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Abstract
In a yes/no voting game, a set of voters must determine
whether to accept or reject a given alternative. Weighted vot-
ing games are a well-studied subclass of yes/no voting games,
in which each voter has a weight, and an alternative is ac-
cepted if the total weight of its supporters exceeds a certain
threshold. Weighted voting games are naturally extended to
k-vector weighted voting games, which are intersections of k
different weighted voting games: a coalition wins if it wins
in every component game. The dimensionality, k, of a k-
vector weighted voting game can be understood as a mea-
sure of the complexity of the game. In this paper, we analyse
the dimensionality of such games from the point of view of
complexity theory. We consider the problems of equivalence,
(checking whether two given voting games have the same set
of winning coalitions), and minimality, (checking whether a
given k-vector voting game can be simplified by deleting one
of the component games, or, more generally, is equivalent
to a k′-weighted voting game with k′ < k). We show that
these problems are computationally hard, even if k = 1 or all
weights are 0 or 1. However, we provide efficient algorithms
for cases where both k is small and the weights are polyno-
mially bounded. We also study the notion of monotonicity in
voting games, and show that monotone yes/no voting games
are essentially as hard to represent and work with as general
games.

Introduction
Computational aspects of social choice theory have been
increasingly studied over the past decade (Endriss & Lang
2006). This growth of interest is in part due to the intrigu-
ing possibility that computational complexity may provide a
barrier to the strategic manipulation of voting systems, and
hence provide a “solution” to negative results such as the
Gibbard-Satterthwaite theorem (Bartholdi, Tovey, & Trick
1989). Yes/no voting games are one of the most important
classes of social choice mechanisms. A yes/no voting game
(hereafter, “yes/no game”) is one in which a set of voters
must determine whether to accept a particular alternative
(e.g., a new law or a change to tax regulations) or whether
to continue with the status quo (Taylor & Zwicker 1993;
1999). The decision making processes in most govern-
ments and political bodies can be understood as yes/no vot-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing systems. Despite their self-evident real-world impor-
tance, yes/no games have received comparatively little atten-
tion from the multi-agent systems and computational social
choice communities. This is perhaps because, strategically,
they are rather simple: for example, since there are only two
outcomes in such a game (“yea” or “nay”), they do not fall
prey to strategic manipulation of the form characterised by
Gibbard-Satterthwaite. Nevertheless, they present several
interesting challenges for multi-agent systems research, per-
haps the most importance of which is the problem of finding
representations for such games that strike a useful balance
between succinctness and tractability.
Weighted voting games are one widely-used and well-

studied subclass of yes/no games, in which each voter has
a weight, and an alternative is accepted if the total weight of
its supporters exceeds a certain threshold. The complexity
of problems associated with this representation were stud-
ied in (Deng & Papadimitriou 1994; Elkind et al. 2007).
However, this representation is not complete: there are
yes/no games that cannot be represented as weighted vot-
ing games. A natural generalisation of weighted voting
games that is complete in this sense are k-vector weighted
voting games. A k-vector weighted voting game is an in-
tersection of k different weighted voting games: a coali-
tion wins if it wins in every component game. Many real
world political decision-making bodies can be understood
as k-vector weighted voting games (Bilbao et al. 2002;
Taylor & Zwicker 1999). The dimensionality, k, of a k-
vector weighted voting game can be understood as a mea-
sure of the inherent complexity of the game. In this paper,
we analyse dimensionality from a complexity-theoretic per-
spective. Specifically, we consider the problems of equiva-
lence, (checking whether two given voting games have the
same set of winning coalitions), and minimality (checking
whether a given k-vector weighted voting game can be sim-
plified by deleting one of the component games, or, more
generally, is equivalent to a k′-vector weighted voting game
with k′ < k). We show that these problems are computa-
tionally hard, even if k = 1 or all weights are 0 or 1. How-
ever, we provide efficient algorithms for these problems for
cases where both k is small and the weights are polynomially
bounded. We also studymonotonicity: our results imply that
monotone voting games are essentially as hard to represent
and work with as general voting games.
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Yes/No Voting Games
Formally, we can understand a yes/no voting game as a pair
Y = 〈N,W〉, where N = {1, . . . , n} is the set of voters, and
W ⊆ 2N is the set of winning coalitions, with the intended
interpretation that, if C ∈ W, then C would be able to deter-
mine the outcome (either “yea” or “nay”) to the question at
hand, should they collectively choose to.
In some (though not all) domains, it is natural to require

