
Model Checking AgentSpeak

Rafael H. Bordini Michael Fisher Carmen Pardavila Michael Wooldridge
Department of Computer Science, University of Liverpool,

Liverpool L69 7ZF, U.K.�
R.Bordini, M.Fisher, C.Pardavila, M.J.Wooldridge � @csc.liv.ac.uk

ABSTRACT
This paper introduces AgentSpeak(F), a variation of the BDI
logic programming language AgentSpeak(L) intended to permit
the model-theoretic verification of multi-agent systems. After
briefly introducing AgentSpeak(F) and discussing its relationship
to AgentSpeak(L), we show how AgentSpeak(F) programs can be
transformed into Promela, the model specification language for the
Spin model-checking system. We also describe how specifications
written in a simplified form of BDI logic can be transformed into
Spin-format linear temporal logic formulæ. With our approach, it
is thus possible to automatically verify whether or not multi-agent
systems implemented in AgentSpeak(F) satisfy specifications ex-
pressed as BDI logic formulæ. We illustrate our approach with a
short case study, in which we show how BDI properties of a simu-
lated auction system implemented in AgentSpeak(F) were verified.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Languages and structures, Multiagent systems; D.2.4
[Software/Program Verification]: Model checking

General Terms
Languages, Verification

Keywords
Model Checking, BDI Logic Programming, AgentSpeak, Spin

1. INTRODUCTION
As multi-agent systems come to the attention of a wider techni-
cal community, there is an ever increasing requirement for tools
supporting the design and implementation of such systems. While
these tools should be usable by a general computing audience, there
should also be strong theoretical foundations for such tools, so that
formal methods can be used in the design and implementation pro-
cesses. In particular, the verification of multi-agent systems —
showing that a system is correct with respect to its stated require-
ments — is an increasingly important issue, especially as agent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

systems start to be applied to safety-critical applications such as
autonomous spacecraft control [12, 7].

Currently, the most successful approach to the verification of
computer systems against formally expressed requirements is that
of model checking [4]. Model checking is a technique that was orig-
inally developed for verifying that finite state concurrent systems
implement specifications expressed in temporal logic. Although
model checking techniques have been most widely applied to the
verification of hardware systems, they have increasingly been used
in the verification of software systems and protocols [9].

Our aim in this paper is to present model checking tech-
niques for verifying systems implemented in AgentSpeak(L). The
AgentSpeak(L) BDI logic programming language was created by
Rao [13], and was later developed into a more practical pro-
gramming framework [2]. While the theoretical foundations of
AgentSpeak(L) are increasingly well understood [3], there has not
been, to the best of our knowledge, any significant work on ver-
ifying systems implemented in AgentSpeak(L), or any other BDI
logic programming language for that matter.

We begin by introducing AgentSpeak(F), a variation of
AgentSpeak(L) intended to permit its algorithmic verification.
Next, we show how AgentSpeak(F) programs can be automatically
transformed into Promela, the model specification language for the
Spin model-checking system [9]. We also present a simplified form
of BDI logic in which specifications can be written. The language
is defined so as to make it possible to transform those specifica-
tions into Spin-format linear temporal logic formulæ. In this way,
we can verify automatically whether or not multi-agent systems
implemented in AgentSpeak(F) satisfy specifications expressed as
BDI logic formulæ. We illustrate our approach with a brief case
study of a simplified simulation of an abstract auction system with
three bidding agents. We give the AgentSpeak(F) code for those
three agents, and show three BDI specifications that are satisfied
by the auction system as verified by the Spin model checker.

The paper is structured as follows. Section 2 provides an
overview of AgentSpeak(L), while we introduce AgentSpeak(F) in
Section 3. Section 4 contains the main contribution of this paper: it
shows how AgentSpeak(F) can be transformed into Promela (Sec-
tion 4.1), and describes the BDI logical languages used for specifi-
cations as well as how the BDI modalities are interpreted in terms
of AgentSpeak(L) data structures (Section 4.2). We then present
our auction system case study in Section 5, give related work in
Section 6, and conclude, in Section 7, with discussion and future
work.

2. AgentSpeak(L)
In [13], Rao introduced the AgentSpeak(L) programming lan-
guage. It is a natural extension of logic programming for the BDI

agent architecture, and provides an elegant abstract framework for
programming BDI agents. In this paper, we only give a very brief
introduction to AgentSpeak(L); see [13, 3] for more details.

An AgentSpeak(L) agent is created by the specification of a set
of base beliefs and a set of plans. A belief atom is simply a first-
order predicate in the usual notation, and belief atoms or their nega-
tions are belief literals. An initial set of beliefs is just a collection
of ground belief atoms.

AgentSpeak(L) distinguishes two types of goals: achievement
goals and test goals. Achievement goals are predicates (as for be-
liefs) prefixed with the ‘!’ operator, while test goals are prefixed
with the ‘?’operator. Achievement goals state that the agent wants
to achieve a state of the world where the associated predicate is
true. (In practice, these start off the execution of subplans.) A test
goal states that the agent wants to test whether the associated pred-
icate is a belief (i.e., whether it can be unified with that agent’s base
beliefs).

Next, the notion of a triggering event is introduced. It is a
very important concept in this language, as triggering events define
which events may initiate the execution of plans; the idea of event,
both internal and external, will be made clear below. There are two
types of triggering events: those related to the addition (‘+’) and
deletion (‘-’) of mental attitudes (beliefs or goals).

Plans refer to the basic actions that an agent is able to perform on
its environment. Such actions are also defined as first-order pred-
icates, but with special predicate symbols (called action symbols)
used to distinguish them. The actual syntax of AgentSpeak(L) pro-
grams is based on the definition of plans, below. Recall that the
designer of an AgentSpeak(L) agent specifies a set of beliefs and a
set of plans only.

