
AN ONTOLOGY FOR COORDINATION

Ben Lithgow Smith, Valentina Tamma, and Michael Wooldridge
Department of Computer Science, The University of Liverpool, Liverpool, United Kingdom

& Independent agents that interact within open, distributed, and decentralized environments
need to collaboratively regulate their activities in order to facilitate the harmonious and successful
achievement of possibly conflicting tasks. Coordination is the process of managing these interac-
tions by identifying and possibly resolving the interdependencies occurring between such activities.
A successful coordination mechanism facilitates mutually beneficial interdependencies (e.g., by
ensuring activities are not duplicated) while avoiding adverse outcomes (e.g., by preventing two
processes simultaneously accessing the same non-shareable resource, potentially causing deadlock).
However, for such a mechanism to work effectively within open systems, agents need to communi-
cate and reason about activities, resources, and their properties; i.e., to commit to a shared
ontology of coordination that defines the semantics underlying the different coordination regimes.
This article describes an ontological approach to coordination in which agents dynamically man-
age the interdependencies that arise during their interactions. A proof-of-concept implementation in
the insurance domain is described and empirically evaluated.

INTRODUCTION

The need for coordination frequently arises in open distributed
environments, where multiple independent parties need to interact for
diverse reasons. For instance, regulation of access to shared resources is
necessary in order to prevent deadlock or starvation scenarios, whereas dif-
ferent parties or agents might need to cooperate for the successful com-
pletion of a task whose achievement benefits all the parties involved.
Furthermore, there may be an intrinsic order between the activities carried
out by agents such that one cannot take place without another being exe-
cuted first. In each of these scenarios, activities carried out by different actors
may affect one another, thus creating interdependencies between them.
Such interdependencies are not necessarily disadvantageous; they may also
be beneficial. Different tasks may share a common intermediate state; thus,

The work presented in this paper was funded by the FP6 EU project Ontogrid (FP6-511513).
Address correspondence to Valentina Tamma, Department of Computer Science, The University

of Liverpool, Liverpool L69 3BX, United Kingdom. E-mail: valli@CSC.liv.ac.uk

Applied Artificial Intelligence, 25:235–265, 2011
Copyright # 2011 Taylor & Francis Group, LLC
ISSN: 0883-9514 print=1087-6545 online
DOI: 10.1080/08839514.2011.553376

Applied Artificial Intelligence, 25:235–265, 2011
Copyright # 2011 Taylor & Francis Group, LLC
ISSN: 0883-9514 print=1087-6545 online
DOI: 10.1080/08839514.2011.553376

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



by identifying such scenarios, a duplication of effort can be avoided (thus,
reducing cost or a drop in utility). Failure to exploit the interdependency
does not prevent the processes from successfully completing their tasks,
but it does make the successful completion of such tasks less efficient.

One of the most used definition of coordination is ‘‘the management of
interdependencies amongst activities’’ (Malone and Crowston 1994), which
has been the subject of extensive research, not least in the field of multi-agent
systems (Singh 2005). Several approaches for coordination have been ident-
ified, in addition to a classification of the types of interdependencies. A simple
approach for providing coordination is to use hard-wired, low-level constructs
(such as semaphores or locks) to ensure that various activities do not destruc-
tively interfere with one another (Ben-Ari 1990). This method, known as syn-
chronization, is useful in static environments, where the resources and activities
comprising the system are well known in advance and can be taken into
account at design time. However, in more open systems, in which resources
can come and go and may constantly evolve, it is often impossible to antici-
pate every eventuality at design-time, and thus the use of synchronisation
may fail. In such systems, it makes sense to enable agents to resolve any inter-
dependencies autonomously (Decker and Lesser 1995), by providing themwith
the ability to reason about the activities they wish to perform and the conse-
quent coordination issues that arise. To achieve this, agents will need to com-
municate with one another about their intentions to utilise particular
resources. This communication is based on an agreed common vocabulary
with explicit semantics so that all the agents can communicate in the same
terms, or in other words an ontology of coordination. This article details such
an ontology (Tamma et al. 2005) based on previous work by the multi-agents
system community (Decker and Lesser 1995; Malone and Crowston 1994;
Singh 1998; von Martial 1992). The semantics of the coordination mechan-
isms are detailed by a set of rules that can be used to manage activities and
resolve the interdependencies between activities (Moyaux et al. 2006).

The feasibility of this approach was determined by producing a proof-of-
concept demonstrator where ontologies and rules are wrapped in a web ser-
vice acting as a centralized coordinator with which resources can register.
Therefore, agents that perform activities using these resources can invoke
the service that will coordinate the various requests, detecting, and resolving
interdependencies appropriately. A visualization client was implemented as
an ancillary service to submit and visualize the different calls to the service.
The client monitors the internal state of the service and uses a Gantt chart to
illustrate the various resources, activities, and interdependencies to the user.

The aim of this article is to illustrate the coordination ontology and
rules, provide a brief overview of the coordination service, and describe
how this system can be applied to a real-life use case taken from the domain
of car insurance. An overview of the background work in coordination is

236 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



given in the Background section. The Coordination Ontology section
describes how this is translated into the coordination ontology. The set
of rules that implement the coordination mechanism are then presented
in the Coordination Rules section before a description of the coordination
service implementation and visualisation client are given in the Imple-
mentation section. The Evaluation section then demonstrates how the
approach can be applied to a use case. Finally, an evaluation is provided
along with some conclusions and directions for future work.

BACKGROUND

Coordination is possibly the defining problem of cooperative working,
and it is essential when the activities that agents perform can interact in any
way. The coordination problem is concerned with how to manage interdepen-
dencies between the activities of agents (Malone and Crowston 1994). Consider
the following real-world examples.

. Jerry and George want to leave a room, and so they independently walk towards the
door, which can only fit one person through at a time. Jerry graciously permits
George to leave first. In this example, the activities need to be coordinated
because there is a resource (the door) that both people wish to use, but
which can only be used by one person at a time.

. George intends to submit a grant proposal, but in order to do this, he needs Jerry’s sig-
nature. In this case, George’s activity of sending a grant proposal depends
uponJerry’s activityof signing itoff—Georgecannotcarryouthis activityuntil
Jerry’s is completed. In other words, George’s activity depends upon Jerry’s.

. Jerry obtains a soft copy of a paper from a Web page. He knows that this report will
be of interest to George as well. Knowing this, Jerry pro-actively photocopies the
report and gives George a copy. In this case, the activities do not strictly need
to be coordinated; since the report is freely available on a Web page,
George could download and print his own copy. But, by pro-actively
printing a copy, Jerry saves him some time.

