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Abstract

Certain real-life networks have a community structure in
which communities overlap. For example, a typical bus net-
work includes bus stops (nodes), which belong to one or more
bus lines (communities) that often overlap. Clearly, it is im-
portant to take this information into account when measur-
ing the centrality of a bus stop—how important it is to the
functioning of the network. For example, if a certain stop be-
comes inaccessible, the impact will depend in part on the bus
lines that visit it. However, existing centrality measures do not
take such information into account. Our aim is to bridge this
gap. We begin by developing a new game-theoretic solution
concept, which we call the Configuration semivalue, in order
to have greater flexibility in modelling the community struc-
ture compared to previous solution concepts from coopera-
tive game theory. We then use the new concept as a building
block to construct the first extension of Closeness centrality
to networks with community structure (overlapping or other-
wise). Despite the computational complexity inherited from
the Configuration semivalue, we show that the corresponding
extension of Closeness centrality can be computed in poly-
nomial time. We empirically evaluate this measure and our
algorithm that computes it by analysing the Warsaw public
transportation network.

Introduction

One of the key problems in network science involves identi-
fying the most important (or central) nodes (Freeman 1979;
Dezső and Barabási 2002; Keinan et al. 2004; Page et al.
1999). The four best-known centrality measures are De-
gree, Betweenness, Closeness and Eigenvector centralities
(Bonacich 1972; Freeman 1979), each of which views cen-
trality from a different perspective, focusing on certain traits
that make nodes important, or, “central,” to the function-
ing of a network (Brandes and Erlebach 2005; Koschutzki
et al. 2005). Our focus in this paper is on Closeness cen-
trality. This measure considers the important nodes to be
those that are relatively close to all other nodes in the
network: the closer a node is to the others, the higher
its centrality. Closeness centrality has many applications,
from coauthorship networks (Yan and Ding 2009), through
tourism (Shih 2006), to social networks (Barabasi 2003;
Karinthy 2006).
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One aspect of networks that has been largely ignored in
the literature on centrality is the fact that certain real-life
networks have a predefined community structure. In public
transportation networks, for example, bus stops are typically
grouped by the bus lines (or routes) that visit them. In coau-
thorship networks, the various venues where authors pub-
lish can be interpreted as communities (Szczepański, Micha-
lak, and Wooldridge 2014). In social networks, individuals
grouped by similar interests can be thought of as members
of a community. Clearly for such networks, it is desirable
to have a centrality measure that accounts for the prede-
fined community structure. Yet, to the best of our knowl-
edge, only one such measure has been developed to date
(Szczepański, Michalak, and Wooldridge 2014), which ex-
tends Degree centrality to networks with community struc-
ture. Despite this recent development, one important aspect
of real-life networks remains missing from existing central-
ity measures: the ability to consider overlapping communi-
ties. Take social networks, for example, where such overlaps
are widespread due to the various affiliations and interests
of the individuals involved (Kelley et al. 2012). Likewise, in
our example of transportation networks, a bus stop may be
on the route of multiple (i.e., overlapping) bus lines. If such
a stop becomes inaccessible, then all the bus lines that visit
it would no longer function properly. As such, the impor-
tance of a bus stop clearly depends (at least partially) on the
importance of the bus lines to which it belongs.

In an attempt to define a centrality measure that accounts
for overlapping communities, we focused on game-theoretic
centrality measures.1 The inspiration behind this line of re-
search comes from solution concepts in cooperative game
theory. In essence, given a set of players, a cooperative so-
lution concept typically defines a payoff for each player by
comparing his or her contribution to the various groups of
players (more on this in the next section). The rich repos-
itory of solution concepts has been extensively refined and
expanded over the past decades, making it an ideal toolkit
for quantifying the importance of individuals in a setting
where those individuals co-exist and operate in groups. In
the context of game-theoretic network centrality, the indi-

1See www.game-theoretic-centrality.com and
www.network-centrality.com for an overview of this line
of research.
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Solution Concept Degree Closeness Betweenness

Shapley value 2 2 3

Semivalues 4 4 3

Owen value 5 This Paper Open
Coalitional semivalues 5 This Paper Open
Configuration value Open This Paper Open
Configuration semivalues Open This Paper Open

Table 1: The table outlines the papers that used various so-
lution concepts to extend Degree, Closeness, or Betweenness
centralities, and computed them in polynomial time.

viduals correspond to the nodes of the network, while the
groups correspond to the subgraphs of the network. With
this mapping, any solution concept from cooperative game
theory can be readily applied as a centrality measure, ex-
cept for one remaining obstacle: computing the solution con-
cept. In fact, most solution concepts are inherently hard to
compute (Chalkiadakis, Elkind, and Wooldridge 2011). For-
tunately, however, in the context of network centrality, we
typically focus on a certain closed-form formula, specify-
ing how each group is evaluated. In certain cases, fixing
the group-evaluation function makes it possible to obtain
a polynomial-time algorithm that computes the resulting,
game-theoretic centrality measure.