If � is a triggering event,
�������������	��

are belief literals, and� � ������������
are goals or actions, then � : � � & . . . &

�

<-���

; . . . ;
�
. is a plan. An AgentSpeak(L) plan has a head

(the expression to the left of the arrow), which is formed from a
triggering event (denoting the purpose for that plan), and a con-
junction of belief literals representing a context (separated from the
triggering event by ‘:’). The conjunction of literals in the context
must be satisfied if the plan is to be executed (the context must be
a logical consequence of that agent’s current beliefs). A plan also
has a body, which is a sequence of basic actions or (sub)goals that
the agent has to achieve (or test) when the plan is triggered.

Although the interpretation of AgentSpeak(L) programs is not
explained here, some of the related notions are given next. Inten-
tions are particular courses of actions to which an agent has com-
mitted in order to achieve a particular goal: each intention is a stack
of partially instantiated plans, i.e., plans where some of the vari-
ables have been instantiated. An event, which may trigger the exe-
cution of a plan, can be external, when originating from perception
of the agent’s environment, or internal, when generated from the
agent’s own execution of a plan (e.g., an achievement goal within a
plan body is a goal-addition event which may be a triggering event).
Formally, an event is a pair ���	� ����� , where ��� is a triggering event
and

�
is an intention. For internal events,

�
is the intention which

generated the event, and for external events
�

is T (the true inten-
tion).

An AgentSpeak(L) agent is formally defined by a tuple
��� ���������	����� ��!#"$�%!'&(�%!*)�� , where � is a set of events,

�
is a set

of base beliefs,
�

is a set of plans,
�

is a set of intentions, and
�

is
a set of actions (where the actions the agent decides to execute are
inserted). The selection function

! "
selects an event from the set� ; the selection function

! &
selects an option or an applicable plan

from a set of applicable plans; and
!#)

selects an intention from the
set
�

(the chosen intention is then executed).

3. AgentSpeak(F)
Recall that our main goal in this research is to facilitate model
checking of AgentSpeak(L) systems. But model checking as a
paradigm is predominantly applied to finite state systems. A first
key step in our research was thus to restrict AgentSpeak(L) to finite
state systems: the result is AgentSpeak(F), a finite state version of
AgentSpeak(L).

In order to ensure that systems to be model-checked are finite
state, the maximum size of types, data structures, and communica-
tion channels must be specified. This means that, for a translator
from AgentSpeak(L)-like programs into a model checking system
to work, a series of parameters stating the expected maximum num-
ber of occurrences of certain AgentSpeak(L) constructs need to be
given. The list below describes all the parameters needed by our
automatic translator.

+-,�.%/

: maximum number of terms in a predicate or an action

(i.e., the maximum arity for a predicate or action symbol);+10$2 �3
: maximum number of conjuncts (literals) in a belief form-

ing a plan’s context;+14#5�/
: maximum number of different variables in a plan;+-6 87%9
: maximum number of instances (entries) in the belief base
of the same predicate symbol at a time;+1: .�;
: maximum number of beliefs an agent can have at any mo-
ment in time in its belief base;+1<�=

: maximum number of pending events, i.e., the maximum
number entries in the event queue that an agent will store
at a time; this should be set by considering how dynamic the
environment is expected to be;+-6 89
: maximum number of intended means at a time; that is, the
number of different instances of plans rather than the number
of stacks of plans in the set of intentions;+->$? 9
: maximum number of actions requested by the agents that
may have to wait for the environment to handle;+1@ 7%A
: maximum number of messages (generated by inter-agent
communication) that an agent can store at a time.

Note that the first three parameters (
+ ,�.�/

,
+10$2 �3

, and+14#5�/
) are inputs to the automatic translator, but they could be de-

termined purely by syntactic processing. The others are restrictions
on the data structures used in an AgentSpeak(L) interpreter, as ex-
plained in Section 4.1. Some of these parameters will be used in
the syntax of AgentSpeak(F), as seen below.

The grammar in Figure 1 gives the syntax of AgentSpeak(F). In
that grammar, P stands for any predicate symbol and A for any
action symbol. Terms �	B associated with them are either constants
or variables. As in Prolog, an uppercase initial letter is used for
variables and lowercase for constants and predicate symbols (c.f.,
Prolog atoms). Note that first order terms (c.f., Prolog structures)
are not allowed in the present version of AgentSpeak(F); the next
section discusses this restriction further.

There are some special action symbols which are denoted by
an initial ‘.’ character (they are referred to as internal actions in
[2]). The action ‘.send’ is used for inter-agent communication, and
is interpreted as follows. If an AgentSpeak(F) agent C � executes
.send D�CFE ��GIH J��	K ��L , a message will be immediately inserted in the
mailbox of agent C E , having C � as sender, illocutionary force

GIH J
, and

propositional content
K � (an atomic AgentSpeak(F) formula). At

this stage, only three illocutionary forces can be used: tell, untell,
and achieve (unless others are defined by the user). They have
the same informal semantics as in the well-known KQML agent

K������ � ���	�
�������� � K � � . ����� K � . D������� +-: .�; LK � ��� � P D�� � , ����� , � L D������� + ,�.�/
 L�
����� � �#� ������� D������ L� ��� � ��� : � � <- � .��� ��� � +
K ��� -

K �
� +
� � -

�
� � ��� � K � � true
� not (

K �)
� � � � & ����� & � � D�������� + 0 2 �3 L� ��� �

A D�� � , ����� , � L D������� + ,�.�/
 L
� � ��� � � ; �� ��� �

!
K ��� ?

K �
� ��� � +

K ��� -
K �

Figure 1: The Syntax of AgentSpeak(F)

communication language. In particular, achieve corresponds to in-
cluding

K � as a goal addition in the receiving agent’s set of events;
tell and untell change the belief base and the appropriate events are
generated. These communicative acts only change an agent’s in-
ternal data structures after user-defined trust functions are checked.
There is one specific trust function for belief changes, and another
for achievement goals. The latter defines a power relation (as other
agents have power over an agent’s goals), whereas the belief trust
function simply defines the trustworthiness of information sources.

