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ABSTRACT
We investigate the computational complexity of reasoning about
multi-agent systems using the cooperation logicATL of Alur, Hen-
zinger, and Kupferman. It is known that satisfiability checking is
EXPTIME-complete for “full” ATL , and PSPACE-complete (in the
general case) for the fragment ofATL corresponding to Pauly’s
Coalition Logic. In contrast, the model checking problems for ATL

and Coalition Logic can both be solved in time polynomial in the
size of the formula and the size of model against which the for-
mula is to be checked. However, these latter results assume an
extensiverepresentation of models, in which all states of a model
are explicitly enumerated. Such representations are not feasible in
practice. In this paper we investigate the complexity of theATL

and Coalition Logic model checking problems for a more “rea-
sonable” model representation known asSRML (“Simple Reactive
Modules Language”), a simplified version of the actual modelrep-
resentation languages used for model checkers such asSMV and
MOCHA. While it is unsurprising that, when measured against such
representations, the model checking problems forATL and Coali-
tion Logic have a higher complexity than when measured against
explicit state representations, we show that in fact theATL and
Coalition Logic model checking problems forSRML models have
the same complexity as the corresponding satisfiability problems.
That is, model checkingATL formulae againstSRML models is
EXPTIME-complete, and model checking Coalition Logic formulae
againstSRML models isPSPACE-complete. We conclude by inves-
tigating some technical issues around these results, and discussing
their implications.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
F.3.1 [Logics and Meanings of Programs]: Specifying and Ver-
ifying and Reasoning about Programs—Logics of programs; F.2
[Analysis of algorithms and problem complexity]

General Terms
Theory
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1. INTRODUCTION
Cooperation logics – such as Pauly’s Coalition Logic [19, 20,

9] and its temporal extension, the Alternating-time Temporal Logic
(ATL ) of Alur, Henzinger, and Kupferman [2] – have attracted much
interest from the multi-agent systems community [23, 14, 15, 11].
Using such logics, it is possible to reason about the strategic powers
of agents and coalitions of agents in game-like multi-agentscenar-
ios.

If one aims to use logics such asATL and Coalition Logic to
reason about systems, then it is obvious to ask how complex the
associated reasoning problems are for such logics. Given a particu-
lar (multi-agent) systemξ, there are essentially two approaches that
may be adopted to reasoning aboutξ: theorem proving (via satisfia-
bility checking) and model checking [4]. The satisfiabilityproblem
for ATL is EXPTIME-complete, and is hence prohibitively expen-
sive [7, 25]; satisfiability for Coalition Logic is “only”PSPACE-
complete [19, 20, 21], and thus apparently easier, but of course this
“easiness” is relative:PSPACE-completeness is an extremely nega-
tive complexity result!

In contrast, model checking approaches to reasoning about sys-
tems appear to be computationally easier. Model checking was
originally developed as a technique for verifying that finite state
concurrent systems satisfy specifications expressed in thelanguage
of temporal logic [8]. The basic idea is that the state transition
graph of a systemξ can be understood as a modelMξ for a tem-
poral logic such as Computation Tree Logic (CTL): if we express
desirable or undesirable properties ofξ as formulaeϕ of CTL, we
can then check whether or notξ has these properties by evaluat-
ing whether or notMξ |= ϕ, and this can be done in deterministic
polynomial time [8, p.1044].

Now, one of the attractive features ofATL (and Coalition Logic)
is that its model checking problem is apparently no harder than that
of its ancestorCTL. More formally, the model checking problem,
as discussed in [2] is as follows. We are given anATS (i.e., anATL

model)S , a stateq from S , a formulaϕ overS and we are asked
whetherS , q |= ϕ. It is shown in [2] that this problem is tractable:
it can be solved in timeO(|S | × |ϕ|), where|S | is the size ofS
and |ϕ| is the size ofϕ. However, this apparently positive result
has a well-known catch. It assumes that theATS S is explicitly
enumeratedin the input to the problem, and in particular, that all
the states ofS are listed in the input. Of course, ifS hasn Boolean
variables, then there may be2n possibles states. Moreover, in a
very recent result, Jamroga and Dix point out that this tractability
result only goes through if the number of agents isfixed, andnot
considered a parameter of the problem [13]. They show that if



the number of agents is considered an input to the model checking
problem, then model checking isNP-complete with respect to a
representation ofATL models asalternating transition systems, and
even worse –Σp

2-complete – for the representation ofATL models
asconcurrent game structures.

So, the tractability result forATL model checking is perhaps mis-
leading, since we have tractabilityonly if we explicitly enumerate
all states of the system in the input, andonly if we assume the num-
ber of agents is fixed, and not part of the input.

The complexity ofATL model checking is thus particularly sen-
sitive to therepresentationof the model given as input. An obvious
question to ask is what kinds of representations are usedin practice,
by actual model checking systems. In fact, practical model check-
ers such asSMV (for CTL) [17], SPIN (for LTL ) [12], andMOCHA

(for ATL ) [3] use a succinctmodel specification languagefor defin-
ing models. While the model specification languages used by these
systems differ on details, they all have the flavour of programming
languages, providing the verifier with a relatively high-level way of
defining models. But this then raises the question of the extent to
which the apparently positive complexity results forCTL, ATL , and
Coalition Logic model checking hold when using such model rep-
resentation languages. It comes as no surprise that model checking
against such model representations will be harder. For example, a
PSPACE-completeness result forCTL model checking against a rep-
resentation of concurrent programs was obtained by Kupferman et
al [16], and extended to combinations ofCTL with knowledge in
[22].