that a game is monotone, i.e., if C1 ⊆ C2 and C1 ∈ W
then C2 ∈ W. In what follows, we explicitly mention which
of our results are for monotone games, and which ones are
for general games. As a rule, our hardness results still hold
when restricted to the class of monotone games, whereas our
algorithms work correctly for general games.
We identify each C ∈ 2N with a string xC ∈ {0, 1}n in

the natural way — the j’th element of xC is a 1 iff j ∈ C.
Similarly, Cx denotes the coalition associated with string x
under this bijection. We will often abuse notation and useW
to denote the set of such binary strings corresponding to the
set of winning coalitions.
An obvious issue now arises: the naive representation

of W (explicitly listing all winning coalitions) is of size
O(2|N|), which is not realistic in practice. So, then, how
do we succinctly represent any given yes/no game, and in
particular, the set W of winning coalitions. That is, can we
find representations ofW whose size is polynomial in |N|?

Weighted Voting Games
It is possible to represent certain types of yes/no voting game
succinctly. Weighted voting games are a well known exam-
ple (Taylor & Zwicker 1993). A weighted voting game M
is a structure M = 〈N,w1, . . . ,wn, q〉 where N is the set of
voters, wi ∈ R is the weight of voter i ∈ N, and q ∈ R
is the quota of the game. A coalition C is then deemed to
be winning if

∑
i∈C wi ≥ q. Given a weighted voting game

M = 〈N,w1, . . . ,wn, q〉, the corresponding yes/no game YM
is thus 〈N, {C : C ⊆ N &

∑
i∈C wi ≥ q}〉. The complexity

of weighted voting games was originally studied in (Deng
& Papadimitriou 1994), and more recently in (Elkind et al.
2007).
Weighted voting games are mathematically simple ob-

jects, and are widely used in the real world. However, they
are not a complete representation for yes/no games: there ex-
ist yes/no games Y for which there exists no weighted vot-
ing game M such that Y = YM . (Consider a yes/no game
in which the winning coalitions are exactly those contain-
ing an odd number of voters; it is easy to prove that such
a game cannot be represented by a weighted voting game.)
However, k-vector weighted voting games are a natural gen-
eralisation of weighted voting games which are complete in
this sense (Taylor & Zwicker 1993; 1999).

k-Vector Weighted Voting Games
If k ∈ N, then let Rk denote the set of k-element vectors of
real numbers. We overload notation, and write

∑
for vector

summation; for elements v1,v2 ∈ Rk, we write v1 ≥ v2 to
mean that each element in v1 is greater than or equal to the
corresponding element in v2. A k-weighted voting game S

is then a tuple S = 〈N,w1, . . . ,wn,q〉, where N is the set
of voters as above,wi ∈ Rk is a vector of k real weights for
voter i ∈ N, and q ∈ Rk is a vector of k real quotas. We
then say a coalition C is winning if

∑
i∈C wi ≥ q; given

a k-vector weighted voting game S = 〈N,w1, . . . ,wn,q〉,
the corresponding yes/no game YS is defined in the obvious
way: YS = 〈N, {C : C ⊆ N and

∑
i∈C wi ≥ q}〉. We say

that S is a vector voting game if it is a k-vector voting game
for some k.
We can also think of a k-vector weighted voting game as a

k×n real matrix A (representing weights) and a length-k real
vector b (quotas), so that W = {x ∈ {0, 1}n : Ax ≥ b}. We
will use both forms of notation interchangeably. The game
(A, b) is a non-negative vector weighted voting game if the
elements of A and b are non-negative; clearly, any such game
is monotone.
Now, the good news is as follows:

Theorem 1 (Follows from (Taylor & Zwicker 1993)). k-
vector weighted voting games are an expressively complete
representation for yes/no voting games. More precisely, for
every yes/no voting game Y, there exists a k ∈ N and a k-
vector weighted voting game S such that Y = YS.