Another internal action symbol that is available is .print, which
takes a string as parameter and is used for agents to print out mes-
sages. Other pre-defined internal actions are, for example, used for
conditional operators and arithmetic operations.

Syntactically, the main difference between AgentSpeak(F) and
AgentSpeak(L) is that first order terms are not allowed, and there
are the informed limits on the number of beliefs, terms, and con-
juncts indicated by the use of

+ : .�;
,
+ ,�.�/

, and
+10$2 �3

above.
There is also the limit on the number of variables in a plan (

+ 4#5�/
)

which was not made explicit in the grammar. Note, however, that+-: .�;
is the maximum number of beliefs in the belief base at any

moment during the agent’s execution, not just the maximum num-
ber of initial beliefs.

We now consider other restrictions of AgentSpeak(F) in relation
to AgentSpeak(L). Our current implementation imposes some re-
strictions on certain features of AgentSpeak(L). In particular, it is
presently not possible to use: (i) uninstantiated variables in trigger-
ing events; (ii) uninstantiated variables in negated literals in a plan’s
context (as originally defined by Rao [13]); (iii) the same predicate
symbol with different arities (at present, the different predicates
would be treated as the same, with either random extra arguments
or ignoring some of them); (iv) first order terms (rather than just
constants and variables).

The first restriction means that an achievement goal cannot be
called with an uninstantiated variable (a usual means for a goal to
return values to be used in the plan where it was called). However,
as mentioned in [10], this restriction can be overcome by storing
such values in the belief base, and using test goals to retrieve them.
Hence, syntactic mechanisms for dealing with this restriction can
be implemented (i.e., this problem can be solved by preprocessing).

As for the second restriction, the interpreter presented in [2] al-
lows for uninstantiated variables in negated literals. However, this
was not allowed in Rao’s original definition of AgentSpeak(L), as it
complicates slightly the process of checking a plan’s context. Thus,
the second restriction is not an unreasonable one.

4. MODEL CHECKING AgentSpeak(F)
We now move on to the key contribution of this paper: we describe
how AgentSpeak(F) programs can be translated into Promela, the
model specification language for the Spin model checker. We
then describe the logical language used to specify BDI properties
of multi-agent systems written in AgentSpeak(F). Throughout this
section, we presuppose some familiarity with Promela [9], as space
restrictions prevent a detailed account here.

4.1 Promela Model of AgentSpeak(F)
A summary of the Promela model of an AgentSpeak(F) interpreter
(i.e., for one agent) is shown in Figure 2. Each identifier used in the
AgentSpeak(F) source code (i.e., identifiers for predicate and action
symbols and for constants) is defined in Promela as a macro for
an integer number which represents that symbol uniquely. This is
necessary because Promela cannot handle strings. AgentSpeak(F)
variables are declared as integer Promela variables1.

Data Structures
A number of Promela channels are used to handle most of the
data structures needed by an AgentSpeak(L) interpreter; the use
of Promela channels as lists had already been pointed out in [7].
All such channels are described below.

Channel b represents the agent’s belief base. The type for the
massages stored in this channel is composed of

+1,�.�/
 7"! � inte-
gers (one to store the predicate symbol and at most

+1,�.�/
 7
terms).

The b channel is declared to store at most
+ : .�;

messages. A sim-
ilar channel called p stores the percepts. This is changed by the
environment and read by all agents for belief revision. The format
and number of messages is as for the b channel. Channel m is used
for inter-agent communication. Messages in it contain the identi-
fication of the sender agent, the illocutionary force associated with
the communication, and a predicate (as for beliefs). It is bounded
to at most

+ @ 7%A
messages.

Before we go on describing the channels used as data structures,
we need to explain how intentions are handled. The bodies of plans
are translated into Promela inline procedures. These are called
whenever the interpreter requires an intended plan instance to run
its next formula. The data about each intended means is stored in
an array called i data. Accordingly, intended means can be iden-
tified by an index to an entry in this data structure. In fact, an
AgentSpeak(L) intention is represented here by the index to the en-
try in i data that is associated the plan on top of it; this is explained
in detail later on.

Next, a channel called e (of size
+ <*=

) is used to store events.
The message type here is formed by: (i) an integer to store an index
to i data (representing an AgentSpeak(L) intention2); (ii) a boolean
defining whether the event is an addition or deletion; (iii) another
boolean defining whether the event is (an addition or deletion of) a
belief or a goal; and (iv)

+-,�.�/
 7"! � integers to store a predicate
as before.

Channel i, used for scheduling intentions, stores messages of one
integer, as only indices (to i data) of plan instances that are enabled
for execution need to be stored. This corresponds to the plans on
top of each of the stacks of plans in an agent’s set of intentions.
Both i and i data have size

+16 �9
. Given that we are using by

default a “round-robin” intention selection function (as in [10]),

1Name clash is avoided by having internal variables (i.e., the ones
needed by the AgentSpeak(F) interpreter code in Promela) be-
ing prefixed with ’ ’, which is not a valid initial character for
AgentSpeak(L) identifiers.
2Recall that an AgentSpeak(L) event is a tuple ����� ����� where

�
is the

intention that generated the triggering event �	� .

plan instances that are ready to be scheduled insert their indices (to
i data) at the end of i. The first index in channel i specifies the next
plan that will have a given formula in its body chosen for execution.
More on intention selection is mentioned in the next section.

Finally, the a channel (for actions) stores at most
+-> ? 9

messages
of the same type as b plus an identification of the agent requesting
the action. Recall that an action has the same format as a belief
atom (the difference in practice is that they appear in the body of
plans).