However, to date, the issue of complexity ofATL model check-
ing for realistic model specification languages has not beeninvesti-
gated, and this is the aim of the present paper. The particular model
specification language we focus on is calledSRML (“Simple Reac-
tive Modules Language”), and is a slightly simplified version of the
REACTIVE MODULES LANGUAGE (RML) [1]. We are particularly
interested inRML for several reasons: first,RML is the language that
is actually used by theATL model checking systemMOCHA [3]; it
has been shown to be well suited to building models of a range
of multi-agent protocols; andRML programs can easily be used to
code basic reactive agents. As we pointed out above, it is unsurpris-
ing that, assuming representations such asSRML, the model check-
ing problems forATL and Coalition Logic have a higher complexity
than when measured against explicit state representations, particu-
larly given the results of Jamroga and Dix [13]. However, we show
that in fact theATL and Coalition Logic model checking problems
for SRML programs havethe same complexity as the correspond-
ing satisfiability problems! That is, model checkingATL formulae
againstSRML programs isEXPTIME-complete, and model check-
ing Coalition Logic formulae againstSRML programs isPSPACE-
complete. There is thus ahugegulf – much larger than perhaps
might be expected – between the provably tractable model check-
ing problem for explicit state models and the provablyintractable
model checking problem for “realistic” model representations. In-
deed, it again raises the question of the relative merits of theorem
provingversusmodel checking [10]. We begin by describingATL

and thenSRML, the simplified variant ofRML that we use through-
out the paper. We present our main results in section 4. We con-
clude by investigating some technical issues around these results,
and discussing their implications.

2. ATL
Alternating-time Temporal Logic (ATL ) [2] can be understood as

a generalisation of the well-known branching time temporallogic
CTL [8], in which path quantifiers are replaced bycooperation
modalities. A cooperation modality〈〈C 〉〉ϕ, whereC is a group of

agents, expresses the fact that there exists a strategy profile for C

such that by following this strategy profile,C can ensureϕ. Thus,
for example, the system requirement “agents1 and2 can cooperate
to ensure that the system never enters a fail state” may be captured
by theATL formula 〈〈1, 2〉〉 ¬fail . The “ ” temporal operator
means “now and forever more”: additional temporal connectives in
ATL are “♦” (“either now or at some point in the future”), “U ”
(“until”), and “ f” (“in the next state”).

To give a precise definition ofATL , we must first introduce the
semantic structures over which formulae ofATL are interpreted. An
alternating transition system(ATS) is a 6-tuple

S = 〈Π,Σ,Q ,Q0, π, δ〉, where:

• Π is a finite, non-empty set ofBoolean variables;

• Σ = {a1, . . . , an} is a finite, non-empty set ofagents;

• Q is a finite, non-empty set ofstates, with Q0 ⊆ Q repre-
senting theinitial states ofQ ;

• π : Q → 2Π gives the set of Boolean variables satisfied in
each state;

• δ : Q × Σ → 22Q

is the system transition function, which
maps states and agents to the choices available to these a-
gents. Thusδ(q , a) is the set of choices available to agenta

when the system is in stateq . We require that this function
satisfy the requirement that for every stateq ∈ Q and every
setQ1, . . . ,Qn of choicesQi ∈ δ(q , ai), the intersection
Q1 ∩ · · · ∩ Qn is a singleton.

(Initial statesQ0 were not considered part ofATSs in the origi-
nal publications onATL : we introduce them to be consistent with
the behaviour of model checkers forATL , which check formulae
against the initial state of the system: see below.)

An ATL formula, formed with respect to an alternating transition
systemS = 〈Π,Σ,Q ,Q0, π, δ〉, is then defined by the following
grammar:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | 〈〈C 〉〉 fϕ | 〈〈C 〉〉 ϕ | 〈〈C 〉〉ϕU ϕ

wherep ∈ Π is a Boolean variable, andC ⊆ Σ is a set of agents.
We assume the remaining connectives of classical logic (“⊥”, “→”,
“←”, “↔”, “∧”) are defined as abbreviations in the usual way, and
define〈〈C 〉〉♦ϕ as〈〈C 〉〉⊤U ϕ.

To give the semantics ofATL , we need some further definitions.
For two statesq , q ′ ∈ Q and an agenta ∈ Σ, we say that state
q ′ is ana-successorof q if there exists a setQ ′ ∈ δ(q , a) such
that q ′ ∈ Q ′. Intuitively, if q ′ is an a-successor ofq , thenq ′

is a possible outcome of one of the choices available toa when
the system is in stateq . We denote bysucc(q , a) the set ofa-
successors to stateq , and say thatq ′ is simply asuccessorof q if
for all agentsa ∈ Σ, we haveq ′ ∈ succ(q , a); intuitively, if q ′ is
a successor toq , then when the system is in stateq , the agentsΣ
can cooperate to ensure thatq ′ is the next state the system enters.

A computationof an ATS 〈Π,Σ,Q ,Q0, π, δ〉 is an infinite se-
quence of statesλ = q0, q1, . . . such that for allu > 0, the statequ

is a successor ofqu−1. A computationλ ∈ Qω starting in stateq
is referred to as aq-computation; if u ∈ N, then we denote byλ[u]
the u ’th state inλ; similarly, we denote byλ[0, u] andλ[u,∞]
the finite prefixq0, . . . , qu and the infinite suffixqu , qu+1, . . . of λ
respectively.

