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Abstract

Solution concepts from cooperative game theory, such
as the Shapley value or the Banzhaf index, have re-
cently been advocated as interesting extensions of stan-
dard measures of node centrality in networks. While
this direction of research is promising, the compu-
tation of game-theoretic centrality can be challeng-
ing. In an attempt to address the computational is-
sues of game-theoretic network centrality, we present
a generic framework for constructing game-theoretic
network centralities. We prove that all extensions that
can be expressed in this framework are computable in
polynomial time. Using our framework, we present the
first game-theoretic extensions of weighted and nor-
malized degree centralities, impact factor centrality,
distance-scaled and normalized betweenness centrality,
and closeness and normalized closeness centralities.

Introduction
Determining whether a given node or edge in a network is
more significant (or central) than another is an important re-
search topic, studied in fields like social network analysis,
biology, and computer science. To this end, researchers have
proposed a range of centrality measures that aim to numer-
ically characterise the centrality of a node or edge. Among
the numerous centrality measures proposed in the literature,
the four most fundamental and prominent are degree cen-
trality, closeness centrality, betweenness centrality (Free-
man 1979), and eigenvector centrality (Bonacich 1972).

Recently, solution concepts from the field of coopera-
tive game theory (e.g., the Shapley value (Shapley 1953),
the Banzhaf power index (Banzhaf 1965), and, more gener-
ally, semivalues (Dubey, Neyman, and Weber 1981)) have
been advocated as measures of network centrality extend-
ing standard centrality measures (Gómez et al. 2003; Amer,
Giménez, and Magaña 2012). The basic idea behind game-
theoretic network centrality is to consider network nodes as
players in a cooperative game (where players form coalitions
and divide between them the payoff from cooperation). In
this setting, game-theoretic solution concepts of payoff di-
vision become metrics for network analysis. We refer the
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reader to Tarkowski et al. (2014) for an overview on the
topic. This approach has been considered for a variety of
applications, such as social and organisational network anal-
ysis (Suri and Narahari 2010), biological networks (Kotter et
al. 2007), and covert networks (Michalak et al. 2013a).

Many studies of the complexity of game-theoretic solu-
tion concepts have been carried out over the past decade
(see Chalkiadakis, Elkind, and Wooldridge (2012)). Unfor-
tunately, for many representations of games, the solution
concepts of most interest are computationally intractable
(typically, #P -complete). However, only a few studies to
date have investigated whether negative complexity results
carry over when these solution concepts are applied to net-
work centrality. Among those, Michalak et al. (2013a) es-
tablished that computing the Shapley value-based centrality
measure for connectivity games on graphs is #P -complete.
It is also known that various other cooperative games on
graphs that could be used as centrality measures are chal-
lenging (Nebel 2011; Aziz and de Keijzer 2014). 1

Fortunately, positive results have also been established.
In particular, it is possible to compute in polynomial time
various Shapley value-based centrality measures that extend
standard degree and closeness centrality (Michalak et al.
2013b). A similar positive result was obtained for the stan-
dard betweenness centrality (Szczepański, Michalak, and
Rahwan 2012). However, many other centrality measures
have not been extended to game-theoretic centrality, nor is
the computational complexity of such extensions known.

In this paper, we address this issue. We present a general
framework in which it is possible to construct a variety of
game-theoretic network centralities (and, in particular, ex-
tensions of standard centrality measures) such that they can
be computed in polynomial time. Using this key result, we
are able to present game-theoretic extensions of weighted
and normalized degree centralities, impact factor centrality,
distance-scaled and normalized betweenness centrality, and
closeness and normalized closeness centralities. As a corol-
lary of our general result, all of these centrality measures can
be computed in polynomial time.

1In principle, any cooperative game described on a graph and an
associated solution concept can be considered as a game-theoretic
centrality measure.
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Preliminaries
A network is a graph G = (V,E), where V is a set of nodes
and E a subset of unordered pairs (v, u) of nodes in V .
A path ⇡st from node s to node t in a graph G is an or-
dered set (v0, v1, . . . , vn) such that v0 = s and vn = t and
(vi, vi+1) 2 E for all i with 1  i < n. We define the set of
neighbours of a node v and a subset C of nodes by E(i) =
{j : (i, j) 2 E} and E(C) =

S
i2C E(i) \ C, respectively.

We refer to the degree of a node v by deg(v) = |E(v)|. The
distance from a node s to a node t is denoted by dist(s, t)
and is defined as the size of the shortest path between s and t.
The distance between a node v and a subset of nodes C ✓ V
is denoted by dist(C, v) = minu2C dist(u, v). Paths, neigh-
bours, and distances are prominent in definitions of network
centrality measures, i.e., functions that associate with each
node a real value that represents its centrality, and we will
refer to them as (graph) items.

A cooperative game consists of a set N = {1, 2, . . . , n}
of players and a characteristic function ⌫ : 2N ! R, which
assigns to each coalition C ✓ N of players a real value (or
payoff) indicating its performance, where ⌫(;) = 0. A coop-
erative game in characteristic function form is a pair (N, ⌫),
but we will refer to it simply by ⌫. In our network setting we
will always consider the set of players as the set of nodes V
in a graph G. The grand coalition is the set N of all players.