This result does not tell us anything about the size, k, of
the weight/quota vectors needed to represent a yes/no game;
it simply tells us that for any yes/no game, there is some
equivalent vector weighted voting game. From a represen-
tational point of view, it would seem that the smaller the
value of k, the better. Let us say a yes/no game Y is of di-
mension k if there exists a k-vector weighted voting game
that corresponds to Y, but there does not exist any (k − 1)-
vector weighted voting game corresponding to Y (Taylor &
Zwicker 1993, p.174). The dimension of a voting game is
one way of measuring the inherent complexity of the game;
the higher the dimension, the greater the intrinsic complex-
ity. An obvious question is whether we can bound the di-
mension of any yes/no game; or at least, whether the dimen-
sion of a game can be guaranteed to be small, as a function
of the number of voters. The answer to this question is no:

Theorem 2 (Follows from (Taylor & Zwicker 1993)). There
exists a countably infinite sequence Y0, Y1, Y2, . . . of distinct
yes/no voting games such that for all i ∈ N, Yi is of dimen-
sion Ω(2ni−1), where ni is the number of voters in Yi.

There are in fact very simple examples of yes/no games
with exponential dimension: yes/no games in which the win-
ning coalitions are those containing an odd number of voters
are one example. Although this result is negative – it tells us
that we cannot always rely upon k-vector weighted voting
games to be succinct – we can at least match it with an up-
per bound.

Theorem 3 (Follows from (Taylor & Zwicker 1993)). Every
yes/no voting game Y = 〈N,W〉 is of dimension O(|2N\W|).

Proof. Here is one construction. For every x ∈ {0, 1}n−W,
construct a row Ax. If xj = 1 then Ax,j = −1. If xj = 0 then
Ax,j = 1. Set bx = −|Cx| + 1/2.
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Equivalence
We have seen that every yes/no game can be represented as
a k-vector weighted voting game for some value of k. How-
ever, such a representation is not necessarily unique. We will
say that two vector weighted voting games (assumed to be
over the same set of voters) are equivalent if they have the
same set of winning coalitions. An obvious question sug-
gests itself: how hard is it to check the equivalence of any
two games.
To reason about complexity-theoretic aspects of vector

weighted voting games, we need to fix a finitary represen-
tation of such games. Therefore for the rest of the paper,
unless specified otherwise, we assume that all weights are
integers (though possibly non-positive) and given in binary,
and “polynomial” means “polynomial in the representation
size of the input”. Clearly, a representation that uses rational
weights can be scaled up so that all weights become integer.
Moreover, there is no loss of generality in restricting our-
selves to integer weights, as it is known (Muroga 1971) 1
that every weighted voting game is equivalent to a weighted
voting gamewith integer weights in which the sum of the ab-
solute values of the weights is 2O(n log n). This result can be
generalised to k-vector weighted voting games by replacing
component games with equivalent “compact” games one by
one. Hence, any k-vector weighted voting game has a repre-
sentation of size polynomial in n and k.
We will first show that the problem of checking whether

two vector weighted voting games are equivalent is co-NP-
complete. This result holds even if the sizes of the games
k1 and k2 are unbounded and all weights are 0 or 1, or if
k1 = k2 = 1 and the weights can be large. However, if both
k1, k2 < C for some constant C and the weights are polyno-
mially bounded, the hardness result no longer holds. In fact,
we show that in this case the problem becomes polynomial-
time solvable. We first present our hardness results, fol-
lowed by the polynomial-time algorithm for the special case
mentioned above.
Theorem 4. The problem of checking whether any two
given vector weighted voting games are equivalent is co-NP-
complete, even if all weights are equal to 0 or 1 (and hence
the games are monotone).

