced to make a commitment
one way or the other by the need to code the scenario. It is
of course likely that in more sophisticated (and realistic)sce-
narios, we would desire votes to remain private. We discuss
this issue in more detail below.

Having captured the mechanism in the modelling lan-
guage ofMOCHA, we can use a model checker to check that
the desired properties do actually hold. And indeed they do.

It should be clear to readers familiar with social choice



theory that we are not too far away from the kinds of proper-
ties that Arrow and Gibbard-Satterthwaite deal with in their
famous theorems. However, we can onlyexplicitly capture
properties such as dictatorship using “vanilla”ATL . In the
following sub-sections, we shall see some of the extensions
to ATL that we have been developing to allow other proper-
ties to be naturally represented.

Incomplete Information
Incomplete information plays a role in most mechanisms.
For example, in a sealed bid auction, the fact that I do not
know what you are bidding (and you do not know what I am
bidding) is an essential aspect of the mechanism. It is there-
fore very natural to considerepistemicextensions toATL .
Based on the type of epistemic logic popularised inAI by
Fagin-Halpern-Moses-Vardi (Faginet al. 1995), we devel-
oped and investigated epistemic extensions toATL (Hoek &
Wooldridge 2002; 2003b; 2003a). The first line of attack we
followed was to simply add epistemic modalitiesKi for each
agenti to ATL : a formulaKiϕ is intended to express the fact
that agenti knowsϕ. The resulting language,ATEL, is ex-
tremely powerful and very natural for expressing the proper-
ties of communicating systems. For example, the following
formula expresses thata can communicate its knowledge of
ϕ to b:

Kaϕ→ 〈〈a〉〉 gKbϕ

As another example, consider a security protocol, in which
agentsa and b share some common secret (a keySab for
instance), what one typically wants is the following, which
expresses thata can send private information tob, without
revealing the message to another agentc:

Kaϕ ∧ ¬Kbϕ ∧ ¬Kcϕ ∧ 〈〈a, b〉〉 g(Kaϕ ∧Kbϕ ∧ ¬Kcϕ)

Knowledge pre-conditions, of the type introduced into the
theoretical foundations ofAI planning by Moore (Moore
1990), are also very naturally expressed inATEL. The fact
that knowledge ofψ is a necessary pre-condition to be able
to achieveϕ is represented by the following.

〈〈a〉〉 gϕ→ Kaψ

Of course, as Moore’s seminal analysis shows, the interac-
tion between knowledge and ability is rather complex and
subtle, and some of the issues raised by Moore are reviewed
in the context ofATEL in (Jamroga & van der Hoek 2004).

A detailed case study, in which we show how epistemic-
ability properties may be model checked, is given in (Hoek
& Wooldridge 2003a).

Preferences
We don’t get very far in the study of mechanisms without
some way of dealing withpreferences. Of course, itis pos-
sible to represent preferences in “vanilla”ATL , but not very
elegantly. We have to make use of the propositional logic
machinery available in the language, for example by intro-
ducing propositions of the formui,x, with the intended inter-
pretation that in the current state, agenti gets utilityx. This

is not a very attractive approach (Benthem 2002). Unfortu-
nately, the logical representation of preferences is a ongoing
research area, and there is no universally accepted approach:
we have been investigating a number of alternatives. In (van
Otterloo, Hoek, & Wooldridge 2004), we considered an op-
erator[C : ϕ]ψ, with the intended reading “if the agentsC
preferϕ, and act accordingly, thenψ follows”. It was shown
how this preference operator could be used to naturally cap-
ture properties of mechanisms such as “any coalition of size
greater thann which prefersϕ can bring aboutϕ”. How-
ever, this assumes that the preferences ofC are made public,
while we might want to consider cases where an agent does
not publically disclose its preferences, or falsely announces
them. In (Agotnes, van der Hoek, & Wooldridge 2006a),
we developed a logic intended for reasoning about coali-
tional games without transferable utility, which combined
an ATL -style ability operator with a direct representation of
preferences over outcomes, of the form(ω1 ≻i ω2), mean-
ing agenti prefers outcomeω1 overω2; it was shown how
these constructs were sufficient to characterise properties of
coalitional games such as core non-emptiness (cf. (Osborne
& Rubinstein 1994)). Finally, in (Agotnes, van der Hoek,
& Wooldridge 2007c), we developed a formalism explicitly
intended to support reasoning about Arrovian properties of
social choice mechanisms, and Arrow’s theorem has a di-
rect and succinct syntactic characterisation as an axiom of
the logic. The logic provides for (modal) quantification over
alternatives and preference profiles, although it is arguably
not a “natural” formalism for humans to read. We should
emphasise that, although a lot of research has been done in
this area, there is still as yet no entirely satisfactory wayof
representing preferences within anATL -like formalism, and
this topic remains the subject of ongoing research.