Intuitively, astrategyis an abstract model of an agent’s decision-
making process; a strategy may be thought of as a kind of plan for
an agent. Formally, a strategyfa for an agenta ∈ Σ is a total



function fa : Q+ → 2Q , which must satisfy the constraint that
fa(λ · q) ∈ δ(q ,a) for all λ ∈ Q∗ andq ∈ Q . Given a setC ⊆ Σ
of agents, and an indexed set of strategiesFC = {fa | a ∈ C},
one for each agenta ∈ C , we defineout(q ,FC ) to be the set of
possible outcomes that may occur if every agenta ∈ C follows
the corresponding strategyfa , starting when the system is in state
q ∈ Q . That is, the setout(q ,FC ) will contain all possibleq-
computations that the agentsC can “enforce” by cooperating and
following the strategies inFC . Note that the “grand coalition” of all
agents in the system can cooperate to uniquely determine thefuture
state of the system, and soout(q ,FΣ) is a singleton. Similarly,
the setout(q ,F∅) is the set of all possibleq-computations of the
system.

We can now give the rules defining the satisfaction relation “|=”
for ATL , which holds between pairs of the formS , q (whereS is an
ATS andq is a state inS ), and formulae ofATL :

S , q |= ⊤;

S , q |= p iff p ∈ π(q) (wherep ∈ Π);

S , q |= ¬ϕ iff S , q 6|= ϕ;

S , q |= ϕ ∨ ψ iff S , q |= ϕ or S , q |= ψ;

S , q |= 〈〈C 〉〉 fϕ iff there exists a set of strategiesFC , such
that for allλ ∈ out(q ,FC ), we haveS , λ[1] |= ϕ;

S , q |= 〈〈C 〉〉 ϕ iff there exists a set of strategiesFC , such
that for allλ ∈ out(q ,FC ), we haveS , λ[u] |= ϕ for all
u ∈ N;

S , q |= 〈〈C 〉〉ϕU ψ iff there exists a set of strategiesFC ,
such that for allλ ∈ out(q ,FC ), there exists someu ∈ N

such thatS , λ[u] |= ψ, and for all0 ≤ v < u, we have
S , λ[v ] |= ϕ.

Satisfaction for the ATL formula〈〈C 〉〉♦ϕ is defined via equiv-
alence to〈〈C 〉〉⊤U ϕ.

We identify two important fragments ofATL which we will sub-
sequently refer to:

• Propositional logicis the fragment of ATL in which no coop-
eration modalities are permitted. The truth of a propositional
logic formula is determined on anATS by using the first four
items of the definition for satisfaction above.

• Coalition Logic is the fragment ofATL in which the only
cooperation modalities allowed are of the form〈〈C 〉〉 f[19,
20, 9]. The truth of a Colition Logic formula is determined
on anATS by using the first five items of the definition for
satisfaction above.

The (explicit state)model checkingproblem1 is the problem of de-
termining, for a given formulaϕ andATS S = 〈Π,Σ,Q ,Q0, π, δ〉,
whetherS , q |= ϕ for all q ∈ Q0. The model checking problems
for ATL (and hence Coalition Logic) can be solved by a determinis-
tic algorithm in time polynomial in the size of the inputsATS S and
the formulaϕ [2, pp.690–691] – assuming thatATS S in question

1Model checking is sometimes formulated as the problem of find-
ing the set of states in a structure that satisfy a given formula; our
formulation is chosen to be consistent with the way in which ac-
tual model checkers work, and it should be stressed that fromthe
asymptotic analysis point of view, there is no difference incom-
plexity between the formulations.

is explicitly enumerated in the input in all its components,and the
number of agents is considered fixed [13].

For thesatisfiability problem, we are simply given a formula
ϕ and asked whether there is anATS S and stateq in S such
that S , q |= ϕ. The satisfiability problem forATL is EXPTIME-
complete [7, 25], while for Coalition Logic it isPSPACE-complete
in the general case [19, p.63].

3. SRML
We have already observed that the positive tractability results for

ATL and Coalition Logic model checking rely on the assumption
that the model against which a formula is to be checked is explicitly
enumerated in the input to the model checking algorithm, andthat
this assumption is both infeasible (there will be exponentially many
states in the number of Boolean variables), and never used inprac-
tice. Instead, practical model checkers such asSMV [17], SPIN[12],
and MOCHA [3] use model specification languages which permit
thesuccinct, high-levelspecification of models. In this section, we
describe the language used in this paper for this purpose: the Sim-
ple Reactive Modules Language (SRML). As its name suggests, this
language is a strict subset of theRML language used in theMOCHA

model checker2. Note that our choice of language is not arbitrary:
we comment on it below. We begin with an informal overview.

3.1 Overview
Agents inRML are known asmodules, and for consistency with

the pre-existing literature onRML, we will stay with this terminol-
ogy in SRML. An SRML module consists of:

• an interface, which defines the name of the module and lists
the Boolean variables under thecontrol of the module; and

• a number ofguarded commands, which define the choices
available to the module at every state.

The states of anSRML-defined model correspond to the possible
valuations that may be given to the Boolean variables under the
control of modules in the system: for the purposes ofSRML, two
states that agree on the valuation of all variables are the same3.

