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ABSTRACT
Qualitative Coalitional Games (QCGs) are a version of coalitional
games in which an agent’s desires are represented as goals which
are either satisfied or unsatisfied, and each choice available to a
coalition is a set of goals, which would be jointly satisfied if the
coalition made that choice. A coalition in a QCG will typically
form in order to bring about a set of goals that will satisfy all mem-
bers of the coalition. In this paper, we introduce and study Tempo-
ral QCGs (TQCGs), i.e., games in which a sequence of QCGs is
played. In order to represent and reason about such games, we in-
troduce a linear time temporal logic of QCGs, known asL(TQCG).
We give a complete axiomatization of L(TQCG), use it to inves-
tigate the properties of TQCGs in a small example, identify its
expressive power, establish its complexity, characterise classes of
TQGCs with formulas from our logical language, and formulate
several (temporal) solution concepts for TQCGs.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
Coalitional games, repeated games, logic

1. INTRODUCTION
The study of repeated games now forms a major component of

the game theory literature [9, pp.133–161]. Perhaps the best-known
example of such a repeated game is the iterated prisoner’s dilemma,
which has for example been studied both analytically [3, pp.353-
358] and by means of competitions [2].

Given the role of game theory as a theoretical underpinning to
the multi-agent systems field [11], it seems that repeated games are
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of particular importance to the field. By-and-large, we are not in-
terested in building multi-agent systems that will operate in a “one-
shot” fashion: we typically want them to operate over time, often
without a pre-defined termination time. Moreover, given the im-
portant role that coalitional games play in multi-agent systems [12,
13], it seems that repeated coalitional games are also likely to be
of significance. However, comparatively little research has consid-
ered repeated coalitional games, or coalitional games played over
time [7].

Our aim in this paper is to study an iterated version of Quali-
tative Coalitional Games (QCGs) [15], a variation of coalitional
games in which agent’s desires are represented as goals which are
either satisfied or unsatisfied, and each choice available to a coali-
tion is a set of goals, which would be jointly satisfied if the coali-
tion made that choice. A coalition in a QCG will typically form
in order to bring about a set of goals that will satisfy all mem-
bers of the coalition. In this paper, we introduce and study Tem-
poral QCGs (TQCGs): games in which QCGs are played repeat-
edly. In order to represent and reason about such games, we intro-
duce L(TQCG), a linear time temporal logic of QCGs. We give a
complete axiomatization of L(TQCG), demonstrate its expressive
power with respect to a type of simulation between TQCGs, es-
tablish the computational complexity of satisfiability for TQCGs,
investigate the properties of TQCGs by characterising them as for-
mulae in L(TQCG) and finally characterise some solution con-
cepts of TQCGs in L(TQCG).

We begin, in the following section, with a short introduction to
QCGs. As part of this introduction, in section 2.1 we define a logic
for expressing properties of individual QCGs: this logic will serve
as the “state language” or “assertion language” for the temporal
QCG logic. In section 3, we introduce TQCGs. We begin with a
short informal motivation, then give the temporal language for ex-
pressing properties of TQCGs, present an example to illustrate the
idea of TQCGs and the role of the temporal language, investigate
the expressive power of the language by means of a simulation re-
lation between TQCG structures, give a complete axiomatization
of the temporal language, and then investigate the axiomatic char-
acterisation of various classes of TQCGs.

2. QUALITATIVE COALITIONAL GAMES
We give a brief introduction to Qualitative Coalitional Games

(QCGs): details may be found in [15]. A QCG contains a (non-
empty, finite) set A = {1, . . . ,m} of agents. Each agent i ∈ A is
assumed to have associated with it a (finite) set Gi of goals, drawn
from a set of overall possible goals G. The intended interpretation
is that the members of Gi represent all the individual rational out-
comes for i – intuitively, the outcomes that give it “better than zero
utility”. That is, agent i would be happy if any member of Gi were



achieved – then it has “gained something”. But, in QCGs, we are
not concerned with preferences over individual goals. Thus, at this
level of modelling, i is indifferent among the members of Gi : it will
be satisfied if at least one member of Gi is achieved, and unsatis-
fied otherwise. Note that cases where more than one of an agent’s
goals are satisfied are not an issue – an agent’s aim will simply be
to ensure that at least one of its goals is achieved, and there is no
sense of an agent i attempting to satisfy as many members of Gi as
possible.

A coalition, typically denoted by C , is simply a set of agents,
i.e., a subset of A. The grand coalition is the set of all agents,
A. We assume that each possible coalition has available to it a
set of possible choices, where each choice intuitively characterises
the outcome of one way that the coalition could cooperate. We
model the choices available to coalitions via a characteristic func-
tion with the signature V : 2A → 22G . Thus, in saying that
G ∈ V(C ) for some coalition C ⊆ A, we are saying that one
choice available to the coalition C is to bring about exactly the
goals in G . At this point, the reader might expect to see some con-
straints placed on characteristic functions. For example, at first
sight the following monotonicity constraint might seem natural:
C ⊆ C ′ implies V(C ) ⊆ V(C ′). Although such a constraint is
entirely appropriate for many scenarios, there are cases where such
a constraint is not appropriate1.

Bringing these components together, a qualitative coalitional game
(QCG) is a tuple:

Γ = 〈A,G,G1, . . . ,Gn ,V〉 where

• A is a finite, non-empty set of agents;
• G is a finite, non-empty set of possible goals;
• Gi ⊆ G is the set of goals for agent i ∈ A; and

• V : 2A → 22G is the characteristic function of the game.

EXAMPLE 1. Let Γ1 be the following QCG for a collection of
agents and a collection of goals {g1, . . .}. Agent 1 is satisfied with
g1 and g4, and agent 2 is satisfied with g2 and g3. The characteris-
tic function, where C1,C2,C3,C4 are different coalitions:
V(C1) = { {g1, g2} } V(C2) = { {g2, g3}, {g1} }
V(C3) = { {g5, g6} } V(C4) = { {g2, g3}, {g1}, {g4} }

We will make use of Γ1 in later examples.