Quantification

Expressing many interesting properties of mechanisms re-
quiresquantificationover coalitions. For example, consider
the following property: “agenti is a member of every coali-
tion that can achieveϕ”. We can represent this inATL , as
follows:

∧

C

(〈〈C〉〉 gϕ) → ¬〈〈C \ {i}〉〉 gϕ

We thus use conjunction as a universal quantifier. The prob-
lem with this formulation is that it results in a formula thatis
exponentially long in the number of agents in the system. An
obvious solution would be to extendATL with a first-order-
style apparatus for quantifying over coalitions. In such a
quantifiedATL , one might express the above by the follow-
ing formula:

∀C : 〈〈C〉〉♦ϕ→ (i ∈ C)

However, adding quantification in such a naive way leads to
undecidability over infinite domains (using basic quantifica-
tional set theory we can define arithmetic), and very high
computational complexity even over finite domains. The
question therefore arises whether we can add quantification



to cooperation logics in such a way that we can express use-
ful properties of cooperation in gameswithout making the
resulting logic too computationally complex to be of prac-
tical interest. In (Agotnes, van der Hoek, & Wooldridge
2007b), we answered this question in the affirmative. We in-
troducedQuantified Coalition Logic, which allows a useful
but restricted form of quantification over coalitions. InQCL,
we replace cooperation modalities〈〈C〉〉 with expressions
〈P 〉ϕ and[P ]ϕ; here,P is apredicate over coalitions, and
the two sentences express the fact thatthere exists a coali-
tionC satisfying propertyP such thatC can achieveϕ and
all coalitions satisfying propertyP can achieveϕ, respec-
tively. Thus we add a limited form of quantificationwithout
the apparatus of quantificational set theory. The resulting
logic, QCL, is exponentially more succinct than the corre-
sponding fragment ofATL , while being computationally no
worse with respect to the key problem of model checking.

To see howQCL works, consider specifyingmajority vot-
ing:

An electorate ofn voters wishes to select one of two
outcomesω1 andω2. They want to use a simple major-
ity voting protocol, so that outcomeωi will be selected
iff a majority of then voters state a preference for it.
No coalition of less than majority size should be able
to select an outcome, andanymajority should be able
to choose the outcome (i.e., the selection procedure is
not influenced by the “names” of the agents in a coali-
tion).

Letmaj(n) be a predicate over coalitions that is satisfied if
the coalition against which it is evaluated contains a majority
of n agents. For example, ifn = 3, then coalition{1, 3}
would satisfy the predicate, as would coalitions{2, 3} and
{1, 2}, but coalitions{1}, {2}, and{3} would not. We can
express the majority voting requirements above as follows.
First: every majority should be able to select an outcome.

([maj(n)]ω1) ∧ ([maj(n)]ω2)

Second: no coalition that is not a majority can select an out-
come.

(¬〈¬maj(n)〉ω1) ∧ (¬〈¬maj(n)〉ω2)

Simple though this example is, it is worth bearing in mind
that its expression inATL is exponentially long inn.

Succinct Representations
ATL does not have much to say about theorigins of an
agent’s powers. If we consider specific models for where
an agent’s powers come from, then we end up with sys-
tems closely related toATL , but with some rather differ-
ent properties. We considered one such variation in (Hoek
& Wooldridge 2005b), where we modelled a system by
supposing that each agent in the system controlled a set
of propositions. The powers of an agent, and the coali-
tions of which it is a member, derive from the possible as-
signments of truth or falsity that it can give to the propo-
sitions under its control. The resulting logic was shown
to be much simpler thanATL . In (Hoek & Wooldridge

2005a), we considered a variation of this in which it is pos-
sible for agents totransfer controlof the propositions they
control to other agents. In (Wooldridge & Dunne 2004;
Agotnes, van der Hoek, & Wooldridge 2006b; Wooldridge
& Dunne 2006), we considered the issue of how to represent
the semantic structures underpinning logics such asATL , and
in particular, we developed a representation for them based
on propositional logic.