The guarded commands of a module are divided into two sets:
those used forinitialising the variables under the module’s con-
trol (init guarded commands), and those used forupdatingthese
variables subsequently (update guarded commands). A guarded
command has two parts: a “condition” part (the “guard”), anda
corresponding “action” part, which defines how to update thevalue
of (some of) the variables under the control of a module. The in-
tuitive reading of a guarded commandϕ ; e is “if the condition
ϕ is satisfied, thenone of the choices available to the module is
to execute the assignment expressione”. The assignment expres-
sion e is essentially a sequence of assignment statements, just as
in conventional imperative programming languages: these assign-
ment statements define how (some subset of) the module’s con-
trolled variables should be updated if the guarded command is ex-
ecuted. Notice that the truth of the guardϕ does not mean thate
will be executed: only that it isenabledfor execution – itmaybe
executed. If no guarded commands of a given module are enabled
in some state, then the values of the variables in that moduleare
assumed to remain unchanged in the next state: the module hasno
choice.

2For those familiar withRML and MOCHA, SRML assumes finite,
propositional modules, with each module containing a single atom,
in which no variable is awaited by any module.
3This is of course not the case in general in modal/temporal logic.



The choices available to a module wrt initialisation of its vari-
ables are thus defined by theinit guarded commands of the mod-
ule, while the choices available to a module wrt updating itsvari-
ables are defined by theupdate guarded commands. To make this
more concrete, here is an example guarded command:

(x ∧ y)
| {z }

guard

; x
′ := ⊥; y ′ := ⊤

| {z }

action

The guard is the propositional logic formulax ∧ y , so this guarded
command will be enabled in any system state where bothx andy

take the value “⊤”. If the guarded command is chosen, then the
effect is that in the next state of the system, the variablex will
take value⊥, while y will take value⊤. (The “prime” notationv ′

means “the value of variablev after the statement is executed”.)
We will write skip as an abbreviation for the empty assignment
expression, which leaves the value of every variable controlled by
a module unchanged.

Here is an example of a module, illustrating the concrete syntax
that we will use for modules (which is essentially that ofRML [1]).

module toggle controls x

init
[]⊤ ; x ′ := ⊤
[]⊤ ; x ′ := ⊥
update
[]x ; x ′ := ⊥
[](¬x) ; x ′ := ⊤

This module, namedtoggle, controls a single Boolean variable,x .
There are twoinit guarded commands and twoupdate guarded
commands. (The symbol “[]” is a syntactic separator.) Theinit
guarded commands oftoggle define two choices for the initialisa-
tion of this variable: assign it the value⊤ or the value⊥. With
respect toupdate guarded commands, the first command says
that if x has the value⊤, then the corresponding choice is to as-
sign it the value⊥, while the second command says that ifx has
the value⊥, then it can subsequently be assigned the value⊤. In
other words, the module non-deterministically chooses a value for
x initially, and then on subsequent rounds toggles this value. No-
tice that in this example, theinit commands of this module are
non-deterministic, while theupdate commands are deterministic.

3.2 Formal Definition
In this section, we will useΠ to denote the set of Boolean vari-

ables in a system, as inATL . Formally, a guarded commandγ over
Π is an expression

γ : ϕ ; v
′
1 := ψ1; . . . ; v

′
k := ψk

whereϕ (the guard) is a propositional logic formula overΠ, each
vi is a member ofΠ andψi is a propositional logic formula over
Π. We require that no variablevi appears on the l.h.s. of two as-
signment statements in the same guarded command (hence no issue
on the ordering of the updates arises). The intended interpretation
is that if the formulaϕ evaluates to true against the interpretation
corresponding to the current state of the system, then the statement
is enabledfor execution; executing the statement means evaluating
eachψi against the current state of the system, and setting the cor-
responding variablevi to the truth value obtained from evaluating
ψi . We say thatv1, . . . , vk are thecontrolled variablesof γ, and
denote this set byctr(γ). A set of guarded commands is said to be
disjoint if their controlled variables are mutually disjoint.

Given a propositional valuationθ ⊆ Π and a guarded command
γ : ϕ ; v ′

1 := ψ1; . . . ; v
′
k := ψk such thatθ enablesγ (i.e.,

θ |= ϕ) we denote the result ofexecutingγ on θ by θ ⊕ γ. For
example, ifθ = {p, r}, andγ = p ; q ′ := ⊤; r ′ := p ∧ ¬r ,
thenθ ⊕ γ = {p, q}.

Given a propositional valuationθ ⊆ Π, and setΓ of disjoint
guarded commands overΠ such that every member ofΓ is enabled
by θ, then the interpretationθ′ resulting fromΓ on θ is denoted by
θ′ = θ⊕Γ: since the members ofΓ are disjoint, we can pick them
in any order to execute onθ.

As described above, there are two classes of guarded commands
that may be declared in an atom:init andupdate. An init
guarded command is only used to initialise the values of variables,
when the system begins execution. FullRML allows for quite so-
phisticated initialisation schemes, but inSRML, we will assume that
the guards toinit command are “⊤”, i.e., everyinit command
is enabled for execution in the initialisation round of the system.

An SRML module, m , is a triple:

m = 〈ctr , init , update〉 where:

• ctr ⊆ Π is the (finite) set of variables controlled bym ;

• init is a (finite) set ofinitialisation guarded commands, such
that for allγ ∈ init , we havectr(γ) ⊆ ctr ; and

• update is a (finite) set ofupdateguarded commands, such
that for allγ ∈ init , we havectr(γ) ⊆ ctr .