With this in mind, we propose the first extension of Close-
ness centrality to networks with either overlapping or non-
overlapping community structure. To this end, we propose
four game-theoretic variants of Closeness centrality, three of
which are based on existing solution concepts, namely: the
Owen value (Owen 1977), the configuration value (Albizuri,
Aurrecoechea, and Zarzuelo 2006), and the coalitional semi-
value (Szczepański, Michalak, and Wooldridge 2014). The
fourth and most general variant is based on a new solution
concept proposed in this paper, which generalises the afore-
mentioned three concepts, and offers greater flexibility in
modelling the underlying community structure. We call it
the Configuration semivalue.

Crucially, all of the aforementioned solution concepts are
hard to compute given an arbitrary group-evaluation func-
tion. Nevertheless, for the purpose of extending Closeness
centrality, we propose polynomial-time algorithms for com-
puting the corresponding game-theoretic extension. This re-
sult fills several gaps in the computational-complexity anal-
ysis of game-theoretic centrality measures (see Table 1).

Finally, to demonstrate the applicability of our approach,
we apply it to the Warsaw public transportation network,
identifying the most central stops and routes therein, from
the perspective of Closeness centrality.

Basic Notation and Definitions

In the following two subsections, we introduce the relevant
game-theoretic, and graph-theoretic concepts, respectively.

2 Michalak et al. (2013b)
3 Szczepański, Michalak, and Rahwan (2012, 2016)
4 Szczepański et al. (2015)
5 Szczepański, Michalak, and Wooldridge (2014)

Game-Theoretic Concepts

A cooperative game consists of a set of players N =
{1, 2, . . . , n} and a characteristic function ν : 2N → R

such that ν(∅) = 0. This function assigns to each coali-
tion of players its payoff (i.e., an indication of its perfor-
mance). We will henceforth refer to a game simply by ν. A
coalition structure, CS = {Q1, Q2, . . . , Qm}, is a partition
of N into disjoint coalitions. One of the key questions in
cooperative game theory is the following: Given a game ν
and a coalition structure CS that the players have formed,
how do we divide the payoff of each coalition among its
members? In this context, assuming that CS = {N}, i.e.,
assuming that the players have formed the grand coalition,
Shapley (1953) proposed a solution concept—now known
as the Shapley value—to fairly divide the payoff from co-
operation among the players. Banzhaf (1965) proposed an-
other solution concept—now known as the Banzhaf index—
which is similar to the Shapley value except for a subtle
difference in the way contributions are weighed. To gener-
alize the aforementioned solution concepts, Weber (1979)
proposed semivalues—a family of solution concepts that in-
cludes both the Shapley value and Banzhaf index. Formally,
let MC (C, i) = ν(C ∪ {i}) − ν(C) be the marginal con-
tribution of player i to coalition C ⊆ N \ {i}. Denoting by
β(k) the probability that any player makes a marginal con-
tribution to a coalition of size k, the semivalue of i is:

ψi(ν) =

|N |−1∑
k=0

β(k)E
[
MC (Ck, i)

]
, (1)

where Ck is a random variable over subsets of size k chosen
from the set N \ {i} with uniform probability, and E is the
expected value operator for this variable. The Shapley value
and Banzhaf index are two semivalues, defined by β(k) =

1/|N | and β(k) =
(|N |−1

k

)
/2|N |−1, respectively.

Importantly, all semivalues assume that CS = {N}, i.e.,
that the grand coalition is formed. To relax this assumption,
Owen (1977) introduced a solution concept—now known
as the Owen value—that divides the payoff of any a pri-
ori coalition structure CS . Now, when CS = {N} or
CS = {{i}}i∈N , the Owen value is equivalent to the Shap-
ley value. As such, the Owen value is a generalization of the
Shapley value; one that does not generalize the β function
(as semivalues do), but rather generalizes the assumed coali-
tion structure CS . Another step in this line of research was
taken by Szczepański, Michalak, and Wooldridge (2014),
who proposed a generalisation combining both the Owen
value and semivalues; they called it coalitional semivalues.
Formally, given a coalition structure, CS , and discrete prob-
ability distributions: β : {0, . . . , |CS | − 1} → [0, 1] and
αj : {0, . . . , |Qj | − 1} → [0, 1] for all j ∈ {1, . . . , |CS |},
coalitional semivalues are defined by:

