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Abstract

We introduce a Game Logic with Preferences (GLP),
which makes it possible to reason about how information
or assumptions about the preferences of other players can
be used by agents in order to realize their own preferences.
GLP can be applied to the analysis of social protocols such
as voting or fair division problems; we illustrate this use of
GLP with a number of worked examples. We then prove that
the model checking problem for GLP is tractable, and de-
scribe an implemented model checker for the logic – by us-
ing the model checker, it is possible to automate the analy-
sis and verification of social protocols.

1. Introduction

We are interested in the formal specification, analysis, and
verification of mechanisms for social interaction [15]. Ex-
amples of such mechanisms include voting and election
procedures [5], auction and trading protocols, and solutions
for fair division and dispute resolution [3]. As a simple ex-
ample, consider the problem of constructing a voting proce-
dure for Alice, Bob, and Caroline to decide between three
holiday destinations: Xanadu, Yemen, and Zambia. An ex-
ample requirement for this social choice mechanism might
be that if two people prefer the same choice, then that choice
should become the outcome.

One can model many mechanisms for social interaction
as extensive games [14, 2], and then use game theoretic
concepts to characterise properties of the protocol. Unfor-
tunately, a game is not just a model for a protocol, it is a
model for the protocol and the preferences of the agents.
One would like to model procedures as complete and per-
fect information games, because this is a simple class of
games; but then all agents have complete knowledge of
each other’s preferences. This is an unrealistic assumption.
In fact, for the holiday example above, each agent can or-
der the three countries in six possible ways, and therefore
one would need to consider at least 216 different games,

even excluding the possibility that an agent might value op-
tions equally. Models of social procedures that do not re-
quire one to completely specify the preferences of agents
are thus highly desirable. Gal and Pfeffer [9, 10] have also
recognized this problem, and use Networks of Influence
Diagrams to model game situations in which agent may
have different beliefs about which game they are playing.
We take a different approach by starting with one common
game form and use logical assumptions to represent differ-
ent preference structures.

One can also model social procedures as distributed or
interpreted systems [8]. These systems are models for the
options and knowledge that agents have: important proper-
ties such as ‘Alice, Bob and Caroline will eventually agree
on an outcome’ can be verified using temporal logics [4];
temporal epistemic logics can be used for knowledge based
requirements [8], and coalition (epistemic) logics [17] can
be used for properties such as ‘Alice knows that on her own
she has no strategy to block Zambia as an outcome’. Unfor-
tunately, these approaches do not deal with preferences at
all. The assumption in these systems is that agents know
nothing about other agents’ preferences – and of course
this is also an unrealistic assumption. In short, this paper
presents a logic that is intended to overcome these limita-
tions. This logic allows us to reason about interactions be-
tween agents with only partial knowledge about their pref-
erences. Specifically, we are interested in the question how
the addition of information about other agents’ preferences
influences the strategies of agents and coalitions of agents.

The key assumption we make is that agents reason about
the preferences of other agents, and then make certain
strategic decisions. We do not specify how they know it
(it might be by means of communication, espionage, or
by studying previous histories of the game); the informa-
tion about the preferences might even be hypothetically as-
sumed. Reasoning about the preferences of (other) agents
is interpreted as reasoning about their strategies, because
for a rational agent, having a preference implies choos-
ing a strategy that leads to this preference. The knowl-



edge that agents have, based upon their knowledge of other
agents’ preferences, is called strategic knowledge [7]. Al-
though our aim is to study strategic knowledge in this pa-
per, we do this implicitly, since we do not introduce strate-
gies as first class citizens of our logic, but rather refer only
to preferences. We develop a logic GLP (Game Logic with
Preferences), which allows us to reason about the conse-
quences of the announcement of information about prefer-
ences. Initially, agents know the protocol but do not know
other agents’ preferences. The logic enables us to make as-
sumptions about their preferences, and subsequently to ex-
press the consequences of such assumptions. Note that some
simplifying assumptions are made. We assume agents have
perfect information about the current game state, so we do
not consider imperfect information games. We also assume
that all agents have the same information about preferences.