A basic research problem in cooperative game theory
is how to divide the payoff from cooperation (usually the
value of the grand coalition) among the players. Semival-
ues (Dubey, Neyman, and Weber 1981) represent an im-
portant class of solutions to this problem. To define semi-
values, let us denote by MC(C, i) the marginal contribu-
tion of the player i to the coalition C, i.e., MC(C, i) =
⌫(C [ {i})� ⌫(C). Let � : {0, 1, . . . , |N |� 1}! [0, 1] be
a function such that

P|N |�1
k=0 �(k) = 1. Intuitively, when we

calculate the expected marginal contribution of a node, �(k)
will be the probability that a coalition of size k is chosen for
this node to join. This is why �(k) is defined on values rang-
ing from 0 to |N |� 1. Since a node i cannot join a coalition
that it is already in, we only need to look at coalitions not
containing i. Given �, the semivalue �i(⌫) for a player i in
cooperative game ⌫ is:

�i(⌫) =
X

0k<|V |

�(k)ECk [MC(Ck, i)], (1)

where Ck is the random variable of all possible coalitions of
size k drawn with uniform probability form the set N \ {i},
and ECk [·] is the expected value operator for the random
variable Ck.

The Shapley value (Shapley 1953) and the Banzhaf in-
dex of power (Banzhaf 1965) are two prominent and well-
known examples of semivalues. They are defined by �-
functions �Shapley and �Banzhaf , respectively:

�Shapley(i) =
1

|N | and �Banzhaf (i) =

�|N |�1
i

�

2|N |�1
.

For the purposes of defining a cooperative game on any net-
work, we will systematically associate characteristic func-
tions with graphs through representation functions.

Definition 1 (Representation function) A representation
function is a function  that maps every graph G = (V,E)
onto a cooperative game (N, ⌫G) with N = V .

Now, solution concepts like semivalues can be used in the
network setting by applying them to the characteristic func-
tion that a network represents.

Definition 2 (Game-theoretic centrality measure)
Formally, we define a game-theoretic centrality measure as
a pair ( ,�) consisting of a representation function  and
a solution concept �.

Example 1 Let us consider a game-theoretic centrality
measure ( R,�

Shapley). We say that  R is a representa-
tion function since it associates a coalitional game with any
graph G = (V,E), i.e. every graph represents a coopera-
tive game. We have  R(G) = (V, ⌫G), where V is the set of
nodes and ⌫G : 2V ! R is the characteristic function. Let
⌫G be the ranking of groups of nodes in G based on classical
group betweenness centrality. In other words,  R is simply
the group betweenness centrality for any graph. For a spe-
cific graph G, the importance of each node u 2 V according
to ( R,�

Shapley) is evaluated by the Shapley value of the
game  R(G), i.e. �Shapleyu (⌫G). Since we started off with
a standard centrality measure (betweenness centrality) and
applied a game-theoretic solution concept to it (the Shap-
ley value), we call the resulting centrality measure a game-
theoretic extension of betweenness centrality.

A Motivation for Game-Theoretic Centrality
In this section, we provide a brief motivation for game-
theoretic network centrality. To this end, we list a number
of applications of this approach, discuss how game theory
accounts for synergies within networks, and conclude with
a brief motivating example.

First, let us begin with real-world applications for which
game-theoretic centrality has been advocated. Suri and
Narahari (2010) applied a variant of Shapley-value degree
centrality to study a co-authorship network of 8361 re-
searchers from the field of high-energy Physics. They show
that their centrality measure achieves better results than
maximum degree heuristics—a well-known heuristic in the
literature for the top-k node problem for information dif-
fusion. Szczepański, Michalak, and Wooldridge (2014) use
their game-theoretic centrality in order to analyse a cita-
tion network of 2084055 publications, 2244018 citation re-
lationships and 22954 communities (that represent journals,
conference proceedings, etc.). This innovative approach not
only considers the importance of individual authors, but also
that of the communities to which they belong. Lindelauf,
Hamers, and Husslage (2013), Skibski et al. (2014) and
Michalak et al. (2013a) use game-theoretic centrality in or-
der to study key nodes in terrorist networks. This type of
analysis is imperative to understanding the hierarchy of such
organisations and for the efficient deployment of investiga-
tion resources.

The main motivation for applying cooperative game-
theory to the field of network centrality is that it considers
the functioning of nodes jointly, rather than in separation.
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Figure 1: A graph presenting domination within a network.
An edge (s, t) indicates that node s dominates node t. Which
nodes should be considered most dominant?

Even if some nodes are relatively unimportant to the net-
work individually, the synergy that results from their joint
work may make them very important. By the same token,
if we consider the contribution of some graph entities (e.g.,
paths within the network) made by a node to be relatively
large, if many other nodes contribute these same entities,
then then the contribution of this node is not as important
as we originally surmised.
Example 2 As an example, we will consider the �-measure
(Brink and Gilles 2000) and how it handles synergies. Con-
sider the context of ranking nodes in a directed network,
D = (V,E), according to their domination (control power)
over other nodes. We say that a node s controls the node t if
(s, t) 2 E. In this context, a natural centrality measure (re-
ferred to in the literature as the score measure) of the node
s is its outdegree, i.e., �D(s) = |{t 2 V : (s, t) 2 E}|.
Similarly, we can consider the centrality of a group, C, as
the number of nodes that this group controls, i.e., �D(C) =
|{t 2 V : 9s(s, t) 2 E}|. However, if we consider coalitions
of nodes, then if there is a crossover between the nodes con-
trolled by members of the coalition, then we have negative
synergy. In other words, the members together control fewer
nodes than the simple sum of their individual centralities.