These different examples illustrate the various forms that coordination
can take depending on the types of interdependencies to be managed. For
this reason, this section aims to survey some of the literature that identifies
different types of coordination and their relationships. Indeed, it is worth
noting that coordination, as defined above, encompasses the well-known
(and widely studied) concept of synchronization (Ben-Ari 1990). Synchroni-
zation is generally concerned with the rather restricted case of ensuring
that processes do not destructively interact with one another. While solving
this problem certainly requires coordination, the concept of coordination
is actually much broader than this. Standard solutions to synchronization

An Ontology for Coordination 237

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



problems involve hard-wiring coordination regimes into program code.
Thus, for example, a programmer may flag a JAVA method as synchronized,
indicating that a certain access regime should be enforced whenever the
method is invoked. However, in large-scale, open, dynamic systems, such
hard-wired regimes are too limiting. We ideally want computational pro-
cesses to be able to reason about the coordination issues in their system,
and resolve these issues autonomously.

In order to build agents that can reason about coordination issues dyna-
mically, we must first identify the possible interaction relationships that may
exist between the agents’ activities. Hence, the goal is to derive and formally
define the possible interaction relationships that may exist between activi-
ties. Some prior work on this topic exists—in their coordination theory,
Malone and Crowston (1994) identify several interdependencies between
processes (which they refer to as activities), while von Martial (1992) pro-
poses a complementary high-level typology for coordination relationships.

Malone and Crowston (1994) propose a systematic and interdisciplinary
study of coordination and a theory that attempts to model the different
forms of coordination in terms of dependencies between activities:

Shared resources: this is possibly the most common type of dependency, and it
usually occurs whenever multiple activities or processes share limited
resources. The management of interdependencies between activities
caused by the need to share a resource requires efficient resource allo-
cation processes such as scheduling. A special case of resource allocation
is the task assignment dependency, where the resource to allocate is
the limited time that actors can devote to a task. Malone and Crowston
suggest that the resource allocation methods used to deal with shared
resources can be applied to cases of task assignment.

Producer=consumer relationships: this is another common type of dependency
that can be encountered in diverse fields spanning from manufac-
turing to logistics to computer systems, and it encompasses all cases
where the product of the execution of a process is used by another
process. The producer=consumer relationship can be further speciali-
sed into the following types of dependencies:
Prerequisite constraints: In this dependency, the producer must complete its

activity before the consumer activity can begin. Notification, sequencing,
and tracking methods can detect and resolve dependecy conflicts.

Transfer: this dependency refers to the action of physically transferring
something from the producer to the consumer. If what is trans-
ferred is information then the dependency is called communication.
The generalized approach to manage this relationship would be
to place a buffer between the consumer and producer processes
and allocate space in the buffer to either of them, but not to both.

238 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



Usability: This less obvious dependency within a producer=consumer
relationship refers to the need for what is produced to be usable
by the activity that consumes it. The common method to handle this
dependency is standardization, i.e., the creation of uniformly inter-
changeable output in a form that is known to the user. The usability
dependency plays an important role in information systems where
information is exchanged between systems. Various methods have
been developed to resolve usability conflicts, such as interchange
formats (Genesereth 1991) and ontologies (Studer, Benjamins,
and Fensel et al. 1998).

Design for manufacturability: This type of dependency refers to the possible
relationships existing between activities, such as temporal or hierarchi-
cal, and the constraints they pose on their execution. Special kinds of
design for manufacturability relationships are:
Simultaneity constraints: This type of dependency refers to whether two

activities or events need to occur at the same time or not. Schedul-
ing meetings between people is an example of this dependency: all
the participants need to be free at the same time for the meeting to
take place.

Task=subtask: In this type of dependency some activities are all necessary
in order to achieve an overarching goal. This usually happens when
the goal is decomposed into subgoals, whose achievement allows the
overall goal to be achieved. A typical example of this relationship
can be seen in planning systems where goals are decomposed by
a planner into a set of elementary activities.

von Martial (1992) proposes a high-level classification of coordination
relationships. He suggested that relationships between activities could be
classified as either positive or negative. Positive relationships ‘‘are all those
relationships between two plans from which some benefit can be derived,
for one or both of the agents plans, by combining them’’ (von Martial
1990, p. 111). In other words, positive relationships lead to an increase
in the quality of the solution or utility of participants whereas negative rela-
tionships lead to a reduction in the quality of the solution or utility of the
participants. Such relationships may be requested (one agent explicitly asks
another for help with its activities) or non requested (it so happens that by
working together mutliple agents can achieve a solution that is better for
at least one of them, without making the other any worse off). von Martial
distinguishes three types of non-requested relationships:

The action equality relationship: Jerry and George plan to perform an identical
action and, by recognizing this, one of them can perform the action
alone, thereby saving the other some effort.

An Ontology for Coordination 239

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



The consequence relationship: The actions in Jerry’s plan have the side-effect of
achieving one of George’s goals, thus relieving George of the need to
explicitly achieve it.

The favour relationship: Some part of Jerry’s plan has the side effect of contribu-
ting to the achievement of one of George’s goals, perhaps by making it
easier (e.g., by achieving a precondition of one of the actions in it).

Another major body of work on this issue is that on Partial Global Plan-
ning (PGP) (Durfee 1988). The basic idea of PGP is that an agent can rep-
resent the activities it intends to perform as a plan. It then exchanges this
plan of local activity with other agents in order to identify possible interac-
tions (positive or negative). Changes to one or more plans can then be pro-
posed in order to improve performance and the planned local activities are
modified in accordance with the coordinated proposal. This work led Dur-
fee to propose the Common Representation for Coordination Hypothesis
which stated that ‘‘organizations, plans and schedules have a common rep-
resentation, but differ in their degree of specificity along different descrip-
tive dimensions.’’ (Durfee 1993). He termed this common representation a
behavior and included amongst the descriptive dimensions: what the beha-
vior was intended to achieve; how it would attempt to achieve it; who was
participating in the behavior; when the behavior would occur; and why
the behavior has been instituted.

The ideas of PGP and some of the notions identified in Malone and
Crowston were refined in Decker’s subsequent work on Generalized Partial
Global Planning (GPGP) in the TÆMS testbed (Decker and Lesser 1995).
GPGP focuses on coordination while agents are scheduling their activities
rather than when they are planning to meet goals. Whereas in PGP agents
exchange complete schedules at a fixed level of abstraction, in GPGP
agents exchange scheduling commitments to particular tasks at any level
of abstraction. It utilizes domain-dependent mechanisms for detecting
and predicting coordination relationships and domain independent
mechanisms to manage them (by posting constraints to the local schedu-
ler). Five techniques are used for coordinating activities:

. Updating non-local viewpoints: Agents have only local views of activities so
sharing information can help them achieve broader views. In his
TÆMS system, Decker uses three variations of this policy: communi-
cate no local information, communicate all information, or an inter-
mediate level.

. Communicate results: Agents may communicate results in three different
ways. A minimal approach is where agents only communicate results that
are essential to satisfy obligations. Another approach involves sending all
results. A third is to send results to those with an interest in them.

240 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



. Handling simple redundancy: Redundancy occurs when efforts are dupli-
cated. This may be deliberate—an agent may get more than one agent
to work on a task because it wants to ensure the task gets done. However,
in general, redundancies indicate wasted resources, and therefore, are to
be avoided. The solution adopted in GPGP is as follows. When redun-
dancy is detected, in the form of multiple agents working on identical
tasks, one agent is selected at random to carry out the task. The results
are then broadcast to other interested agents.