The remainder of the paper is structured as follows. Sec-
tion 2 defines some game theoretic notions that are used
throughout the paper. The logic GLP for expressing proper-
ties of protocols is defined in Section 3, together with its se-
mantics. The use of GLP is illustrated through some exam-
ple protocols in Section 4. In Section 5, an efficient algo-
rithm for evaluating GLP properties is given, and an imple-
mentation of this algorithm in a Java model checker for GLP

is described. We present some conclusions in Section 6.

2. Extensive Games and Game Forms

Extensive games are defined in several different but essen-
tially equivalent ways in the literature: for example as a
tree [13], or as a set of runs [14]. We use a definition as a
tree, but stay close to the notation of [14], and we will sim-
ply refer to ‘game’ when we mean ‘extensive game’.

Informally, a game consists of two components. The
game form F specifies the available actions for each agent,
whereas the preference relation � specifies an agent’s pref-
erences. For our formal approach we also need an interpre-
tation, π, which allows us to use propositions for describ-
ing end states. We do not always need all these components
at the same time, and therefore we distinguish the follow-
ing structures.

F A game form
(F,�) A game
(F, (P, π)) A game form interpretation
(F,�, (P, π)) A game interpretation

Notation Throughout this paper we follow coalition logic
conventions [17] by using Σ to denote a set of agents, Γ
for a coalition of agents (so Γ ⊆ Σ), i ∈ Σ for an arbi-
trary agent, P for a set of propositions and π as an interpre-
tation function for propositions.

Trees The symbol N is used for a finite set of nodes, and
T ⊆ (N × N) is a binary relation between them, yielding

a tree t = 〈N, T, n0〉, with root n0 ∈ N. Given a tree t, we
define the successor function Succ : N → 2N , yielding for
every n ∈ N its set of successors {n′ ∈ N | (n, n′) ∈ T}.
The function Z(T) = {n ∈ N|Succ(n) = ∅} defines the set
of all terminal nodes of the tree: we refer to them as states.

Game Form A game form is a tuple F = 〈Σ,Ag,N, T, n0〉,
where Σ is a set of agents or players and 〈N, T, n0〉 is a tree.
The function Ag : N \ Z(T) → Σ assigns an agent to each
non-terminal node: this agent is thought of as the agent that
decides the next action, or, equivalently, what the next node
will be. Conversely, the function Ow returns, for every agent
i, the set of nodes “owned” by that agent.

Game A game is a tuple (F,�) where F is a game form
and �: Σ → 2Z(T)×Z(T) is a function that assigns to each
agent i a preference relation �i over all terminal nodes.
Preference relations are assumed to be transitive and sym-
metric. Informally, n �i n′ means that agent i thinks that n
is at least as good as n′. We write n �i n′ iff n �i n′ but not
n′ �i n.

Game Form Interpretation A game form interpretation is
a tuple (F,P, π) where F is a game form 〈Σ,Ag,N, T, n0〉,
P is a finite set of propositions and π : Z(T) → 2P as-
signs to each non-terminal node the set of propositions that
are considered true in that node.

Game Interpretation A game interpretation is a tuple
(F,�,P, π) such that (F,P, π) is a game form interpreta-
tion and (F,�) is a game.

Preference We say that agent i has a preference for a set
of outcomes S ⊆ Z(T) in game (F,�) if for all s ∈ S and
t ∈ Z(T) \ S we have that s �i t. In this definition, a set S is
thus preferred over its complement. Note that this is a strong
notion of preferences. We can only say that a person prefers
to have coffee if the worst situation in which it has cof-
fee is better than the best situation in which it does not have
coffee. This strong definition is convenient in a logical ap-
proach, because it allows one to draw definite conclusions.
A notion of preference in which the average value of s ∈ S
is higher than the average value of an element t /∈ S might
be applicable within a probabilistic framework. A coalition
of agents Γ prefers a set S if each member i ∈ Γ prefers S.