Proof. We work with the complement problem: that of
checking whether two vector weighted voting games have
different sets of winning coalitions. Membership in NP is
straightforward: A non-deterministic polynomial-time algo-
rithm guesses a coalition C and verifies that exactly one of
AxC ≥ b and A′xC ≥ b′ is true. We show hardness by reduc-
tion from VERTEX COVER (Garey & Johnson 1979, p.190).
Consider an instance G, j of VERTEX COVER in which G
has n vertices and m edges and 0 ≤ j ≤ n. (This is a “yes”
instance iff G has a vertex cover of size j.) We construct
(A′, b′) as follows. The number of columns of A′ is n. The
number of rows of A′ is k = m. For each edge e of G we
construct a row A′e. All entries of A′e are 0 exceptA′e,v = 1 for

1(Muroga 1971) shows this for linear threshold functions rather
than for weighted voting games, but there is a natural isomorphism
between the former and the latter.

each endpoint v of e. The quota b′e = 1. W ′ corresponds to
the set of vertex covers ofG. The game (A, b) is constructed
from (A′, b′) by adding one more row. Every entry of the
new row of A is 1. The corresponding entry in b is j + 1.
Thus,W corresponds to the set of vertex covers of G of size
at least j+ 1. Now, G has a vertex cover of size j iff the two
games have different sets of winning coalitions. Note that
the reduction yields games with weights in {0, 1}.

If we do not require the weights to be in {0, 1}, the prob-
lem becomes hard even for k = 1 (and hence for any larger
values of k).
Theorem 5. The problem of checking whether any two given
weighted voting games are equivalent is co-NP-complete,
even if both games are non-negative (and hence monotone).

Proof. The membership is as in the previous result. To
prove co-NP-hardness, we will show that the complemen-
tary problem, i.e., checking whether two weighted voting
games are non-equivalent, is NP-hard. The reduction is from
SUBSET SUM (Garey & Johnson 1979, p.223). Recall that
an instance of SUBSET SUM is given by a list of integers
L = {a1, . . . , an} and a quota T. It is a “yes”-instance,
if there is a subset of L that sums up to T, and a “no”-
instance otherwise. Given an instance of SUBSET SUM,
we define our two weighted voting games M1 and M2 as
M1 = 〈N, a1, . . . , an, T〉 and M2 = 〈N, a1, . . . , an, T + 1〉.
Clearly, the sets of winning coalitions underM1 and M2 are
distinct if and only if there is a coalition whose weight un-
der M1 (and M2) is exactly T, i.e., we started with a “yes”-
instance of SUBSET SUM.

The vector voting games used in practice often have small
dimension (k ≤ 3) and use weights that are integer and at
most polynomial in n. In this case, there is an efficient algo-
rithm for checking whether two such games are equivalent.
Theorem 6. Given a k1-vector weighted voting game S =
〈N,A, b〉 and a k2-vector weighted voting game Ŝ =
〈N, Â, b̂〉, there is an algorithm that checks whether S and
Ŝ are equivalent and which runs in time poly((nW)k1+k2),
where W = max(Amax, Âmax), and Amax (respectively,
Âmax) is the element of A (respectively, Â) with the maxi-
mum absolute value.

Proof. We will use dynamic programming to check whether
there is a coalition J that wins under S, but not under Ŝ. We
then apply the same algorithm with the roles of S and Ŝ re-
versed. If in both cases the algorithm finds no such coalition,
then S and Ŝ are equivalent.
First, note that the weight of each coalition under a

weight vector that corresponds to a row of A or Â is be-
tween −nW and nW. Now, for any two integer vectors
w ∈ [−nW, nW]k1 , ŵ ∈ [−nW, nW]k2 , set X(k,w, ŵ) = 1
if there is a subset J of the first k voters with the charac-
teristic vector xJ such that AxJ = w, ÂxJ = ŵ, and set
X(k,w, ŵ) = 0 otherwise. These quantities can be com-
puted as follows. We have X(1,w, ŵ) = 1 if and only if
the first column of A coincides with w and the first column
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of Â coincides with ŵ. Now, suppose that we have com-
puted X(i,w, ŵ) for all i < k and all w ∈ [−nW, nW]k1 ,
ŵ ∈ [−nW, nW]k2 . We can now compute X(k,w, ŵ) as fol-
lows: X(k,w, ŵ) = 1 if and only if X(k − 1,w, ŵ) = 1
or X(k − 1,w − A(k), ŵ − Â(k)) = 1, where A(k) denotes
the kth column of the matrix A, and Â(k) denotes the kth
column of the matrix Â. Finally, after all X(n,w, ŵ) have
been computed, we check if there is a pair of vectors w, ŵ
such that X(n,w, ŵ) = 1 and w ≥ b, but not ŵ ≥ b′
(i.e., there is at least one entry of ŵ that is smaller than the
corresponding entry of b′). By construction, such a pair cor-
responds to a coalition that wins under S, but not under Ŝ.
It is easy to see that the running time of our algorithm is
poly((nW)k1+k2).