The whole multi-agent system code in Promela will have arrays
of the channels described above, one for each agent in the system.
Only channels p and a are unique. They work as connection points
with the environment, which is accessed by all agents. The environ-
ment is implemented as a Promela process type called Environ-
ment, which is defined by the user. It reads actions from channel
a (which is written into by all agents) and changes the percepts that
are stored in channel p (which is read by all agents).

The Interpretation Cycle
The AgentSpeak(L) interpretation cycle is summarised in Figure 2
(it shows the structure of the code generated for one of the agents).
When an interpretation cycle starts, the agent checks its “mail box”,
and processes the first message in channel m. The effects of the il-
locutionary forces that can be used, as mentioned in Section 3, are
defined in an inline procedure CheckMail in a header file. This
can be altered by the user to change or extend the semantics of
communication acts, if necessary. Note that checking for messages
is not explicitly mentioned in the original definitions of the abstract
interpreter for AgentSpeak(L) [13, 5]. We here have separate stages
in the interpretation cycle for considering inter-agent communica-
tion and perception of the environment, then belief revision takes
care of both sources of information (in the figure, perception of
the environment is implicit within belief revision). The trust func-
tions (mentioned in Section 3) associated with this belief revision
process are read from a header file. Unless the inline procedures
TrustTell and TrustAchieve are redefined by the user, full
trust is assumed among agents.

Next, the agent runs its belief revision function (“BRF” in the
figure). The one used here is a simple piece of code composed of
two Promela do loops. The first one checks all percepts (in p) and
adds to the belief base (channel b) all those that are not presently
there. This generates corresponding belief-addition events (of for-
mat � + K � � T �). The second loop checks for current beliefs that are
no longer in the percepts, and removes them. This generates the
appropriate belief-deletion events (i.e., � - K � � T �). It is, of course, a
comparatively simple belief revision function, but quite appropriate
for ordinary AgentSpeak(L) programs. The belief revision function
is in a header file generated by the translator, and may be changed
by the user if a more elaborate function is required.

Then, an event to be handled in this interpretation cycle has to
be chosen. Events are handled via a FIFO policy here. Thus, when
new events are generated, they are inserted in the end of e, and the
first message in that channel is selected as the event to be handled in
the current cycle. The heads of all plans in an agent’s plan library
are translated into a sequence of attempts to find a relevant and
applicable plan. Each such attempt is implemented by a matching
of the triggering event against the first event in e, and checking
whether the context is a logical consequence of the beliefs. This is
implemented as nested loops based on

+10 2 �3
auxiliary channels

of size
+-6 87�9

, storing the relevant predicates from the belief base;
the loops go on until a unification is found (or none is possible).

If the attempt for a plan
� 3

is successful, then it is considered
as the intended means for the selected event. (Note that the

! &

selection function is implicitly defined as the order in which plans
are written in the code.) At this point, a free space in i data, the
array storing intention data, is needed (see FindFreeSpace in
the figure). This space is initialised with the data of that intended
means stating that: it is an instance of plan

� 3
; the formula in the

body of the plan to be executed next is the first one (by initialising
a formula counter); the triggering event3 with which this plan is
associated; the index in this array of the intention which generated
the present event (if it was an internal one); and the binding of
variables4 for that plan instance.

There are some issues that have to be considered in relation to
event selection and the creation of new intentions. The first mes-
sage in channel e is always removed. This means that the event is
discarded if no applicable plan was found for it. Also, recall that
the user defines

+-6 �9
, specifying the maximum expected number

of intentions an agent will have at any given time. Recall that this
corresponds to the maximum number of plan instances in an agent’s
set of intentions (not the number of stacks of plans allowed in it). If
any agent requires more than

+-6 �9
intended means, a Promela as-

sertion will fail, interrupting the verification process (and similarly
for the other translation parameters).

Finally, channel i is used for scheduling the execution of the var-
ious intentions an agent may have. As a round-robin like scheduler
is assumed by default, using a channel for this is quite straight-
forward. Indices of the i data array currently in i are used as a
reference for the present intended means. When an intended means
is enabled for execution, its index is sent to channel i. The integer
value

�����
in the first message in that channel is used as an index

to access the intention data that is necessary for executing its next
formula. This is done by calling an inline procedure according to
the plan type stated in i data � ������� (and

�����
is sent as a parameter

to that inline procedure).
Plan bodies given in AgentSpeak(L) are translated into Promela

inline procedures. Whenever these procedures are called, they only
run the code that corresponds to the next formula to be executed
(by checking the formula counter in the intention data). After ex-
ecuting the code for the current formula, the formula counter is
incremented. Then the index in i data for this intended means (

�����
received as parameter) is inserted again in channel i, meaning that it
is ready to be scheduled again. However, this is not done when the
corresponding formula was an achievement goal; this is explained
further below. When the last formula is executed,

�����
is no longer

sent to i, and the space in i data for that plan instance is freed.
The translation of each type of formula that can appear in a plan

body is relatively simple. Basic actions are simply appended to the
a channel, with the added information of which agent is requesting
it. The user-defined environment should take care of the execution
of the action. Addition and deletion of beliefs is simply translated
as adding or removing messages to/from the b channel, and includ-
ing the appropriate events in e. Test goals are simply an attempt
to match the associated predicate with any message from channel
b. The results in the Promela variables representing uninstantiated
variables in the test goal are then stored in i data, so that these
values can be retrieved when necessary in processing subsequent
formulæ. Achievement goals, however, work in a slightly different
way from other types of formula.

When an achievement goal appears in the body of a plan in a run-
ning intention, all that happens is the generation of the appropriate
internal event. Suppose the index in i data of the plan instance on
top of that intention is

�	�
. The intention that generated the event

3This is needed for retrieving information on the desired and in-
tended formulæ of an agent.
4This is stored in an array of size

+ 4*5�/
.

.

.

.