Logic for Social Laws
It is often implicitly assumed that, when we come to con-
struct a mechanism, we have complete freedom to design the
mechanism, starting with a blank slate. In practice, of course
this is rarely the case: we have to deal withlegacysystems.
In this section, we review our work on the design of mech-
anisms for use in settings where we aregiven a pre-existing
system in which the mechanism must operate. In AI , this
idea was introduced in thesocial lawsparadigm of Shoham,
Tennenholtz, and Moses (Shoham & Tennenholtz 1992;
Moses & Tennenholtz 1995; Shoham & Tennenholtz 1997).
A social law can be understood as a set of rules imposed
upon a multiagent system with the goal of ensuring that
some desirable behaviour will result. Social laws work by
constrainingthe behaviour of the agents in the system – by
forbiddingagents from performing certain actions in certain
circumstances.

In (Hoek, Roberts, & Wooldridge 2007), we investigated
the use ofATL for specifying the desirable properties of so-
cial laws. The idea is that the designer of a social law will
have some objective in mind, which they desire the social
law to achieve. We explored extensions to the Shoham, Ten-
nenholtz, and Moses social law model in which this objec-
tive was expressed inATL . In so doing, we could explicitly
define social laws in which the objective was to ensure that
agents in the system had “rights” which would be preserved
by the social law. We showed how, in some cases, it was pos-
sible to view the social law synthesis problem as one ofATL
model checking. We considered social laws with epistemic
ATL objectives in (Hoek, Roberts, & Wooldridge 2005).

In (Wooldridge & van der Hoek 2005), we introduced a
variant of ATL calledNormativeATL , which was intended
to directly support reasoning about social laws. Normative
ATL replaces cooperation modalities〈〈C〉〉 with expressions
〈〈η : C〉〉ϕ, whereη is a social law, ornormative system,
C is a coalition, andϕ is a sentence of the logic. The in-
tended interpretation of〈〈η : C〉〉ϕ is that operating within
the context of the normative systemη, coalitionC have the
ability to bring aboutϕ; more precisely, thatC have a win-
ning strategy forϕ, where this strategy conforms to the stric-
tures of the normative systemη. We showed how this logic
could be used to reason about normative systems, and how
it could be used in the logical analysis of social contracts.
Crudely, the term “social contract” refers to the collection
of norms or conventions that a society abides by. These
norms serve to regulate and restrict the behaviour of citizens
within a society. The benefit of a social contract is that it pre-
vents mutually destructive behaviours. However, there are
many apparent paradoxes associated with the social contract,
not the least being that of why a rational, self-interested



agent should choose to conform to the social contract, when
choosing to do otherwise might lead to a better individual
outcome; the problem being that if everyone reasons this
way (and as rational agents, they should), then nobody con-
forms to the social contract, and its benefits are lost. There
have been several game theoretic accounts of the social con-
tract, which attempt to understand how a social contract can
work in a society of self-interested agents (Binmore 1994;
1998); our work was an attempt to give a logical account.
We further developed these ideas in (Agotneset al. 2007).

In (Agotnes, van der Hoek, & Wooldridge 2007a), we
combined ideas from our logic-based social law design ap-
proach with ideas from game theoretic mechanism design.
For example, we showed that the problem of designing a so-
cial law such that everybody participating in the social law
represents a Nash equilibrium isNP-complete.

Conclusions
We believe that the use of logic for automated mechanism
design and analysis has the potential to bring the same
benefits to the design and analysis of computational eco-
nomic mechanisms that the use of temporal logics and model
checking have brought to the specification and analysis of
reactive systems. In this paper, we have surveyed some of
our work in this area over the past five years. We are still in
the early stages of this research; trying to identify the issues,
and tentatively proposing solutions to overcome the hurdles
we encounter. By analogy withAI planning, we are proba-
bly still living in the blocks world. Nevertheless, we believe
there is every reason to be optimistic about this research di-
rection, and we hope that, after reading this paper, you will
be as excited about it as we are.
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