For weighted voting games (k = 1) the requirement that
all weights are polynomially bounded can be relaxed: it suf-
fices if this is the case for one of the two games.
Theorem 7. Given two weighted voting games S =
〈N,w1, . . . ,wn, q〉 and S′ = 〈N,w′1, . . . ,w′n, q′〉, there is
an algorithm that checks whether S and S′ are equiva-
lent and which runs in time poly(n,wmax), where wmax =
min(max{wi : i = 1, . . . , n}, max{w′i : i = 1, . . . , n}).

Proof. (Sketch) Given a coalition J ⊆ N, let w(J) (respec-
tively, w′(J)) denote the total weight of the members of J
under S (respectively, S′). As in the previous proof, it suf-
fices to describe an algorithm that checks whether there is a
coalition J such that w(J) ≥ q, w′(J) < q′ and then makes
the corresponding check, reversing the roles of J and J ′ . It
is easy to see that this problem is an instance of KNAPSACK,
where w′1, . . . ,w′n play the role of weights, and w1, . . . ,wn
play the role of values. It is well known that KNAPSACK
can be solved in polynomial time if either the weights or the
values are polynomially bounded.

Dimensionality
One of the key parameters of interest in yes/no games is the
dimension of the game, since, as we noted above, this is an
obvious measure of the inherent complexity of the voting
game. We saw that, in the worst case, yes/no games are of
dimension exponential in the number of voters. An obvious
question is whether restrictions – and in particular, mono-
tonicity – lead to simpler games, i.e., games with a smaller
dimension. In the case of monotonicity, the answer is no:
Theorem 8. For every n satisfying n = 2 (mod 4), there
exists a monotone yes/no voting game with n voters of di-
mension at least

( n
n/2

)
/2.

Proof. The set of all winning coalitionsW includes every set
of size s > n/2 and excludes every set of size s < n/2. Let
C be the coalition consisting of the first n/2 voters. Note that
for any set C′ of size n/2, the Hamming distance between C
and C′, Ham(C,C′), is even. Include C′ in W if and only if
Ham(C,C′) = 2 (mod 4).
We will show that exactly half of all sets of size n/2,

i.e.,
( n
n/2

)
/2 sets of size n/2, are included in W. To see

this, consider any coalition C′ of size n/2, and let C′′ be its

complement. Let j be the number of voters in {1, . . . , n/2}
that are in C′ and let j′ be the number of voters in {n/2 +
1, . . . , n} that are in C′. Then Ham(C,C′) = n/2 − j + j′
and Ham(C,C′′) = n/2 − j′ + j. Since Ham(C,C′) +
Ham(C,C′′) = n, which is equal to 2modulo 4, exactly one
of Ham(C,C′) and Ham(C,C′′) is equal to 2 modulo 4, so
exactly one of C′ and C′′ is inW.
Now consider any binary string x with n/2 1’s such that

x )∈ W. Suppose that x violates the !th inequality of the
weighted voting game, i.e., a! · x < b!. Fix arbitrary i, j in
1, . . . , n such that xi = 1, xj = 0 and consider the string
x′ obtained from x by switching xi with xj. The Hamming
distance between x and x′ is 2, so x′ ∈ W. Consequently,
a! · x′ ≥ b!, which implies a!

i < a!
j . Now, consider any

other binary string y with n/2 1’s such that y )∈ W. Suppose
that y also violates the !th constraint. By a similar argument
we can show that for any i, j in 1, . . . , n, if yi = 0, yj = 1
then a!

i > a!
j . Since x )= y, and both of them have n/2 1’s,

we can choose i, j so that xi = yj = 1, xj = yi = 0. We
have a!

i < a!
j , a!

i > a!
j . The contradiction shows that x and

y necessarily violate different constraints, i.e., the matrix A
has at least

( n
n/2

)
/2 rows.

