On the Complexity of Practical ATL Model Checking

Wiebe van der Hoek
Dept of Computer Science
University of Liverpool
Liverpool L69 7ZF, UK

wiebe@csc.liv.ac.uk

ABSTRACT

We investigate the computational complexity of reasonibgua
multi-agent systems using the cooperation logic of Alur, Hen-
zinger, and Kupferman. It is known that satisfiability chieckis
EXPTIME-complete for “full” ATL, and PsPACEcomplete (in the
general case) for the fragment afL corresponding to Pauly’s
Coalition Logic. In contrast, the model checking problemsaTL

and Coalition Logic can both be solved in time polynomialtie t
size of the formula and the size of model against which the for
mula is to be checked. However, these latter results assame a
extensivaepresentation of models, in which all states of a model
are explicitly enumerated. Such representations are asttfle in
practice. In this paper we investigate the complexity of sme
and Coalition Logic model checking problems for a more “rea-
sonable” model representation knownsasvL (“Simple Reactive
Modules Language”), a simplified version of the actual madp}
resentation languages used for model checkers sucevasand
MOCHA. While itis unsurprising that, when measured against such
representations, the model checking problemsafiar and Coali-
tion Logic have a higher complexity than when measured again
explicit state representations, we show that in fact Ane and
Coalition Logic model checking problems ferML models have
the same complexity as the corresponding satisfiabilitplems
That is, model checkingtL formulae againssrRML models is
EXPTIME-complete, and model checking Coalition Logic formulae
againstsRML models ispsPACEcomplete. We conclude by inves-
tigating some technical issues around these results, andsting
their implications.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
F.3.1 Logics and Meanings of Program§ Specifying and Ver-
ifying and Reasoning about Programkegics of programsF.2

[Analysis of algorithms and problem complexity]

General Terms
Theory

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS’06May 8-12 2006, Hakodate, Hokkaido, Japan.

Copyright 2006 ACM 1-59593-303-4/06/000555.00.

Alessio Lomuscio
Dept of Computer Science
University College London

London WC1E 6BT, UK

A.Lomuscio@cs.ucl.ac.uk

Michael Wooldridge
Dept of Computer Science
University of Liverpool
Liverpool L69 7ZF, UK

mjw@csc.liv.ac.uk

Keywords

logic, verification, cooperation, complexity

1. INTRODUCTION

Cooperation logics — such as Pauly’s Coalition Logic [19, 20
9] and its temporal extension, the Alternating-time Tenabbogic
(ATL) of Alur, Henzinger, and Kupferman [2] — have attracted much
interest from the multi-agent systems community [23, 14,115.
Using such logics, it is possible to reason about the stiapegvers
of agents and coalitions of agents in game-like multi-ageanar-
ios.

If one aims to use logics such asL and Coalition Logic to
reason about systems, then it is obvious to ask how compéex th
associated reasoning problems are for such logics. Giventiay-
lar (multi-agent) systerg, there are essentially two approaches that
may be adopted to reasoning abgutheorem proving (via satisfia-
bility checking) and model checking [4]. The satisfiabiligoblem
for ATL is EXPTIME-complete, and is hence prohibitively expen-
sive [7, 25]; satisfiability for Coalition Logic is “only’PSPACE
complete [19, 20, 21], and thus apparently easier, but afseotlnis
“easiness” is relativersPACEcompleteness is an extremely nega-
tive complexity result!

In contrast, model checking approaches to reasoning ajeut s
tems appear to be computationally easier. Model checking wa
originally developed as a technique for verifying that engétate
concurrent systems satisfy specifications expressed iatigeage
of temporal logic [8]. The basic idea is that the state triaosi
graph of a systenj can be understood as a mode} for a tem-
poral logic such as Computation Tree Logr(): if we express
desirable or undesirable properties¢aods formulaep of cTL, we
can then check whether or néthas these properties by evaluat-
ing whether or notM = ¢, and this can be done in deterministic
polynomial time [8, p.1044].

Now, one of the attractive features afL (and Coalition Logic)
is that its model checking problem is apparently no hardem that
of its ancestorcTL. More formally, the model checking problem,
as discussed in [2] is as follows. We are givenadis (i.e., anATL
model) S, a stateg from S, a formulay over S and we are asked
whetherS, ¢ |= ¢. Itis shown in [2] that this problem is tractable:
it can be solved in time& (| S| x |¢|), where|S| is the size ofS
and|y| is the size ofp. However, this apparently positive result
has a well-known catch. It assumes that #tes S is explicitly
enumeratedn the input to the problem, and in particular, that all
the states of are listed in the input. Of course, $fhasn Boolean
variables, then there may 2 possibles states. Moreover, in a
very recent result, Jamroga and Dix point out that this &aitity
result only goes through if the number of agent$ixed andnot
considered a parameter of the problem [13]. They show that if

the number of agents is considered an input to the model aigeck
problem, then model checking isP-complete with respect to a
representation ofTL models asilternating transition systemand
even worse X5 -complete — for the representation 4fL models
asconcurrent game structures

So, the tractability result foxTL model checking is perhaps mis-
leading, since we have tractabilionly if we explicitly enumerate
all states of the system in the input, aoly if we assume the num-
ber of agents is fixed, and not part of the input.