Consider now the representation function  (D) = �D
and the centrality measure ( ,�Shapley). Brink and Gilles
show that this centrality measure is equal to �D(s) =P

t2E(s)
1

|E(t)| , where E(v) is the neighbourhood of the
node v. As compared to �D, we see that this centrality mea-
sure divides the resulting reward (i.e., raise in centrality)
from controlling a node evenly between all nodes that domi-
nate it.

If we look at Figure 1, then which nodes in this net-
work should we consider to be most dominant (i.e., cen-
tral)? According to the score measure, both v1 and v3 are
equally dominant. However, we see that node v4 is domi-
nated by two nodes rather than one. This—depending on the
application—could indicate one of a number of things:
• v4 is easy to dominate, and thereby does not contribute as

much to the “domination power” of a node;
• The utility from dominating an already dominated node

can be smaller; or
• Only one node can control any other node, and in the case

of multiple dominators there is some probability distribu-
tion over which node is actually in control.
The �-measure has the correct approach, ranking v3 as

the most dominant node, v1 as second, followed by v2 and

then by the rest of the nodes. The gain in rank from dominat-
ing v5 is equal to 1

2 for both v1 and v2. In other words, each
node—in expectation—dominates half of v5.

The Class M of Representation Functions
In this section, we define a class M of representation func-
tions. It will later be central in identifying which game-
theoretic centralities are polynomially computable. Let us
assume that the characteristic function ⌫G represented by
graph G = (V,E) (as given by a representation func-
tion  (G) = ⌫G) can be computed by counting certain
types of graph entities. These entities can be, for instance,
nodes, paths, or shortest paths. For the purposes of this pa-
per, we will call them items and denote them by #. The set
of all items in the particular graph G is denoted by ⇥G.
We will also partition ⇥G into pairwise disjoint groups:
⇥1,⇥2 . . . ,⇥l, . . . ,⇥h(G). The number of these groups de-
pends on the graph in question, and we will denote it by
h(G).

Example 3 Let us consider a graph G = (V,E) and a
characteristic function ⌫G, where the value of any subset of
nodes is proportional to the number of shortest paths that
pass through it. Let us denote the set of all shortest paths
in G by SP (G). There can be many different shortest paths
between each pair of nodes s, t 2 V . We can therefore par-
tition SP (G) into groups that contain all the shortest paths
between the same pair of nodes. Thus, in this setting, we
have the set of items ⇥G = SP (G), h(G) = V 2 disjoint
groups that we denote by ⇥st and index by pairs of nodes.

In the class M , the value ⌫G(C) of the coalition C ✓ V
depends on the graph items associated with it. We will dis-
tinguish positive, negative, or neutral association relations
between nodes and items, and we will denote them by R, eR,
and N , respectively. Formally, R, R̃,N ✓ V ⇥⇥G. For in-
stance, a shortest path ⇡st can be negatively related to the
nodes s and t, positively related to all other nodes that it vis-
its and neutrally related with all nodes that it does not visit.

We will denote by eR(u,#) the fact that item # 2 ⇥G is
negatively related with node u 2 V . By this we mean that
when u joins a coalition C it takes away the value of #, pro-
vided it has been previously contributed by any of the nodes
in C. Similarly, by R(u,#) we denote that # is positively re-
lated with u. Whenever u joins a coalition C, it contributes
the value of # to this coalition (provided that # is not already
positively or negatively related to some node in C). Finally,
N(u,#) conveys the property that u neither contributes nor
takes away the value of #. We have N(u,#) if and only if
neither eR(u,#) nor R(u,#).

By now we have introduced relations between nodes and
items. These definitions can be naturally extended to sets of
nodes. In particular, for each coalition C and item #, we have
three mutually exclusive and exhaustive possibilities:

eR(C,#) if and only if 9v2C
eR(v,#),

R(C,#) if and only if 9v2CR(v,#) and ¬9u2C
eR(u,#),

N(C,#) if and only if 8v2CN(v,#).
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a

b

V = {a, b}

#1

#2

#3

⇥G = ⇥1 [⇥2

eR
R

N
N

R
eR

⇥1

⇥2

For C = {a, b}
we have:
R(C) = {#2}
R⇥2(C) = ;
eR(C,#1)
R(C,#2)
eR(C,#3)

R�1(#2) = {{a}, {b}, {a, b}} R�1
#1(#2) = {{a}, {b}}

eR�1(#3) = {{b}, {a, b}}

Figure 2: An example of notation used to describe relations
between nodes and items.