1Formula M

eGet first message from

inline Agent1_Plan1(idx)

inline Agent1_Plan2(idx)

inline Agent1_PlanN(idx)

proctype Agent1

i_data

** If this intended means was generated by an internal event,
i

* Except when the preceeding formula is an achievement goal.

 add the index for the intention which generated it to channel .

end while

**

Get unification from i_data[idx]
switch

Formula 1

Send idx * Send idx *
. . .

**

Get unification from i_data[idx]
switch

Formula 1

Send idx * Send idx *
. . . NFormula M

2Formula M

i
Intention Selection:

**

Get unification from i_data[idx]
switch

Formula 1
fc = fc+1;
Send idx * Send idx *

. . .

if
check TE and Context of Plan j

plan is applicable
FindFreeSpace(i_data, idx);
Initialise(i_data[idx]);

break;
Send idx to

Event Selection:

end if;
end for;

for toj=1 N

i

(fc) // formula counter from i_data[idx]

(fc) // formula counter from i_data[idx]

(fc) // formula counter from i_data[idx]

fc = fc+1;

fc = fc+1; fc = fc+1;

fc = fc+1;fc = fc+1;

(true)while do

then

BRF();

CheckMail();

Figure 2: Abstract Promela Model for an AgentSpeak(F) Agent

is suspended until that event is selected in a reasoning cycle. In
the Promela model, this means that we have to send a message to
channel e, but the formula counter is not incremented, and index� �

is not sent to i. This means that the plan instance in
� �

is not
enabled for scheduling. However, the generated event will have

� �
to mark the intention that generated it. When an intended means
is created for that event,

���
will be annotated in i data as the index

of the intention that created it. All inline procedures generated as
translation of plan bodies check, after the last formula is selected
to run, whether there is an intention index associated with the entry
in i data they receive as parameter. If there is, that index should
now be sent to i, thus allowing the previously suspended intended
means to be scheduled again.

This completes a reasoning cycle (a cycle of interpretation of
an AgentSpeak(L) program). Each of the four main parts in the
cycle (as seen in Figure 2), namely belief revision, checking inter-
agent communication, event selection (and generating a new in-
tended means for it), and intention selection (and executing one
formula of it), are atomic steps in Promela. This means that, dur-
ing model checking, Spin will consider all possible interleavings of
such atomic operations being executed by all agents in the multi-
agent system. This captures the different possible execution speeds
of the agents.

The event selection and intention selection parts of the interpre-
tation cycle always use the first messages in channels e and i, re-
spectively. However, before those parts of the cycle, two inline
procedures are called. These procedures, named SelectEvent
and SelectIntention have no effect by default, so channel e
is used as a queue of events, and i provides a round-robin sched-
uler. Users can have control over event and intention selection by
including code in the definition of those procedures. Such code
would change the order of the messages in e or i (in particular the
first ones) thus determining the event or intention that is going to
be selected next.

The whole multi-agent system is started up in the Promela init
process. It runs the user-defined Environment process and then

creates one process for each agent defined in the translation pro-
cess. The next section discusses the way in which BDI properties
are specified for model-checking an AgentSpeak(F) multi-agent
system created in the way described so far.

4.2 Verifying BDI Properties
Ideally, we would like to be able to verify that systems implemented
in AgentSpeak(L) satisfy (or do not satisfy) properties expressed in
BDI logic. In this section, we show how BDI logic properties can
be mapped down into Spin-format Linear Temporal Logic (LTL)
formulæ and associated predicates over the data structures in the
Promela system.

In [3], a way of interpreting the informational, motivational, and
deliberative modalities of BDI logics for AgentSpeak(L) agents
was given. This was used to prove which of the asymmetry the-
sis principles [15] are enforced by AgentSpeak(L). In this work,
we use that same framework for interpreting the B-D-I modali-
ties in terms of data structures within the Promela model of an
AgentSpeak(F) agent in order to translate (temporal) BDI proper-
ties into Promela never-claims. The particular logical language that
is used for specifying such properties is given towards the end of
the section.

The definitions in [3] are based on the operational semantics of
AgentSpeak(L) [11]. The configurations of transition system giv-
ing such operational semantics are defined as a pair � K��$��� � , where
an agent

K�� � � � �8��� � � is defined as a set of beliefs
� �

and a set of
plans
� �

(see Section 3), and
�

is the agent’s present circumstance
defined as a tuple � ��� � ��� ��� ���"�#���	���$����� , where

�
, � , and

�
are

as given in the definition of an AgentSpeak(L) agent in Section 2
(the others are not relevant here).

We here give only the main definitions within [3]; the argumen-
tation on the proposed interpretation is omitted. In particular, dis-
cussion is given in that paper on the interpretation of intentions and
desires, as the belief modality is clearly defined in AgentSpeak(L).
We say that an AgentSpeak(L) agent

K �
, regardless of its circum-

stance
�

, believes a formula � iff it is included in the agent’s belief

base; that is, for an agent
K���� � ���8��� � � :

BEL � 5 A�� 0�� D �'L�� ��� � �8�
Note that a closed world is assumed, so BEL � 5 A	� 0
� D �'L is true if

� is included in the agent’s belief base, and BEL � 5 A	� 0
� D�� �'L is true
otherwise, where � is an atom (i.e.,

K � in Section 3).
Before giving the formal definition for the intention modality,

we first define an auxiliary function �� H ��������� D�� L , where
�

is the domain of all individual intentions and � is the domain of
all atomic formulæ (as mentioned above). Recall that an intention
is a stack of partially instantiated plans, so the definition of

�
is

as follows. The empty intention (or true intention) is denoted by
T, and T � � . If

�
is a plan and

� � � , then also
� � � � � � .

The notation
� � ��� is used to denote the intention that has plan

�
on top of another intention

�
, and

� <
denotes the � component

of
�

(and similarly for the other components). The �� H � function
below takes an intention and returns all achievement goals in the
triggering event part of the plans in it:

�� H � D T L � ���
�� H � D � � � � L � � � K � ��� �� H � D � L if

� �
+!
K � : � � <- � .�� H � D � L otherwise.