. Handling hard coordination relationships: ‘‘Hard’’ coordination relationships
are those that threaten to prevent activities being successfully completed.
Thus, a hard relationship occurs when there is a danger of the agents’
actions destructively interfering with one another, or preventing each
other actions being carried out. When such relationships are encoun-
tered, the activities of agents are rescheduled to resolve the problem.

. Handling soft coordination relationships: ‘‘Soft’’ coordination relationships
include those that are not ‘‘mission critical’’, but which may improve
overall performance. When these are encountered, then rescheduling
takes place, but with a high degree of ‘‘negotiability’’: if rescheduling is
not found possible, then no alternative course of action is considered.

Another body of work was performed by Singh, who proposed an
event-based linear temporal logic for scheduling service calls (Singh
2000). This can be used to provide guards on events, thereby enabling
events to be ordered and to be permitted or not based upon the occurence
of other events. The approach can be used to enforce coordination rela-
tionships such as:

. enables: event f cannot occur unless event e occurs beforehand.

. conditionally feeds: if events e and f both occur then e occurs before f.

. guaranteeing enables: event f can only occur if event e has occured or will
occur.

. initiates: event f occurs if and only if event e precedes it.

. jointly require: if events e and f occur in any order then event g must also
occur (in any order).

. compensates: if event e occurs and event f does not then event g must be
performed.

Singh also stated an important consideration for designing coordi-
nation mechanisms: ‘‘there is a trade-off between reducing heterogeneity
and enabling complex coordination.’’ (Singh 2005, p. 282) So the more
detail of tasks that is given, the better the coordination mechanisms that
can be designed, but the less widely applicable those mechanisms will be.
When designing a general purpose coordination mechanism then, it is best

An Ontology for Coordination 241

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



to focus on the most widely shared attributes of tasks. From these, a core set
of coordination mechanisms can be designed, which can be extended with
more domain-specific mechanisms.

In related work, WS-Coordination1 specifies a coordination service con-
sisting of three kinds of sub-services: an Activation Service used by service
providers to create the coordination context of their service; a Registration
Service used by service requesters to inform the coordination service of
their future need for the service; and several Protocol Services that perform
the actual coordination. Essentially, it describes what a coordination service
should look like, and how to interact with it (in particular, describing the
messages to be used in such interactions), however, nothing is said about
how the Protocol Services should perform the actual coordination.

Based on all these bodies of work, an ontology for coordination was
designed, which is presented in the next section. Although ontologies for
service based computing have been developed, such as OWL-S2 and Web
Services Modeling Ontology (WSMO),3 they mainly focus on describing
the services and their orchestration=composition.

We argue that our ontology is complementary to existing efforts.
Coordination is indeed an important aspect of service based computing,
however, it addresses the way in which independent, and possibly conflicting,
agents choreograph with others. While in efforts like OWL-S andWSMO the
interaction and composition of processes are modeled as a workflow that is
determined a priori and that is executed by a workflow execution compo-
nent, in agent-based coordination, the choreography is determined by the
exchange of messages among the agents that need to interact (protocol).

COORDINATION ONTOLOGY

Figure 1 provides anoverviewof the coordinationontology, illustrating the
main concepts and relationships. The basic idea is to enable agents to reason
about the relationships of their activities to the activities of other agents. So,
the fundamental purpose of the ontology is to answer the following questions:

. What is a coordinable activity?

. What coordination relationships such activities have to one another?

The sub-sections that follow describe the ontology: the key concepts,
the slots associated with these concepts, the relationships between these
concepts, and axioms. This description does not present all of the compo-
nents of the ontology: the aim is to provide a good overview of the ontology,
rather than present all the low-level technical details.

242 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



Agents

Our starting concept isAgent, which relates to the agents in the system, i.e.,
the things that do the actions in the systemneeding to be coordinated. For the
purposes of the coordination ontology, agents have just one slot: id, which is a
string representation of the unique identifier for the agent (e.g., a URI).
Agents can provide or consume a resource. To this end, there are two subclasses
of agent, provider, and requester. As an agent may be simultaneously both a pro-
vider and a requester these subclasses are not disjoint from one another.

Resources

The Resource concept describes resources that may be required to
expedite an activity. It has the following slots:

. viable: a Boolean value, indicating whether the resource is still in a state to
be used; a value of false here would indicate that the resource could not
be used by any activity (even if these activities require it). Another simple
way to think about viable is that it indicates whether a resource is ‘‘work-
ing’’ or ‘‘broken.’’

FIGURE 1 An overview of the coordination ontology.

An Ontology for Coordination 243

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



. consumable: a Boolean value, which indicates whether the use of the
resource will reduce subsequent availability of the resource in some
way; more precisely, whether the repeated use of the resource in activities
would make the resource non-viable.

. shareable: a Boolean value, indicating whether a resource may be used by
more than one agent at any given time.

. cloneable: a Boolean value, indicating whether or not the resource is
cloneable (¼ true), or unique and not-cloneable (¼ false). An example
of a cloneable resource would be a dataset or a digital document. An
example of a unique resource would be a physical artifact produced as
the output of a particular experiment, or a human being.

. owner: either an Agent (in which case this is the agent that owns the
resource), or null (in which case the semantics are that the resource
may be used by any agent at no cost). If a resource is owned by an agent,
and another agent wishes to use this resource, then it may be necessary to
enter into negotiation over the exploitation of the resource.

PROCESSES AND ACTIVITIES

Thenext concept isActivity, whose definitionwas influencedby theOWL-S
model of processes.4 It represents an activity that changes the state of the
environment in some way. It may be terminating or non-terminating, and be
carried out by a human or other agent, or be a natural (physical) process.

The activity concept has two sub-classes: the most important of which is
that of a CoordinableActivity. A coordinable activity is a process that can be
managed in such a way as to be coordinated with other coordinable activi-
ties. For example, executing the process of invoking a web service would be
a coordinable activity, in the sense that the invocation of such a service can
be managed so as to coordinate with other invocations. For example, sup-
pose there are two agents, both of which want to invoke the same web ser-
vice, with different parameters. Then, in general, the agents could manage
their invocations so as not to interfere with one another.

Not all processes of interest to a system are coordinable—hence, the
NonCoordinableActivity concept. This concept is intended to capture all
those processes whose coordination is not possible by the agents within
the system to which a particular knowledge base refers. This will include
at least the following two types of process:

. Natural events: These are physical processes that will take place irrespec-
tive of what any agent in the system does. An extreme example would
be the decay of an atom, caused by essentially random quantum events.
Clearly, such processes cannot be coordinated with other processes: they
will take place (or not) irrespective of what the agents in the system do.