Strategies A pure strategy for agent i in a game form F is
a function PSi : Ow(i) → N such that PSi(n) ∈ Succ(n).
This function prescribes a decision for agent i to each node
owned by i. A mixed strategy is a function MSi : Ow(i) →
2N \ ∅ such that PSi(n) ⊆ Succ(n). A mixed strategy pre-
scribes a subset of alternatives to each node owned by i. A
strategy for a coalition Γ, either mixed or pure, is a set of
strategies, one for each agent in Γ. If SΓ is a strategy for Γ,
and n ∈ N with Ag(n) ∈ Γ, then SΓ(n) = SAg(n)(n). We use
both the notation n′ ∈ SΓ(n) and SΓ(n) = n′ when not con-
fusing. For the grand coalition Σ, SΣ is called a strategy



profile. Such a profile s represents a Nash Equilibrium if no
agent in Σ can unilaterally deviate from s and improve his
outcome. It is well-known that every two person zero-sum
game has such an equilibrium, which can be obtained us-
ing backward induction [14].

Strategy Updates A game is often thought of as a set of
possible computations or runs. Each path on the game tree
then corresponds to a run. Formally, a run of the game form
〈Σ,Ag,N, T, n0〉 is a sequence n0, n1, . . . , nz where n0 is the
root of T and nz ∈ Z(T) is a terminal node, and for each k it
is the case that (nk, nk+1) ∈ T. If an agent or a coalition of
agents is committed to a certain strategy S, certain runs can
be excluded from consideration because these runs are not
compatible with that strategy. A run n0, n1, . . . , nz is com-
patible with a mixed strategy SΓ if for any pair (nk, nk+1)
with Ag(nk) ∈ Γ it is the case that nk+1 ∈ SΓ(nk). This
means that every choice made by an agent from coalition Γ
must be made according to SΓ.

We define an update function u for any game form
F = 〈Σ,Ag,N, T, n0〉 and strategy SΓ, such that u(F, SΓ) =
〈Σ,Ag′,N′, T ′, n0〉 is the game consisting of all runs com-
patible with SΓ. To achieve this, we stipulate that Ag′ is the
restriction of Ag to N′ ⊆ N which is generated from N by
the new T ′ relation, which is defined as

T ′ = {(n, n′) ∈ T | Ag(n) ∈ Γ ⇒ n′ ∈ SΓ(n)}

Note that in this updated model, agents not in Γ still have
all of their options open. Only agents that are part of Γ are
now limited to making choices that are compatible with SΓ.

3. A Logic for Preferences

In this section we define the syntax and semantics of the
logic GLP.

3.1. Syntax of GLP

We find it convenient to define the syntax of GLP in sev-
eral stages, beginning with (classical) propositional logic.

Definition 1 The language PL of propositional logic over a
set of propositions P is the smallest set L ⊇ P such that for
any ϕ ∈ L and ψ ∈ L we have that ϕ ∨ ϕ ∈ L and ¬ϕ ∈ L.

We use propositional logic to express properties of the out-
comes or results of games. An example inspired by football
is the statement ¬winA ∧ ¬winB, which expresses that nei-
ther team A wins nor team B wins. It is important to realize
that propositional logic is only used for properties of termi-
nal states, not for intermediate states of a game or proto-
col.

The logic GLP contains all connectives of propositional
logic and two additional operators. One can be used to intro-
duce formulas of propositional logic in GLP, and the other
one is used to express consequences of preferences.

Definition 2 Let P be a set of propositions, and Σ a group
of agents. Let PL be the language of propositional logic
over P. The language for GLP is the smallest language L
such that for any formula ϕ0 ∈ PL and ϕ, ψ ∈ L, it is the
case that:

�ϕ0 ∈ L
ϕ ∨ ψ ∈ L

¬ϕ ∈ L
[Γ : ϕ0]ψ ∈ L

The formula [Γ : ϕ0]ψ has the intended reading ‘In any
game in which coalition Γ prefers ϕ0, ψ will hold’. The
box operator, �ϕ0, takes a propositional logic formula ϕ0,
which can be interpreted in a specific state, and converts it
into a GLP formula: it means that ϕ0 holds for every pos-
sible outcome. A useful shorthand is the sometimes opera-
tor ♦ϕ0, which means that ϕ0 holds for some outcome. It
is defined as ♦ϕ0 = ¬�¬ϕ0. Where no confusion is pos-
sible, we omit brackets and commas in the notation of a set
Γ of agents, for example writing [ABC : ϕ0]ψ instead of
[{A,B,C} : ϕ0]ψ.