Formally, we say an AgentSpeak(L) agent
K��

intends � in cir-
cumstance

�
if, and only if, it has � as an achievement goal that

currently appears in its set of intentions
� 6

, or � is an achieve-
ment goal that appears in the (suspended) intentions associated with
events in

� <
. For an agent

K��
and circumstance

�
, we have:

INTEND � 5 A�� 0�� D �'L�� �����B! 0#" $� H � D � L&% ���'�� te � B � 0)(�� H � D � L �
Note that we are only interested in atomic formulæ

K � in trig-
gering events that have the form of additions of achievement goals,
and ignore all other types of triggering events. These are the for-
mulæ that represent (symbolically) properties of the states of the
world that the agent is trying to achieve (i.e., the intended states).
However, taking such formulæ from the agent’s set of intentions
does not suffice for defining intentions, as there can be suspended
intentions. Suspended intentions are precisely those that appear in
the set of events.

We are now in a position to define the interpretation of the desire
modality in AgentSpeak(L) agents. An agent in circumstance

�

desires a formula � if, and only if, � is an achievement goal in
�

’s
set of events

� <
(associated with any intention

�
), or � is a current

intention of the agent; more formally:

DES � 5 A�� 0
� D �'L�� � !+* � �	��� � � < % INTEND � 5 A�� 0�� D �'L �
Although this is not discussed in the original literature on

AgentSpeak(L), it was argued in [3] that the desire modality in an
AgentSpeak(L) agent is best represented by additions of achieve-
ment goals presently in the set of events, as well as its present in-
tentions.

The definitions above tell us precisely how the BDI modal-
ities that are used in claims about the system can be mapped
onto the AgentSpeak(F) structures implemented as a Promela
model. We next present, in full, the logical language that is used
to specify properties of the BDI multi-agent systems written in
AgentSpeak(F) that we can model-check following the approach
in this paper.

The logical language we use here is a simplified version of,.-0/21
[17], which is based on modal logics of intentionality, dy-

namic logic, and CTL*. In the restricted version of the logic used

here, we limit the underlying temporal logics to LTL rather than
CTL*, given that LTL formulæ (excluding the “next” operator 3)
are automatically translated into Promela never-claims by Spin. We
describe later on some other restrictions aimed at making the logic
directly translatable into Spin-format LTL formulæ.

Let
� � be any valid Promela boolean expression, C be any agent

label,
�

be a variable ranging over agent labels, and
K � and

K
be

atomic and action formulæ defined in the AgentSpeak(F) syntax
(see Section 3), except with no variables allowed. Then the set
of well-formed formulæ (wff) of this logical language is defined
inductively as follows:

1.
� � is a wff ;

2.
K � is a wff ;

3. D Bel C K ��L , D Des C K ��L , and D Int C K ��L are wff ;

4. 4 �#� D + � K ��L and 5 �#� D + � K ��L are wff, where
+ ��

Bel
�
Des

�
Int
�

and
�

ranges over a finite set of agent labels;

5. D Does C K L is a wff ;

6. if � and 6 are wff, so are D�� �'L , D �8786�L , D �+%+6 L , D �:9;6�L ,D �=<'6 L , always D?> �'L , eventually D�@ �'L , until D �BAC6�L ,
and “release”, the dual of until D � / 6�L ;

7. nothing else is a wff.

In the syntax above, agent labels denoted by C , and over which
variable

�
ranges, are the ones associated with each AgentSpeak(F)

program during the translation process. That is, the labels given as
input to the translator form the finite set of agent labels over which
the quantifiers are defined. The only unusual operator in this lan-
guage is D Does C K L , which holds if the agent denoted by C has
requested action

K
and that is the next action to be executed by the

environment. An AgentSpeak(F) atomic formula
K � is used to re-

fer to what is actually true of the environment. In practical terms,
it comes down to checking whether the predicate is in channel p
where the percepts are stored by the (user-defined) environment.
We do not give semantics (even informally) to the other operators
above, as they have been extensively used in the multi-agent sys-
tems literature, and formal semantics can be found in the references
given above. Note, however, that the BDI modalities can only be
used with AgentSpeak(L) atomic propositions.

The concrete syntax used in the system for writing formulæ of
the language above is that of Spin’s LTL. Before passing the LTL
formula on to Spin, we translate Bel, Des, and Int into expressions
that access the AgentSpeak(L) data structures modelled in Promela
(according to the definitions in the previous section). Modality
Does is implemented by checking the first message in channel a,
the one used by agents to send to the environment the action they
want to see executed (see Section 4.1). That first message in a is
the action that is going to be executed next by the environment (as
soon as it is scheduled by Spin).

5. A CASE STUDY
In this section, we describe a simplified auction scenario that we
use to illustrate the sort of programs and specifications that can
be used in our framework. The simple environment (written in
Promela) announces 10 auctions and simply states which agent
is the winner in each one (the one with the highest bid). There
are three agents participating in these auctions, with three simpli-
fied bidding strategies. During the process of automatic transla-
tion from AgentSpeak(F) source files into a Promela code for the
multi-agent system, we associate labels ag1, ag2, and ag3 with
the three agents present in the system. The AgentSpeak(F) source
code for these agents is given below.

Agent ag1
+auction(N) : true

<- place_bid(N,6).

Agent ag1 is a very simple agent which bids 6 whenever the
environment announces a new auction.

Agent ag2
myself(ag2).
bid(ag2,4).
ally(ag3).

+auction(N) : myself(I) & ally(A) & not(alliance(A,I))
<- ?bid(I,B); place_bid(N,B).

+auction(N) : alliance(A,I)
<- place_bid(N,0).

+alliance(A,I) : myself(I) & ally(A)
<- ?bid(I,B);

.send(A,tell,bid(I,B));

.send(A,tell,alliance(A,I)).