244 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



. External processes: These are processes—either physical world processes or
natural processes—that are simply outside the control of the system, in
that they cannot be managed by the agents in the system. Notice that
such processes may be coordinated by entities outside the system: the
point is, that for the purposes of the system to which the knowledge base
refers, they cannot be coordinated.

Another way of thinking about the distinction between a coordinable
and a non-coordinable activity is that there is always an agent (i.e., a soft-
ware agent within the system) associated with a coordinable activity,
whereas there is no such agent associated with a non-coordinable activity.

A CoordinableActivity will have the following slots:

. actor: an Agent, i.e., the agent that intends to carry out, or has carried out
this activity;

. earliest start date: either a date or null, with a date indicating the earliest
date at which the activity may begin; null indicates that this information
is not known;

. latest start date: either a date or null, with a date indicating the latest date
at which the activity may begin; null indicates that this information is not
known;

. expected duration: either a natural number, indicating the number of millise-
conds the activity is expected to take, ornull indicates anunknownduration;

. latest end date: either a date or null, with a date indicating the latest date at
which the activity may end; null indicates that this information is not
known;

. actual start date: either a date or null, with a date indicating the date at
which the activity actually began or is scheduled to begin; null indicates
that this information is not known;

. actual end date: either a date or null, with a date indicating the date at
which the activity actually ended or is scheduled to end; null indicates
that this information is not known;

. shareable result: a Boolean indicating whether the result of the activity can
be shared with other agents;

. status: an enumeration type, which takes a value as follows: An activity
begins by being requested and then becomes scheduled if no coordination
is required or proposed if a change has been proposed. If the activity starts
before its earliest start date or after its latest start date or if it ends after its
latest end date then it is outOfBounds. If the results of the activity are avail-
able elsewhere then it is superfluous. If the activity is no longer needed for
some reason then it is redundant. When the activity is performed it is con-
tinuing though it may become suspended. When the activity finishes it
must have either failed or succeeded.

An Ontology for Coordination 245

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



There are two direct sub-classes of coordinable activity: AtomicActivity and
CompositeActivity. An atomic activity is the most basic type of activity and is indi-
visible into other activities. It has an additional property requires, which states
the resource that it requires. A composite activity is one which is made up of
other coordinable activities. Thus, they can be viewed as being arranged into
an and=or tree hierarchy of coordinable activities (atomic or composite), with
atomic activities as leaves of the tree. A slot composedOf contains the list of
sub-activities. There are two sub-classes of composite activity:

. ConjunctiveActivity: a composite activity that succeeds if all of its
sub-activities succeed

. DisjunctiveActivity: a composite activity that succeeds if any one of its
sub-activities succeeds

Though these two classes may be used directly to implement coordi-
nation mechanisms, it is generally more useful to extend them by creating
further subclasses with additional semantics. This is illustrated in practice
in the Evaluation section.

Interdependencies Between Activities

The Interdependency concept is used to describe the various
inter-relationships that can exist between activities. The semantics of this
concept are based on the work discussed in the Background section. Thus,
there are two subclasses:

. NegativeCoordination: an interaction which, if it occurs, will lead to a
reduction in the quality of the solution or the utility to the participants;

. PositiveCoordination: an interaction which, if it occurs, will lead to an
increase in the utility to the participants or the quality of the solution.

– and the following set of slots:

. source and target: both slots are Activities, the idea being that these are the
two activities which are interdependent.

. type: an enumeration, which indicates whether the relation is ‘‘soft’’ or
‘‘hard,’’ with the following semantics:
– a hard relation is one which will materially affect the success or other-

wise of the activities;
– a soft relation is one which may affect the activities, positively or

negatively, but it will not affect whether they are successful
or not.

246 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



Subclasses of NegativeCoordination include:

. MutuallyExcludes: an instance of this relationship will exist between two
atomic activities iff:
1. they both Require some resource r,
2. the actual or scheduled usage of r by both activities overlaps; and
3. r is non-shareable.
The idea is thus that these two activities will be mutually exclusive, in the
sense that they cannot possibly both succeed as scheduled, as they
require access to a resource that cannot be shared. The type of this inter-
dependency is therefore hard.

. Impedes: an instance of this relationship will exist between two Atomic
Activitys iff:
1. they both Require some resource r,
2. the actual or scheduled usage of r by both activities overlaps; and
3. r is shareable.
The idea is thus that these two activities will impede one another though
they will not necessarily prevent each other from succeeding. The type of
this interdependency is soft as it need not necessarily be managed for the
system to run effectively.

There is a further sub-class of NegativeCoordination: FatalCoordination is a
hard coordination relationship which, if it occurs, will inevitably lead to the fail-
ure of oneormore of the component activities. Note that instances of FatalCoor-
dination relationships are always hard. Sub-classes of FatalCoordination include:

. Disables: one activity will disable another if the occurrence of it will defini-
tively prevent the occurrence of the other. This is a hard interdependency.

. ResourceContention: an instance of this relationship will exist between two
atomic activities iff:
1. they both require some resource r;
2. resource r is consumable.
The idea here is thus that one of the activities (the earlier one) could

prevent the successful completion of the other activity, by depleting it or
rendering it unviable. ResourceContention relationships are not required to
be hard although, of course, they could be.

Sub-classes of PositiveCoordination are:
. ConditionallyFeeds: in such an interdependency, the occurrence of activity
A1 will subsequently make possible the occurrence of activity A2, but it is
nevertheless possible that A2 could occur (i.e., the occurrence of A1 is a
sufficient but not necessary event for the occurrence of A2). This is a hard
interdependency.

. Enables: the occurrence of activity A1 is both necessary and sufficient for
the occurrence of A2. This is a hard interdependency.

An Ontology for Coordination 247

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



. Subsumes: activity A1 subsumes activity A2 if A1 contains all the activities of
A2. This is a soft interdependency.

. Favors: an activity A1 favors another activity A2 if its prior occurrence will
subsequently improve the overall quality of A2. We include this as a
‘‘catch all.’’ This is a hard interdependency.

Operational Relationships

In order to resolve a coordination relationship between two activities, it
may be necessary to appeal to the operational relationships that exists between
the agents that will carry them out. Intuitively, operational relationships
exist between agents, and by understanding these relationships, it can help
to resolve interdependencies. The main concept then is OperationalRelation-
ship. This concept has two slots, both of which are Agents: source and target.
Sub-classes of OperationalRelationship include:

. LegalAuthority: this sub-class indicates that source has legal authority over
target (of course, this begs the question of what ‘‘legal authority’’ means
in the context of semantic web services and processes, but this is outside
the scope of our current work, and is left as a placeholder for the future);

. ContractualAuthority: this indicates that source has contractual authority
over target (i.e., that both agents ‘‘belong’’ to the same organization,
and that in the context of this organisation, source should take pre-
cedence over target);

. ProducerConsumer: this indicates that source is the owner of a Resource that is
to be used by target;

. ConsumerProducer: the inverse of ProducerConsumer;

. Peer: two agents that work as peers, i.e., that neither has any authority over
the other.