The complexity ofatL model checking is thus particularly sen-
sitive to therepresentatiorof the model given as input. An obvious
question to ask is what kinds of representations are inga@ctice
by actual model checking systems. In fact, practical mobetk-
ers such asmv (for cTL) [17], SPIN (for LTL) [12], andMOCHA
(for ATL) [3] use a succinamnodel specification languader defin-
ing models. While the model specification languages usetidset
systems differ on details, they all have the flavour of prograng
languages, providing the verifier with a relatively highdbway of
defining models. But this then raises the question of thenéxte
which the apparently positive complexity results far., ATL, and
Coalition Logic model checking hold when using such modp} re
resentation languages. It comes as no surprise that moeleiicly
against such model representations will be harder. For pbeaara
pspPAcEcompleteness result farrL model checking against a rep-
resentation of concurrent programs was obtained by Kueret
al [16], and extended to combinations ©f L with knowledge in
[22].

However, to date, the issue of complexityafL model check-
ing for realistic model specification languages has not limersti-
gated, and this is the aim of the present paper. The parntimddel
specification language we focus on is caligaML (“Simple Reac-
tive Modules Language”), and is a slightly simplified versaf the
REACTIVE MODULES LANGUAGE (RML) [1]. We are particularly
interested imML for several reasons: firstML is the language that
is actually used by thatL model checking systemocHA [3]; it

has been shown to be well suited to building models of a range

of multi-agent protocols; angML programs can easily be used to
code basic reactive agents. As we pointed out above, it igrpris-
ing that, assuming representations suchragL, the model check-
ing problems forTL and Coalition Logic have a higher complexity
than when measured against explicit state representaparntscu-
larly given the results of Jamroga and Dix [13]. However, Wwevs
that in fact theatL and Coalition Logic model checking problems
for sRML programs havéhe same complexity as the correspond-
ing satisfiability problemisThat is, model checkingTL formulae
againstsrRML programs isexPTIME-complete, and model check-
ing Coalition Logic formulae againSRML programs iSPSPACE
complete. There is thus laugegulf — much larger than perhaps
might be expected — between the provably tractable modekehe
ing problem for explicit state models and the provainiyactable
model checking problem for “realistic” model represeras. In-
deed, it again raises the question of the relative merithedrem
proving versusmodel checking [10]. We begin by describiagL
and thersrML, the simplified variant oRML that we use through-
out the paper. We present our main results in section 4. We con
clude by investigating some technical issues around thesdts,
and discussing their implications.

2. ATL

Alternating-time Temporal LogicafL) [2] can be understood as
a generalisation of the well-known branching time temptrgic
CTL [8], in which path quantifiers are replaced bgoperation
modalities A cooperation modality{ C')), whereC is a group of

agents, expresses the fact that there exists a strategle goofiC'
such that by following this strategy profil€; can ensure>. Thus,
for example, the system requirement “ageh&nd2 can cooperate
to ensure that the system never enters a fail state” may teredp
by theaTL formula {(1, 2)) [1—fa:l. The “[]” temporal operator
means “now and forever more”: additional temporal connestin
ATL are <> (“either now or at some point in the future”),lt”
(“until”), and “O” (“in the next state”).

To give a precise definition ofTL, we must first introduce the
semantic structures over which formulaexof. are interpreted. An
alternating transition systerfats) is a 6-tuple

S =(I,%, Q, Qo,,35), where:

ITis a finite, non-empty set doolean variables

¥ =Aa,...,a,} is afinite, non-empty set afgents

e () is a finite, non-empty set aftates with Qo C Q repre-
senting thenitial states ofQ;

e m: Q — 2T gives the set of Boolean variables satisfied in
each state;

F: QXY — 229 is the system transition function, which
maps states and agents to the choices available to these a-
gents. Thug (g, a) is the set of choices available to agent
when the system is in state We require that this function
satisfy the requirement that for every state @ and every
set@,..., @, of choices@; € §(q, a;), the intersection
Q1N ---N Qyis asingleton.

(Initial statesQo, were not considered part @frss in the origi-
nal publications oraTL: we introduce them to be consistent with
the behaviour of model checkers farL, which check formulae
against the initial state of the system: see below.)

An ATL formula, formed with respect to an alternating transition
systemS = (II, X, @, Qo, 7,), is then defined by the following
grammar:

pu=TIpl=p|leVvel (CHO@ [(C)De | (Chelly

wherep € I is a Boolean variable, an@ C X is a set of agents.
We assume the remaining connectives of classical lodi¢,(“ —",
‘T T AY) are defined as abbreviations in the usual way, and
define((C) Oy as(CHT U .

To give the semantics @fTL, we need some further definitions.
For two statesy, ¢ € @ and an agent. € ¥, we say that state
q’ is an a-successonf q if there exists a se)’ € §(q, a) such
that ¢ € Q’. Intuitively, if ¢’ is an a-successor of;, then ¢’
is a possible outcome of one of the choices available tehen
the system is in state. We denote bysucc(g, a) the set ofa-
successors to statg and say that’ is simply asuccessopf g if
for all agentsa € 3, we haveq’ € succ(q, a); intuitively, if ¢’ is
a successor tg, then when the system is in stajethe agentsS
can cooperate to ensure thgtis the next state the system enters.

A computationof an ATs (I1, 3, @, Qo, 7, d) is an infinite se-
qguence of states = qo, q1, . . . such that for al. > 0, the statey,
is a successor af,—1. A computation\ € Q¢ starting in statey
is referred to as a-computationif « € N, then we denote by[u]
the u’th state in\; similarly, we denote by\[0, u] and A[u, co]
the finite prefixqo, . . ., g, and the infinite suffixg., qu+1, ... of A
respectively.