Given a modulem , we denote the controlled variables ofm by
ctr(m), the initialisation guarded commands ofm by init(m),
and the update guarded commands ofm by update(m). An SRML

system is then an(n + 2)-tuple

〈Σ,Π,m1, . . . ,mn〉

where Σ = {1, . . . ,n} is a set of agents andΠ is a vocabu-
lary of Boolean variables, (as inATSs), and for eachi ∈ Σ, mi

is the corresponding module definingi ’s choices; we require that
{ctr(m1), . . . , ctr(mn )} forms a partition ofΠ (i.e., every vari-
able inΠ is controlled by some agent, and no variable is controlled
by more than one agent).

A joint guarded command (j.g.c.) for a coalitionC ⊆ Σ is an
indexed tuple〈γ1, . . . , γk〉, with a guarded commandγi ∈ mi for
eachi ∈ C . A j.g.c. 〈γ1, . . . , γk 〉 is enabled by a propositional
valuationθ ⊆ Π iff all its members are enabled byθ.

Given anSRML systemR, the correspondingATS, which we de-
note bySR, is defined in the obvious way:

• the statesQ of SR correspond to the possible valuations to
variablesΠ, with Q0 being the subset ofQ that may be gen-
erated by theinit guarded commands of the modules inR;
and

• theδ function ofSR is defined in each state for each possible
coalition by the sets of enabled guarded commands (choices)
for that coalition.

We writeR |= ϕ to indicate thatSR, q0 |= ϕ for every initial state
q0 in SR: the SRML model checking problem is then the problem
of checking, for givenR andϕ, whether or notR |= ϕ.

4. MAIN RESULTS
We now present our main results. Given the concerns of this

paper – understanding the complexity ofATL model checking for
a particular model representation – the first of these results may
seem somewhat strange, but its role will become clear shortly. We
show that, given anSRML systemR, we can construct a formula



mimic(R) of ATL such thatmimic(R) is only satisfied in models
that are “equivalent” toSR. We can thus understandmimic(R)
as representing theATL theoryof R. An important property of the
construction ofmimic(R) is that this formula is of size polynomial
in the size ofR. For such amimic(R), we must characterize the
behaviour ofR in the sense that:

(a) abilities inR are transferred to models satisfyingmimic(R);

(b) agents should not be able to achieve more in anymimic(R)-
model than the modules can do inR.

The construction ofmimic(R) is as follows. Let the variables
ctr(i) under control of modulei bev i

1, . . . , v
i
j , and let the module

i be 〈ctr(i), init , update〉. We are now going to define require-
mentst(init, i), (2), (3) and (4); they are supposed to take care of
our condition (a). Regardinginit , we do the following. Suppose
there areci init guarded commands for agenti , and let a typical
init guarded commandιia (a ≤ ci ) for agenti be composed of
a positive partι+i

au
and a negative partι−i

av
(u ≤ nu, v ≤ nv) as

follows:

ι+i
au
⊤; v+i

a1
:= ⊤, . . . ,⊤; v+i

anu
:= ⊤,

ι−i
av
⊤; v−i

a1
:= ⊥, . . . ,⊤; v−i

anv
:= ⊥

Where nov+i
aj

can be the same as anyv+i
ak

, for anyj ≤ nu and
k ≤ nv (this is guaranteed by the fact thatι+i

a andι−i
a represent

one guarded command). Then denote

t(init, i) =
_

a≤ci

(
^

j≤nu

v
+i
aj
∧

^

k≤nv

¬v−i
ak

) (1)

This formula t(init, i) expresses the effect of executing one
of the ci guarded commandsιa for agenti . Note that we do not
have anexclusivedisjunction here, since it might well be that the
effectof executing one initialsation commandιa may coincide with
that of another. Given anSRML-systemR, it is obvious that in its
associatedATS SR, a stateq verifiest(init, i) iff q is one of the
initial states inQ0.

Now we turn to theupdate part of the module. Suppose it looks
like the following (note that allv ′i

j are occurrences ofi ’s variables,
not the variables themselves).

γi
1 : ϕ1 ; v i

11

′
:= ψ11

. . . v i
1n1

′
:= ψ1n1

γi
2 : ϕ2 ; v i

21

′
:= ψ21

. . . v i
2n2

′
:= ψ2n2

. . . . . . . . . . . . . . .

γi
m : ϕm ; v i

m1

′
:= ψm1

. . . v i
mnm

′
:= ψmnm

Given anSMRL R, introduce for everyψkt (k ≤ m, t ≤ nk ) a
new propositional variablexkt . The idea is that everyx will store
the old value of its correspondingψ, so we stipulate:

^

k≤m,t≤nk

〈〈〉〉 (ψkt ↔ 〈〈〉〉
fxkt ) (2)

Some ofi ’s variables will not be changed by executing a com-
mand, so we also need to keep track of the variables old values. For
that, we introduce, for everyv i

e ∈ ctr(i), variablesy i
e (e ≤ j ), and

stipulate

^

e≤j

〈〈〉〉 (v i
e ↔ 〈〈〉〉 fy

i
e) (3)