γi(ν,CS ) =

|CS |−1∑
k=0

β(k)

|Qj |−1∑
l=0

αj(l) E
[
MC

((⋃
T k

)
∪ Cl, i

)]

(2)
where Qj is the coalition in CS that player i belongs to,
T k is a random variable over subsets of size k chosen from
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CS \ {Qj} with uniform probability, Cl is a random vari-
able over subsets of size l chosen from Qj \ {i} with uni-
form probability, and E is the expected value operator. The
coalitional semivalue is equivalent to the Owen value when
β(k) = 1/|CS | and αj(l) = 1/|Qj |, ∀j ∈ {1, . . . , |CS |}.

None of the solution concepts discussed thus far considers
overlapping coalitions. To address this issue, Albizuri, Aur-
recoechea, and Zarzuelo (2006) generalised the Owen value
to situations where the a priori coalition structure CS con-
tains overlapping coalitions; they called this generalisation
the Configuration value. Formally, it is defined as follows,
where Ti = {j : j ∈ N and Qj ∈ CS and i ∈ Qj}:

χi(ν,CS) =
∑

T⊆CS
T∩Ti=∅

∑
j∈Ti

∑
C⊆Qj
i �∈C

λMC
((⋃

T
) ∪ C, i

)
,

where λ =
|T |!(|CS | − |T | − 1)!

|CS |!
|C|!(|Qj | − |C| − 1)!

|Qj |! (3)

Graph-Theoretic Concepts

A network is a graph, G = (V,E), comprised of a set of
nodes V = {v0, v1, . . . , vn−1} and a set of edges E ⊆
V × V . A path is simply a chain of connected nodes. The
distance between two nodes, s and t, denoted by dist(s, t)
is the length of the shortest path between the two (we as-
sume that dist(v, v) = 0). Given a node v ∈ V and a set of
nodes C ⊆ V , we say that dist(C, v) is equal to the mini-
mum distance between any node u ∈ C and v (this implies
that if v ∈ C then dist(C, v) = 0).

Closeness centrality quantifies the importance of nodes
based on their average distance to other nodes (Freeman
1979). In its most general form, it is formulated as follows:

closeness(v) =
∑
u∈V

f(dist(v, u)),

where the function f : N → R determines how the distance
influences the centrality. When f(k) = k, we obtain the
classical Closeness centrality, where the smaller the value,
the more central the node. In this paper, we focus on an al-
ternative formulation, where f(k) = 1/k and throughout the
paper 1

0 = 0. The resulting centrality is known as harmonic
centrality (Boldi and Vigna 2013). With this modification,
the greater the value, the more central the node (which is in
line with most centrality measures).

Everett and Borgatti (1999) introduced group Closeness
centrality, which extends the notion of Closeness to groups
of nodes as follows:

νc(C) =
∑

u∈(V \C)

f(dist(C, u)). (4)

Building upon this formula, the first game-theoretic ex-
tension of Closeness centrality was introduced by (Micha-
lak et al. 2013b). In particular, the authors defined a game
in which the players are the nodes of the network, and the
characteristic function is νc. The centrality of each node
was then determined using the Shapley value. The result-
ing game-theoretic centrality measure is called the Shap-
ley value-based Closeness centrality. Roughly speaking, the
harmonic Closeness centrality evaluates how close a node

(a) (c)

(b) (d)

v1

v1

v2

v4v1v3

v1

v2

v9

v8
v4

v10
v7

v5
v3

v6
Figure 1: Sample networks. In (c) and (d), communities are
highlighted by same-coloured edges.

is to others, whereas the Shapley value-based variant evalu-
ates the role that a node plays in bringing other nodes closer
together. To illustrate this difference, consider networks (a)
and (b) from Figure 1. Here, according to harmonic Close-
ness, v1 is relatively more important in (b) than in (a) since
it is close to more nodes in (b) than in (a). In contrast, ac-
cording to the Shapley-value based Closeness, v1 is actually
more important in (a), since the removal of v1 from (a) has
a greater impact on the distances between the other nodes,
compared to the removal of v1 from (b).

Harmonic SV-based

1. v7, v9 v7, v9
2. v1, v2 v1, v2
3. v5, v6, v8, v10 v3, v4
4. v3, v4 v5, v6, v8, v10

Table 2: Harmonic closeness
and Shapley value rankings
for Figure 1 (d).