Sample formulas of this logic, with their reading in the
holiday example from Section 1 are given in the next table.
The outcomes Xanadu, Yemen or Zambia are indicated by
propositions x, y and z, while Alice, Bob and Caroline are
called A,B and C, respectively.

♦x Xanadu is a possible outcome.

[AB : y]�y If Alice and Bob prefer Yemen, then Yemen is
selected.

[A : x ∨ y][B : x]�¬z If Alice prefers Xanadu or Yemen,
and Bob prefers Yemen, then they will not go to Zam-
bia.

3.2. A Game-theoretic Semantics

We now give the formal semantics of GLP. We begin by
showing how propositional logic can be used for describ-
ing the outcomes of game form interpretations. We then
show how GLP can be evaluated over game form interpre-
tations, by using an update function for preferences, and to
complete our definition we define the update function. The
first and easiest step is defining the interpretation of propo-
sitional logic over end-states.

π, s |= p iff p ∈ π(s)
π, s |= ϕ ∨ ψ iff π, s |= ϕ or π, s |= ψ
π, s |= ¬ϕ iff not π, s |= ϕ



In the interpretation of GLP, the logical connectives are de-
fined similarly. The operator �ϕ0 is defined as ‘truth in
all end-states’, and the assumption operator [Γ : ϕ0]ψ
is defined on game form interpretations M as follows.
We then calculate a restricted game form interpreta-
tion M′ = Up(M,Γ, ϕ0), in which Γ acts as to guar-
antee ϕ0, and we evaluate whether M′ fulfills ψ. Let
M = 〈Σ,Ag,N, T, n0,P, π〉 be a game form interpreta-
tion and ϕ0 and ϕ as before.

M |= �ϕ0 iff for all s ∈ Z(T) π, s |= ϕ0

M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ
M |= ¬ϕ iff not M |= ϕ
M |= [Γ : ϕ0]ψ iff Up(M,Γ, ϕ0) |= ψ

In Section 2, we defined what it means for a coalition to
prefer a set of outcomes S. We now extend this definition
to propositional logic formulas. We say that Γ has a prefer-
ence for ϕ in game interpretation (F,�,P, π) if Γ prefers
the set S = {s|π, s |= ϕ}. Thus, a propositional formula is
preferred if the set of end nodes in which it is true is pre-
ferred. The update function Up(M,Γ, ϕ0) returns a model
in which the actions of agents in Γ are restricted to actions
that help them achieve a preferred outcome. We use the no-
tion of a subgame perfect strategy [16]. The behaviour of
agents should be rational in any subgame-form F′ of the
complete game form F. Moreover, the agents should not
assume any helpful behaviour from agents outside Γ. Fi-
nally, the model Up(M,Γ, ϕ0) should not be unnecessar-
ily restricted: any actions that are rational should be avail-
able to agents in Γ. Below we have formalized when a strat-
egy guarantees something, when it is subgame perfect, and
when a strategy is more general than another strategy. These
notions are use to define the update function.

A mixed strategy MSΓ for coalition Γ contains a pure
strategy PSΓ of coalition Γ iff for all nodes n with Ag(n) ∈
Γ we have that PSΓ(n) ∈ MS(n). A mixed strategy is com-
pletely described by the pure strategies it contains. We can
think of a mixed strategy as giving some information about
which pure strategy is used. A mixed strategy seen in this
way is a description of the information other agents may
have about the strategy used [1]. One can compare mixed
strategies using an inclusion operator. For two mixed strate-
gies S1 and S2, both for coalition Γ, we say that S1 is con-
tained in S2, or that S2 is more general than S1 and write
S1 ⊆ S2, if and only if for all nodes n with Ag(n) ∈ Γ
we have that S1(n) ⊆ S2(n). This provides a partial order-
ing on all mixed strategies.