2.1 A Logic for QCGs
A logic for expressing properties of individual QCGs has not

been formalised before. We now introduce such a logic. This logic
will later be used as the assertion language, or state language, for
the temporal logic we develop in section 3. The language is de-
fined in two parts: Lc is the satisfaction language, and is used to
express properties of choices made by agents. The basic constructs
in this language are of the form sati , meaning “agent i is satisfied”.
The overall language L(QCG) is used for expressing properties of
QCGs themselves. The main construct in this language is of the
form 〈C 〉ϕ, where ϕ is a formula of the satisfaction language, and
means that C have a choice such that this choice makes ϕ true.
For example, 〈3〉(sat1 ∧ sat4) will mean that 3 has a choice that
simultaneously satisfies agents 1 and 4.

Formally, the grammar ϕc defines the satisfaction language Lc ,
while ϕq defines the QCG language L(QCG).

ϕc ::= sati | ¬ϕc | ϕc ∨ ϕc

ϕq ::= 〈C 〉ϕc | ¬ϕq | ϕq ∨ ϕq

1For example, consider a legal scenario in which certain coalitions
are forbidden by monopoly or anti-trust laws.

where i ∈ A and C ⊆ A. (We note some similarities between our
logical language L(QCG) and Pauly’s language for axiomatizing
judgement aggregation procedures [10], although the motivation
and use of the languages are quite different.)

We use the usual derived propositional connectives (∧, →, ↔)
for both languages Lc and L(QCG), and in addition write [C ]ϕ
to abbreviate ¬〈C 〉¬ϕ. The formula [C ]ϕ will be defined to be
true exactly when ϕ is a necessary consequence of the coalition C
making a choice; ϕwill be true no matter which choice the coalition
makes. When C = {a} is a singleton, we sometimes write 〈a〉 and
[a] for 〈C 〉 and [C ].

When Γ = 〈A,G,G1, . . . ,Gn ,V〉 is a QCG, G ⊆ G and ϕ ∈
Lc , Γ,G |=Q ϕ is defined as follows:

Γ,G |=Q sati iff Gi ∩G 6= ∅
Γ,G |=Q ¬ψ iff not Γ,G |=Q ψ
Γ,G |=Q ψ1 ∨ ψ2 iff Γ,G |=Q ψ1 or Γ,G |=Q ψ2

When Γ = 〈A,G,G1, . . . ,Gn ,V〉 is a QCG and ϕ is a L(QCG)
formula, Γ |=Q ϕ is defined as follows:

Γ |=Q 〈C 〉ψ iff there is a G ∈ V(C ) such that Γ,G |=Q ψ
Γ |=Q ¬ψ iff not Γ |=Q ψ
Γ |=Q ψ1 ∨ ψ2 iff Γ |=Q ψ1 or Γ |=Q ψ2

EXAMPLE 2. Let Γ1 be as in Example 1. Then:

Γ1 |=Q 〈C1〉(sat1 ∧ sat2)
Γ1 |=Q (〈C2〉sat1 ∧ 〈C2〉sat2) ∧ ¬(〈C2〉(sat1 ∧ sat2))
Γ1 |=Q ¬(〈C3〉sat1 ∨ 〈C3〉sat2)

Summarising, the satisfaction of agents is evaluated against a set
of goals, while Boolean combinations of expressions referring to
choices of coalitions are evaluated on a QCG Game Γ. The latter
combinations will be the atomic assertions in our temporal frame-
work of Section 3.

2.2 Expressive Power of L(QCG)
We look at the properties of QCGs which are definable in our lan-

guage. It is clear from our language definition that what L(QCG)
can express is which coalition can satisfy which set of agents con-
currently. Note that we are not interested in how the coalitions
make certain sets of agents satisfied, nor why an agent is satisfied
(i.e., which goal satisfied him). We will now demonstrate that the
properties of QCGs we can express in the language L(QCG) are
exactly the properties closed under a notion of QCG-simulation. In
other words, the language can not differentiate two games Γ and Γ′

iff they QCG-simulate each other.
Obviously, equivalence of models transcends mere isomorphism.

In particular, the semantics of performing a choice seem to depend
only on which agents are satisfied by the choice. For example, one
could imagine a mapping between “equivalent” goals of two mod-
els, maybe collapsing two goals of one model into one goal of the
other. However, such a relation between models does not capture
all instances of equivalent models. What is needed is a relation
between sets of goals. This motivates the following definition of
a QCG-simulation as a relation between two models. It is only
necessary to relate goals which can actually be chosen by some
coalition. Furthermore, it only makes sense to relate models which
are defined over the same set of agents.

A relation

Z ⊆
[

C⊆A

(V(C )× V ′(C ))

is a QCG-simulation between two QCGs Γ = 〈A,G,G1, . . . ,Gn ,V〉
and Γ′ = 〈A,G′,G′1, . . . ,G′n ,V ′〉 iff the following conditions hold
for all coalitions C .



1. If GZG ′ then G ∩ Gi = ∅ iff G ′ ∩ G′i = ∅, for all i (the
satisfaction condition)

2. For every G ∈ V(C ) there is a G ′ ∈ V ′(C ) such that GZG ′

(Z is total)
3. For every G ′ ∈ V ′ there is a G ∈ V (C ) such that GZG ′ (Z

is surjective)

If there exist a QCG-simulation between two games Γ and Γ′,
we write Γ 
 Γ′. If Γ 
 Γ′, we can simulate any choice in one
model with a choice in the other, and vice versa. This notion of
simulation is somewhat similar to the notion of “alternating simu-
lation” between alternating transition systems in [1].

EXAMPLE 3. Let Γ2 be the QCG with the same agents as in Γ1

(Example 1), goals f1, f2, . . . such that agent 1 is satisfied in f1 and
f3 and agent 2 is satisfied in f2, f3 and f4, and the following char-
acteristic function:

V(C1) = { {f3} } V(C2) = { {f2}, {f1} }
V(C3) = { {f5} } V(C4) = { {f1}, {f2}, {f4} }

Then Γ1 
 Γ2. The relation Z consisting of the following pairs
is a QCG-simulation between Γ1 and Γ2.