We present in Table 2
the harmonic and Shap-
ley value closeness rank-
ings for Figure 1 (d).6
The Configuration value
closeness ranking is as
follows: v9, v7, v1, v6,
v3, v8, v5, v2, v10, v4.
The configuration value
makes use of community

information, promoting nodes v9, v1, v6 and v3. This rank-
ing is also more fine-grained (i.e., there are no ties), because
it draws upon community information, which is different for
most nodes in the example.

Our Centrality Measures

As stated earlier, no centrality measures to date can readily
be applied to networks with overlapping community struc-
tures. An example is depicted in networks (c) and (d) from
Figure 1. Specifically, in network (c), nodes v3 and v4 are
symmetric except that v3 belongs to a seemingly-important
community; one that connects the two parts of the network.
Arguably, when taking this additional information into con-
sideration, v3 should be considered more important than v4.
Moving on to network (d), node v1 belongs to more com-
munities than v2, and the communities of v1 seem to be
equally important, if not more important, than those of v2.
This could mean, for example, that more bus, tram or train
routes visit (and rely on) the bus stop v1 than the bus stop v2,
implying that v1 should be more central once the underlying
community structure is taken into consideration.

Configuration Semivalues: We now propose a family of
solution concepts, which we believe to be the most general

6Ranking does not capture the subtlety of valuations. For exam-
ple, harmonic closeness ranks v7 as slightly more important than
v1, however Shapley value closeness ranks it as much more impor-
tant.
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of its kind to date, as it not only allows for an arbitrary β, α
and CS , but also allows for overlapping coalitions. We call
it Configuration semivalues, and define it as follows, where
T k is a random variable over subsets of size k of CS \ Ti
and E is the expected value operator:

φi(ν,CS)=

|CS|−1∑
k=0

β(k)
∑
j∈Ti

|Qj |−1∑
l=0

αj(l) E
[
MC

((⋃
T k) ∪ Cl, i

)]
(5)

In particular, given a community structure CS in which
communities do not overlap, this family of solution concepts
is equivalent to coalitional semivalues. Given CS = {N}, it
is equivalent to semivalues. Further restrictions on β and αj

(as discussed in the preliminaries) lead to the Shapley value,
the Banzhaf index, or the Owen value. Compared to the con-
figuration value, our configuration semivalues offer greater
control over the contributions of players, due to a probabil-
ity distribution over the number of communities to which
a player contributes and a distribution over the number of
nodes from his own community that he can contribute to. In
applications such as countterrorism (Lindelauf, Hamers, and
Husslage 2013; Michalak et al. 2013a), this can represent the
expected size of an attack on a network or the number of tar-
geted communities.
Configuration Semivalue Community Index: Whereas to
measure the importance of a community using the Owen
value it suffices to sum up the power of the nodes comprising
it, this is not the case for the Configuration value. In particu-
lar, the power of a node may be the result of its membership
to many communities. For this reason, the distinction must
be made as to which of the player’s marginal contributions
are made because of which community. To this end, we pro-
pose the following measure of community strength:

CPj(ν,CS)=
∑
i∈Qj

|CS|−1∑
k=0

β(k)

|Qj |−1∑
l=0

αj(l) E
[
MC

((⋃
T k) ∪ Cl, i

)]
,

where Cl ⊆ Qj \ {i} and T k ⊆ CS \ Qj are random vari-
ables. Although an axiomatic characterisation of this com-
munity index is outside the scope of this paper, we mention
that in the case of the Configuration value, the index is ef-
ficient, and in the case of the Owen value, it is equal to the
sum of the Owen values of the members of a community.
Configuration Semivalue Closeness Centrality: Our ex-
tension of closeness centrality (which accounts for overlap-
ping and non-overlapping community structures) involves
using our Configuration semivalue (see Equation 5) with the
characteristic function for group Closeness centrality (see
Equation 4). More formally, it is: φv(νc, CS).

Algorithms

We show that any configuration semivalue of group Close-
ness centrality is computable in polynomial time (Theo-
rem 1), and obtain better time complexity for the configu-
ration value (Theorem 2).
Theorem 1 Any configuration semivalue of group Close-
ness centrality for all nodes in a weighted graph G =
(V,E, ω) can be computed in O(|V |4|CS|) time.

Proof of Theorem 1: Starting from Equation (5), which
defines the configuration semivalue, let us first replace the
arbitrary characteristic function therein, i.e., ν, with that of
group Closeness centrality (defined in Equation 4). We get:

φv(ν,CS) =
∑
j∈Tv

|CS|−1∑
k=0

|Qj |−1∑
l=0

∑
Tk⊆CS\Tv
|Tk|=k

∑
Cl⊆Qj\{v}
|Cl|=l

αj(l)β(k)

∑
u∈V f(dist(

⋃
T k ∪ Cl ∪ {v}, u))− f(dist(

⋃
T k ∪ Cl, u))(|CS|−1

k

)(|Qj |−1

l

) .