Definition 3 A strategy SΓ guarantees ϕ0 in game form F
iff every outcome s of game form u(F, SΓ) fulfills π, s |= ϕ0.
We say that Γ can guarantee ϕ0 in F if there exists a strat-
egy SΓ such that SΓ guarantees ϕ0. We say that SΓ is sub-
game perfect for ϕ0 in F if for every subgame F′ of F such
that Γ can guarantee ϕ0 in F′ it is the case that SΓ guar-
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Figure 1. Alice and Bob eat cake

antees ϕ0 in F′. The strategy S∗ = S∗(F,Γ, ϕ0) is the most
general sub game perfect strategy for Γ and ϕ0 in F. The
update function Up is defined as

Up(M,Γ, ϕ0) = 〈u(F, S∗(F,Γ, ϕ0)),P, π
′〉

where π′ is the restriction of π to the new set of nodes.

4. Examples

This section provides some examples that illustrate how
GLP can be used in the specification and analysis of social
interaction mechanisms.

Alice and Bob eat cake

Alice and Bob have a cake, and they have agreed to divide it
by means of a “cut-and-choose” protocol [3]. Alice has cut
the cake and unfortunately one of the pieces is bigger than
the other. Bob can now choose from three options: he can
select the big piece, select the small piece, or he can say to
Alice ‘No, you choose’. If he lets Alice choose, she can ei-
ther choose the big piece or the small piece. Both agents
have common knowledge of this protocol, and they know
that they neither know the other agent’s preferences (see
Figure 1): proposition a means that Alice gets the biggest
piece, b that Bob gets the biggest piece, and e means that
something embarrassing has happened, namely that either
Alice or Bob has chosen the biggest piece. In many cul-
tures this is not polite and in several of the example formu-
las we assume that everyone is embarrassed if this happens.
Using GLP one can express relevant properties of this pro-
tocol. First we will provide several GLP formulas (A stands
for Alice, B stands for Bob).
• [B : ¬e]�a If B does not want either of them being im-
polite, he must take the smallest piece. Our semantics takes
a pessimistic view, so Bob cannot take the risk of letting A
choose. Figure 2 shows the model Up(M, {B},¬e).
• [B : ¬e][A : ¬e]�a This formula is a consequence of the
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Figure 2. Model Up(M, {B},¬e)

previous example. It expresses that if B does not want em-
barrassment and that A does not want embarrassment, then
A gets the biggest piece. This may seem strange, since there
is an outcome in which ¬e and b are true. However the or-
der of assumptions is important. The formula expresses that
B wishes to guarantee the absence of embarrassment, inde-
pendently of what A does. Two possible readings of the for-
mula are that he commits himself to his strategy before he
learns that A has the same preference, or that he thinks that
this goal is so important that he does not wish to rely on A
for this property.
• [AB : ¬e][B : b]�b In this example, A and B com-
monly want to avoid embarrassment, and B also prefers
b. If this is the case, B can let A choose and then A will
take the smallest piece. Figure 3 shows the updated model
Up(M, {A,B},¬e). Note that, strictly speaking, B cannot
prefer ¬e and b simultaneously, since that would mean that
the situation with ¬e ∧ ¬b is preferred over the situation
with e ∧ b and vice versa. However the preference for b ap-
pears in the scope of a preference for ¬e, so one could say
that the agent prefers first ¬e ∧ b, then ¬e and then ¬e ∨ b.
This does correspond to a single preference relation.
• [A : ¬e][B : ¬e][B : b]�b This formula expresses that if A
does not want embarrassment, B does not want embarrass-
ment, and B prefers the biggest piece then B gets the biggest
piece. The behaviour of B is influenced by the fact that he
knows that A prefers to avoid embarrassment. In this sce-
nario A should try to hide the fact that she has good man-
ners, because it is not in her advantage if B knows this.

These examples illustrate that, by using GLP, one can
express consequences of ordering goals in a certain way.
Similar to the concept of common knowledge in epistemic
logic [8], we have the idea of a common goal, which is dif-
ferent from both having a goal.