Agent ag2 bids 4, unless it has agreed on an alliance with ag3,
in which case it bids 0. When ag2 receives a message from ag3
proposing an alliance, a belief alliance(ag3,ag2) is added to
ag2’s belief base (the default trust function is used). That is a
triggering event to the last plan, which informs ag3 of how much
ag2 was bidding, and confirms that ag2 agrees to form an alliance
with ag3.

Agent ag3
myself(ag3).
bid(ag3,3).
ally(ag2).
threshold(3).

+auction(N) : threshold(T) & .gte(T,N)
<- !bid_normally(N).

+auction(N) : myself(I) & winner(I)
& ally(A) & not(alliance(I,A))

<- !bid_normally(N).

+auction(N) : myself(I) & not(winner(I))
& ally(A) & not(alliance(I,A))

<- !alliance(I,A);
!bid_normally(N).

+auction(N) : alliance(I,A)
<- ?bid(I,B); ?bid(A,C);

.plus(B,C,D); place_bid(N,D).

+!bid_normally(N) : true
<- ?bid(I,B); place_bid(N,B).

+!alliance(I,A) : not(alliance(I,A))
<- .send(A,tell,alliance(I,A)).

Agent ag3 tries to win the first T auctions, where T is a threshold
stored in its belief base. If it is does not win any auctions up to that
point, it will try to achieve an alliance with ag2 (by sending the
appropriate message to it). When ag2 confirms that it agrees to
form an alliance, then ag3 starts bidding, on behalf of them both,
with the sum of their usual bids.

The following specifications were translated into Promela never-
claims and used to verify certain (liveness) properties of the system.

>(D ��D Bel ag3 winner D ag3 L	L 7
D Des ag3 alliance D ag3 � ag2 L	L�9@ D Int ag3 alliance D ag3 � ag2 L	L L

The specification above says that whenever ag3 does not believe
it has won the auction and desires to form an alliance with ag2,
then eventually ag3 will also intend to do so. This guarantees that
AgentSpeak(L) will always find an applicable plan for handling the
event +!alliance(ag3,ag2). The next specification assures
that eventually both agents will have agreed on an alliance.

@ D D Bel ag2 alliance D ag3 � ag2 L	L 7
D Bel ag3 alliance D ag3 � ag2 L	L L

Further, we ensure that if they do agree on an alliance, then even-
tually ag3 will win all auctions on behalf of the alliance (it is true
of the environment that ag3 is the winner).

>(D D Bel ag2 alliance D ag3 � ag2 L	L 7
D Bel ag3 alliance D ag3 � ag2 L	L�9@0> winner D ag3 L L

With these specifications, we detected an error in the
AgentSpeak(F) code for ag3 as given above. The plan with trig-
gering event +!alliance(I,A) is only applicable if an alliance
has not yet been established. The context of the plan that generates
that event guarantees that an alliance was not established at the time
the event is generated. However, a run of the system is possible in
which the message from ag2 confirming the alliance arrives after
the generation of the event, but before the event is selected (in an at-
tempt to find an applicable plan). Because in the current translation
into Promela we cannot handle plan failure, this means that ag3
will not make a bid. Given that the environment was programmed
so as not to proceed before all bids have been placed, the model
checker finds an infinite cycle which does not satisfy the specifica-
tions. The easiest way to solve this problem, is by simply replacing
not(alliance(I,A)) with true in the context of the plan
for +!alliance(I,A). More than one message proposing an
alliance may be sent to ag2, but the extra ones will be ignored by
it, as it already believes alliance(ag3,ag2) (hence no fur-
ther event is generated by belief revision). Once this modification
is made, the formulæ above can be verified.

6. RELATED WORK
Since Rao’s original proposal [13], a number of authors have in-
vestigated a range of different aspects of AgentSpeak(L). In [5],
a complete abstract interpreter for AgentSpeak(L) was formally
specified using the Z specification language. Some extensions to
AgentSpeak(L) were proposed in [2], and an interpreter for the
extended language was introduced. The extensions aim at pro-
viding a more practical programming language; the extended lan-
guage also allows the specification of relations between plans and
quantitative criteria for their execution. The interpreter then uses
decision-theoretic task scheduling for automatically guiding the
choices made by an agent’s intention selection function.

In [11], an operational semantics for AgentSpeak(L) was given
following Plotkin’s structural approach; this is a more familiar
notation than Z for giving semantics to programming languages.
Later, that operational semantics was used in the specification
of a framework for carrying out proofs of BDI properties of
AgentSpeak(L) [3]. The particular combination of asymmetry the-
sis principles [15] satisfied by any AgentSpeak(L) agent was shown
in that paper. This is relevant in assuring the rationality of agents
programmed in AgentSpeak(L).

Model checking techniques have only recently begun to find a
significant audience in the multi-agent systems community. Rao
and Georgeff developed basic algorithms for model-checking BDI
logics [14], but the authors proposed no method for generating
BDI models from programs. In [1], a general approach for model-
checking multi-agent systems was proposed, based on the branch-
ing temporal logic CTL together with modalities for BDI-like at-
titudes. However, once again no method was given for generat-
ing models from actual systems, and so the techniques given there
could not easily be applied to verifying real multi-agent systems.
In [8], techniques were given for model-checking temporal epis-
temic properties of multi-agent systems; the target of that work was
the Spin model checker. However, that work did not consider an
agent’s motivational attitudes, such as desires and intentions.

Perhaps the closest work to ours is that in [18] on the MABLE
multi-agent programming language and model-checking frame-
work. MABLE is a regular imperative language (an impoverished
version of C), extended with some features from Shoham’s agent-
oriented programming framework. Thus, agents in MABLE have
data structures corresponding to beliefs, desires, and intentions, and
can communicate using KQML-like performatives. MABLE is au-
tomatically translated into Promela, much like AgentSpeak(F) in
this work. Claims about the system are also written in a

, -0/21
-

like language, which is also translated into Spin’s LTL framework
for model checking. The key difference is that MABLE is an im-
perative language, rather than a logic programming language in-
spired by PRS-like reactive planning systems, which is the case of
AgentSpeak(F).