〈{g1, g2}, {f3}〉 〈{g2, g3}, {f2}〉 〈{g1}, {f1}〉
〈{g5, g6}, {f5}〉 〈{g2, g3}, {f2}〉 〈{g2, g3}, {f4}〉
〈{g1}, {f1}〉 〈{g4}, {f1}〉

Note that Z is not a function, nor the inverse of a function.

We write Γ ≡ Γ′ iff ∀ϕ∈L(QCG)[Γ |=Q ϕ⇔ Γ′ |=Q ϕ].

THEOREM 1. Satisfaction is invariant under QCG-simulation:

Γ 
 Γ′ ⇒ Γ ≡ Γ′

PROOF. Let Γ = 〈A,G,G1, . . . ,Gn ,V〉 and Γ′ = 〈A,G′, G′1,
. . . , G′n ,V ′〉 with Γ 
 Γ′. First, we show that

GZG ′ ⇒ (Γ,G |=Q ψ ⇔ Γ′,G ′ |=Q ψ) (1)

for any ψ by induction over ψ. For the base case, let ψ = sati .
Γ,G |=Q ψ iff Gi ∩ G 6= ∅ iff, by the satisfaction condition,
G′i ∩ G ′ 6= ∅ iff Γ′,G ′ |=Q ψ. The inductive step (negation and
disjunction) is straightforward. We now show that

Γ |=Q ϕ⇔ Γ′ |=Q ϕ

for any ϕ by induction on ϕ. For the base case, let ϕ = 〈C 〉ψ. For
the direction to the right, if Γ |=Q ϕ then there is a G ∈ V(C ) such
that Γ,G |=Q ψ. By totality of Z , there is a G ′ ∈ V ′(C ) such that
GZG ′. By (1), Γ′,G ′ |=Q ψ, and thus Γ′ |=Q ϕ. The direction to
the left is symmetric: if Γ′ |=Q ϕ there is a G ′ ∈ V ′(C ) such that
Γ′,G ′ |=Q ψ; by surjectivity of Z there is a G ∈ V(C ) such that
GZG ′; and by (1) Γ,G |=Q ψ and thus Γ |=Q ϕ. The inductive
step (negation and disjunction) is straightforward.

The obvious question now is whether every pair of equivalent
models are connected by a QCG-simulation. The answer is “yes”.

THEOREM 2. Let Γ,Γ′ be defined over the same set of agents:

Γ 
 Γ′ ⇐ Γ ≡ Γ′

PROOF. Let Γ = 〈A,G,G1, . . . ,Gn ,V〉 and Γ′ = 〈A,G′, G′1,
. . . , G′n ,V ′〉 with Γ ≡ Γ′. With any coalition C and any choice
G ∈ V(C ), associate the set SC

G = {i : G ∩ Gi 6= ∅} of agents
satisfied if C chooses G . Similarly for Γ′: TC

G′ = {i : G ′ ∩ G′i 6=
∅} for any G ′ ∈ V ′(C ).

We define a QCG-simulation Z : Γ 
 Γ′ as follows: for every
coalition C and pair of choices G ∈ V(C ), H ∈ V ′(C ),

GZH ⇔ SC
G = TC

H

We must show that Z is total, i.e., that if G ∈ V(C ), then there
is a H ∈ V ′(C ) such that SC

G = TC
H . Suppose not: assume

that i ∈ SC
G and i 6∈ TC

H for all H ∈ V ′(C ) (the argument is
similar when i 6∈ SC

G and i ∈ TC
H for some H ∈ V ′(C )). Then

Γ |=Q 〈C 〉sati and Γ′ |=Q ¬〈C 〉sati , which contradicts the fact
that Γ ≡ Γ′.

Similarly, we must show that Z is surjective, i.e., that if H ∈
V ′(C ), then there is a G ∈ V(C ) such that SC

G = TC
H . Suppose

not: assume that i ∈ TC
H and i 6∈ SC

G for all G ∈ V(C ) (the argu-
ment is similar when i 6∈ TC

H and i ∈ SC
G for some G ∈ V(C )).

Then Γ′ |=Q 〈C 〉sati and Γ |=Q ¬〈C 〉sati , which contradicts the
fact that Γ ≡ Γ′.

Finally, we show that the satisfaction condition holds. If GZH ,
then G ∩ Gi 6= ∅ iff i ∈ SC

G iff, by the definition of Z , i ∈ TC
H iff

H ∩ G′i 6= ∅.

2.3 Axiomatisation for QCGs
We define a Hilbert style axiomatisation of qualitative coalitional

games, and prove its soundness and completeness. We name our
axiomatisation for QCGs K(QCG). This name emphasises the
close resemblance to the modal system K, which also indicates
that our logic, is in a sense, a weakest basic system for QCGs, to
which more sophisticated constraints can easily be added — such
extensions are the topic of Section 4. The system K(QCG) over
the language L(QCG) is defined as follows, where ϕ,ψ are arbi-
trary L(QCG) formulae, α, β are arbitrary Lc formulae and C an
arbitrary coalition:

Prop− If ϕ is an L(QCG)-instance of a propositional
tautology, then ϕ is provable

K− [C ](α→ β) → ([C ]α→ [C ]β) is provable
MP− If ϕ,ϕ→ ψ are provable, then ψ is provable
Nec− If α is an (Lc) instance of a propositional tau-

tology, then [C ]α is provable

It is easy to see that the deduction theorem holds for K(QCG).
We will need the following properties of K(QCG). The proofs

are straightforward for readers familiar with modal logic.