For clarity, we will use the following notation for the rela-
tion R (and similarly for eR and N ),

R(C) = {# 2 ⇥G : R(C,#)},
R⇥l(C) = {# 2 ⇥l : R(C,#)},
R�1(#)= {C ✓ V : R(C,#)},
R�1

#k(#)= {C ✓ V : R(C,#) and |C| = k}.

Thus, R(C) denotes the set of items assigned to coalition C,
R⇥l(C) the set of items in group ⇥l that is assigned to C,
R�1(#) the set of coalitions to which item # is assigned, and
R�1

#k(#) the set of coalitions of size k to which # is assigned.
Note that in the case of a singleton coalition we write R(u)
instead of R(u) to avoid clutter.

Given the above framework, we will now present the class
of characteristic functions that can be expressed in terms of
graph items. For a characteristic function ⌫ in this class, we
will say that a set of items, relations and functions models ⌫.
Definition 3 (Model of a characteristic function) Given a
graph G, a model of a characteristic function ⌫G is a tuple

MG = (⇥1, . . . ,⇥h(G), R, eR, f, g),

where ⇥1, . . . ,⇥h(G) is a partition of a set ⇥G of
items; R, eR and N = ¬R ^ ¬ eR are positive, negative and
neutral association relations, respectively; and f : ⇥G ! R
and g : N ! R are functions, such that the following prop-
erties hold:
(M1) ⌫G(C) = g(|C|)

P
#2R(C) f(#);

(M2) 81lh(G)8#i,#j2⇥l f(#i) = f(#j);
(M3) 81lh(G)8#i,#j2⇥l |N�1

#k(#i)| = |N�1
#k(#j)|;

(M4) 81lh(G)8#i,#j2⇥l |R�1
#k(#i)| = |R�1

#k(#j)| .
If properties (M2), (M3), and (M4) hold, then for all # 2
⇥l we use the following notation:
f(⇥l)=f(#), |N�1

#k(⇥l)|=|N�1
#k(#)|, |R�1

#k(⇥l)|=|R�1
#k(#)|.

Also note that Properties (M3) and (M4) imply that
| eR�1

#k(#i)| = | eR�1
#k(#j)| and we also abuse notation by writ-

ing | eR�1
#k(⇥l)|.

In short, the above definition ensures that the rela-
tions R, eR (and implicitly N ) in the model MG =
(⇥1, . . . ,⇥h(G), R, eR, f, g) (of the characteristic function
⌫G) indeed satisfy the negative, positive and neutral proper-
ties discussed at the beginning of this section. In particular,
Property (M1) states that the value of a coalition is the prod-
uct of a function of its size and the sum of the contributions
of its members over all positively related items. The rest of
the properties state that groups must group together similar
items. Specifically, Property (M2) states that the value of
every item in a group must be the same. Moreover, Proper-
ties (M3) and (M4) state that the set of coalitions of size k
to which any item is related (by relation R, N , and conse-
quently by eR) is the same for items in the same group.

Now, we are ready to formally define the class M of rep-
resentation functions:

Definition 4 (The class M ) M is the class of representa-
tion functions such that for all  2 M , and for every
graph G, there exists a model MG of  (G).

Example 4 Let us consider Figure 2. We want to find an
MG = (⇥1,⇥2, R, eR, f, g) such that it models ⌫G({a}) =
1, ⌫G({b}) = 1, ⌫G({a, b}) = 2. We define f(#1) =
f(#2) = 1, f(#3) = 2 (satisfying (M2) ) and g(k) =
k. Property (M1) holds, since ⌫G({a}) = ⌫G({b}) =
g(1)f(#2) and ⌫G({a, b}) = g(2)f(#2). However, prop-
erty (M3) is not satisfied since |N�1

#1 (#1)| 6= |N�1
#1 (#2)|.

This can be fixed by defining three groups of singletons
instead. In fact, a partition of singletons will always sat-
isfy properties (M2), (M3) and (M4). The motivating for
groups will become apparent in the next chapter. We will
show how restricting the number of groups (without restrict-
ing the number of items) will yield polynomial computation.

Computing Semivalue-based Centralities
For each representation function  and semivalue �, we de-
fine the computational problem SEMIVALUE( ,�):

SEMIVALUE( ,�)
Given: Graph G = (V,E), node u 2 V
Problem: Compute �u( (G))

In general, this problem is intractable and it is not immedi-
ately obvious what restrictions would yield polynomial com-
putations. Even if we restrict ourselves to the class of repre-
sentation functions M , there are still functions in this class
for which SEMIVALUE( ,�) is intractable (for example, if
h(G) is exponential in the size of |V |). However, we will de-
fine a subclass M ⇤ of M such that SEMIVALUE( ,�) can
be computed in polynomial time for all  2M ⇤.

Definition 5 (The subclass M ⇤ of M ) M ⇤ is the subclass
of representation functions in M for which additionally the
following properties hold:

(M1⇤) 9n2N8G9MG MG models  (G) and h(G)  O(|V |n);
(M2⇤) f and g can be computed in time polynomial in |V |;
(M3⇤) If  (G) is modelled by (⇥1, . . . ,⇥h(G), R, eR, f, g),

then the function that for each G returns
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(f, g, |R⇥l(u)|, | eR⇥l(u)|, |N�1
#k(⇥l)|, |R�1

#k(⇥l)|)
is computable in time polynomial in |V |.