Although this may seem inconsequential, our next step is to
rearrange the summation over u and bring it to the forefront:

φv(ν,CS) =
∑
u∈V

∑
j∈Tv

|CS|−1∑
k=0

|Qj |−1∑
l=0

∑
Tk⊆CS\Tv
|Tk|=k

∑
Cl⊆Qj\{v}
|Cl|=l

αj(l)

β(k)
f(dist(

⋃
T k ∪ Cl ∪ {v}, u))− f(dist(

⋃
T k ∪ Cl, u))(|CS|−1

k

)(|Qj |−1

l

) .

Next, for v ∈ Qj we will split the equation into:

MC+
k,l(v, u, j) =

∑
Tk⊆CS\Tv
|Tk|=k

∑
Cl⊆Qj\{v}
|Cl|=l

αj(l)β(k)

f(dist(
⋃

T k ∪ Cl ∪ {v}, u))(|CS|−1
k

)(|Qj |−1

l

) , and (6)

MC−
k,l(v, u, j) =

∑
Tk⊆CS\Tv
|Tk|=k

∑
Cl⊆Qj\{v}
|Cl|=l

αj(l)β(k)

f(dist(
⋃

T k ∪ Cl, u))(|CS|−1
k

)(|Qj |−1

l

) , (7)

with the additional constraint on T k and Cl such that:

dist(
⋃

T k ∪ Cl, u)) �= dist(
⋃

T k ∪ Cl ∪ {v}, u)). (8)

We can now state the following:

φv(ν,CS ) =
∑
u∈V

∑
j∈Tv

|CS |−1∑
k=0

|Qj |−1∑
l=0

MC+
k,l(v, u, j)−MC−

k,l(v, u, j). (9)

The constraint in Equation (8) simply allows us to avoid
redundant computations (the contribution in the opposite
case is trivially zero, since by entering such a coalition, v
does not change the distance to u). The remainder of the
proof will focus on computing Equations (6) and (7). We
will first focus on Equation (6).

Note that due to the constraint in Equation (8), we can be
sure that f(dist(

⋃
Q∈Tk Q∪Cl ∪{v}, u)) = f(dist(u, v)),

since by entering the coalition, v must have brought it closer
to u. Thus, it suffices to count the number of coalitions from
Qj (of size l)—Cl—and coalitions of communities (of size
k)—T k—such that dist(

⋃
Q∈Tk Q ∪ Cl, u)) > dist(v, u),

since only then Equation (8) will hold. To do this, let us in-
troduce the following notation:
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• Com∼d(u) = {Q : Q ∈ M and dist(Q, u) ∼ d)};

• Nodj∼d(u) = {s : s ∈ Cj and dist(s, u) ∼ d)},
where ∼ will be one of <, >, ≤, ≥ or =. These sets are fairly
simple to precompute, and will allow us to count the number
of required coalitions. In this particular case, we will use
Com>dist(u,v) to count the number of communities farther
from u than v. Similarly, Nodj>dist(u,v) counts the number
of nodes in the community Qj that are farther from u than
the distance from u to v. Altogether, there are

(Com>dist(u,v)

k

)
coalitions of communities and

(Nodj
>dist(u,v)

l

)
coalitions from

Qj satisfying the requirements. Let d = dist(u, v). Finally:

MC+
k,l(v, u, j) =

(
Nodj>d

l

)(
Com>d

k

)
f(dist(v, u)).

As for Equation (7), we divide computations as follows:

MC−
k,l(v, u, j) =

∑
d

MC−
k,l(v, u, j, d), where

MC−
k,l(v, u, j, d) =

∑
Tk⊆CS\Tv

|Tk|=k

∑
Cl⊆Qj\{v}

|Cl|=l

αj(l)β(k)

f(dist(
⋃
T k ∪ Cl, u))(|CS |−1

k

)(|Qj |−1
l

) ,

keeping in mind the constraint from Equation (8) and adding
the constraint on Cl and T k such that

dist(
⋃

T k ∪ Cl, u) = d. (10)

Now, the computation of MC−
k,l(v, u, j, d) reduces to

computing the number of coalitions Cl and coalitions
of communities T k that satisfy both constraints. By us-
ing the inclusion-exclusion principle, and assuming that
dist(v, u) > d, we have the following:

MC−
k,l(v, u, j, d) =

(
Com≥d(u)

k

)(
Nodj≥d(u)

l

)

−
(
Com>d(u)

k

)(
Nodj>d(u)

l

)
.