Minimality and Relevance
In this section, we focus on the problem of determining the
dimensionality of a given voting game. The first question we
would like to address is whether a k-vector weighted voting
game is redundant, i.e., whether a particular component of
a k-vector weighted voting game could be deleted without
affecting the overall set of winning coalitions of the game.
This leads to two different decision problems, depending on
whether we ask this question about a specific row of the
weight matrix or would like to check if such a row exists:
RELEVANCE:
Input: A weighted voting game (A, b) and a row i of A.
Question: Is row i relevant to the game? More for-
mally: Construct (A′, b′) from (A, b) by deleting row i.
Do (A, b) and (A′, b′) have different sets of winning
coalitions?
MINIMALITY:
Input: A weighted voting game (A, b).
Question: Is it the case that for every row i of A, the
voting game (A′, b′) constructed from (A, b) by delet-
ing row i is not equivalent to (A, b)?

It is easy to see that both problems are in NP. Moreover, a
polynomial-time algorithm for RELEVANCE would imply a
polynomial-time algorithm for MINIMALITY, but not vice
versa. As in the previous section, we will be interested in
the complexity of these problems under natural restrictions,
i.e., when k is small or all weights are 0 or 1.
Theorem 9. MINIMALITY and RELEVANCE are NP-
complete even if all weights are in {0, 1} (and hence the
game is monotone).

Proof. Membership is as before. We show hardness by re-
duction from VERTEX COVER, as in the proof of Theorem 4.
Let G, j be an instance of VERTEX COVER. Assume without
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loss of generality that j ≤ n − 3. Construct the game (A, b)
as in the proof of Theorem 4. As argued in that proof, the
last row of A is relevant iff G has a vertex cover of size j.
Hence (A, b,m) is a “yes”-instance of RELEVANCE iff G, j
is a “yes”-instance of VERTEX COVER. Now, let W be the
set of vertex covers of G of size at least j + 1. For each
row i of A, let (Ai, bi) be the game obtained from (A, b) by
deleting row i and let W i be its winning coalitions. First,
suppose that i is a row corresponding to an edge (v,w) of G.
Note that every winning coalition of (A, b) is still a winning
coalition of (Ai, bi), so W ⊆ W i. Furthermore, W ⊂ W i,
since V − {v,w} is a winning coalition of (Ai, bi) of size
n− 2 ≥ j+ 1. So all rows i of (A, b) corresponding to edges
ofG are relevant. We conclude that (A, b) is a “yes” instance
of MINIMALITY iff the final row of A is relevant, i.e., iff G
has a vertex cover of size j.

Theorem 10. MINIMALITY and RELEVANCE are NP-
complete even if k = 2 and all weights are non-negative.

Proof. The reduction is from SUBSET SUM. We start with
the construction used in the proof of Theorem 5, i.e., given
an instance (a1, . . . , an, T) of SUBSET SUM, we construct a
voting game M with N = {1, . . . , n}, Ai1 = Ai2 = ai for i =
1, . . . , n, and b1 = T, b2 = T +1. Clearly, under this voting
game the first row is always redundant, and the second row
is relevant if and only if (a1, . . . , an, T) is a “yes”-instance
of SUBSET SUM. We will now modify this game as follows:
set X = 2

∑n
i=1 ai, add a player n + 1 to N, set An+1

1 =
X,An+1

2 = 0, and set b1 = X + T, b2 = T + 1. Denote
the resulting voting game byM′. Clearly, a coalition C wins
under M′ if and only if n + 1 ∈ C and C \ {n + 1} wins
under M. Hence, under M′ the first row of A is no longer
redundant, as it ensures that n + 1 is present in the winning
coalition. Therefore M′ is minimal (and the second row of
A is relevant) if and only if we started with a “yes”-instance
of SUBSET SUM.