Below, we show that the class M ⇤ is sufficiently broad
to capture all fundamental network centrality measures and
their variants known in the literature. Furthermore, the prop-
erties (M1⇤) through (M3⇤) allow us to compute the ex-
pected marginal contributions of a node by iterating over
a polynomial number of groups of items (⇥l) and sizes of
coalitions (|C|) rather than all items (# 2 ⇥G) and all coali-
tions (C ✓ V ). Our key result is as follows:
Theorem 1 For all  2 M ⇤ and all semivalues �,
SEMIVALUE( ,�) can be solved in polynomial time.

Proof: In order to solve SEMIVALUE( ,�) in polynomial
time, we will use equation (1) and show how to compute
ECk [MC(Ck, u)] in polynomial time for all k. To this end,
we need to consider the contributions of the node u to Ck

through the various items that u is in relation with (as de-
fined by R(u), eR(u) and N(u)).

We will denote by MC(C, u,#) the marginal contribution
of node u to C through the item # (which we will define
below). In effect, we have

MC(C, u) =
X

#2⇥G

MC(C, u,#).

Two computational issues arise. First, we cannot imme-
diately use this result, as it would require iteration over
all coalitions. Second, iterating over a possibly exponential
number of items within this sum is quite troubling. To ad-
dress the first issue, we will denote by MC(k, u,#) the sum
of contributions of u through # to all coalitions of size k.
To address the second, for all groups ⇥l we will consider
instead MC(k, u,⇥l) =

P
#2⇥l

MC(k, u,#). We get:

ECk [MC(Ck, u)] =
X

1lh(G)

ECk [MC(Ck, u,⇥l)]

=
X

1lh(G)

MC(k, u,⇥l)�|V |�1
k

� . (2)

The remainder of the proof will focus on defining
MC(C, u,#) and computing MC(k, u,#). Polynomial com-
putation of MC(k, u,⇥l) will follow. A node u can con-
tribute (possibly negative) value to a coalition C through
# 2 ⇥l in one of three mutually exclusive ways. These are:
[1] R(u,#) and N(C,#),

[2] eR(u,#) and R(C,#), and
[3] R(u,#) or N(u,#), and R(C,#).

For all other cases MC(C, u,#) = 0. Since the remainder of
the proof hinges on the understanding of these cases, let us
illustrate them on our running example from Figure 2.
Example 5 Let S = {a}. We will compute the contribution
of node b to coalition S. We have MC(S, b,#1) = 0, since
eR(S,#1) (meaning there is nothing to take away). Evidently,
none of the cases [1], [2], [3] are satisfied. We also have

eR(b,#3) and N(S,#3), which implies MC(S, b,#3) = 0. A
contribution can only be made through the item #2. We have:
R(b,#2) and R(S,#2), which satisfies condition [3]. It is not
immediately obvious why a contribution is made, since #2 is
already positively related with S. However, it is necessary to
keep in mind that the size of the coalition will change. Due
to the function g, this means that the value added by item
#2 will now be g(k+1)f(#2) instead of g(k)f(#2). We say,
then, that b contributes the value g(k+1)f(#2)�g(k)f(#2)
through the item #2 to coalition S.
We compute MC(k, u,#) in these three cases. In equa-
tions (3), (4) and (5) we will use properties (M2) and (M3)
to give a closed formula that depends just on⇥l and the size
of the coalition, but not on # itself. These formulas can be
computed in polynomial time due to (M3⇤).

For the first case, MC(C, u,#) = g(k+1)f(#). There are
|N�1

#k(#)| coalitions of size k such that N(C,#). Thus, for
# 2 ⇥l we have:

MC[1](k, u,#) = g(k + 1)f(#)|N�1
#k(#)|

= g(k + 1)f(⇥l)|N�1
#k(⇥l)|. (3)

For the second case, MC(C, u,#) = �g(k)f(#). There are
|R�1

#k(#)| coalitions of size k such that R(C,#). We have:

MC[2](k, u,#) = �g(k)f(#)|R�1
#k(#)|

= �g(k)f(⇥l)|R�1
#k(⇥l)|. (4)

For the third case, MC[3](C, u,#) = �kf(#), where �k =
g(k + 1) � g(k). There are exactly |R�1

#k(#)| coalitions of
size k such that R(C,#). We therefore have:

MC[3](k, u,#)=�kf(#)|R�1
#k(#)| =�

kf(⇥l)|R�1
#k(⇥l)|. (5)

Since MC[i](k, u,#) depends on the group ⇥l such that # 2
⇥l, equivalently we write MC[i](k, u,⇥l). Using equations
(3), (4) and (5), we find that MC(k, u,⇥l) equals

MC(k, u,⇥l) =
X

#2R⇥l
(u)

MC[1](k, u,#)

+
X

#2 eR⇥l
(u)

MC[2](k, u,#) +
X

#2R⇥l
(u)[N⇥l

(u)

MC[3](k, u,#).