To explain this, we first compute the number of coalitions of
communities of size k that are at distance d or farther from
u. We do the same for coalitions of nodes from Qj . How-
ever, we must take away the number of occurrences when no
nodes from Cl and communities from T k are at distance d
from u, in order to satisfy the constraint from Equation (10).

Computing all MC−
k,l(v, u, j) variables is the most time-

consuming, as it takes O(|V |4|CS |) time. This may be
counter-intuitive, since computing all MC−

k,l(v, u, j, d) vari-
ables would imply O(|V |5|CS |), but dynamic programming
eliminates this need. Precomputations are implemented in
Algorithm 1 and marginal contributions in Algorithm 2. �
Theorem 2 The configuration value of group Closeness
centrality for all nodes in a weighted graph G = (V,E, ω)
can be computed in O(|V |2[log(|V |)+|CS |]+|V ||E|) time.

Sketch of Proof of Theorem 2: The key idea, is to use an
alternate formula for the configuration value:

φv(ν,CS) =
∑
j∈Tv

∑
Π∈Π(CS)

∑
π∈Π(Qj)∑

u∈V f(dist(Π|Qj
∪ π|v ∪ {v}, u))− f(dist(Π|Qj

∪ π|v, u))

|CS |!|Qj |! ,

where Π(X) refers to a permutation of the set X , and
Π|x is the set of elements preceding x in the permu-
tation Π. Next, we group computations for both k and
l as follows: MC+(v, u, j) =

∑
k,l MC+

k,l(v, u, j) and
MC−(v, u, j, d) =

∑
k,l MC−

k,l(v, u, j, d). By counting the
permutations that satisfy the constraints from Theorem 1, we
reach the following:

MC+(v, u, j) =
f(d)(|CS |)!(|Qj |)!

Nodj≤d(u)Com≤d(u)
, and

MC−(v, u, j, d) = f(d)[
(|CS |)!(|Qj |)!

Nodj<d(u)Com<d(u)
− (|CS |)!(|Qj |)!

Nodj≤d(u)Com≤d(u)

]
. �

Precomputations are presented in Algorithm 1, and com-
putation of marginal contributions is presented in Algorithm
2. Algorithm 3 computes the Configuration value with bet-
ter time complexity. In Algorithm 1, lines 1 to 20 compute
node distances using Johnson’s algorithm (Johnson 1977)
and sort them in a descending order, allowing us to use
dynamic programming to avoid redundant computation. As
an example, if d′ directly follows d in such a list, then
COM≥d′(u) = COM=d(u) + COM≥d(u). The last step
removes duplicate distances from the community distances
list, which also helps avoid redundant computation.

Ti
m

e 
(s

)

Graph size

Configuration Value Closeness
Configuration Semivalue Closeness

 0

 4

 8

 12

 16

 20

 24

 0  50  100  150  200  250

Figure 2: Empirical running
times for Algorithms 2 and 3.

Algorithm 2
computes marginal
contributions by mov-
ing backwards (largest
to smallest) through
the possible distances,
and also uses dy-
namic programming.
The data computed
thus-far is held in the
variable prev val and
accumulated in φv .
s merge(a, b) is a
function that takes
two sorted sets (descending order) and returns a sorted set,
such that any items in b that are smaller than the smallest
item in a are not included. Finally, the array CP must be
mentioned, which collects the power of communities as a
whole. If a marginal contribution is made by a node through
community Qj , then CPj is incremented by the value of the
contribution.

We conclude by noting that the configuration value is a
generalisation of the Shapley value. Algorithm 3 can com-
pute the Shapley value-based Closeness centrality (Michalak
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et al. 2013b) with the same time-complexity as the best cur-
rently known algorithm (computing distances between all
nodes limits computation time). Empirical running times are
presented in Figure 2.

rank Harmonic SV-based CV-based

1. Świetokszyska Politechnika Centrum
2. Ratusz PKP Falenica Dw.Wileński
3. Ron.Starzyńskiego Erazma z Zakr. PKP Falenica
4. Dw.Wileński PKP Radość Świetokszyska

Table 3: Top four hubs in the Warsaw transportation net-
work, according to different Closeness measures.

node Harmonic SV CV lines

Centrum 234 0.23 4.96 68
Świetokszyska 235 0.50 4.22 29
Politechnika 224 1.04 3.07 17
PKP Falenica 108 1.00 4.91 8
PKP Radość 122 0.80 3.45 8

Table 4: Properties of hubs in Warsaw.