If k is bounded by a constant, and all weights are polyno-
mially bounded, we can use the algorithm from the proof
of Theorem 6 to check whether the voting games (A, b)
and (A′, b′) obtained from (A, b) by deleting the ith row are
equivalent. Hence we have the following result.
Corollary 1. Given a k-vector weighted voting game (A, b),
where k is bounded by a constant and all weights are poly-
nomially bounded, there is a polynomial-time algorithm that
decides RELEVANCE (and henceMINIMALITY).
Even if the k-vector weighted voting game (A, b) is min-

imal, there may still exist a k′-vector weighted voting game
(A′, b′) with k′ < k that has the same set of winning coali-
tions as (A, b): the point is that even though no row of A can
be deleted, it can still be possible to construct a completely
different set of weights that describes the corresponding set
of winning coalitions more compactly. We say that (A, b)
is minimum if it is not equivalent to any k′-vector weighted
voting game for k′ < k. We will now show that deciding
whether (A, b) is minimum is NP-hard even if k = 2.
Theorem 11. Given a 2-vector weighted voting game S =
〈N,w1, . . . ,wn,q〉, where wi = (w1

i ,w2
i ) for i = 1, . . . , n,

and q = (q1, q2), it is NP-hard to decide whether S is
minimum, i.e., there is no weighted voting game T =
〈N, u1, . . . , un, r〉 such that S and T are equivalent.

Proof. We reduce from BALANCED PARTITION, a version
of the classical NP-complete PARTITION problem (Garey
& Johnson 1979, p.223), which is also known to be NP-
complete. An instance of BALANCED PARTITION is a list
of integers L = (a1, . . . , an), where n is even, that satis-
fies

∑n
i=1 ai = 2K for some K ∈ N. It is a “yes”-instance

if there is a subset J ⊆ L that satisfies
∑

ai∈J ai = K,
|J| = n/2, and a “no”-instance otherwise. Given an instance
of BALANCED PARTITION, we will construct a 2-vector
weighted voting game S as follows. We set N = {1, . . . , n},
and for i = 1, . . . , n we set w1

i = 4Kn+ ai, w2
i = 4Kn− ai.

Also, we define q1 = 2Kn2 + K, q2 = 2Kn2 − K. Clearly,
under these rules every coalition of size at least n/2+1wins,
and any coalition of size at most n/2 − 1 loses. Now, sup-
pose that we started with a “yes”-instance of BALANCED
PARTITION, i.e., there exists a subset J of size n/2 that sat-
isfies

∑
ai∈J ai = K. It is easy to see that the corresponding

coalition wins. Note that we also have
∑

ai $∈J ai = K, so the
coalition that corresponds to N \ J wins as well.
On the other hand, suppose that we started with a “no”-

instance of BALANCED PARTITION. Then there are no win-
ning coalitions of size exactly n/2. Indeed, if for J ⊆ N,
|J| = n/2, we have

∑
ai∈J ai < K, then

∑
ai∈J w

1
i < q1, and

if
∑

ai∈J ai > K, then
∑

ai∈J w
2
i < q2.

In the latter case, S is equivalent to a very simple weighted
voting game, where the weight of each player is 1, and the
quota is n/2+1. It remains to show that in the former case,
there is no weighted voting game that is equivalent to S.
To see this, note that any weighted voting game has the

following property: given any two disjoint winning coali-
tions C1 and C2 and any two elements x ∈ C1, y ∈ C2 with
weights wx and wy, it cannot be the case that swapping x and
y turns both C1 and C2 into losing coalitions, i.e., at least
one of C1 \ {x} ∪ {y} and C2 \ {y} ∪ {x} must be win-
ning (Taylor & Zwicker 1993). Indeed, if wx ≤ wy, then
replacing x with y cannot decrease the weight of C1, and if
wx > wy, then replacing y with x cannot decrease the weight
of C2. On the other hand, for the 2-vector weighted voting
game constructed above, this is not the case.
Indeed, consider a set J that satisfies

∑
ai∈J ai = K, and

the corresponding winning coalitions J and N \ J. We can
assume that not all ai are equal, so without loss of generality
pick aj ∈ J, ak ∈ N \ J so that aj < ak. We claim that
swapping the corresponding players j and k will turn both J
andN\J into losing coalitions: we havew1

j < w1
k , w2

j > w2
k ,

so
∑

ai∈J w
2
i −w2

j +w2
k < q2,

∑
ai∈N\J w

1
i −w1

j +w1
k < q1.