LEMMA 1. Let α, β ∈ Lc:

1. `K(QCG) 〈C 〉(α ∧ β) → 〈C 〉α
2. `K(QCG) 〈C 〉(α ∨ β) → (〈C 〉α ∨ 〈C 〉β)

3. `K(QCG) (〈C 〉α ∧ [C ](α→ β)) → 〈C 〉β

THEOREM 3 (SOUNDNESS & COMPLETENESS). For any Φ ⊆
L(QCG), ϕ ∈ L(QCG): Φ |=Q ϕ⇔ Φ `K(QCG) ϕ

PROOF. For soundness (the direction to the left), it is easy to
see that the axioms are valid, and that the rules preserve logical
consequence.

For completeness, let Ψ ⊆ L(QCG) be K(QCG) consistent.
We show that Ψ is satisfied by some QCG. Let A be the set of
agents and let n = |A|. Let ∆ be aL(QCG) maximal and K(QCG)
consistent set containing Ψ (the proof of existence of such a set is
the standard proof of Lindenbaum’s lemma). We now construct
Γ = 〈A,G,G1, . . . ,Gn ,V〉, intended to satisfy Ψ, as follows:

• G = {sat1, . . . , satn}
• Gi = {sati}, for each i



• X ∈ V(C ) ⇔ 〈C 〉ξX ∈ ∆, for any X ⊆ G, where

ξX ≡
^

sati∈X

sati ∧
^

i∈A,sati 6∈X

¬sati

We show that

Gamma |=Q γ ⇔ γ ∈ ∆

for any γ by structural induction over γ. For the base case, γ =
〈C 〉α for someα ∈ Lc . Again, we use induction on the structure of
α. For the (nested) base case, let α = sati . For the direction to the
right, if Γ |=Q γ then there is an X ∈ V(C ) such that Γ,X |=Q α,
i.e., there is an X ⊆ G such that 〈C 〉ξX ∈ ∆ and X ∩{sati} 6= ∅.
Thus, sati ∈ X , and by Lemma 1.1, γ = 〈C 〉sati ∈ ∆. For the
direction to the left, let 〈C 〉sati ∈ ∆. Let

χi =
_

S⊆A

ξ(S∪{sati})

sati → χi is aLc instance of a propositional tautology, so [C ](sati →
χi) ∈ ∆ by Nec. By Lemma 1.3, 〈C 〉χi ∈ ∆. By Lemma 1.2,_

S⊆A

〈C 〉ξ(S∪{sati}) ∈ ∆

and thus 〈C 〉ξS∪{sati} ∈ ∆ for some S ⊆ A. It follows that
S∪{sati} ∈ V (C ), and since Γ, (S∪{sati}) |=Q sati we get that
Γ |=Q 〈C 〉sati which concludes the proof of the direction to the
left in the innermost induction proof. Both the inner and the outer
induction steps (negation and disjunction) are straightforward.

Note that the completeness proofs demonstrates that we do not
need to deal with multiple satisfaction of an agent’s goal: in fact,
one (symbol for a) goal for each agent is enough to reason about
abilities for satisfaction!

3. TEMPORAL QCGS
In principle there are many ways to temporalise QCGs. As a first

investigation, we assume a linear time model, in which, at each
time point, a (possibly different) QCG Γ is played. A temporal
qualitative coalitional game (TQCG) is then a triple

M = 〈S , σ,Q〉 where:

• S is a set of states;
• σ : N → S associates a state σ(u) with every natural number

time point u ∈ N; and
• Q : S → Q, where Q is the class of all QCGS, is a function

associating a qualitative coalitional game Q(s)
= 〈As ,Gs ,Gs

1, . . . ,Gs
n ,Vs〉 with every state s .

We will make just one requirement of TQCGs: that the set of agents
and overall goals remains the same in all states. Formally, ∀s, t ∈
S : As = At and Gs = Gt . This does not mean that an agent’s
goals must remain fixed, however: we allow for the possibility that
an agent has different goals in different states. We also admit the
possibility of a coalition having different choices in different states.
Since the sets of agents and overall goals are fixed across all states,
we will simply denote these by A and G respectively, omitting the
state index.

3.1 A Logic for TQCGs
To express properties of TQCGs, we extend the QCG language

L(QCG) with the standard temporal operators of linear-time tem-
poral logic: f– “next”, ♦ – “eventually”, – “always in the

future”, and U – “until” [8]. Formally, the language L(TQCG) is
defined by the grammar ϕt .

ϕt ::= 〈C 〉ϕc | ¬ϕt | ϕt ∨ ϕt | ϕt U ϕt | fϕt

We again assume the usual derived propositional connectives, in
addition to ♦ϕ for >U ϕ and ϕ for ¬♦¬ϕ. Moroever, we
define ∗ϕ as (ϕ∧ ϕ) (ϕ is true now and always in the future),
and♦∗

ϕ = ¬ ∗¬ϕ (ϕ is true now or sometime in the future).
When M = (S , σ,Q) is a TQCG, u ∈ N, and ϕ is a L(TQCG)

formula, the satisfaction relation M , u |=T ϕ is defined as follows
(the cases for negation and disjunction are defined as usual):

M , u |=T ϕ iff Q(σ(u)) |=Q ϕ, when ϕ ∈ L(QCG)

M , u |=T
fψ iff M , u + 1 |=T ψ

M , u |=T ψ1 U ψ2 iff there is some i such that M , u+i |=T

ψ2 and for all 0 < j < i M , u + j |=T ψ1

For instance, the following formula ofL(TQCG) means that even-
tually, agent 3 can always choose to satisfy agents 1 and 4 simulta-
neously:♦ 〈3〉(sat1 ∧ sat4).

We will henceforth use L(TQCG) to refer to both the language,
and the logic we have defined over this language.

3.2 An Example
We illustrate the logic by a small example. We focus here on

temporal properties of goal satisfaction, rather than on contrasting
the power of different coalitions (i.e., on which coalitions are likely
to form). The latter is discussed in detail in Section 4.

We model the following situation by a temporal qualitative coali-
tional game. Two agents 1 and 2 both need to use the same re-
source, say a web service, from time to time. Sometimes an agent
needs read access, and sometimes it needs write access. The in-
tegrity of the web service is violated if at the same time either i)
both read and write access are granted (inconsistent reads), ii) two
write accesses are granted (inconsistent writes) or iii) no read ac-
cess and no write access are granted (inefficiency).