We now look at our constraint (b), which should take care of the
fact that the ifσ is ATL -satisfiable, it should be in a context that
is behaving well enough in order to be transferred to anSMRL R.
To guarantee that an agenti cannot spontaneously bring about any-
thing that is not triggered by the execution of a commandγi

z , we
introduce propositional variablesdone(i , 1), . . . , done(i ,m) and
a special atomnone(i). The latter atom denotes thati did not ex-
ecute any of its guarded commands. Now consider a commandγi

z .
As before, letctr(γi

z ) be i ’s variables occurring in the command
γi
z . Now representγi

z by

ϕz → 〈〈i〉〉 f(new(i) ∧ rec(i , z)) (4)

where

new(i) =
^

v∈ctr(γi
z )

(v ↔ x) ∧
^

u∈ctr(i)\ctr

(u ↔ y)

and

rec(i , z) = done(i , z) ∧
^

s≤m,s 6=z

¬done(i , s) ∧ ¬none(i)

new(i) says that the values of the relevantψkt are, viaxkt ,
copied in the corresponding variablev i

kt
, and the other variables

u of i receive their ‘old’ values through a copy of the correspond-
ing variablesy . This takes care of our goal specified as (a). For
the (b)-part, rec(i , z) takes a record of which guarded command
has been applied. This ensures that agenti indeed ‘only’ executes
guarded commands, if we add the global properties (5)–(8):

〈〈〉〉 ((
^

k≤m

¬ϕk )↔ 〈〈〉〉 fnone(i)) (5)

〈〈〉〉
^

k≤m

(〈〈〉〉 fdone(i , k)→ ϕk ) (6)

〈〈〉〉
^

k≤m

(done(i , k)→ (new(i) ∧ ¬none(i))) (7)

〈〈〉〉 ( (¬none(i)→
`

k≤m
done(i , k)) (8)

∧ (none(i)→
V

v∈ctr(i) v ↔ y) )

Equation (5) expresses that agenti will only do nothing if all his
guards are false; (6) says thati can only execute thek -th command
if the k -th guard is true; (7) expresses that if a flag is set indicating
that i executes thek -th command, then, indeed, this command is
executed, and thenone(i)-flag is not set to true, and, finally, (8)
expresses that eitheri does nothing, or he executes exactly one of
his guarded commands and that doing nothing implies keepingall
the “old” values fori ’s variables.

We are now in a position to definemimic(R):

^

i≤n

(t(init, i) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8))

Note that the size ofmimic(R) is polynomial inR, since we only
add a given number of new variables, where the number depends
on the number of local variables and the number of formulasψ

appearing at the right of a “:=” in any command, and each of the
conjuncts inmimic(R) is polynomial inR.

Now, suppose we have someS , q such thatS , q |= mimic(R).
The states ofS will not look exactly like the states ofSR, since



they will include propositional variables that will not be in SR (i.e.,
the new variables we introduced in the translation). But neverthe-
less, the properties of agents – their abilities, with respect to the
propositional variables ofR – must be the same in theATS S that
satisfiesmimic(R) as inR. In short: the modelS must preserve
the truth ofATL formulae overR.

Returning to the main concerns of the paper, we now see the
relevance of this construction.

THEOREM 1. The ATL model checking problem forSRML is
polynomial-time reducible toATL unsatisfiability.

PROOF. LetR be the givenSRML system, andϕ be the formula
we want to check. Then the following are equivalent:

1. R |= ϕ

2. mimic(R)→ ϕ is valid in ATL .

The rationale for stating this result will become clear in the fol-
lowing:

THEOREM 2. TheATL model checking problem forSRML mod-
els isEXPTIME-complete.

PROOF. Membership ofEXPTIME follows from the fact, proved
in Theorem 1, that theATL model checking problem forSRML is
polynomial time reducible toATL unsatisfiability. Since theATL

satisfiability problem isEXPTIME complete [7, 25], thenATL un-
satisfiability is in co-EXPTIME; but sinceEXPTIME is a determin-
istic complexity class,EXPTIME = co-EXPTIME, and we conclude
that theSRML model checking forSRML is in EXPTIME.

We proveEXPTIME-hardness by reduction from the problem of
determining whether a given player has a winning strategy inthe
two-player gamePEEK-G4 [24, p.158]. An instance ofPEEK-G4 is
a quad:

〈X1,X2,X3, ϕ〉 where:

• X1 andX2 are disjoint, finite sets of Boolean variables, with
the intended interpretation that the variables inX1 are under
the control of agent 1, andX2 are under the control of agent
2;

• X3 ⊆ (X1 ∪ X2) are the variables deemed to be true in the
initial state of the game; and

• ϕ is a propositional logic formula over the variablesX1∪X2,
representing the winning condition.

The game is played in a series of rounds, with the agentsi ∈ {1, 2}
alternating (with agent 1 moving first) to select a value (true or
false) for one of their variables inXi , with the game starting from
the initial assignment of truth values defined byX3. Variables that
were not changed retain the same truth value in the subsequent
round. An agent wins in a given round if it makes a move such that
the resulting truth assignment defined by that round makes the win-
ning formulaϕ true. The decision problem associated withPEEK-
G4 involves determining whether agent 2 has a winning strategyin
a given game instance〈X1,X2,X3, ϕ〉. Notice thatPEEK-G4 only
requires “memoryless” (Markovian) strategies: whether ornot an
agenti can win depends only on the current truth assignment, the
distribution of variables, the winning formula, and whose turn it is
currently. As a corollary, if agenti can force a win, then it can
force a win inO(2|X1∪X2|) moves.