Warsaw Public Transportation Network

Algorithms 1, 2 and 3 were implemented in Java. The
Configuration-based Closeness centrality (i.e., CV-based
Closeness centrality) was used to analyse the Warsaw public
transportation network.7 Edge-weights were defined as the
average travel times between nodes. In total, the weighted
network consists of 1425 nodes, 2135 edges and 380 com-
munities formed by bus lines, trams, and underground and
suburbia trains. We note that the ranking of nodes according
to CV-based Closeness differs significantly from the Har-
monic Closeness and Shapley value-based (i.e., SV-based)
Closeness rankings. We present the four most prominent
nodes according to these centralities in Table 3.

Configuration-based Closeness ranks Centrum (or “city
center”) as most important. This result is intuitive and makes
sense, since this stop is a large hub in downtown War-
saw, where passengers can choose from 68 bus, tram and
train connections, and one metro line (see Table 4). The top
ranked nodes according to the other centrality measures are
also near the city center, but provide less connections that
are not as important as those in the city center.

The most surprising rankings are for PKP Falenica and
PKP Radość, which are railway stations far from downtown
Warsaw. They are important because—for certain source-
destination pairs—it is almost impossible to find routes that
omit these stations. Additionally, trains play an important
role in shortening the travel time between distant nodes,
since they are the fastest means of transportation.

Interestingly, the fifth node according to CV-based Close-
ness, Płowiecka, is not in the top ten according to the other
measures. Harmonic Closeness misses the fact that this stop
is not easily replaced. Shapley value-based Closeness misses

7The data, experiment results and programs can be downloaded
from https://github.com/szczep/gtna.

Algorithm 1: Precomputations for Configuration Semi-
value Closeness.

input : Graph G = (V,E, ω), Closeness function
f : R → R, Overlapping Community Structure
CS , Probability distribution functions
β : 0, 1, . . . |V | − 1 → R,
∀0≤j≤|CS |−1αj : 0, 1, . . . |Qj | − 1 → R

output: Configuration Semivalue
1 dist[V, V ] ← Johnson(G,ω);
2 for v ∈ V do
3 COM [v] ← ∅;
4 for v ∈ V do
5 φv ← 0;
6 distances[v] ← empty ordered set;
7 c dists[v] ← empty ordered set;
8 for Qj ∈ CS do
9 CP [j] ← 0; com dist[j][v] ← ∞;

10 g dists[j][v] ← empty ordered set;
11 for u ∈ Qj do
12 COM [u] ← COM [u] ∪Qj ;
13 com dist[j][v] ←

min(dist(v, u), com dist[j][v]);
14 distances[v] ← distances[v] ∪ 〈u, dist[u, v]〉;
15 c dists[v] ← c dists[v] ∪ 〈Qj , com dist[j][v]〉;
16 sort desc(c dists[v]); sort desc(distances[v]);
17 for u ∈ V do
18 for 〈v, d〉 ∈ distances[u] do
19 for Qj ∈ COM [v] do
20 g dists[j][u] ← g dists[j][u] ∪ 〈v, d〉;

21 for u ∈ V do
22 m1 ← largest distance in c dists[u]; prev ← m1;
23 Com>prev(u) ← 0; Com≥prev(u) ← 0;
24 for 〈Qj , d〉 ∈ c dists[u] do
25 m2 ← largest distance in g dists[j][u];
26 if m2 > m1 then
27 Com>m2(u) ← 0; Com≥m2(u) ← 0;
28 if d �= prev then
29 Com>d(u) ← Com≥prev(u);
30 Com≥d ← Com≥prev(u); prev = d;
31 Com≥d(u) ← Com≥d(u) + 1;
32 prevnod ← largest distance in distances[u];
33 Nodj>prevnod(u) ← 0; Nodj≥prevnod(u) ← 0;
34 for 〈v, dnod〉 ∈ distances[u] do
35 if dnod �= prevnod then

36 Nodj>dnod(u) ← Nodj≥prevnod(u);
37 Nodj≥dnod(u) ← Nodj≥prevnod(u);
38 prevnod = dnod;
39 if Qj ∈ COM(v) then

40 Nodj≥dnod(u) ← Nodj≥dnod(u) + 1;

41 for u ∈ V do
42 remove repeated distances(c dists[u]);
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Algorithm 2: Efficient Algorithm for Configuration
Semivalue Closeness (continued from Algorithm 1).