Intuitively, astrategyis an abstract model of an agent’s decision-
making process; a strategy may be thought of as a kind of plan f
an agent. Formally, a stratedgy for an agenta € X is a total

function f, : Qt — 29, which must satisfy the constraint that
fa(A-q) € 6(q,a)forall A € Q" andq € Q. GivenaseC C ¥
of agents, and an indexed set of stratedigs= {f. | a € C},
one for each agent € C, we defineout(q, F'c) to be the set of
possible outcomes that may occur if every agent C follows
the corresponding strategy, starting when the system is in state
g € Q. Thatis, the sebut(q, Fc) will contain all possibleg-
computations that the agen€s can “enforce” by cooperating and
following the strategies ifr'-. Note that the “grand coalition” of all
agents in the system can cooperate to uniquely determirfattire
state of the system, and sait(q, Fs) is a singleton. Similarly,
the setout(q, Fy) is the set of all possiblg-computations of the
system.

We can now give the rules defining the satisfaction relatiefi “
for ATL, which holds between pairs of the for$h) ¢ (wheresS is an
ATS andg is a state inS), and formulae oATL:

S,qE T,
S,qE=piff pen(q)
S,q | —wpiff S, q W ¢;

S,qEeVyiff S,qEporS, gy,

S, ¢ E {(O)Oiff there exists a set of strategiés:, such
that for all\ € out(q, F'c), we haveS, \[1] = ¢;

(wherep € 10);

S, q E (C) Oy iff there exists a set of strategié%:, such
that for allX € out(q, Fc), we haveS, A[u] = for all
u €N,

S,q = {(C)eUy iff there exists a set of strategigg:,
such that for al\ € out(q, F¢), there exists some € N
such thatS, A\[u] | +, and for all0 < v < u, we have

S, A[v] E .

Satisfaction for the ATL formuld C')) (¢ is defined via equiv-
alence to(C) T U .

We identify two important fragments efrL which we will sub-
sequently refer to:

e Propositional logids the fragment of ATL in which no coop-
eration modalities are permitted. The truth of a proposilo
logic formula is determined on aTs by using the first four
items of the definition for satisfaction above.

e Coalition Logicis the fragment ofaTL in which the only
cooperation modalities allowed are of the fotfd')) O [19,
20, 9]. The truth of a Colition Logic formula is determined
on anATs by using the first five items of the definition for
satisfaction above.

The (explicit stateJnodel checkingroblent is the problem of de-
termining, for a given formula andats S = (I, X, @, Qo, 7, d),
whetherS, ¢ E ¢ for all ¢ € Qo. The model checking problems
for ATL (and hence Coalition Logic) can be solved by a determinis-
tic algorithm in time polynomial in the size of the inputss S and

the formulay [2, pp.690—691] — assuming thats S in question

'Model checking is sometimes formulated as the problem of find
ing the set of states in a structure that satisfy a given ftapaur
formulation is chosen to be consistent with the way in which a
tual model checkers work, and it should be stressed that fhem
asymptotic analysis point of view, there is no differenceam-
plexity between the formulations.

is explicitly enumerated in the input in all its componerasd the
number of agents is considered fixed [13].

For the satisfiability problem, we are simply given a formula
o and asked whether there is ams S and stateq in S such
that S, ¢ | . The satisfiability problem foaTL is EXPTIME-
complete [7, 25], while for Coalition Logic it iBSPACECOmMplete
in the general case [19, p.63].

3. SRML

We have already observed that the positive tractabilitylte$or
ATL and Coalition Logic model checking rely on the assumption
that the model against which a formula is to be checked is@#tpl
enumerated in the input to the model checking algorithm,taat
this assumption is both infeasible (there will be exporaiytimany
states in the number of Boolean variables), and never usga
tice. Instead, practical model checkers suchnag [17], SPIN[12],
and MOCHA [3] use model specification languages which permit
the succinct high-levelspecification of models. In this section, we
describe the language used in this paper for this purposeSith-
ple Reactive Modules LanguageRML). As its name suggests, this
language is a strict subset of tReiL language used in theoCHA
model checkér. Note that our choice of language is not arbitrary:
we comment on it below. We begin with an informal overview.

3.1 Overview

Agents inRML are known asnodules and for consistency with
the pre-existing literature orRML, we will stay with this terminol-
ogy in SRML. An SRML module consists of:

e aninterface which defines the name of the module and lists
the Boolean variables under thentrol of the module; and

e a number ofguarded commandsvhich define the choices
available to the module at every state.

The states of arsRML-defined model correspond to the possible
valuations that may be given to the Boolean variables urfaker t
control of modules in the system: for the purposesefiL, two
states that agree on the valuation of all variables are tie’sa

The guarded commands of a module are divided into two sets:
those used fomitialising the variables under the module’s con-
trol (i ni t guarded commands), and those usedifmtatingthese
variables subsequentlyjdat e guarded commands). A guarded
command has two parts: a “condition” part (the “guard”), and
corresponding “action” part, which defines how to updatevtiige
of (some of) the variables under the control of a module. The i
tuitive reading of a guarded command~- e is “if the condition
 is satisfied, therone of the choices available to the module is
to execute the assignment expressin The assignment expres-
sion e is essentially a sequence of assignment statements, just as
in conventional imperative programming languages: thes@a-
ment statements define how (some subset of) the module’s con-
trolled variables should be updated if the guarded commsued-i
ecuted. Notice that the truth of the guarddoes not mean that
will be executed: only that it isnabledfor execution — itmaybe
executed. If no guarded commands of a given module are ehable
in some state, then the values of the variables in that maahale
assumed to remain unchanged in the next state: the modulehas
choice.