Given an instance〈X1,X2,X3, ϕ〉 of PEEK-G4, we produce an
instance ofSRML model checking as follows. For each Boolean
variablex ∈ (X1 ∪ X2), we create a variable with the same name
in our SRML model, and we create an additional Boolean variable
turn, with the intended interpretation that ifturn = ⊤, then it
is agent 1’s turn to move, while ifturn = ⊥, then it is agent 2’s
turn to move. We have a modulemove, the purpose of which is to
control turn, toggling its value in each successive round, starting
from the initial case of it being agent1’s move.

module move controls turn

init
[]⊤ ; turn ′ := ⊤
update
[]turn ; turn ′ := ⊥
[](¬turn) ; turn ′ := ⊤

For each of the twoPEEK-G4 playersi ∈ {1, 2}, we create an
SRML moduleagi thatcontrols the variablesXi . The module
agi is as follows. It begins by deterministically initialisingthe val-
ues of all its variables to the values defined byX3 (that is, if variable
x ∈ Xi appears inX3 then this variable is initialised to⊤, other-
wise it is initialised to⊥). Subsequently, when it is this player’s
turn, it can non-deterministically choose at most one of thevari-
ables under its control and toggle the value of this variable; when it
is not this player’s turn, it has no choice but to do nothing, leaving
the value of all its variables unchanged. The general structure of
ag1 is thus as follows, whereX1 = {x1, . . . , xk}.

module ag1 controls x1, . . . , xk

init
// initialise to values from X3

[]⊤ ; x ′
1 := . . . ; xk := . . .

update
[]turn ; x ′

1 := ⊥
[]turn ; x ′

1 := ⊤
. . .

[]turn ; x ′
k := ⊥

[]turn ; x ′
k := ⊤

[]⊤; skip

Notice that an agent can alwaysskip, electing to leave its vari-
ables unchanged; and, if it is not this agent’s turn to move, this is
theonly choice it has.

The SRML system under consideration contains just these three
modules. It can be shown easily that player 2 has a strategy for ϕ in
the PEEK-G4 game〈X1,X2,X3, ϕ〉 iff the SRML system satisfies
the formula〈〈2〉〉(¬ϕ)U (ϕ ∧ turn).

There are several small points of interest about this proof.First,
notice that the reduction used forEXPTIME-hardness requiresonly
a fixed number of agents(three). Thus we have the following,
stronger result:ATL model checking forSRML models isEXPTIME

complete for any fixed numbern of modules, wheren ≥ 3. Sec-
ond, notice the form of the guarded commands used in the reduc-
tion: on the rhs of any guard, we only change the value of at most
one variable. Thus, again, we have a stronger result:EXPTIME

hardness even when guarded commands are assumed to be of this
particularly impoverished form.

Next, we turn our attention to significant subsets ofATL : first,
Coalition Logic, the fragment in which the only temporal modality
allowed is “ f” [19, 21, 9].

THEOREM 3. The Coalition Logic model checking problem for
SRML models isPSPACE-complete.



PROOF. We first provePSPACE-hardness, by reducing the prob-
lem of determining the truth of Quantified Boolean Formulae (QBF) [18,
pp.456–458] to that of Coalition Logic model checking against
SRML models.

An instance ofQBF is given by a formula

∃x1∀x2 · · ·Qkϕ(x1, x2, . . . , xk )

wherex1, . . . , xk are Boolean variables, the quantifierQk is ∃ if
k is odd, and∀ if k is even, andϕ(x1, . . . , xk ) is a propositional
logic formula over the variablesx1, x2, . . . , xk . Such a formula is
true if there exists a valuation forx1 such that for all valuations
for x2, . . . , such that the formulaϕ(x1, x2, . . . , xk ) is true. We
proceed to create anSRML system containing three modules,move,
ag∃, ag∀, the variablesx1, x2, . . . , xk , and, in addition,k variables
m1,m2, . . . ,mk , such thatmi will be true if we are about to assign
a value for variablexi .

The moduleturn simply passes the value⊤ along each of the
variablesm1,m2, . . . ,mk in turn.

module turn controls m1, . . . ,mk

init
[]⊤ ; m ′

1 := ⊤,m ′
2 := ⊥; . . . ,mk := ⊥

update
[]m1 ; m ′

1 := ⊥;m ′
2 := ⊤

· · ·
[]mi ; m ′

i := ⊥;m ′
i+1 := ⊤

· · ·
[]mk−1 ; m ′

k−1 := ⊥;m ′
k := ⊤

Notice that at most one of the variablesm1,m2, . . . ,mk will be
true at any given time.

We define the modulesag∃ as follows. This modulecontrols
all odd numbered variables. On even rounds, the module simply
skips, leaving the values of its variables unchanged. On odd num-
bered roundsi , 1 ≤ i ≤ k , the module will have two choices:
make variablexi true or makexi false.

module ag∃ controls . . .// odd numbered variables
init
[]⊤ ; skip

update
[]m1 ; x ′

1 := ⊥
[]m1 ; x ′

1 := ⊤
[]m2 ; skip
[]m3 ; x ′

3 := ⊥
[]m3 ; x ′

3 := ⊤
[]m4 ; skip
. . .

We defineag∀ similarly, swapping “even” for “odd”. Noting that
(i) the moduleturn plays no part in determining the value of vari-
ables other than the move variablesm1, . . . ,mk ; (ii) when it is
playeri ’s turn in roundj , then the only choicesi has are to assign
truth or falsity to variablexj ; (iii) when it is not playeris turn in
roundj , thenj must leave all its variables unchanged; (iv) that the
construction is clearly polynomial in the size of the input formula.