COORDINATION RULES

The ontology provides a means of describing activities and the interde-
pendencies that may exist between them. This knowledge can then be used
to coordinate the various activities with one another. For this purpose, a
number of rules were developed. For the sake of clarity, they are split into
three groups:

. Rules to check activities;

. Rules to detect interdependencies between activities; and

. Rules to manage interdependencies between activities.

248 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



The sets of rules can be seen as building upon one another. The first set
ensures that the descriptions of activities are complete and consistent. The
second set then uses these consistent descriptions to identify any interde-
pendencies that exist between activities. Finally, the third set takes the inter-
dependencies identified and manages them accordingly.

Rules to Check Activities

These rules are used to check activities and detect any inconsistencies or
omissions. Essentially they are used to capture some of the basic axiomatic
properties of the ontology. This entails that whenever a new type of activity
is added to the ontology it may be necessary to add some new rules to this set.

Rules to Check All Coordinable Activities

1. If an activity’s latest start date is after or the same as its latest end date, then
set the latest start date to be the latest end date—the expected duration.

2. If an activity’s actual end date is not its actual start dateþ expected dur-
ation, then change the actual end date accordingly.

3. If an activity started before its earliest start date, then its status should be
set to ‘outOfBounds.’

4. If an activity started after its latest start date, then its status should be set
to ‘outOfBounds.’

5. If an activity started after its latest end date, then its status should be set
to ‘outOfBounds.’

6. If an activity ended after its latest end date, then its status should be set
to ‘outOfBounds.’

7. If an activity’s earliest start date is after or the same as its latest end date,
then its status should be set to ‘outOfBounds.’

8. If an activity’s earliest start date is after its latest start date, then its status
should be set to ‘outOfBounds.’

Rules to Check Composite Activities

1. If a composite activity does not have an enables or conditionally feeds
interdependency with another activity then its actual start date should
be that of the component activity with the earliest actual start date.
(The expected duration is also modified accordingly.)

2. The actual end date of a composite activity should be that of the compo-
nent activity with the latest actual end date. (The expected duration is
also modified accordingly.) This rule assumes a pessimistic view for dis-
junctive activities, i.e., they always take the longest time possible.

An Ontology for Coordination 249

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



Rules to Check Component Activities

1. If a component activity is part of a composite activity that enables or con-
ditionally feeds interdependency with another activity then the actual
start date of the component activity should not be earlier than the actual
start date of its composite activity.

2. If a composite activity has status ‘failed,’ ‘succeeded,’ or is ‘redundant,’
then all sub-activities should have the status ‘redundant.’

3. If the earliest start date of a component activity is before that of the com-
posite activity then it is set to the latter.

4. If the latest end date of a component activity is after that of the com-
posite activity then it is set to the latter.

5. If the latest start date of a component activity is after the latest end date
of the composite activity then it is set to the latter.

6. If the latest start date of a component activity is before the earliest start
date of the composite activity then its status is set to ‘failed’.

7. If the expected duration of a component activity is greater than the
difference between the earliest start date and latest end date of the
composite activity then its status is set to ‘failed.’

Rules to Check Conjunctive Activities

1. If all component activities of a conjunctive activity have status ‘suc-
ceeded’ then set the status of the conjunctive activity to ‘succeeded.’

2. If any one of the component activities of a conjunctive activity has status
‘failed’ then set the status of the conjunctive activity to ‘failed.’

Rules to Check Disjunctive Activities

1. If any one of the component activities of a disjunctive activity has status
‘succeeded’ then set the status of the disjunctive activity to ‘succeeded.’

2. If all component activities of a disjunctive activity have status ‘failed’
then set the status of the disjunctive activity to ‘failed.’

Rules to Detect Interdependencies Between Activities

These rules examine activities and infer new instances of interdepen-
dencies from them. Similar to the previous rules, this entails that whenever
a new type of activity is added to the ontology new rules may need to be
added to this set. If a new type of interdependency is added to the ontology
then new detection rules will certainly be required.

250 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



The rules themselves are divided into two categories: those that detect
positive interdependencies and those that detect negative interdependen-
cies. Negative interdependencies tend to be more general, and as such,
the rules to find them are readily applicable to a wide range of domains.
Positive interdependencies on the other hand tend to be more domain spe-
cific, relying on particular properties of activities; hence, specific rules have
to be written to find such interdependencies. The Evaluation section
demonstrates how rules can be created tailored to a particular domain.
The following rules are currently implemented to detect instances of the
negative interdependencies impedes and mutually excludes:

1. If the end of a time slot for an activity overlaps the beginning of the time
slot for another activity, and both activities require access to the same
non-shareable resource, then assert an interdependency stating that
the two activities are mutually exclusive. This rule is illustrated in
Figure 2.

2. If the time slot for an activity is included in the time slot for another
activity, and both activities require access to the same non-shareable
resource, then assert that the two activities are mutually exclusive.

3. If the end of a time slot for an activity overlaps the beginning of the time
slot for another activity, and both activities require access to the same
shareable resource, then assert an interdependency stating that the
two activities impede one another.

4. If the time slot for an activity is included in the time slot for another
activity, and both activities require access to the same shareable resource,
then assert that the two activities impede one another.

Rules to Manage Interdependencies Between Activities

These rules describe the coordination regime itself. Thus, different
sets of rules can be used to provide different regimes, depending upon
requirements.

FIGURE 2 Example rule to find an interdependency.

An Ontology for Coordination 251

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



Each of the rules acts on an interdependency by modifying a coordin-
able activity accordingly. This modification consists of changing either the
actual start date, the actual end date or the status of the activity. In the case
of the start or end date being modified, the knowledge base is first queried
to find an suitable new slot. Once an interdependency has been managed,
it is removed along with all other unmanaged interdependencies involving
the modified activity. This ensures that the knowledge base is left in a
consistent state.

The coordination rules themselves are based upon operational relation-
ships first and foremost. So, for example, if two agents related by a legal
authority relationship request to carry out conflicting activities then the
activity of the agent with the lower precedence is modified. A similar rule
exists for when there is a contractual authority relationship. If the two
agents are peers, or the same agent requests two conflicting activities, then
the shortest activity is moved. This is one example of a coordination
regime, although it could be readily substituted for another.

Additionally, it was determined that it would be appropriate to dis-
tinguish between hard and soft interdependencies so that hard interdepen-
dencies, which determine the successful execution of the system, are always
handled before soft interdependencies, which only affect efficiency. For
this reason, each rule is effectively replicated with the only difference occur-
ing in the type of interdependency encountered. It is then possible to spe-
cify that the rules dealing with hard interdependencies have priority over
those dealing with soft interdependencies.

The following rules have been implemented to provide a working
example of a coordination regime:

1. If two activities are mutually exclusive, and they were requested by dif-
ferent agents—one of which has a legal authority over the other—then
move the activity of the agent with lower precedence.

2. If two activities are mutually exclusive, and they were requested by dif-
ferent agents, one of which has a contractual authority over the other,
then move the activity of the agent with lower precedence.