Voting Protocol

In the introduction, we already mentioned the problem of
defining a fair voting protocol. The problem is to design a
voting protocol for three agents (A, B, and C) over three
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Figure 3. Model Up(M, {A,B},¬e)

alternatives (x, y, and z). We use this problem to show
how GLP can be used for expressing the requirements of
such protocols. Next, we present two example solutions and
show how GLP can express the differences between them.

We require a voting protocol P in which exactly one
option is chosen and any group of two agents can decide
on any outcome. This is formalized in the next formu-
las. Let Γ ⊆ {A,B,C} and u, v variables over the options
O = {x, y, z}.

�(x ∨ y ∨ z) at least one alternative
∧

u,v∈O,u6=v �¬(u ∧ v) at most one alternative
∧

u∈O[Γ : u]�u for all |Γ| > 1. Majority decides

In Figure 4, a protocol P1 is depicted which satisfies
these requirements – it is in fact a smallest protocol that
satisfies the requirements, as one can verify by testing all
smaller trees. It works in two steps. First, A can say whether
B or C can make a choice. Then, either B or C can indi-
cate which of the three destinations is chosen. The protocol
may seem strange because A cannot directly support a cer-
tain outcome. What is the best action for A depends on what
B and C will do. In this protocol it is thus important for A
to know what the others do, while C and B need no infor-
mation about the other agents. The next GLP formulas illus-
trate this peculiarity of protocol P1.

P |= [AB : x]�x
P |= [B : x][A : x]�x
P 6|= [A : x][B : x]�x

There is of course more than one protocol that meets the
given requirements: Figure 5 shows another solution. In this
protocol, A can vote for any alternative and then B votes for
one of the alternatives. If they vote for the same option, then
this option is chosen. If they disagree, agent C can choose
between the two options that A and B voted for. So agent
C has only two options. Nine extra propositions are intro-
duced, to indicate which agent has cast which vote: propo-
sition ax means that agent a has chosen option x, and simi-
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Figure 4. A voting protocol P1

larly for ay, az, bx, by, bz, cx, cy, cz. In the figure only the left
branch is fully shown.

This protocol also satisfies the requirements. A nice
property of this protocol is that A can directly indicate a
preference. The extra propositions (ax, bx, . . .) show how
one can use propositions in end states to indicate that a cer-
tain action was chosen.

This demonstrates that in finite trees, one can use propo-
sitions in end states for events that one would describe us-
ing intermediate propositions or propositions on transitions
in other models.

The extra propositions allow one to formulate questions
about strategic voting. An agent votes strategically if it does
not vote for the options it prefers most [11]. In an ideal vot-
ing protocol, agents do not gain anything by strategic vot-
ing. Unfortunately the Gibbard-Satterthwaite Theorem [11]
states that in any voting scheme not completely determined
by a single agent it is possible to benefit from strategic vot-
ing. With GLP, one can determine for any protocol in which
circumstances strategic voting might occur.

First, we list some related properties about the options.
We see that agent A is completely free to vote for x if she
wants that, while C is not. On the other hand, C’s vote is
always decisive, which is not true for A’s vote.

P2 |= [A : ax]�ax

P2 6|= [C : cx]�cx

P2 |= �((cx → x) ∧ (cy → y) ∧ (cz → z))
P2 6|= �((ax → x) ∧ (ay → y) ∧ (az → z))

An interesting result is that C, under our rationality con-
dition, should not vote for an option it does not prefer. Un-
fortunately, this result cannot be shown for A. If A prefers
x, but A knows that B and C prefer y, then it is equally ra-
tional for A not to vote for x, since A knows it will not be
successful.

P2 |= [C : ¬x]�¬cx

P |= [B : x][A : x]�x
P 6|= [A : x][B : x]�x

Suppose we know what the preferences of our agents
are: can one then use GLP to derive which outcome will

A

B B B

. . . . . .

C C C

axbxx

axbycxx
axbycyy

axbzcxx
axbzczz

Figure 5. A second voting protocol P2

be reached? In the next table the preference relation of each
agent over the outcomes is given.

x �A y �A z
z �B x �B y
y �C x �C z

All formulas that are preferred by some coalition are listed
in the next table.