Using equations (3), (4) and (5) this term can be rewritten as
MC(k, u,⇥l) = |R⇥l(u)|MC[1](k, u,⇥l)

+| eR⇥l(u)|MC[2](k, u,⇥l)

+
�
|R⇥l(u)|+ |N⇥l(u)|

�
MC[3](k, u,⇥l). (6)

Observe that the summations over the potentially exponen-
tially growing sets R⇥l(u), eR⇥l(u), and N⇥l(u) fall out of
the equation. Moreover, in virtue of property (M3⇤), this
term can be computed in polynomial time.

Finally, equations (6), (2) and (1) yield the following
closed formula for the semivalue of node v, which also fur-
nishes us with a polynomial algorithm:

�v(⌫) =
X

0k<|V |

�(k)
X

1lh(G)

MC(k, u,⇥l)�|V |�1
k

� . (7)

This concludes the proof. ⇤
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Corollary 1 If  2 M ⇤, then there exist m1, m2, and m3

such that f can be computed in time O(|V |m1); g in
time O(|V |m2); and |N�1

#k(⇥l)|, |R�1
#k(⇥l)|, |R⇥l(u)| and

| eR⇥l(u)| can be computed in time O(|V |m3). We can solve
SEMIVALUE( ,�) in time O

�
h(G)|V |m1 + |V |m2+1 +

h(G)|V |m3+1
�
.

Corollary 2 For all  2 M ⇤ we can compute the Shapley
value-based and Banzhaf centralities in polynomial time.

An Algorithm for Semivalue-based Centrality
The Algorithm 1 (SEMI) is a direct implementation of
equation (7). In lines 5-7, 8-10 and 11-12, it computes
the contribution of v to Ck associated with the expres-
sions MC[1](k, v,⇥l), MC[2](k, v,⇥l) and MC[3](k, v,⇥l),
respectively.

Algorithm 1: (SEMI) The semivalue-based centrality
Input: Graph G = (V,E), node v 2 V , model

MG = (
�
⇥i

 h(G)

1
, R, eR, f, g), function �,

functions cNG and cRG, precomputed vectors
{|R⇥l({v})| : 1  l  h(G) ^ v 2 V }, and
{| eR⇥l({v})| : 1  l  h(G) ^ v 2 V }

Output: semivalue, �v( (G)), for the node v
1 �v  0;
2 for k  0 to |V |� 1 do
3 MCk  0;
4 for l 1 to h(G) do

//

************

[ R(v,#) and N(C,#)]
**********

5 |N�1
#k(⇥l)| cNG (# 2 ⇥l, k);

6 MC[1]  g(k + 1)f(⇥l)|N�1
#k(⇥l)|;

7 MCk  MCk + |R⇥l({v})|MC[1];
//

************

[

eR(v,#) and R(C,#)]
***********

8 |R�1
#k(⇥l)| cRG(# 2 ⇥l, k);

9 MC[2]  g(k)f(⇥l)|R�1
#k(⇥l)|;

10 MCk  MCk � | eR⇥l({v})|MC[2];
//

******

[R(v,#) or N(v,#), and R(C,#)]
******

11 MC[3]  
�
g(k + 1)� g(k)

�
f(⇥l)|R�1

#k(⇥l)|;
12 MCk  MCk + |R⇥l({v}) [N⇥l({v})|MC[3];

13 MCk  �(k)

(|V |�1
k )

MCk;

14 �v  �v + MCk;

Recall that polynomial computation of |N�1
#k(⇥l)| and

|R�1
#k(⇥l)| was one of our assumptions in M ⇤. The func-

tions for calculating these values are represented in the pseu-
docode by cNG and cRG and must be provided in the input. The
values |R⇥l({v})| and | eR⇥l({v})| must be precomputed for
all 1  l  h(G) and v 2 V . Given those precomputa-
tions, |N⇥l({v})| can also be computed in constant time.
Due to Corollary 1, the time complexity of this algorithm is
O
�
h(G)|V |m1 + |V |m2+1 + h(G)|V |m3+1

�
.

Centrality measure f(v) g(|C|) Complexity

degree(⇤)
(Everett and Borgatti 1999)

1 1 O(|V |2)
weighted degree
(Newman 2004)

1
deg(v) 1 O(|V |2)

impact factor
(Bollen et al. 2005) 1 1

|C| O(|V |2)
normalized degree
(Everett and Borgatti 1999) 1 1

|V |�|C| O(|V |2)

(⇤)(Michalak et al. 2013b) presented an algorithm for the Shapley Value-based
degree centrality. Our algorithm applies to all semivalues.

Table 1: The f and g functions for various degree centralities

Computing Semivalues for Classic Centrality
In this section, we show that our framework has strong prac-
tical applications. It identifies efficiently computable game-
theoretic extensions of such fundamental centrality mea-
sures as degree, betweenness, and closeness. Moreover, it
provides a general and ready-to-use procedure to construct
polynomial-time algorithms. Since our approach is general,
it does not always yield optimal algorithms.3 However, it
constitutes a starting point for investigating them.

Parameterised degree centrality
In this section, we define in our framework the class of co-
operative games, where a node’s value is based on its degree.
We consider the general parameterised group degree central-
ity of a coalition C in graph G, which is defined by:

 D(G)(C) = ⌫DG (C) = g(|C|)
X

v2E(C)

f(v),

where E(C) is the set of neighbours of C, and f and g are
polynomially computable parameters such that deg(u) =
deg(v) implies f(u) = f(v) for all u, v 2 V . Using this
characteristic function, we build game-theoretic extensions
of degree, weighted degree, impact factor and normalized
degree centralities (Table 1).