3. If two activities are mutually exclusive, and they were both requested
by the same agent, or they were requested by different agents—
neither of which has authority over the other (i.e., they are peers
or no relationship between the two has been explicitly stated)—then
move the activity with the smallest expected duration. If they are
both of equal expected duration then move the activity that was
requested last.

4. If two activities impede one another and they were requested by differ-
ent agents, one of which has a legal authority over the other, then move
the activity of the agent with lower precedence.5

252 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



5. If two activities impede one another, and they were requested by differ-
ent agents—one of which has a contractual authority over the other—
then move the activity of the agent with lower precedence.

6. If two activities impede one another, and they were both requested by
the same agent or they were requested by different agents—neither of
which has authority over the other (i.e., they are peers or no relation-
ship between the two has been explicitly stated)—then move the
activity with the smallest expected duration. If they are both of equal
expected duration then move the activity that was requested last.

7. If an activity enables another activity then modify the latter activity so
that it occurs after the activity that enables it.

8. If an activity conditionally feeds another activity then modify the latter
activity so that it occurs after the activity that conditionally feeds it.

9. If an activity subsumes another activity then set the status of the sub-
sumed activity to ‘superfluous.’

10. If an activity that subsumes another activity succeeds then set the status
of the subsumed activity to ‘succeeded.’ This only occurs if the sub-
sumed activity still has the status ‘superfluous’ as it may have become
redundant or be part of a composite activity that is redundant, failed,
or succeeded.

11. If an activity that subsumes another activity fails then set the status of
the subsumed activity to ‘requested,’ i.e., attempt to reschedule the
subsumed activity. Again, this only occurs if the subsumed activity still
has the status ‘superfluous.’

12. If an activity that subsumes another activity becomes redundant then
set the status of the subsumed activity to ‘requested,’ i.e., attempt to
reschedule the subsumed activity. Once more, this only occurs if the
subsumed activity still has the status ‘superfluous.’

IMPLEMENTATION

The coordination ontology was implemented in the Web Ontology
Language (OWL)6 using Protégé 3.0,7 and all of the rules were implemen-
ted in Jess (Friedman-Hill 2003). The JessTab8 plug-in for Protégé was used
to enable the ontology to be loaded into a Jess rule engine as a Protégé
knowledge base. This effectively encapsulates the coordination engine
(ontology, instances, rules, and rule engine) into a Java object.

A Web Services Resource Framework (WS-RF)9 service was then imple-
mented in Globus Toolkit 4 (GT4).10 This service acts as a wrapper for the
coordination engine and provides methods the following methods:

. register resource: used to register a new resource.

. deregister resource: used to deregister a resource.

An Ontology for Coordination 253

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



. request activity: used to request a new activity.

. withdraw activity: used to withdraw an activity request should it no longer
be required.

. set status: used by the requester of an activity to set the activity’s status.

. check entire schedule: used to retrieve the entire list of activities for a
particular resource.

Additionally, since Globus Toolkit 4 implements the WS-Notification
specification11 it was also possible to implement a publish-subscribe notifi-
cation mechanism allowing agents to subscribe to receive messages detail-
ing activity changes or the deregistration of resources. This asynchronous
form of communication is essential for updating resource providers and
requesters of changes which may impact upon them. The service is
illustrated in Figure 3.

A graphical client application was also developed to allow for intuitive
user interaction with the service when performing testing and evaluation.
The client provides access to all of the service’s API methods and automati-
cally subscribes to receive all notification messages sent by the service.
Using these messages, the client is able to build up a representation of
the internal state of the service. The user can then access this information
in the form of a Gantt chart representing either the entire list of resources
and activities known to the service, or the list of activities for a specific
resource. With this information on screen, the user is able to select an
activity and view the interdependencies associated with it.

FIGURE 3 Architecture of the coordination service.

254 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



USE CASE

This section presents a sample scenario, taken from the domain of car
insurance fraud, to which a centralized coordination mechanism could be
applied to successfully coordinate a number of activities.

The scenario involves a number of insurance companies who wish to
collaborate to discover whether the claims they receive are fraudulent. As
such, a virtual organization (VO) is established and member insurance
companies make their databases available to other members (though with
many limitations). When one of the members then wishes to assess a claim
it performs checks against a number of known fraud models. For example,
the Berliner fraud model involves stealing a car and then crashing it into an
insured car that is already damaged and claiming the damage from the
insurance company of the stolen car. Other fraud models include the sto-
len cars model, the Saarland model and the Autobumser model. To detect
whether one of these models is present, the insurance company will send a
number of queries to the other insurance companies in the VO and then
aggregate and analyze the results. Generally, the models should be checked
in a specified order, and if one of the models is detected then the rest need
not be checked.

The Ontology

To implement this scenario, the coordination ontology was extended as
illustrated in Figure 4. Working from the bottom up, two new types of
resource are included in the ontology:

. CPU: This represents a CPU that will be used to perform some processing
task. The property shareable is set to true as multiple processing tasks may
be performed simultaneously.

. InsuranceCompanyBO: This represents a database (back-office) of an
insurance company. The property shareable is set to false as the back-office
operations are intensive and the insurance companies wish to limit the
number of operations that can be performed.

There are then two new sub-classes of AtomicActivity which use these
resources (though an intermediate class CarFraudActivity is introduced for
clarity):

. Query: These represent the queries that are performed on the insurance
company databases, and as such the requires property must be an instance
of InsuranceCompanyBO. They also have an additional slot content that
details the content of the query.

An Ontology for Coordination 255

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



. QueryAggregation: These represent the aggregations of queries that are
performed by insurance companies. As such the requires property must
be an instance of CPU.

These activities are then used to compose FraudDetectionModel activities,
which are a composite activity representing a fraud-detection model; as
such, these activities have subclasses for each of the detection models
(StolenCars, Berliner, Saarland and Autobumser). FraudDetectionModel
is itself a sub-class of ConjunctiveActivity, as it is necessary for all of the
queries and query aggregations within a particular model to complete suc-
cessfully in order for that activity to complete successfully.

Finally, FraudDetectionModel activities are used to compose FraudDetec-
tionProcess activities, which are also composite activities they, and represent
the entire process undertaken by an insurance company checking for
fraud. It is a sub-class of ‘DisjunctiveActivity,’ since if any of the component
fraud detection model activities succeeds then the whole fraud detection
process succeeds.

The Rules

With the new activities defined it was necessary to consider whether any
new rules are also needed. Such rules may be required in any of the three
categories and so the following process was observed.

Firstly, it may be necessary to define new rules to check the consistency
and completeness of newly defined activities. Often, however, this will not

FIGURE 4 The extended ontology for the car fraud use case.

256 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



be the case, since new activities will extend existing activities and so the
existing rules will also apply to these new activities.