Coalition Preferred formulas
A x, x ∨ y
B z, x ∨ z
C y, x ∨ y

AC x ∨ y

One can see that there are not many coalition preferences
for this preference relation. The reason is that our definition
of a preference is quite strong. One can show that Yemen is
a likely outcome of the holiday election according to proto-
col P1 by checking the following:

P1 |= [A : x][C : y][AC : x ∨ y]�y

This formula expresses that given the preferences of A and
C and the protocol, A will say that C may decide and C
will choose for option y. This outcome is a sub-game per-
fect Nash equilibrium of the game (P,�). For the other pro-
tocol, the same outcome can be rationalized by:

P2 |= [A : x][C : y][AC : x ∨ y]�y

However, other outcomes can be rationalized by making
different assumptions.

P2 |= [B : x ∨ z][C : x ∨ y][A : x]�x

In this case, A votes for x. From the assumption that B
prefers x or z, everyone can conclude that B will not vote
y. If B votes x, x is the outcome. Otherwise c will chooses x
over z, and x is also the outcome.



¿From these examples, it should be clear that it is not
only important who has which preferences, but also which
preferences one considers. If different preferences are an-
nounced, signaled, or otherwise communicated in some
way, different outcomes can arise.

5. Model Checking GLP

Model checking is the problem of deciding whether a given
formula is true on a given model [4]. A model checking
algorithm for GLP can be used for the automatic verifica-
tion of multi agent interaction protocols, such as verifying
that the protocols from Section 4 satisfy the stated require-
ments. In this section, we prove that the model checking
problem for GLP is tractable. Our proof is constructive: Fig-
ures 6 and 7 give a polynomial time model checking al-
gorithm for GLP. Formally, we assume that the size of Σ
is bounded by some constant. The size of a model (|M|)
is defined as the number of nodes it contains, while the
size of a formula (|ϕ|) is the number of connectives, op-
erators, and propositions. Let c(X) denote the number of
operations needed to compute the value of expression X.
The notation c(X) = O(f (|X|)) means that there is a size
s and a constant g such that, for any input X with |X| > s,
c(x) < g · f (|X|) [6]. Now:

Theorem 1 The problem of determining whether a GLP for-
mula holds on a game form interpretation can be solved in
time polynomial in the size of the game form and the size of
the formula. Formally,

c(M |= ϕ) = O(|M| · |ϕ|)

Outline proof: In order to see that this theorem is true, we
need to establish both that the algorithms in Figure 6 and 7
are correct and that the algorithms have the stated efficiency.
The eval algorithm is basically an algorithmic representa-
tion of the semantics of GLP, and its correctness proof fol-
lows from induction on the structure of formulae. The up-
date2 function of Figure 7 is a modified version of Zer-
melo’s algorithm or backward induction [2]. (Instead of
only returning the value of the game (either −1 or 1) it
also returns a set of transitions that one should avoid in or-
der to realize the value). The correctness of Zermelo’s algo-
rithm, we claim, carries over to our algorithm. For the com-
plexity bound, we use that checking propositional formulas
in end nodes takes time proportional to the size of the for-
mula: c(π, s |= ϕ0) = O(|ϕ0|). In order to prove the main
theorem we claim the following about the update function:
c(Up(M,Γ, ϕ0)) = O(|M| · |ϕ0|). Zermelo’s algorithm tra-
verses the whole game tree without visiting a node twice.
This takes time proportional to the size of M. In each end
node it evaluates propositional logic formulas, which takes
time proportional to the size of ϕ0. Since the number of

eval(((Σ,N, T, I),P, π), ϕ)={
if ϕ = �ϕ0

for z ∈ Z(T)
if π, z 6|= ϕ0

return false
return true

if ϕ = ¬ψ
return ¬eval(((Σ,N, T, I),P, π), ψ)

if ϕ = ψ ∨ χ
return eval(((Σ,N, T, I),P, π), ψ) ∨

eval(((Σ,N, T, I),P, π), χ)
if ϕ = [Γ : ϕ0]ψ

let Mu =update(((Σ,N, T, I),P, π),Γ, ϕ0)
return eval(Mu, ψ)

}

Figure 6. The GLP model checking algorithm

end nodes must be less than |M|, we obtain our intermedi-
ate claim.