Proposition 1 The parameterised representation function
 D (for polynomially computable parameters f and g) be-
longs to M ⇤. Consequently, SEMIVALUE( D,�) can be
solved in polynomial time and the corresponding semivalue-
based centrality can be computed in time O(|V |2 +
|V |m1+1 + |V |m2+1).

Proof: We will prove that for every ⌫DG we can find an
MG = (

�
⇥i

 h(G)

1
, R, eR,N, f, g) that models it, proving

 D(G) is in the class M . Next, we will show that all prop-
erties necessary for M ⇤ are also satisfied. To this end, for
all graphs G we define the set of items ⇥G = V . The two
relations, R, eR ✓ V ⇥ V , will be as follows:

R(v, u) if and only if 9(v,u)2E v 6= u
eR(v, u) if and only if v = u.

466



And we define the partitions of ⇥G by ⇥i = {v 2
V : deg(v) = i}. Hence, we can rewrite ⌫DG (C) =
g(|C|)

P
#2R(C) f(#), satisfying property (M1). (M2) is

satisfied due to our assumption on f and all the examples
in Table 1 satisfy it as well. Next, we consider the relations
with respect to coalition sizes k and for v 2 ⇥G we have:

|N�1
#k(v)| =

⇢
0 if |V |� 1� deg(v) < k�|V |�1�deg(v)

k

�
otherwise.

|R�1
#k(v)| =

⇢
0 if |V | = k�|V |

k

�
� |N�1

#k(v)|�
�|V |�1

k�1

�
otherwise.

Note that for all ⇥l and all #i,#j 2 ⇥l we have that
|N�1

#k(#i)| = |N�1
#k(#j)| and |R�1

#k(#i)| = |R�1
#k(#j)|, sat-

isfying (M3) and (M4). Hence,  2M .
Regarding M ⇤, property (M1⇤) holds trivially, since

clearly h(G)  |V | and from the definition of  D(G)(C)
property (M2⇤) holds trivially as well. For each v 2 V
and 1  l  h(G) it is easy to compute |R⇥l({v})| and
| eR⇥l({v}|, which satisfies (M3⇤). Finally, |N�1

#k(#)| and
|R�1

#k(#)| can be computed in polynomial time simply from
their definitions shown above, satisfying property (M3⇤).

Due to Theorem 1, we can compute semivalue-based cen-
tralities based on vDG in polynomial time. Due to Corol-
lary 1, we can compute �v(⌫DG ) in time O(|V |2+|V |m1+1+
|V |m2+1). ⇤

Parameterised betweenness centrality
In this subsection, we show that it is possible to express
in our framework the class of cooperative games, where a
node’s value is based on its betweenness centrality. To this
end, we will denote the set of paths between s and t by ⇧s,t

and the set of all shortest paths in G by SP(G). Also, we will
denote by �st the number of shortest paths between s and t
(if s = t then �st = 1) and by �st(C) the number of shortest
paths between s and t that pass through some node v 2 C.

The general parameterised group betweenness centrality
of a coalition C in graph G is defined by:

 B(G)(C) = ⌫BG (C) = g(|C|)
X

s,t/2C

�st(C)f(s, t),

where f and g polynomially computable parameters.2 Using
this characteristic function, we build game-theoretic exten-
sions of stress, betweenness, distance-scaled betweenness
and normalized betweenness centralities (Table 2).

Proposition 2 The parameterised representation function
 B (for polynomially computable parameters f and g) be-
longs to M ⇤. Consequently, SEMIVALUE( B ,�) can be
solved in polynomial time and the corresponding semivalue-
based centrality can be computed in time O(|V |3 +
|V |m1+2 + |V |m2+1).

2If �
xy

(C0) = 0, we postulate 0
0 = 0.

Centrality measure f(s, t) g(|C|) Complexity

stress(⇤)
(Szczepański et al. 2012)

1 1 O(|V |3)

betweenness(⇤)
(Everett and Borgatti 1999)

1
�st

1 O(|V |3)
distance-scaled betw.
(Brandes 2008)

1
�stdist(s,t)

1 O(|V |3)
normalized betw.
(Everett and Borgatti 1999)

1
�st

2
(|V |�|C|)(|V |�|C|�1) O(|V |3)

(⇤)Szczepański et al. 2012 presented the algorithms for the Shapley Value-based
betweenness and stress centralities. Our algorithm applies to all semivalues.

Table 2: f and g for various betweenness centralities

Centrality measure f(d) g(|C|) Algorithm
closeness
(Everett and Borgatti 1999) 1 1 O(|V |4)
harmonic(⇤)
(Boldi and Vigna 2013)

1
d 1 O(|V |4)

influence game(⇤)
(Michalak et al. 2013b)

positive value
decreasing 1 O(|V |4)

normalized closeness
(Everett and Borgatti 1999)

1
�st

1
(|V |�|C|) O(|V |4)

(⇤)Michalak et al. 2013b presented for these functions an algorithm for the Shapley
Value. Our algorithm applies to all semivalues.