Let M = (S , σ,Q) be a TQCG where S is some infinite set of
states, and σ and Q are such that the following holds for Q(σ(k)) =

〈A,G,Gσ(k)
1 ,Gσ(k)

2 ,Gσ(k)
sys ,Vσ(k)〉 for any k ≥ 0:

• A = {1, 2, sys}. We model the agents as players 1 and 2,
and the web service as player sys (“the system”).

• G = {r ,w1,w2, ok}. That each of these goals are achieved
means that right now:

r : every client is granted read access
wi : agent i is granted write access
ok : the integrity of the system is not violated

• Gσ(k)
1 =


{w1} if k mod 5 = 0
{r ,w1} otherwise

Agent 1 needs to have write access at every fifth point in
time. At any other point in time, it is happy as long as it is
not left idle, i.e., if it has either read or write access.

• Gσ(k)
2 =


{w2} if k mod 3 = 0
{r ,w2} otherwise

Agent 2’s goals are similar to agent 1’s, except that it needs
write access at every third instead of fifth time point.

• Gσ(k)
sys = {ok}. The system is satisfied if the integrity is not

violated. Note that Gσ(k)
sys does not depend on k ; the system’s

goal does not vary over time.



• Vσ(k)(sys) =


∅, {w1, ok}, {w2, ok}, {r , ok},

{w1,w2}, {w1, r}, {w2, r}, {w1,w2, r}

ff
.

The web service can satisfy certain sets of goals. These sets
does not necessarily include the goal that the integrity is not
violated. We have implicitly defined what is the desired be-
haviour of the system: each choice involving ok implements
a choice in which the integrity invariant is not violated. Note
that the choices available to the system do not vary over time.
For reasons of space, in this example we are not bothered
about Vs(C ) when C is a coalition different from {sys}.

The following properties hold in M , 1.

1. 〈sys〉satsys . The system can maintain integrity.
2. (〈sys〉sat1 ∧ 〈sys〉sat2). Agent 1 can always be satisfied

by the system, and the same for agent 2.
3. 〈sys〉(sat1 ∧ sat2). Agents 1 and 2 can always be simul-

taneously satisfied by the system.
4. ♦¬〈sys〉(sat1 ∧ sat2 ∧ satsys). The system cannot always

satisfy agents 1 and 2 simultaneously without violating the
integrity of the system.

5. 〈sys〉¬sat1. The system can keep agent 1 unsatisfied for-
ever.

6. ♦〈sys〉(¬sat1 ∧ ¬sat2 ∧ satsys). It is infinitely often
the case that the system can make agents 1 and 2 unsatisfied
at the same time without violating integrity (this happens at
multiples of fifteen).

7. 〈sys〉(¬sat1∧¬sat2∧satsys)U ¬〈sys〉(sat1∧sat2∧satsys).
At some point in the future (i.e., u = 15), the system is un-
able to jointly satisfy agents 1 and 2 without violating in-
tegrity. Up until that time, sys is always able to make agents
1 and 2 jointly unsatisfied (note that we evaluate the formula
in M , 1).

8. ψ ∧ (ψ →

“ f(¬ψ∧” 14 timesz }| {f(¬ψ ∧ · · · f(¬ψ∧ fψ) · · · )) where ψ =
〈sys〉(¬sat1∧¬sat2∧ satsys). The system can make agents
1 and 2 jointly unsatisfied without violating integrity at time
points which are multiples of fifteen, and at no other time
points.

As a final point, observe that from a logical point of view, the situ-
ations at time points 3 and 5 are indistinguishable:

Q(σ(3)) 
 Q(σ(5))

This once again demonstrates that our logic abstracts away from
how a coalition satisfies individuals: obviously, to satisfy agent 1
for instance, sys has to make different choices in σ(3) from those
in σ(5).

3.3 Expressive Power of TQCGs
The notion of simulation for QCGs (Section 2.2) can be nat-

urally lifted to the temporal case. When M = (S , σ,Q) and
M ′ = (S ′, σ′,Q ′) are TQCGS and k ≥ 0, we define

M , k 
T M ′, k ⇔ Q(σ(k)) 
 Q ′(σ′(k))
M 
T M ′ ⇔ ∀n≥0M ,n 
T M ′,n

The notion of elementary equivalence for TQCGS over the lan-
guage L(TQCG) can be defined as follows. M , k ≡ M ′, k iff, for
every ϕ ∈ L(TQCG), M , k |=T ϕ iff M ′, k |=T ϕ. M ≡ M ′ iff
M , k ≡ M ′, k for every k ≥ 0.

THEOREM 4. For all TQCGs M ,M ′: M 
T M ′ ⇔ M ≡ M ′

Note that in the temporal case, the fact that M , k 
T M ′, k is not
sufficient for M , k ≡ M ′, k to hold.

3.4 Satisfiability
The satisfiability problem for L(TQCG) is as follows: given a

formula ϕ ∈ L(TQCG), does there exist a TQCG M and u ∈ N
such that M , u |= ϕ?

THEOREM 5. The sat. probl. forL(TQCG) is PSPACE-complete.
PROOF. Membership of PSPACE follows from the fact that sat-

isfiability for LTL+Kn (the fusion of LTL and multi-modal K ) is
PSPACE-complete [5]. Any L(TQCG) formula is also a formula
of LTL+Kn , interpreting sati as Boolean variable. (The reverse is
not the case, of course.) But the relationship is more than merely
syntactic: for all ϕ ∈ L(TQCG):

ϕ is L(TQCG)-satisfiable iff ϕ is LTL+Kn satisfiable

(Notice that we are here quantifying over L(TQCG), formulae, not
LTL+Kn formulae.) Given an LTL+Kn interpretation that satisfies
ϕ ∈ L(TQCG), it is straightforward to extract from this a TQCG
that satisfies ϕ.