Hence, for a “yes”-instance of BALANCED PARTITION, the
resulting 2-vector weighted voting game S is not equivalent
to any weighted voting game, i.e., S is minimum.

Note that we do not claim that this problem is NP-
complete. Indeed, to show that a given k-vector weighted
voting game S is minimum, we would have to check that
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for any k′-weighted voting game, with k′ < k there ex-
ists a coalition on which this game differs from S. As any
k′-vector weighted voting game is equivalent to a k′-vector
weighted voting game with exponentially bounded integer
weights (Muroga 1971) it suffices to perform this check
for weighted voting games that can be represented using
poly(n, k) bits. This shows that the problem is in Πp

2, but
not necessarily in NP or co-NP.
Unlike for other problems considered in this paper, we do

not know if checking whether a given voting game is min-
imum is NP-hard even if all weights are in {0, 1}. Also,
we do not have a pseudopolynomial time algorithm for this
problem for the case when k is bounded by a constant and all
weights are polynomially bounded. However, we can show
that in the latter case it is possible to check in polynomial
time whether a given k-vector weighted voting game S is
equivalent to some weighted voting game. To do so, we
construct a linear program L with variables w1, . . . ,wn, q
and constraints that for each J specify whether

∑
i∈J wi ≥ q

or
∑

i∈J wi < q, depending on whether J is a winning coali-
tion under S. While this linear program has exponential size,
it has a separation oracle that can be implemented in poly-
nomial time using dynamic programming (see (Elkind et al.
2007) and the proof of Theorem 6). Hence, L can be solved
in polynomial time using ellipsoid method.
This algorithm can be modified to check if a given k-

vector weighted voting game S is equivalent to a monotone
weighted voting game. To show this, we first need the fol-
lowing lemma.

Lemma 1. Any monotone weighted voting game can be rep-
resented using non-negative weights.

Proof. Consider a monotone weighted voting game in
which some of the weights are negative. Replace these
weights with 0’s one by one. We claim that after each step,
the resulting game is equivalent to the original game. In-
deed, suppose that replacing wi < 0 with 0 changed the set
of winning coalitions. Then it has to be the case that in the
new game there is a winning coalition C, i ∈ C, that did
not win in the original game: the weight of any coalition did
not decrease, and it only changed for coalitions containing
i. In the new game, C \ {i} is also a winning coalition, as
it has the same weight as C. It does not contain i, so it is
a winning coalition in the original game as well. But this
violates monotonicity, as we assumed that C was not a win-
ning coalition in the original game. Hence, given a mono-
tone weighted voting game, we can construct an equivalent
non-negative representation.

Now, consider a linear program L′ obtained from L by
adding constraints of the form wi ≥ 0, i = 1, . . . , n. Clearly,
L has a solution if and only if the input game is equiva-
lent to a non-negative weighted voting game, and hence, by
Lemma 1, to a monotone weighted voting game. Moreover,
it is easy to modify the separation oracle to take into account
the new constraints, so L can also be solved in polynomial
time.

Conclusions
Weighted voting games are an important, widely used, and
mathematically appealing class of yes/no voting games,
whose computational properties have been closely stud-
ied (Deng & Papadimitriou 1994; Elkind et al. 2007). How-
ever, k-vector weighted voting games have received much
less attention, although they also play a significant role in
real-world political systems. We investigated questions re-
lating to the dimensionality of k-vector weighted voting
games. The closest related work we know of is (Deineko
& Woeginger 2006), which shows that it is NP-complete
to check whether, given a collection of d2 weighted vot-
ing games, it is possible to represent it as a collection of
d1 weighted voting games, 1 ≤ d2 < d1. Our work differs
in many ways: for example, we consider monotone and 0, 1
weight cases, and consider more general problems; more-
over we prove completeness rather than hardness. Several
issues suggest themselves for future work. One is the re-
lationship to other representations for yes/no games. For
example, logical representations of coalitional games have
received some attention recently (e.g., (Ieong & Shoham
2005)). It would be interesting to consider the relations be-
tween such representations and (k-vector) weighted voting
games. Acknowledgments: This research was supported
by the EPSRC under the “Market Based Control” project,
and by the ESRC EUROCORES LogiCCC project “Com-
putational Foundations of Social Choice”.
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