Secondly, it is necessary to examine any interdependencies that may
involve the new activities to determine whether any new rules are required
for detecting them. As stated in the Rules section to detect interdependen-
cies between activities, the rules to detect negative interdependencies are
more generally applicable than those used to detect positive interdepen-
dencies, so it is unlikely that new rules will be required here, unless new
types of negative interdependencies have also been defined in the
ontology. It is more likely there will be positive interdependencies that
are already classified in the ontology but that rely on the particular proper-
ties of domain specific activities. In these cases, specialized rules must be
written to detect such interdependencies. Of course, new types of positive
interdependencies may be defined as well, in which case rules will be
needed to detect these too.

Finally, it is necessary to determine whether any new rules are required
for managing interdependencies. Generally though, this will not be the
case unless a new coordination regime is required.

Following this process, it was found that no new rules were necessary for
checking activities or for managing interdependencies. Additionally, the fol-
lowing interdependencies would be detected by the existing detection rules:

. If two Query activities require the same InsuranceCompanyBO at the
same time then they mutually exclude one another, since the Insurance-
CompanyBO is non-shareable.

. If two QueryAggregation activities require the same CPU at the same
time then they impede one another, since the CPU is shareable.

However, several new rules were required for detecting
interdependencies:

. If a Query activity and a QueryAggregation activity are part of the same
FraudDetectionModel then the Query enables the QueryAggregation.

. If two Query activities require the same InsuranceCompanyBO and have
the same content then the activity with the earliest actual end date
subsumes the other.

. If a StolenCars activity is part of the same FraudDetectionProcess as a
Berliner or Saarland or Autobumser activity then the StolenCars activity
enables the other.

. If a Berliner activity is part of the same FraudDetectionProcess as a Saar-
land or Autobumser activity then the Berliner activity enables the other.

. If a Saarland activity is part of the same FraudDetectionProcess as an Auto-
bumser activity then the StolenCars activity enables the Autobumser activity.

An Ontology for Coordination 257

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



EVALUATION

In initial testing of the system, the coordination service was found to
detect and manage all of the expected interdependencies between activi-
ties. Given this, a test harness was developed based upon the client
described in the Implementation section. This harness allows the user to
set a number of variables from which it generates a series of activities to sub-
mit to the coordination service. As the test harness subscribes to all of the
notifications sent by the coordination service, it has a complete view of the
status of the coordination engine at all times. From this, it is able to deter-
mine if a newly submitted activity should have any interdependencies with
an existing activity. It then checks for each new activity whether any inter-
dependencies are detected and whether they are managed successfully.

The following factors were varied in the evaluation:

. The number of resource providers;

. The number of resource requesters;

. The number of resources;

. The number of activities to submit; and

. The number of interdependencies that should exist between submitted
activities.

The following results were measured:

. The response time of the service;

. The number of interdependencies detected=resolved;

. The level of communication between the service and its users, i.e., the
number of notifications sent in response to a service call. Typically, such
notifications will be sent when activities are moved as a result of an
interdependency being detected and resolved; and

. The number of activities that cannot be scheduled within the bounds of
their earliest and latest start=end dates.

Number of Resources vs. Response Time

The first experiment performed was intended to identify how the sys-
tem performed with a varying numbers of resources. A series of runs were
performed during which a constant number of activities were submitted to
the service, while the number of providers, requesters, and interdependen-
cies were also kept constant.

The only variable was the number of resources being managed by the
coordination service. The time taken for the coordination service to respond
to requests for new activities was recorded. The results are detailed in Figure 5.

258 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



As can be seen from these results, the number of resources being man-
aged by the coordination service had no discernible effect on the time
taken to respond to service calls to add new activities. Only a difference
of 2 ms (around 7.5%) existed between the response times of the service
with 1 resource and that with 20,000 resources. Furthermore, the service
managing 20,000 resources responded more rapidly than that managing
a single resource.

The explanation for this is that for the service managing a single
resource, all activities were specified as using that one resource, whereas
for the service managing 20,000 resources, the activities were distributed
over all of these resources. Hence, when a new activity is added to the ser-
vice managing one resource, it takes longer to check that activity against
the list of other activities already using that resource.

Number of Activities vs. Response Time

The next experiment performed was intended to identify how the sys-
tem performed with a varying numbers of activities. A series of runs were
performed during which a constant number of resources were managed
by the service, while the number of providers, requesters, and interdepen-
dencies were also kept constant. For this experiment, the number of inter-
dependencies was set to zero.

The only variable was the number of activities to add to the coordi-
nation service. The time taken for the coordination service to respond
to requests for new activities was recorded. The results are detailed in
Figure 6.

FIGURE 5 Number of resources vs. response time.

An Ontology for Coordination 259

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



As can be seen from these results, the greater the number of activities
being managed by the coordination service, the longer the service took to
respond to service calls to add new activities. This relationship was found to
be linear, i.e., as the number of activities added was increased, the response
time increased proportionately.

This result was as expected, and it has a similar explanation as the result
found in the previous experiment, i.e., with a larger number of activities
there are more activities per resource, and hence, when a new activity is
added to the service managing a resource, it takes longer to check that
activity against the list of other activities already using that resource.

Number of Interdependencies vs. Response Time

Another experiment was carried out to identify how the system per-
formed with a varying numbers of interdependencies. A series of runs were
performed during which a constant number of resources were managed by
the service, and a constant number of activities were requested using these
resources. Additionally, the number of providers and requesters were also
kept constant. The only variable was the number of interdependencies that
should be detected.

The time taken for the coordination service to respond to requests for
new activities was recorded. This was further divided into the time taken for
the service to respond to activity requests when an interdependency was
detected, and the time taken to respond when no interdependencies were

FIGURE 6 Number of activities vs. response time.

260 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



detected. Furthermore, the number of notifications sent by the service, and
the number of interdependencies detected and resolved were also mea-
sured. Finally, the number of activities that were moved as a result of an
interdependency such that the start and end dates were now outside the
prescribed limits (i.e., that were out of bounds) was also measured. The
results are detailed below:

As can be seen from Figure 7, the greater the number of interdepen-
dencies between activities, the longer it takes for the service to respond
to new activity requests. What is more, this relationship appears to be linear.
This is to be expected as a call to add a new activity with an interdepen-
dency will take longer than one without since it takes time to manage
the interdependency and move any activities appropriately.

However, as illustrated in Figures 8 and 9, the time taken to respond to
activity requests that do not involve an interdependency increases at a
much slower rate than the time taken to respond to activity requests with
an interdependency. The explanation for this is that as the number of inter-
dependencies increases, and hence, the proportion of interdependencies
to activities increases, the greater the number of activities that need to be
moved around and accommodated when managing the interdependencies.
Similarly, this results in a greater proportion of activities that are moved
outside of the start and end date limits, as illustrated in in Figure 10.

The most significant result of this experiment was that in each run the
expected number of interdependencies was detected and resolved. Hence,
the coordination service consistently identified and resolved all of the dif-
ferent types of interdependency with a 100% success rate.

FIGURE 7 Number of interdependencies vs. response time.