7. CONCLUSIONS
We have introduced a framework for the verification of agent pro-
grams written in an expressive logic programming language against
BDI specifications. We do so by transforming AgentSpeak(F) code
into Promela, and transforming BDI specifications into Spin-format
LTL formulæ, then using Spin to model check the resulting system.
AgentSpeak(L) is a practical BDI programming language with a
well-defined theoretical foundation, and we here contribute to the
missing aspect of practical AgentSpeak(L) verification.

The state of the art in model checking still requires the use of
abstract versions of systems rather than direct implementations. As
expected, during verification, our AgentSpeak(F) model in Promela
is rather demanding on the Spin system in terms of memory and
processing time. Future work should attempt at improving the effi-
ciency of the AgentSpeak(F) model and devising suitable abstrac-
toin techniques, so as to address scalability. Also, it would be inter-
esting to add extra features to AgentSpeak(F) (e.g., handling plan
failure, allowing first order terms, allowing variables in the specifi-
cations), as far as the complexity of model checking would allow.

We also plan as future work to verify more ambitious applica-
tions, such as autonomous spacecraft control (on the lines of [6]).
Further, we are presently working on translating AgentSpeak(F)
into Java rather than Promela, so that we can use JPF2 [16]
rather then Spin for model checking. It would be interesting to
compare the performances of Spin and JPF2 in model checking
AgentSpeak(F) multi-agent systems.

Acknowledgements
This research was supported by a Marie Curie Fellowship of the

European Community programme Improving Human Potential un-
der contract number HPMF-CT-2001-00065. We are grateful for
many suggestions for improvements made by Willem Visser and
John Penix from NASA Ames Research Center during a visit to the
University of Liverpool.

8. REFERENCES
[1] M. Benerecetti and A. Cimatti. Symbolic model checking for

multi-agent systems. In Proc. ECAI Workshop on Model
Checking and Artificial Intelligence (MoChArt-2002), Lyon,
France, pages 1–8, 2002.

[2] R. H. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso,
R. M. Vicari, and V. R. Lesser. AgentSpeak(XL): Efficient
intention selection in BDI agents via decision-theoretic task
scheduling. In C. Castelfranchi and W. L. Johnson (eds),
Proc. First International Joint Conf. on Autonomous Agents
and Multi-Agent Systems (AAMAS-2002), Bologna, Italy,
pages 1294–1302. ACM Press, 2002.

[3] R. H. Bordini and Á. F. Moreira. Proving the asymmetry
thesis principles for a BDI agent-oriented programming
language. Electronic Notes in Theoretical Computer Science,
70(5), 2002.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press: Cambridge, MA, 2000.

[5] M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A
formal computational model. J. Logic and Computation,
8(3):1–27, 1998.

[6] M. Fisher and W. Visser. Verification of autonomous
spacecraft control — a logical vision of the future. In Proc.
Workshop on AI Planning and Scheduling For Autonomy in
Space Applications, Manchester, UK, 2002.

[7] K. Havelund, M. Lowry, and J. Penix. Formal analysis of a
space craft controller using SPIN. IEEE Trans. Software
Engineering, 27(8), Aug. 2001.

[8] W. Hoek and M. Wooldridge. Model checking knowledge
and time. In D. Bos̆nac̆ki and S. Leue (eds), Model Checking
Software (LNCS Volume 2318), pages 95–111.
Springer-Verlag: Berlin, Germany, 2002.

[9] G. Holzmann. The Spin model checker. IEEE Trans.
Software Engineering, 23(5):279–295, May 1997.

[10] R. Machado and R. H. Bordini. Running AgentSpeak(L)
agents on SIM AGENT. In J.-J. Meyer and M. Tambe, (eds),
Intelligent Agents VIII – Proc. Eighth International
Workshop on Agent Theories, Architectures, and Languages
(ATAL-2001), 2001, Seattle, WA, number 2333 in LNAI,
pages 158–174. Springer-Verlag, 2002.

[11] Á. F. Moreira and R. H. Bordini. An operational semantics
for a BDI agent-oriented programming language. In Proc.
Workshop on Logics for Agent-Based Systems (LABS-02),
held in conjunction with the Eighth International Conf. on
Principles of Knowledge Representation and Reasoning
(KR-2002), Toulouse, France, pages 45–59, 2002.

[12] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams.
Remote agents: To boldly go where no AI system has gone
before. Artificial Intelligence, 103:5–47, 1998.

[13] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. Van de Velde and J. Perram
(eds), Proc. Seventh Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW’96), Eindhoven,
The Netherlands, number 1038 in LNAI, pages 42–55.
Springer-Verlag, 1996.

[14] A. S. Rao and M. P. Georgeff. A model-theoretic approach to
the verification of situated reasoning systems. In Proc.
Thirteenth International Joint Conf. on Artificial Intelligence
(IJCAI-93), pages 318–324, Chambéry, France, 1993.

[15] A. S. Rao and M. P. Georgeff. Decision procedures for BDI
logics. J. Logic and Computation, 8(3):293–343, 1998.

[16] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. Fifteenth International Conf. on
Automated Software Engineering (ASE’00), Grenoble,
France, pages 3–12. IEEE Computer Society, 2000.

[17] M. Wooldridge. Reasoning about Rational Agents. The MIT
Press, Cambridge, MA, 2000.

[18] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons.
Model checking multi-agent systems with MABLE. In
C. Castelfranchi and W. L. Johnson, (eds), Proc. First
International Joint Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS-2002), Bologna, Italy, pages
952–959. ACM Press, 2002.