For PSPACE-hardness, we reduce LTL satisfiability [14]. First,
let ϕ† denote the result of systematically replacing each Boolean
variable p that occurs in LTL formula ϕ with a symbol satp . Next,
we define a transformation τ , from LTL formulae to L(TQCG), as
follows:

τ(ϕ) =

8<: [1](ϕ†) where ϕ is propositional
#τ(ψ) where ϕ = #ψ and # ∈ {¬, f}
τ(ψ)#τ(χ) where ϕ = ψ#χ and # ∈ {∨, U }

Finally, given an LTL formula ϕ, the L(TQCG) instance ϕτ we
create is:

ϕτ = (〈1〉>) ∧ ( 〈1〉>) ∧ τ(ϕ)

We claim that ϕ is LTL satisfiable iff ϕτ is L(TQCG) satisfiable;
the proof is an easy induction. The key point is that the choice sets
of agent 1 in any TQCG satisfying ϕτ define an appropriate valu-
ation for propositional variables in a corresponding LTL interpre-
tation satisfying ϕ, and vice versa (remember that [1]ϕ iff ϕ holds
for all of 1’s choices). The first two conjuncts in the definition of
ϕτ ensure that such a choice set always exists.

3.5 Axiomatisation for TQGCs
The system K(TQCG) over the languageL(TQCG) is defined

as follows, where ϕ,ψ are arbitraryL(TQCG) formulae, A,B are
arbitrary L(QCG) formulae, α, β are arbitrary Lc formulae and
C an arbitrary coalition. For simplicity, we write `T instead of
`K(TQCG) for derivability in K(TQCG).

Prop− If A is an (L(QCG)) instance of a propositional
tautology, then `T A

K− `T [C ](α→ β) → ([C ]α→ [C ]β)
MP− If `K(QCG) A and `K(QCG) A → B , then

`T B
Nec− If α is an (Lc) instance of a propositional tau-

tology, then `T [C ]α
A1 `T (ϕ→ ψ) → ( ϕ→ ψ)
A2 `T

f¬ϕ↔ ¬ fϕ
A3 `T

f(ϕ→ ψ) → ( fϕ→ fψ)
A4 `T ϕ→ ( fϕ ∧ f ϕ)
A5 `T (ϕ→ fϕ) → ( fϕ→ ϕ)

U 1 `T ϕU ψ →♦ψ
U 2 `T ϕU ψ ↔ fψ ∨ ( fϕ ∧ f(ϕU ψ))
Prop If ϕ is an (L(TQCG)) instance of a proposi-

tional tautology, then `T ϕ
MP If `T ϕ and `T ϕ→ ψ, then `T ψ
Nec If `T ϕ then `T ϕ



Axioms Prop− and K− and rules MP− and Nec− say that ev-
ery K(QCG)-theorem is also a K(TQCG)-theorem. The sub-
system consisting of axioms A1–U 2 and rules Prop–Nec is a ver-
sion (with L(QCG) formulae in place of atomic propositions) of
an axiomatisation of linear time logic proved to be be sound and
complete in [6].

THEOREM 6 (SOUNDNESS & COMPLETENESS). For anyϕ ∈
L(TQCG): `T ϕ ⇔ |=T ϕ

PROOF. The logic K(TQCG) is what Finger and Gabbay [4]
calls a temporalisation of K(QCG): the language of K(TQCG)
has atomic K(QCG) formulae in place of atomic propositions; the
semantic structures of K(TQCG) identifies a semantic structure
for K(QCG) at each time point used to interpret K(QCG) formu-
lae; and the axioms/rules of K(TQCG) are the axioms/rules of the
temporal logic for temporal formulae in addition to axioms/rules of
K(QCG) for K(QCG) formulae.

Finger and Gabbay show that the temporalisation of a sound and
complete system is sound and complete. It should be noted that
our definition of K(TQCG) differs from the definition of a tem-
poralisation in [4] by the following. First, we do not have past-time
operators in our language. The expressive power is nevertheless the
same [6]. Second, we use a slightly different temporal axiomatisa-
tion. Neither of these differences change the soundness and com-
pleteness proof in [4] in any significant degree. The theorem thus
follows immediately from Theorem 3.

4. CHARACTERIZING TQCGS
In this section, we investigate the axiomatic characterisation of

various classes of TQCG. As usual, in saying that a formula scheme
ϕ characterises a property P of models, we mean that ϕ is valid in
a model M iff M has property P ; if only the right-to-left part of
this biconditional holds, then we say property P implies ϕ. Also
note that for an L(TQCG) formula ϕ, to say that ϕ is valid in a
class of models, is the same as saying that ∗ϕ is valid in that
class.

Basic Correspondences
Let hs(C ) denote the set of all agents that could possibly be satis-
fied (not necessarily jointly) by coalition C in state s:

hs(C ) = {i : i ∈ A & ∃G ∈ Vs(C ),Gs
i ∩G 6= ∅}

The “h” here is for “happpiness”: we think of hs(C ) as all the
agents that C could possibly make happy in s . Thus the semantic
property i ∈ hs(C ) is a counterpart to the syntactic expression
〈C 〉sati .

The first property on models that we consider is the persistence
of happiness (PH ): if coalition C can make i happy in a state s ,
they can make i happy in the state immediately following s .

∀u ∈ N, (i ∈ hσ(u)(C )) → (i ∈ hσ(u+1)(C )) (PH )

We have the following characterisation.

LEMMA 2. 〈C 〉sati → f〈C 〉sati characterises PH .

In the same way, we can characterise the persistence of unhap-
piness: property PU says that if C cannot make i happy in a state
s , then they cannot make i happy in the state t that immediately
follows s .

∀u ∈ N, (i 6∈ hσ(u)(C )) → (i 6∈ hσ(u+1)(C )) (PU )

LEMMA 3. ¬〈C 〉sati → f¬〈C 〉sati characterises PU .

Now consider the following two constraints. The first, EH , says
that eventually, C will be able to make i happy.