2For those familiar witlRML andMOCHA, SRML assumes finite,
propositional modules, with each module containing a siagbm,
in which no variable is awaited by any module.

3This is of course not the case in general in modal/tempogitlo

The choices available to a module wrt initialisation of itgiv
ables are thus defined by thai t guarded commands of the mod-
ule, while the choices available to a module wrt updatingés-
ables are defined by thendat e guarded commands. To make this
more concrete, here is an example guarded command:

(zAy)~a =1y =T
e

guard action

The guard is the propositional logic formutan y, so this guarded
command will be enabled in any system state where baihd y
take the value T”. If the guarded command is chosen, then the
effect is that in the next state of the system, the variableill
take valuel, while y will take valueT. (The “prime” notation’
means “the value of variable after the statement is executed”.)
We will write ski p as an abbreviation for the empty assignment
expression, which leaves the value of every variable cteattdy
a module unchanged.

Here is an example of a module, illustrating the concretéasyn
that we will use for modules (which is essentially thaRefL [1]).

nodul e toggle control s z
init
0T ~ 2 =T
0T ~ 2 =1
updat e
Dz~ 2/ =1
0(z)~2":=T

This module, namedoggle, controls a single Boolean variable,
There are twd ni t guarded commands and twpdat e guarded
commands. (The symbo[]* is a syntactic separator.) Theni t
guarded commands @bggle define two choices for the initialisa-
tion of this variable: assign it the valug or the valuel. With
respect toupdat e guarded commands, the first command says
that if z has the valueT, then the corresponding choice is to as-
sign it the valuel, while the second command says that ihas
the value L, then it can subsequently be assigned the valuén
other words, the module non-deterministically choosesl@evior

z initially, and then on subsequent rounds toggles this vaNe-
tice that in this example, thieni t commands of this module are
non-deterministic, while thepdat e commands are deterministic.

3.2 Formal Definition

In this section, we will usél to denote the set of Boolean vari-
ables in a system, as atL. Formally, a guarded commandover
II is an expression

Uk = Yk

whereg (the guard) is a propositional logic formula ovér each

v; is @ member ofI and+); is a propositional logic formula over
TI. We require that no variable, appears on the |.h.s. of two as-
signment statements in the same guarded command (henciro is
on the ordering of the updates arises). The intended irgtiion

is that if the formulay evaluates to true against the interpretation
corresponding to the current state of the system, then gtensent

v @~ v =11

is enabledfor execution; executing the statement means evaluating
eachy; against the current state of the system, and setting the cor-

responding variable; to the truth value obtained from evaluating
;. We say that, . . ., v; are thecontrolled variablesof ~, and
denote this set byir(+). A set of guarded commands is said to be
disjoint if their controlled variables are mutually disjoint.

Given a propositional valuatiof C IT and a guarded command
v 1@~ v = 1;...;0, = i such that) enablesy (i.e.,

0 =) we denote the result afxecutingy on 6 by 6 @ ~. For
example, if0 = {p,r}, andy = p ~ ¢ := T;7" := p A —r,
thend & v = {p, q}.

Given a propositional valuatioA C TII, and setl" of disjoint
guarded commands ovBrsuch that every member bfis enabled
by 6, then the interpretatioff resulting fromI" on§ is denoted by
0" = 6 ¢ I': since the members &f are disjoint, we can pick them
in any order to execute ch

As described above, there are two classes of guarded corsmand
that may be declared in an atomni t andupdate. Aninit
guarded command is only used to initialise the values oblxdes,
when the system begins execution. FriiL allows for quite so-
phisticated initialisation schemes, butsRML, we will assume that
the guards té ni t command are ™", i.e., everyi ni t command
is enabled for execution in the initialisation round of tlystem.

An SRML module m, is a triple:

m = (ctr, init, update) where:
e cir C Il is the (finite) set of variables controlled lay;

e init is a (finite) set ofnitialisation guarded commands, such
that for ally € init, we havectr(y) C ctr; and

e update is a (finite) set ofupdateguarded commands, such
that for ally € init, we havectr(y) C ctr.

Given a modulem, we denote the controlled variables of by
ctr(m), the initialisation guarded commands of by init(m),
and the update guarded commandslby update(m). An SRML
system is then atn + 2)-tuple

<Z7H7 mi, ..., mn>

where X {1,...,n} is a set of agents anH is a vocabu-
lary of Boolean variables, (as iarss), and for each € X%, m;

is the corresponding module definig choices; we require that
{ctr(ma),..., ctr(m,)} forms a partition oflI (i.e., every vari-
able inIT is controlled by some agent, and no variable is controlled
by more than one agent).

A joint guarded command (j.g.c.) for a coaliti@n C X is an
indexed tuple(vyi, . .., v&), with a guarded commang, € m; for
eachi € C. Aj.g.c.(7,...,v) is enabled by a propositional
valuationd C IT iff all its members are enabled sy

Given ansrRML systemR, the correspondingTs, which we de-
note bySkg, is defined in the obvious way:

e the states) of Si correspond to the possible valuations to
variablesII, with Qo being the subset af) that may be gen-
erated by thenit guarded commands of the modulesAn
and

e thed function of Sy is defined in each state for each possible
coalition by the sets of enabled guarded commands (choices)
for that coalition.

We write R |= ¢ to indicate thatSr, qo = ¢ for every initial state
¢o in Sgr: the SRML model checking problem is then the problem
of checking, for given® and¢, whether or notR |= .