1 for u ∈ V do
2 for Qj ∈ CS , k ∈ [0, |CS |), l ∈ [0, |Qj |) do

3 prev d ← −1; prev val ← 0; MC− ← 0;
4 for 〈x, d〉 ∈ s merge(g dists[j][u], c dists[u]) do
5 if x ∈ V and prev d �= −1 then
6 Com≥d(u) ← Com≥prev d(u);
7 Com>d(u) ← Com>prev d(u);
8 if prev d �= d then

9 MC− ← prev val; prev d ← d;

10 prev val ← prev val+

[(Com≥d(u)

k

)(Nod
j
≥d

(u)

l

)−
(
Com>d(u)

k

)(Nod
j
>d

(u)

l

)]
f(d);

11 if x ∈ V then

12 MC+ ← f(d)
(
Com>d(u)

k

)(Nod
j
>d

(u)

l

)
;

13 φx ← φx + β(k)αj(l)
MC+−MC−

(|CS|−1
k )(|Qj |−1

l
)

;

14 CPj ← CPj + β(k)αj(l)
MC+−MC−

(|CS|−1
k )(|Qj |−1

l
)

;

that the bus lines that stop at Płowiecka are very impor-
tant. Even if the stop is omitted, a traveller must often
still use bus lines that visit Płowiecka for further travel. As
for communities—unsurprisingly—long routes that bring in
commuters from all of Warsaw (including the metro line
M1) are ranked as most important.

Line Community Index

401 4.35
ZS1 3.68
409 3.61
M1 3.51

Table 5: Important lines.

Harmonic Closeness
centrality prioritises the
topologically most cen-
tral nodes. The SV-based
centrality considers a new
dimension, promoting irre-
placeable nodes. We go one
step further and provide a
new CV-based measure that promotes hubs with powerful
connections, while taking into account the previous two
considerations. Importantly, only our measure is able to
detect the most central and popular hub in Warsaw.

Information Diffusion in Social Networks

rank Harmonic SV CV

1. 5274 5274 5
2. 311 35879 823
3. 404 12367 72
4. 727 27977 11287

Table 6: Top four hubs in
the Youtube subnetwork.

Borgatti (2006) advocated
the use of group closeness
centrality for information
diffusion. However, this
approach does not yield a
comprehensive ranking of
nodes, is computationally
intractable and does not
account for communities.
Recently, Lin et al. (2015)
noted that communities are important for information dif-
fusion, since intra-community diffusion is much faster than
inter-community diffusion.

Algorithm 3: Efficient Algorithm for Configuration
Value Closeness (continued from Algorithm 1).

1 for u ∈ V do
2 for Qj ∈ CS do

3 prev d ← −1; prev val ← 0; MC− ← 0;
4 for 〈x, d〉 ∈ s merge(g dists[j][u], c dists[u]) do
5 if x ∈ V and prev d �= −1 then
6 Com≤d(u) ← Com≤prev d(u);
7 Com<d(u) ← Com<prev d(u);
8 if prev d �= d then

9 MC− ← prev val; prev d ← d;

10 prev val ← prev val +

[
f(d)

(Nod
j
<d

(u))(Com<d(u))
−

f(d)

(Nod
j
≤d

(u))(Com≤d(u))

]
;

11 if x ∈ V then

12 MC+ ← f(d)

(Nod
j
≤d

(u))(Com≤d(u))
;

13 φx ← φx +MC+ −MC−;
14 CPj ← CPj +MC+ −MC−;

We conducted an experiment on a YouTube social net-
work with ground-truth communities (Mislove et al. 2007)
in order to see the impact of overlapping communities on
centrality. We chose the 80 first communities from a list of
the 5000 most important ones8 and studied the sub-network
consisting of these communities. Figure 6 shows the four
most important nodes. Harmonic centrality indicates that
node 5274 is topologically most central, whereas SV-based
centrality indicates that it also brings other nodes closer to-
gether. The configuration value ranking promotes node 5,
since it belongs to important communities, and it is im-
portant for bringing nodes within these communities closer
together. Moreover, it brings other communities closer to-
gether, which is imperative for inter-community information
transfer.

Conclusions and Future Work

We have developed a general solution concept, namely the
Configuration semivalue, that encompasses both coalitional
semivalues (Szczepański, Michalak, and Wooldridge 2014)
and the configuration value (Albizuri, Aurrecoechea, and
Zarzuelo 2006). We have used this value in order to de-
velop the first network centrality measure that accounts for
an overlapping community structure. We based our central-
ity on the notion of Closeness, developed polynomial-time
algorithms for its computation and used it to analyse the
Warsaw public transportation network. This research also
fills a gap in the complexity analysis of game-theoretic cen-
trality measures. An interesting direction for future work is
to complete the missing entries in Table 1. Finally, although
the configuration value has been axiomatised, configuration
semivalues in general and community indices need further
study.

8Available at https://snap.stanford.edu/data/com-Youtube.html
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