∃u ∈ N, (i ∈ hσ(u)(C )) (EH )

Notice that in the terminology of reactive systems, this is a fairness
or response property [8, p.288]: it implies that something (i being
made happy) can happen infinitely often. (Of course, the fact that
C can make i happy infinitely often does not mean they will do
so.)

LEMMA 4. ♦∗〈C 〉sati characterises EH .

The obvious counterpart to EH is of course the property EU ,
which states that, eventually, C will be unable to satisfy i .

∃u ∈ N, (i 6∈ hσ(u)(C )) (EU )

LEMMA 5. ♦∗¬〈C 〉sati characterises EU .

Combining these properties, we get the following.

LEMMA 6. PH and EH together imply♦∗ ∗〈C 〉sati , while
properties PU and EU together imply♦∗ ∗¬〈C 〉sati .

Finally, we consider safety properties. The constraint AH says
that C can always make i happy, while the constraint AU says that
C can never make i happy.

∀s ∈ S , (i ∈ hs(C )) (AH ) ∀s ∈ S , (i 6∈ hs(C )) (AU )

The characterizations are as follows. (Note that there are some
obvious implications between these and other properties that we do
not list explicitly – e.g., AH implies both EH and PH .)

LEMMA 7. 〈C 〉sati characterises AH , and¬〈C 〉sati char. AU .

Basic Properties of Choice Sets
Three obvious constraints that we might consider relate to whether
or not a particular coalition C has any “real” choices. The first,
ECS , says that C never has any choices.

∀s ∈ S ,Vs(C ) = ∅ (ECS)

The second says that C always has a meaningful choice.

∀s ∈ S ,∃G ∈ Vs(C ),G 6= ∅ (NECS)

The third says that C can choose everything .

∀s ∈ S ,G ∈ Vs(C ) (CCS)

LEMMA 8. Any model that satisfies ECS also satisfies AU ,
and so ECS implies¬〈C 〉sati , while any model that satisfies CCS
also satisfies AH , and so CCS implies 〈C 〉sati .

Note that NECS alone does not have any characterization: how-
ever, when combined with other properties, below, we will see that
it has a role.

Static Goal Sets and Choices
Another two simple properties are that the goal sets for each agent
and the choice sets for each coalition are guaranteed to remain un-
changed. We get the following two constraints, stating that agent
i’s goal sets are static (constraint SGS ) and that coalition C ’s
choices remain static (SC ).

∀s, s ′ ∈ S , (Gs
i = Gs′

i ) (SGS)

∀s, s ′ ∈ S , (Vs(C ) = Vs′(C )) (SC)

Taken separately, there does not seem too much we can say about
static goal sets and static choice sets. However, taken together, we
get the following.



LEMMA 9. Any model satisfying both SGS and SC also sat-
isfies PH and PU , and as a consequence, SGS and SC together
imply 〈C 〉sati ↔ f〈C 〉sati .

Note that we do not immediately derive a characterisation here.
It is perfectly well possible that 〈C 〉sati ↔ f〈C 〉sati is true in
a model M not just because all agents’ goals and all coalitions’
choices stay fixed, but because there is an intricate interplay going
on between for instance an agent changing some of his goals, while
at the same time, the coalition C ‘synchronously’ changing its op-
tions. Note that in our example of Section 3.2 for instance, both
(SGS) and (SC ) are true for C = {sys} and i = sys , so that,
indeed, 〈{sys}〉satsys ↔ f〈{sys}〉satsys . On the other hand,
taking C = {sys} and i = 1, we don’t have (SGS) and (SC ),
although we still have 〈{sys}〉sat1 ↔ f〈{sys}〉sat1.

Dynamic Goal Sets
There are several properties we can investigate with respect to goal
sets. First, suppose that agent i’s goal set is guaranteed to monoton-
ically decrease over time. Roughly, this condition means that every
agent is guaranteed to get no easier to satisfy over time. Formally,
this condition on a model M is defined by the following property.

∀u ∈ N (Gσ(u+1)
i ⊆ Gσ(u)

i ) (MDGS)

LEMMA 10. Any model satisfying SC and MDGS will sat-
isfy PU , and hence SC and MDGS together imply ¬〈C 〉sati →f¬〈C 〉sati .
Suppose we this condition is strict, so that an agent i is guaranteed
to get strictly harder to satisfy over time. This condition is defined
by the following further constraint, in addition to MDGS .

∀u ∈ N (Gσ(u)
i = ∅) ∨

(∃v ∈ N : (v > u) ∧ (Gσ(v)
i ⊂ Gσ(u)

i ))
(SMDGS)

We get the following.

LEMMA 11. Any model satisfying SC , MDGS , and SMDGS
will also satisfy PU and EU , and so SC , MDGS , and SMDGS

together imply♦∗ ∗¬〈C 〉sati .

Now suppose agent i has monotonically increasing goal sets: that
is, agent i gets no harder to satisfy over time.

∀u ∈ N, (Gσ(u)
i ⊆ Gσ(u+1)

i ) (MIGS)

LEMMA 12. Any model satisfying both SC and MIGS will
satisfy constraint PH , and hence SC and MIGS together imply
〈C 〉sati → f〈C 〉sati .

The associated strictness constraint is as follows.

∀u ∈ N (Gσ(u)
i = G) ∨

(∃v ∈ N : (v > u) ∧ (Gσ(u)
i ⊂ Gσ(v)

i ))
(SMIGS)

We might expect that SC , MIGS , and SMIGS together imply the
validity of the formula scheme♦∗ ∗〈C 〉sati , but this is not the
case. A counter example is given by a model that satisfies the
empty choice set property (ECS ) for coalition C , as described
above. If we add the constraint that the choices for C are non-
empty (NECS ), however, then we get the following.

LEMMA 13. Any model that satisfies NECS , SC , MIGS , and
SMIGS also satisfies PH and EH, and hence the following formula
scheme will be valid in any model satisfying NECS , SC , MIGS ,
and SMIGS :♦∗ ∗〈C 〉sati .