To complete the proof of the main theorem, we note that
the evaluation function either evaluates its subformulasϕsub

(which takes O(|M| · |ϕsub|)), or propositional logic formu-
las ϕprop in end nodes (O(|M| · |ϕprop|)), or it updates with
a subformula ϕsub (O(|M| · |ϕsub|)). Finally, note that ev-
ery part of the formula ϕ is processed only once.

In the update algorithm we use c1(T, x) =
{x} ∪ {c1(T, y)|(x, y) ∈ T} and c2(N, T) = T ∩ N2.
These function remove spurious transitions and nodes, such
that 〈c1(T, x), c2(c1(T, x), T), x〉 is always a proper tree.

We have implemented a model checking system for
GLP which uses this algorithm. The three example pro-
tocols described in this paper are part of the distribu-
tion of the model checker. The program can be found at
www.csc.liv.ac.uk/˜sieuwert/glp.

6. Conclusion

What agents do not only depends on their own preferences,
but also on their knowledge of other agents’ preferences.
The logic GLP allows one to analyze multi agent proto-
cols making various assumptions on what is known about
agents’ preferences. Besides defining this logic and a suit-
able interpretation over extensive game forms, we show that
the model checking problem for this logic has a low com-
putational complexity. We demonstrated how one can spec-
ify interesting social problems and protocols as an exten-
sive game form, and how GLP is useful for understanding
these protocols.

In GLP one can do semantic updates of a specific kind:
we assign a preference to a coalition, and since agents act



update(((Σ,N, T, I),P, π),Γ, ϕ)={
let (R, v) :=update2(T, π, n0, x,Γ, ϕ)
return ((Σ, c1(T \ R, n0), c2(c(T \ R, n0), T), I),P, π)

}
update2(T, π, x,Γ, ϕ)={

if x ∈ Z(T)
if eval(π, x, ϕ)

return (∅,1)
return (∅,-1)

let N := {(x, n)|(x, n) ∈ T}
let R := ∅ , R2 := ∅ , v := 1
if I(x) ∈ Γ

for (x, n) ∈ N
(Rn, vn) := update2(T, π, n,Γ, ϕ)
R := R ∪ Rn
if vn = 1

R2 := R2 ∪ {(x, n)}
if R2 6= N

return (R ∪ R2, 1)
return (R,−1)

else
for (x, n) ∈ N

(Rn, vn) := update2(T, π, n,Γ, ϕ)
R := R ∪ Rn
if vn = −1

v := −1
return (R, v)

}

Figure 7. The GLP update function

rational with respect to the known preferences, this con-
straints the coalition’s behaviour. These updates are similar
to public announcements in dynamic epistemic logic [18],
in the sense that all agents learn commonly from the as-
sumption. We believe the assumption that agents have par-
tial knowledge about each other’s preferences is an impor-
tant one. The issue how the strategic knowledge that arises
from this assumption influences agents needs more investi-
gation, which this paper starts by looking at strategic knowl-
edge in finite extensive games of perfect information.

The difference between GLP and a coalition logic like
ATEL is that GLP assumes that once a coalition adopts a cer-
tain strategy, this strategy is known to all agents. This as-
sumption makes sense from a game theoretic and security
viewpoint. We believe this difference makes GLP suitable
for the analysis of adversarial multi-agent systems. Harren-
stein et al ([12]) also uses preferences over extensive game
trees, in this case to find modal formulas over such trees,
conceived of as Kripke models, that characterize game the-
oretic notions, like that of Nash equilibrium. Unlike GLP,

[12] does not provide a notion of hypothetical reasoning
would players play such an equilibrium.

An extension of GLP would be a framework in which
coalitions not only have preferences over outcomes, but
over complete games. Another extension would be to have
parallel updates. Another direction is to develop a similar
logic for extensive games with imperfect information. This
would allow us to study a wider class of protocols and prob-
lems in which information is important.
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