4. MAIN RESULTS

We now present our main results. Given the concerns of this
paper — understanding the complexityaafi model checking for
a particular model representation — the first of these resulty
seem somewhat strange, but its role will become clear shaki
show that, given aisRML systemR, we can construct a formula

mamic(R) of ATL such thatmimic(R) is only satisfied in models
that are “equivalent” toSg. We can thus understandimic(R)
as representing therL theoryof R. An important property of the
construction ofnimic(R) is that this formula is of size polynomial
in the size ofR. For such amimic(R), we must characterize the
behaviour ofR in the sense that:

(a) abilities inR are transferred to models satisfyingmic(R);

(b) agents should not be able to achieve more inamyic(R)-
model than the modules can doin

The construction ofnimic(R) is as follows. Let the variables
ctr(4) under control of modulé bev;, . .., v], and let the module
1 be (ctr(i), init, update). We are now going to define require-
mentst(init, 1), (2), (3) and (4); they are supposed to take care of
our condition @). Regardinginit, we do the following. Suppose
there arec; init guarded commands for agehtand let a typical
init guarded command, (¢ < ¢;) for agenti be composed of
a positive part}’ and a negative parf’ (v < nu,v < nv) as
follows:

LI; T~ v(jll = T? T ~ v(;tzu = T’
lag T~ =L, Tyt =1

Where nOU,ZZ can be the same as anykj, foranyj < nu and

k < no (this is guaranteed by the fact thgt' and., represent
one guarded command). Then denote

= VA v A N\ o)

a<c; j<nu k<nv

t(init,)

@

This formula¢(init, ¢) expresses the effect of executing one
of the ¢; guarded commands, for agenti. Note that we do not
have anexclusivedisjunction here, since it might well be that the
effectof executing one initialsation commangimay coincide with
that of another. Given agRML-systemR, it is obvious that in its
associatedTts Sr, a stateg verifiest(init,) iff ¢ is one of the
initial states inQo.

Now we turn to theupdate part of the module. Suppose it looks
like the following (note that albji are occurrences afs variables,
not the variables themselves).

i, r_ I

Y1t Y1~ U, = ’(/)11 Ui, = 1/}1771
i, il i

Y21 P2 Uy = 2, V2,, = Y2,
N i

TYm * Pm P Uy = 7/1m1 mmn . 1/1mnm

Given ansMRL R, introduce for every)y, (k < m,t < nk) a
new propositional variable;,. The idea is that every will store
the old value of its corresponding, so we stipulate:

A

E<m,t<nk

O D (wow, = (WO, @)

Some ofi’s variables will not be changed by executing a com-
mand, so we also need to keep track of the variables old velfiogs
that, we introduce, for every, € ctr (i), variablesy; (e < j), and
stipulate

A OO = (hOwe)

e<j

©)

We now look at our constrainb}, which should take care of the
fact that the ifo is ATL-satisfiable, it should be in a context that
is behaving well enough in order to be transferred tGcaRL R.

To guarantee that an agentannot spontaneously bring about any-
thing that is not triggered by the execution of a commafagwe
introduce propositional variable®ne(i, 1), ..., done(i, m) and

a special atommone(s). The latter atom denotes thatlid not ex-
ecute any of its guarded commands. Now consider a command
As before, letctr(v2) bei’s variables occurring in the command
~%. Now represent’ by

wz — {(1)O (new(z) A rec(i, z)) 4)
where
new (i) = /\ (ve=2z)A /\ (u—vy)
vEctr(vL) w€ ctr(i)\ ctr
and

rec(i, z) = done(i, z) A /\ —done(i, s) A “none(i)

s<m,s#z

new(i) says that the values of the relevant, are, viazy,,
copied in the corresponding varlabzl;g and the other variables
u of 1 receive their ‘old’ values through a copy of the correspond-
ing variablesy. This takes care of our goal specified a3.(For
the (b)-part, rec(i, z) takes a record of which guarded command
has been applied. This ensures that agentleed ‘only’ executes
guarded commands, if we add the global properties (5)—(8):

9 D((ké\m —¢r) < ()Onone(i)) ©)
» ké\ MO done(i, k) — o) (6)

pan ké\m(donff(i, k) = (new(i) A —none(i))) (7)
OUC (mnone(i) = V., done(i, k)) ®)

A (none(l) - /\'L)Gctr(’i) v y))

Equation (5) expresses that agemtill only do nothing if all his
guards are false; (6) says thatan only execute the-th command
if the k-th guard is true; (7) expresses that if a flag is set indigatin
that i executes thé-th command, then, indeed, this command is
executed, and theone(i)-flag is not set to true, and, finally, (8)
expresses that eitheérdoes nothing, or he executes exactly one of
his guarded commands and that doing nothing implies keegling
the “old” values for:’s variables.

We are now in a position to defineimic(R):

/\ (t(init, i) A (2) A(B) A (4) A(B) A (6) A(T) A (8))

i<n

Note that the size ofvimic(R) is polynomial inR, since we only
add a given number of new variables, where the number depends
on the number of local variables and the number of formulas
appearing at the right of a=" in any command, and each of the
conjuncts inmimic(R) is polynomial inR.

Now, suppose we have sonse ¢ such thatS, ¢ = mimic(R).
The states ofS will not look exactly like the states afr, since

they will include propositional variables that will not be$x (i.e.,
the new variables we introduced in the translation). Buenine-
less, the properties of agents — their abilities, with respe the
propositional variables ok — must be the same in thgs S that
satisfiesmimic(R) as inR. In short: the modelS must preserve
the truth ofatL formulae overR.