TheQBF instance∃x1∀x2 · · ·Qkϕ(x1, x2, . . . , xk ) is true iff the
theSRML system above satisfies the formula

〈〈ag∃〉〉 f¬〈〈ag∀〉〉 f¬ · · ·ϕ(x1, x2, . . . , xk ).

To see that the model checking problem is decidable inPSPACE,
we present an algorithm for deciding the problem that works in
polynomial space: see Figure 1. The algorithm takes as inputan

1. function eval(ϕ,R) returns ⊤ or ⊥
2. θ := ∅
3. for each θ-enabled initial j.g.c. 〈γ1, . . . , γn 〉 for Σ do
4. if not aux(ϕ, θ ⊕ {γ1, . . . , γn},R) then
5. return ⊥
6. end-if
7. end-for
8. return ⊤
9. end-function eval

10.function aux(ϕ, θ,R) returns ⊤ or ⊥
11. if ϕ ∈ Π then
12. if ϕ ∈ θ then return ⊤ else return ⊥ end-if
13. elsif ϕ = ¬ψ then
14. return not aux(ψ, θ,R)
15. elsif ϕ = ψ1 ∨ ψ2 then
16. return aux(ψ1, θ,R)
17. or aux(ψ2, θ,R)
18. elsif ϕ = 〈〈C 〉〉 gψ then
19. for each θ-enabled update j.g.c. 〈γ1, . . . , γl 〉 for C do
20. flag := ⊤
21. for each θ-enabled update j.g.c. 〈γl+1, . . . , γn 〉 for Σ \ C do
22. if not aux(ψ, θ ⊕ {γ1, . . . , γl , γl+1, . . . , γn},R) then
23. flag := ⊥
24. end-if
25. end-for
26. if flag then return ⊤ end-if
27. end-for
28. return ⊥
29. end-if
30.end-function aux

Figure 1: A polynomial space algorithm for checking Coalition
Logic formulae againstSRML models.

SRML systemR, and a formulaϕ of coalition logic to check against
this system. The algorithm is in two parts: the first part (thefunc-
tion eval(· · · )) generates each initial state of the system in turn
from the initial guarded commands of the modules comprisingR,
and then invokes the auxiliary functionaux(· · · ) to check whether
the inputϕ is true in these initial states. Theaux(· · · ) function
is recursive; we note that the number of recursive calls willbe
bounded by the size of the input formulaϕ, with each call requiring
only polynomial space. Termination and correctness are immediate
from construction; it only remains to note that we can loop through
the enabled initial guarded commands (lines 3–7) and the enabled
update guarded commands (lines 19–23) in polynomial space.

So, under standard complexity theoretic assumptions, model check-
ing Coalition Logic againstSRML models is “easier” than fullATL .
Suppose we consider other restrictions on the logic that we check.

THEOREM 4. The propositional logic model checking problem
for SRML is co-NP-complete.

PROOF. For membership, simply note that we can universally
select all initial j.g.c.s〈γ1, . . . , γm〉, and check that if〈γ1, . . . , γm〉
is satisfied by the empty truth assignmentθ∅, then the interpretation
θ∅ ⊕ {γ1, . . . , γm} satisfiesϕ. For completeness, we can reduce
the problemTAUT, of checking that a propositional logic formula
is a tautology, i.e., satisfied under all truth assignments.For each
Boolean variablex appearing in the input instanceϕ, we create an
agent controllingx , with two initial guarded commands, both en-
abled by the empty assignmentθ∅, which setx to⊤ and⊥ respec-
tively. The formula to be checked against this system is simply the
TAUT instanceϕ. The initial states of the system thus constructed



correspond to all valuations of the variables ofϕ, and henceϕ is a
tautology iffϕ holds in all initial states of the system.

5. DISCUSSION
In this paper, we have shown that, for three important subsets

of ATL (including ATL itself), the model checking problem has ex-
actly the same complexity as the corresponding theorem proving
problem, assuming that models are represented usingSRML, a sim-
plified version ofRML [1]. This seems to us to be a striking result:
practicalmodel checking forATL and Coalition Logic has the same
complexity as theorem proving for these logics. We note thatothers
have pointed out thatATL model checking is more complex than it
might appear [13], and other results hint that practicalATL model
checking might be more complex than it appears at first sight [5, 6]:
we have obtained tight bounds on the complexity of these problems
for a specific, practical representation for models.

It is important to note that theSRML language isnotcontrived: it
is a strict subset of theRML language that is used by several prac-
tical model checking systems, includingMOCHA, the ATL model
checker [3]. Indeed,SRML is arguably the smallest “useful” subset
of RML that one can imagine: it is hard to imagine how one could
simplify it without making it unusable in practice. It is also worth
noting that the guarded command structures used to defineSRML

models are also used (modulo syntactic differences) for thesame
purpose in other model checking systems such asSPIN [12] and
SMV [17].

We note that one of the motivations for developing the Coalition
Logic of Propositional Control (CL-PC), a simpler modal variation
of ATL [11], was that the structure of controlled variables in lan-
guages likeRML permitted a more direct (and simpler) semantics
to cooperation modalities. This link – between the interpretation of
cooperation modalities and the languages used to define models –
is worth exploring further.
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