An Ontology for Coordination 261

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



Discussion

The experiments demonstrate that the coordination service successfully
detects and resolves all of the interdependencies. Furthermore, it is largely
unaffected by the number of resources that it has to manage, while the
response times increase linearly with the number of activities and interde-
pendencies. Also, the proportion of activities that are moved outside of
their limits is fairly low until the number of interdependencies approaches
the number of activities. Of course, this assumes that activities are randomly

FIGURE 8 Response time for activities without interdependencies.

FIGURE 9 Response time for activities with interdependencies.

262 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



added to each resource, as they were in these experiments, and that the
flexibility of activities is about 10 times the duration of the average activity
(i.e., for an activity of duration 10 time units the flexibility will be 100 time
units, or 45 each side of the start and end date). With greater flexibility, this
proportion will decrease further to a minimum of 0 when no bounds are set
for activities.

Several other improvements could be made to increase the efficiency of
the coordination mechanism. For example, when an interdependency is
detected and an activity is to be moved, the function to find a new slot
for that activity currently performs a linear sort and search of all activities
using the same resource (within a specified time range). This could be
improved by implementing a binary search or interpolation search so as
to improve the response time of the system. A number of other rules and
functions could also be re-factored for greater efficiency should an indus-
trial strength implementation of the system be required.

CONCLUSIONS & FUTURE WORK

The aim of this work is to provide coordination at run time rather than
being hard-wired at design time. The current system demonstrates that the
approach developed is a viable means of detecting and resolving interde-
pendencies. In the simplest case, the approach can be used in place of a
queue-based or prioritized scheduler. When the system becomes more com-
plex, however, and there is a need to dynamically recognize and resolve
interdependencies between activities, then traditional queue-based

FIGURE 10 Number of interdependencies vs. number of ‘outOfBounds’ activities.

An Ontology for Coordination 263

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



approaches will fail, whereas the approach developed herein will still man-
age the resources effectively.

The main point of future is to apply the approach to a decentralized
environment. To this end, it would be beneficial to implement the rules in a
language such as the Semantic Web Rule Language (SWRL),12 which would
enable them to be encapsulated in the ontology thereby enabling the coordi-
nation mechanism to be more portable and exchangeable. However, SWRL
currently has a number of limitations that prevent many of the rules being
directly translated; for example, it only supports the conjunction of atoms,
there is no support for negation, and there are no explicit quantifiers but
instead implicit universal quantification for all variables. Rule engines for
SWRL also suffer from limitations. For example, Bossam13 has no built-in sup-
port for math functions and string handling; it has the facility to retract facts
(when they areno longer true); and it has no support for thebooleandatatype.

A related point of future work is the implementation of a number of
alternative coordination regimes. These could be collected as libraries so
that coordination regimes could be substituted for one another dependent
on the environment and requirements. A useful experiment would then be
to determine how easily these different regimes could be swapped.

Another point of future work consists of examining the definition of
AtomicActivity alongside related representations such as those used by
BPEL4WS, to see whether it can be made more precise. The key point here
though will be that made by Singh, i.e., the more detailed the description of
tasks becomes, the better the coordinationmechanisms that can be designed
but the less widely applicable those mechanisms will be. The mechanism so
far developed has been demonstrated to be widely and readily applicable,
and it would be highly desirable to maintain this level of applicability.

NOTES

1. http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
2. http://www.w3.org/Submission/OWL-S/
3. http://www.wsmo.org/
4. http://www.w3.org/Submission/OWL-S/
5. Note that it is possible to simply allow both activities to proceed as scheduled, but with their

durations increased by a particular factor. This would be an example of an alternative coordination
regime.

6. http://www.w3.org/TR/owl-guide/
7. http://protege.stanford.edu/
8. http://www.ida.liu.se/#her=JessTab=
9. http://www.globus.org/wsrf/

10. http://www.globus.org/toolkit/
11. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
12. http://www.w3.org/Submission/SWRL/
13. http://bossam.wordpress.com/about-bossam/

264 B. L. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1



REFERENCES

Ben-Ari, M. 1990. Principles of concurrent and distributed programming. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc.

Decker, K., and V. R. Lesser. 1995. Designing a family of coordination algorithms. In Proceedings of 1st
International Conference on MultiAgent Systems (ICMAS-95). San Francisco (CA, USA). 73–80. Menlo
Park, CA, USA: AAAI Press.

Durfee, E. 1993. Organizations, plans, and schedules: An interdisciplinary perspective on coordinating
ai systems. Journal of Intelligent Systems, Special Issue on the Social Context of Intelligent Systems 3(2–4):
2–4.

Durfee, E. H. 1988. Coordination of distributed problem solvers. Boston, MA: Kluwer Academic Publishers.
Friedman-Hill, E. 2003. Jess in action: Java rule-based systems. Greenwich, CT, USA: Manning Publications Co.
Genesereth, M. R. 1991. Knowledge interchange format. In Principles of knowledge representation and

reasoning, KR’91, Proceedings of the second conference, eds. J. Allen, R. Fikes, and E. Sandewell,
599–600. San Francisco, CA, USA: Morgan Kaufmann Publisher.

Malone, T. W., and K. Crowston. 1994. The interdisciplinary study of coordination. ACM Computing
Surveys 26 (1): 87–119.

Moyaux, T., B. Lithgow-Smith, S. Paurobally, V. Tamma, and M. Wooldridge. 2006. Towards
service-oriented ontology-based coordination. In Proceedings of 4th International Conference on Web
Services (ICWS 2006): 265–274, Chicago, IL, USA: IEEE Computer Society.

Singh, M. 2005. Formal specification and enactment. In Service-oriented computing: Semantics, processes,
agents, eds. M. Singh and M. Huhns, 281–303. Chichester, UK: Wiley.

Singh, M. P. 1998. A customizable coordination service for autonomous agents. In Intelligent Agents IV
(LNAI Volume 1365), eds. M. P. Singh, A. Rao, and M. J. Wooldridge, 93–106. Berlin, Germany:
Springer-Verlag.

Singh, M. P. 2000. Synthesizing coordination requirements for heterogeneous autonomous agents.
Autonomous Agents and Multi-Agent Systems 3:107–132.

Studer, R., V. Benjamins, and D. Fensel. 1998. Knowledge engineering, principles and methods. Data
and Knowledge Engineering 25 (1–2): 161–197.

Tamma, V., C. van Aart, T. Moyaux, S. Paurobally, B. Lithgow-Smith, and M. Wooldridge. 2005. An
ontological framework for dynamic coordination. In Proc. of 4th Int. Semantic Web Conf. (ISWC
2005), Lecture Notes in Computer Science, Galway (Ireland), 638–652. Berlin: Springer.

von Martial, F. 1990. Interactions among autonomous planning agents. Amsterdam, The Netherlands:
Elsevier.

von Martial, F. 1992. Coordinating plans of autonomous agents. New York: Springer-Verlag.

An Ontology for Coordination 265

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
o
o
l
d
r
i
d
g
e
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
9
:
1
7
 
8
 
M
a
r
c
h
 
2
0
1
1