Returning to the main concerns of the paper, we now see the
relevance of this construction.

THEOREM 1. The ATL model checking problem f@RML is
polynomial-time reducible taTL unsatisfiability.

PROOF Let R be the giversRML system, ang be the formula
we want to check. Then the following are equivalent:

1. REv

2. mimic(R) — @ isvalid inATL.
(]

The rationale for stating this result will become clear ia fbl-
lowing:

THEOREM 2. TheATL model checking problem f@rRML mod-
els isexPTIME-complete.

PrROOF Membership oExpPTIME follows from the fact, proved
in Theorem 1, that thatL model checking problem fasRML is
polynomial time reducible taTL unsatisfiability. Since thaTL
satisfiability problem iEXPTIME complete [7, 25], themTL un-
satisfiability is in COEXPTIME; but sinceEXPTIME is a determin-
istic complexity classExPTIME = CO-EXPTIME, and we conclude
that thesrML model checking fosRML is in EXPTIME.

We proveexPTIME-hardness by reduction from the problem of
determining whether a given player has a winning strategién
two-player gameEEK- G4 [24, p.158]. An instance GfEEK-G4 is
a quad:

(X1, X2, X3, @) where:

e X; and X, are disjoint, finite sets of Boolean variables, with
the intended interpretation that the variablesXinare under
the control of agent 1, andl> are under the control of agent
2;

e X3 C (X1 U X>) are the variables deemed to be true in the
initial state of the game; and

e s apropositional logic formula over the variablEsU X,
representing the winning condition.

The game is played in a series of rounds, with the ageat$1, 2}
alternating (with agent 1 moving first) to select a value €tor
false) for one of their variables i;, with the game starting from
the initial assignment of truth values defined By. Variables that
were not changed retain the same truth value in the subsequen
round. An agent wins in a given round if it makes a move such tha
the resulting truth assignment defined by that round malewit-

ning formulayp true. The decision problem associated WAtEK-

G, involves determining whether agent 2 has a winning straiegy

a given game instandgXs, X2, X3,). Notice thatPEEK- G4 only
requires “memoryless” (Markovian) strategies: whethenatran
agent; can win depends only on the current truth assignment, the
distribution of variables, the winning formula, and whosmtit is
currently. As a corollary, if agent can force a win, then it can
force a win inO(2/%1Y*2l) moves.

Given an instancéX:, X, X3, ¢) of PEEK-G4, we produce an
instance ofsrRML model checking as follows. For each Boolean
variablez € (X1 U Xz), we create a variable with the same name
in our sSRML model, and we create an additional Boolean variable
turn, with the intended interpretation that #firn = T, then it
is agent 1's turn to move, while ifurn = 1, then it is agent 2's
turn to move. We have a moduteove, the purpose of which is to
control turn, toggling its value in each successive round, starting
from the initial case of it being agemts move.

nodul e move control s turn
init
0T ~ turn’ =T
updat e
[turn ~ turn’
0 (—turn) ~» turn’

=1
=T

For each of the twaPEEK-G, playersi € {1,2}, we create an
SRML module ag; thatcont r ol s the variablesX;. The module
ag; is as follows. It begins by deterministically initialisirige val-
ues of all its variables to the values definedXtiy(that is, if variable

x € X; appears inX3 then this variable is initialised t@, other-
wise it is initialised tol). Subsequently, when it is this player’'s
turn, it can non-deterministically choose at most one ofvie-
ables under its control and toggle the value of this varialhen it

is not this player’s turn, it has no choice but to do nothisgving
the value of all its variables unchanged. The general straaf

ag1 is thus as follows, wher&y = {z1,...,z}.
nmodul e agi control s z,..., x
init
// initialise to values from X3
0T ~ 2f = .52 == ...
updat e
[turn ~ =z := L
0 turn ~ xf =T
0 turn ~ = L
0 turn ~ =T

[T~skip

Notice that an agent can alwagki p, electing to leave its vari-
ables unchanged; and, if it is not this agent’s turn to mdvis, is
theonly choice it has.

The srRML system under consideration contains just these three
modules. It can be shown easily that player 2 has a strategyifo
the PEEK-G4 game(X1, Xo, X3,) iff the SRML system satisfies
the formula{(2)) () U (¢ A turn). O

There are several small points of interest about this priew$t,
notice that the reduction used fexPTIME-hardness requiresnly
a fixed number of agent@hree). Thus we have the following,
stronger resultaTL model checking fosRML models iSEXPTIME
complete for any fixed number of modules, where, > 3. Sec-
ond, notice the form of the guarded commands used in the reduc
tion: on the rhs of any guard, we only change the value of at mos
one variable. Thus, again, we have a stronger reEXPTIME
hardness even when guarded commands are assumed to be of this
particularly impoverished form.

Next, we turn our attention to significant subsetsaof : first,
Coalition Logic, the fragment in which the only temporal rabty
allowed is ‘O"[19, 21, 9].

THEOREM 3. The Coalition Logic model checking problem for
SRML models issSPACEcOomplete.

PROOF. We first proverspACEhardness, by reducing the prob-
lem of determining the truth of Quantified Boolean Formulaer) [18,
pp.456-458] to that of Coalition Logic model checking again
SRML models.

An instance ofRBFis given by a formula

An Vs - - Qro(zr, 22, . .., k)

wherex, ..., z; are Boolean variables, the quantifigy, is 3 if
k is odd, andv if k is even, andp(z1,. .., zx) is a propositional
logic formula over the variables;, 2, . .., zz. Such a formula is
true if there exists a valuation far, such that for all valuations
for x2, ..., such that the formule (1, 22, ..., 2;) is true. We
proceed to create &@RML System containing three modulespuve,
ag3, agy, the variables, 22, . . . , z, and, in additionk variables
mi1, ma, ..., mg, Such thatn; will be true if we are about to assign
a value for variabler;.