Dynamic Choices
We can also consider the ways in which the choices available to
coalitions may change over time. Analogously to MIGS and MDGS ,
we can define properties MICS and MDCS , which say that the
sets of choices available to coalition C monotonically increase and
decrease respectively.

∀u ∈ N, (Vσ(u)(C ) ⊆ Vσ(u+1)(C )) (MICS)

∀u ∈ N, (Vσ(u+1)(C ) ⊆ Vσ(u)(C )) (MDCS)

Notice that taken together, these two conditions imply static choice
sets (SC ). Alone, the properties do not have any characterisation,
but axioms emerge when we make assumptions about goal sets.

LEMMA 14. (1) Any model satisfying MICS and SGS will
satisfy constraint PH , and hence MICS and SGS together imply
〈C 〉sati → f〈C 〉sati .
(2) Any model satisfying MDCS and SGS will satisfy constraint
PU , and hence MICS and SGS together imply ¬〈C 〉sati →f¬〈C 〉sati .

The associated strictness condition for increasing choice sets is:

∀u ∈ N,∀G1 ∈ Vσ(u)(C )(G1 = G) ∨
(∃v ∈ N,∃G2 ∈ Vσ(v)(C ), (v > u) ∧ (G1 ⊂ G2))

(SMICS)

LEMMA 15. Any model satisfying MICS , SGS , and SMICS
or MICS , MIGS , and SMICS will also satisfy constraints PH
and EH , and hence MICS , SGS , and SMICS together imply
♦∗ ∗〈C 〉sati .

We omit here the analysis for the case of monotonically decreasing
choice sets.

Solution Concepts
In [15], a range of different solution concepts were defined for
QCGs. It should be clear that many of the solution concepts of [15]
can be characterised via formulae of L(QCG). For example, a ba-
sic solution concept is that of a successful coalition – one that has a
choice available such that this choice satisfies all its members [15,
p.47]. We can characterise this via a predicate succ(C ), as follows.

succ(C ) ≡ 〈C 〉(
^
i∈C

sati)

Similarly, the notion of a minimal coalition (one such that no subset
of the coalition is successful [15, p.51]) may be captured as follows.

min(C ) ≡
^

C ′⊆C

¬succ(C ′)

Thus the core of a coalition being non-empty [15, p.54] may be
captured as follows:

cne(C ) ≡ (succ(C ) ∧min(C ))

The idea of agent i being a veto player for agent j [15, p.57] is
defined by:

veto(i , j ) ≡
^

C⊆A

(〈C 〉satj → ¬〈C \ {i}〉satj )

And finally, the idea of a coalition being mutually dependent [15,
p.58] is captured as follows:

md(C ) ≡
^

i 6=j∈C

veto(i , j )



How might these concepts be extended into the temporal dimen-
sion of TQCGs and L(TQCG)? It should first be clear that each
concept has four different temporal versions, corresponding to pre-
fixing the formula characterising it with one of the following four,
increasingly powerful temporal operators:

♦ ♦ ♦
Thus, for example, ♦succ(C ) means that coalition C are suc-
cessful infinitely often – no matter which time point we pick, there
will be a subsequent time point at which C are successful. (Using
the terminology of reactive systems [8], we might then say that C
are hence fairly successful.) Similarly, a temporally strong form of
coalitional stability is captured by the formula cne(A): if this
formula is satisfied in a TQCG, then, it can be argued, the only
coalition that will ever form is the grand coalition.

It is potentially more interesting, however, to study a richer inter-
play between temporal and QCG dimensions. For example, from
agent is point of view, perhaps the only really interesting issue is
whether at every time point there is some stable coalition, contain-
ing this agent.

tstable(i) ≡
_

C⊆A:i∈C

cne(C )

From the point of view of a coalition C , which seeks to form, the
notion of a stable government seems relevant: a stable government
is a coalition that can always satisfy its “electorate”.

sg(C ) ≡ 〈C 〉(
^
i∈A

sati)

This can of course be strengthened, requiring C to in addition be
an internally stable coalition.

sg ′(C ) ≡ (cne(C ) ∧ 〈C 〉(
^
i∈A

sati))

With respect to mutual dependence, one possibility, captured by
the formula md(C ), is that a coalition is always mutually de-
pendent. However, we can capture a weaker type of mutual depen-
dence as follows:

wmd(C ) ≡
^

i 6=j∈C

♦veto(i , j )

We draw two conclusions. The first is that the languageL(TQCG)
is well suited to capturing such solution concepts: it makes it pos-
sible to express elegantly concepts that would be difficult to un-
derstand were they expressed at the semantic level. The second is
that extending QCGs into the temporal dimension adds an entirely
new level of richness to their structure, which as these examples
suggest, demands further study.

5. CONCLUSION
Qualitative Game Structures were introduced in [15] as a model

to deal with one of the driving questions in cooperation: ‘Which
coalition should I join?’. The design of such games is motivated by
a principle of economy: rather than associationg a utility to every
choice, the emphasis is on satisfaction of agents, which is triggered
or not by choices of coalitions.

The logical analysis of such games, as underlines the idea that we
have a basic and simple notion of coalitional games with QCGs: a
natural language for it gives rise to an axiomatisation almost identi-
cal to the simplest modal logic K. We established several technical
results for this language, and were then able to lift them to the era
of temporal QCGs.

The possible directions for further research are multiple. First of
all, the properties of TQGCs that we characterised in Section 4 are
only the most straightforward. Even in static games, there are inter-
esting conditions to be investigated (see the monotonicity property
mentioned in Section 2, for example). Second, our way of tempo-
ralising QCGs also only reflects a simple case. It would be inter-
esting to add temporal structure to the games themselves, and rea-
son about what agents can achieve over time, by applying suitable
strategies, rather than making ‘one-shot choices’. In addition, finite
horizon versions of TQCGs might also be worth investigating: for
example, if an agent is only concerned about being satisfied once,
then it might be prepared to join a coalition that does not satisfy it
throughout a game, as long as, in the final state of the game, the
coalition does satisfy it. Such strategising is not possible or appro-
priate in infinite horizon games.
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