Table 3: f and g for various closeness centralities

Sketch of proof: We will show how to define for every ⌫BG
the model MG satisfying the conditions (M1) and (M2) for
class M . To this end, we define ⇥G = SP(G). Also, we
define the two relations, R, eR ✓ V ⇥ SP(G), as follows:

R(v,⇡st) if and only if v 2 ⇡st and v 6= s and v 6= t
eR(v,⇡st) if and only if v = s or v = t.

and we define the of partitions of ⇥G as ⇥st =
{⇡st 2 SP(G) : ⇡st 2 ⇧st}. Thus ⌫DG (C) =
g(|C|)

P
#2R(C) f(#), satisfying (M1) and (M2). ⇤

Parameterised closeness centrality
The last class of characteristic functions that we will define
in our framework assigns value to a node based on its dis-
tance to other nodes. The parameterised closeness centrality
is defined as follows:

 CL(G)(C) = ⌫CL
G (C) = g(|C|)

X

v2V

f(dist(C, v)),

where f and g are polynomially computable parameters. Us-
ing this characteristic function, we build game-theoretic ex-
tensions of closeness, harmonic, influence game and normal-
ized closeness centralities (Table 3).
Proposition 3 The parameterised representation function
 CL (for polynomially computable parameters f and g) be-
longs to M ⇤. Consequently, SEMIVALUE( CL,�) can be
solved in polynomial time and the corresponding semivalue-
based centrality can be computed in time O(|V |4 +
|V |m1+2 + |V |m2+1).
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Sketch of proof: We will show how to define a model MG

for every ⌫CL
G . To this end, we will define items as pairs of

the form hu, li ✓ V ⇥ {0, .., |V | � 1}. They will represent
nodes and all possible distances between them. We define
⇥G = {hu, li 2 V ⇥ N : 9v2V dist(u, v) = l} and the
partition {{#}|# 2 ⇥G} of singletons. Next, we define the
two relations, R, eR ✓ V ⇥V ⇥{0, . . . , |V |�1}, as follows:

R(v, hu, li) if and only if dist(v, u) = l
eR(v, hu, li) if and only if dist(v, u) < l.

Thus ⌫CL
G (C) = g(|C|)

P
#2R(C) f(#), satisfying (M1).3

(M2) holds for all entries in Table 3. (M3) and (M4) hold
since item groups are singletons. Hence  CL 2M . ⇤

Related Work
Grofman and Owen (1982) were the first to apply a game-
theoretic solution concept—the Banzhaf index—as a cen-
trality measure. Gómez et al. (2003) proposed a central-
ity measure based on the Shapley value and Myerson
value for graph-restricted games Myerson (1977). Amer
and Giménez (2004) proposed to use semivalues as a mea-
sure of the importance of nodes, and Amer, Giménez, and
Magaña (2012) followed for directed networks. Recently,
Szczepański, Michalak, and Wooldridge (2014) developed
the first game-theoretic measure of centrality based on the
Owen value (Owen 1977) that takes into account the com-
munity structure of the underlying network. We also men-
tion some works on the computational aspects of cooper-
ative games on graphs (Bachrach and Rosenschein 2009;
Greco et al. 2011).

Works on the computational characteristics of game-
theoretic centrality include Michalak et al. (2013b), who
proposed, inter alia, polynomial algorithms for Shap-
ley value-based degree and closeness centralities, and
Szczepański, Michalak, and Rahwan (2012), who proposed
polynomial algorithms for Shapley value-based between-
ness and stress centralities. Michalak et al. (2013a) proposed
fast algorithms for connectivity games.

Game-theoretic centralities were first used by Suri and
Narahari (2010) in the interesting application of influence
propagation in networks. In particular, the authors used the
Shapley value to approximate the solution to the top k-node
problem, i.e., the problem of identifying the k most influ-
ential nodes in a network. Solution concepts from cooper-
ative game theory have been applied to many other graph-
related problems, such as studies of the synergies between
agents (Procaccia, Shah, and Tucker 2014), wire-tapping
communication networks (Aziz et al. 2009).

Our paper also contributes to the line of research on mod-
elling characteristic functions using specific combinatorial
structures such as graphs. This includes works by Deng and
Papadimitriou (1994), Greco et al. (2009), and Wooldridge
and Dunne (2006). Such representations are guaranteed to
be concise, however they are not fully expressive.

3In our examples f ignores the first parameter of # and is sim-
ply a function of distance.

Future Work
A few future research directions stem from this work. First,
it may be possible to broaden the scope of the class of game-
theoretic network centralities presented in this paper or to
find new classes altogether. For example, perhaps it would
be possible to extend our model to coalitional semivalues
(Szczepański, Michalak, and Wooldridge 2014): the family
of solution concepts for cooperative games with a priori-
given unions. Second, we have presented generalised degree,
betweenness and closeness centralities, but many more co-
operative games and their semivalues can be used to analyse
networks. Finally, it would be interesting to perform an ex-
perimental analysis of the suitability of different semivalues
for particular applications. The algorithms presented in this
paper aim to facilitate the tractable computations that are
necessary for such studies.
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