The moduleturn simply passes the valu€ along each of the
variablesmi, mo, ..., my in turn.

nodul e turn control s ma,..., my
init
0T ~ mi:=T,mj:=L;....,mp:=1
updat e
Dmi ~ mi=_L;mh:=T
O0mi ~ mi:=L;mi =T
0mi—1 ~ m_y = Limy =T
Notice that at most one of the variables , ms, ..., m; will be

true at any given time.

We define the moduleggs as follows. This moduleontrol s
all odd numbered variables. On even rounds, the module gimpl
ski ps, leaving the values of its variables unchanged. On odd hum-
bered rounds, 1 < i < k, the module will have two choices:
make variabler; true or maker; false.

nodul e ags controls ...// odd nunbered vari abl es

init

0T ~skip
updat e

0mi ~ 2{ =1

0mi ~ 21 :=T

[me ~ skip

0ms ~ 24 :=1

Dms ~ z4:=T

] ma ~ skip

We defineagy similarly, swapping “even” for “odd”. Noting that
(i) the moduleturn plays no part in determining the value of vari-
ables other than the move variables, . .., my; (i) when it is
playeri’s turn in round;, then the only choiceshas are to assign
truth or falsity to variabler;; (i) when it is not playeris turn in
roundj, thenj must leave all its variables unchanged; (iv) that the
construction is clearly polynomial in the size of the inpaitrfula.

TheQBFinstancedz Vs - - - Qp(z1, 22, . . ., ;) IS true iff the
the SRML system above satisfies the formula

<<ag3>>0ﬁ<(agv>)oﬂ s (,O(Zt17:t27 .

To see that the model checking problem is decidablesipacE
we present an algorithm for deciding the problem that works i
polynomial space: see Figure 1. The algorithm takes as iaput

7$k)-

1. function eval(p, R) returns T or L

2. 0:=0

3. for each #-enabled initial j.g.c. {(y1,...,vn) for X do
4 if not auz(p, 0 & {y1,...,vn}, R) then

5. return L

6 end-if

7. end-for

8. returnT

9. end-function eval

10.function auz (e, 6, R) returns T or L

11. if p € I then

12. ifp € Othenreturn T else return L end-if
13. elsif o = =) then

14. return not auz (v, 0, R)

15. elsif p = 91 V 12 then

16. return auz(¢1, 0, R)

17. or auz(v2,0, R)

18. elsif ¢ = (CHOw then

19. for each #-enabled update j.g.c. (v1,...,7) for C do
20. flag:=T

21. for each 6-enabled update j.g.c. (v,41,...,7n) for 2\ C do
22. if not auz (v, 0 & {v1, .-, % Vi+1,---,In}, R) then
23. flag :=

24. end-if

25. end-for

26. if flag then return T end-if

27. end-for

28. return L

29. end-if

30.end-function auz

Figure 1: A polynomial space algorithm for checking Coalition
Logic formulae againstsrRML models.

SRML systemR, and a formulap of coalition logic to check against
this system. The algorithm is in two parts: the first part (tnec-
tion eval(---)) generates each initial state of the system in turn
from the initial guarded commands of the modules comprigthg
and then invokes the auxiliary functienuz(- - -) to check whether
the inputy is true in these initial states. Theuz(---) function
is recursive; we note that the number of recursive calls bl
bounded by the size of the input formybawith each call requiring
only polynomial space. Termination and correctness areddiate
from construction; it only remains to note that we can loaptigh
the enabled initial guarded commands (lines 3—7) and theletha
update guarded commands (lines 19-23) in polynomial spdck.

So, under standard complexity theoretic assumptions, hcbeek-
ing Coalition Logic againssRML models is “easier” than fukTL.
Suppose we consider other restrictions on the logic thatheelc

THEOREM 4. The propositional logic model checking problem
for SRML is coNP-complete.

PrROOFR For membership, simply note that we can universally
selectallinitial j.g.c.§v1, . . ., Ym), and check that ify1, . . ., ym)
is satisfied by the empty truth assignmégtthen the interpretation
6o © {71,...,vm} satisfiesp. For completeness, we can reduce
the problemtAuT, of checking that a propositional logic formula
is a tautology, i.e., satisfied under all truth assignmehts. each
Boolean variabler appearing in the input instange we create an
agent controllinge, with two initial guarded commands, both en-
abled by the empty assignmeft, which setz to T and L respec-
tively. The formula to be checked against this system is birtie
TAUT instancep. The initial states of the system thus constructed

correspond to all valuations of the variablesmfand hence is a
tautology iff ¢ holds in all initial states of the system[]

5. DISCUSSION

In this paper, we have shown that, for three important ssbset
of ATL (including ATL itself), the model checking problem has ex-
actly the same complexity as the corresponding theoremingov
problem, assuming that models are represented $stng, a sim-
plified version ofRML [1]. This seems to us to be a striking result:
practicalmodel checking foaTL and Coalition Logic has the same
complexity as theorem proving for these logics. We notedttars
have pointed out thatTL model checking is more complex than it
might appear [13], and other results hint that practical model
checking might be more complex than it appears at first siHg]f
we have obtained tight bounds on the complexity of theselpnabd
for a specific, practical representation for models.

Itis important to note that theRML language isot contrived: it
is a strict subset of themL language that is used by several prac-
tical model checking systems, includimgpCHA, the ATL model
checker [3]. IndeedsrRML is arguably the smallest “useful” subset
of RML that one can imagine: it is hard to imagine how one could
simplify it without making it unusable in practice. It is alsvorth
noting that the guarded command structures used to defive
models are also used (modulo syntactic differences) fostme
purpose in other model checking systems suclsrs! [12] and
sMmv [17].

We note that one of the motivations for developing the Cioatlit
Logic of Propositional ControldL-PC), a simpler modal variation
of ATL [11], was that the structure of controlled variables in lan-
guages likerML permitted a more direct (and simpler) semantics
to cooperation modalities. This link — between the inteiqtien of
cooperation modalities and the languages used to definelsnede
is worth exploring further.

6. REFERENCES

[1] R. Alur and T. A. Henzinger. Reactive modulé®rmal
Methods in System Desigh5(11):7-48, July 1999.

R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logiclournal of the ACM
49(5):672-713, September 2002.

R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K.
Rajamani, and S. Tasiran. Mocha: Modularity in model
checking. INCAV 1998: Tenth International Conference on
Computer-aided Verification, (LNCS Volume 142¥ges
521-525. Springer-Verlag: Berlin, Germany, 1998.

E. M. Clarke, O. Grumberg, and D. A. Pelddodel
Checking The MIT Press: Cambridge, MA, 2000.

L. de Alfaro, T. A. Henzinger, , and F. Y. C. Mang. The
control of synchronous systems. GONCUR 2000:
Concurrency Theory, 11th International Conference (LNCS
Volume 1877)pages 458—473. Springer-Verlag: Berlin,
Germany, 2000.

L. de Alfaro, T. A. Henzinger, , and F. Y. C. Mang. The
control of synchronous systems part ii. @ONCUR 2001.:
Concurrency Theory, 12th International Conference (LNCS
Volume 2154)pages 566-580. Springer-Verlag: Berlin,
Germany, 2001.

G. van Drimmelen. Satisfiability in alternating-timerporal
logic. In Eighteenth Annual IEEE Symposium on Logic in
Computer Science (LICS 200®pnges 208-217, Ottawa,
Canada, 2003.

(2]

(3]

[4]
(5]

(6]

[7]

[8] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editotdandbook of Theoretical Computer Science
Volume B: Formal Models and Semantipsages 996-1072.
Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, 1990.

[9] V. Goranko. Coalition games and alternating temporgids.

In J. van Benthem, editoProceeding of the Eighth

Conference on Theoretical Aspects of Rationality and

Knowledge (TARK Vll|)pages 259-272, Siena, ltaly, 2001.

J. Y. Halpern and M. Y. Vardi. Model checking versus

theorem proving: A manifesto. In V. Lifschitz, edit@k) and

Mathematical Theory of Computation — Papers in Honor of

John McCarthypages 151-176. The Academic Press:

London, England, 1991.

[11] W. van der Hoek and M. Wooldridge. On the logic of
cooperation and propositional contréltificial Intelligence
164(1-2):81-119, May 2005.

[12] G. Holzmann. The Spin model checkdtEE Transactions
on Software Engineerin@3(5):279-295, May 1997.

[13] W. Jamroga and J. Dix. Do agents make model checking
explode (computationally)? In M. Pechoucek, P. Petta, and
L. Z. Varga, editorsMulti-Agent Systems and Applications
IV (LNAI Volume 369Q)2005.

[14] W. Jamroga and W. van der Hoek. Agents that know how to
play. Fundamenta Informaticaé3(2-3):185-219, 2004.

[15] M. Kacprzak and W. Penczek. A SAT-based approach to
unbounded model checking for alternating-time temporal
epistemic logicSynthesgl42(2):203-227, November 2004.

[16] O. Kupferman, M. Y. Vardi, and P. Wolper. An
automata-theoretic approach to branching time model
checking.Journal of the ACM47(2):312—-360, March 2000.

[17] K. L. McMillan. Symbolic Model Checkindluwer
Academic Publishers: Dordrecht, The Netherlands, 1993.

[18] C. H. PapadimitriouComputational Complexity
Addison-Wesley: Reading, MA, 1994.

[19] M. Pauly.Logic for Social SoftwarePhD thesis, University
of Amsterdam, 2001. ILLC Dissertation Series 2001-10.

[20] M. Pauly. A logical framework for coalitional effecity in
dynamic procedure®ulletin of Economic Research
53(4):305-324, 2002.

[21] M. Pauly. A modal logic for coalitional power in games.

Journal of Logic and Computatiori2(1):149-166, 2002.

F. Raimondi and A. Lomuscio. The complexity of symbolic

model checking temporal-epistemic logics Aroceedings of

Concurrency, Specification & Programming (CS&P)

Ruciane-Nida, Poland, September 2005.

M. Ryan and P.-Y. Schobbens. Agents and roles: Refinemen

in alternating-time temporal logic. In J.-J. Ch. Meyer and

M. Tambe, editorsintelligent Agents VIII: Proceedings of

the Eigth International Workshop on Agent Theories,

Architectures, and Languages, ATAL-2001 (LNAI Volume

2333) pages 100-114, 2002.

L. J. Stockmeyer and A. K. Chandra. Provably difficult

combinatorial games$IAM Journal of Computing

8(2):151-174, 1979.

D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL

satisfiability is indeedxPTIME-complete, 2005. accepted

for publication.

[10]

[22]

(23]

[24]

[25]

