Reasoning about Action and Cooperation

Luigi Sauro Wiebe van der Hoek
Jelle Gerbrandy Michael Wooldridge
Dipartimento di Informatica Department of Computer Science
University of Torino, Italia University of Liverpool, United Kingdom
jelle@gerbrandy.com wiebe@csc.liv.ac.uk
sauro@di.unito.it mjw@csc.liv.ac.uk
ABSTRACT the best known example [7]. A basic issue in such logics is the

construction of complex programs from simpler ones. Typical con-
jstructs to build complex programs include sequential composition,
non-deterministic choice and tests. However, there are limits to
what one can say in such logics. For example, in stanelardone

We present a logic for reasoning both about the ability of agents to
cooperate to execute complex actions, and how this relates to thei
ability to reach certain states of affairs. We show how the logic can
be obtained in a modularised way, by combining a model for rea- o . ;
soning about actions and their effects with a model that describes cannot express that an actiomist e_xecuted; noris nqt straightfor-
what actions an agent can perform. More precisely, we show how Ward to say that one complex actisabsumesor impliesanother.

one can combine an action logic which resembles Propositional Last but not least, although there is a notion of concurrenepin
Dynamic Logic with a cooperation logic which resembles Coali- all processes are expected to b_e have as specified by .t.h € program
tion Logic. We give a sound and complete axiomatisation for the under consideration, and there is no notion of competition or co-

logic, illustrate its use by means of an example, and discuss possi-CPeration, and hence no need to expnes® can achieve some-
ble future extensions to it. thing. Building on work inPDL and related formalisms, some early

attempts in the multi-agent systems community to formalise the
ability of agents to execute plans and bring about states of affairs

Categories and Subject Descriptors include [8, 14, 9].

1.2.11 [Artificial Intelligence]: Distributed Avrtificial Intelligence— The question ofwho can achieve some state of affairs has re-

coherence and coordination, multiagent systems ceived much less attention within tiae and logic community. Al-
though Moore presented a modal analysis of ability as long ago as

General Terms 1977 [11], and a number of other authors built on this work over the
intervening three decades, it is only recently that the logical anal-

Theory ysis of ability has entered the mainstream of multi-agent systems
research. Two closely related formalisms have received particu-

Keywords lar attention: the Alternating-time Temporal Logiet(, [1]), in

which one can express that a coalition can enforce a certain tem-
poral property, and Coalition Logic ([12]), in which the basic ex-
pression states that a coalition is effective for some outcome. An-
other closely related formalism is the Coalition Logic for Proposi-

1. INTRODUCTION tional Control €L-Pc, [15]), where the propositional atoms under
When reasoning about cooperation in multi-agent systems, atthe control of an agent determine what he, or any coalition he is
least two questions seem importavithocan achieve some state of @ member of, can achieve. All these approaches revolve around

affairs andHow can they obtain it? Historically, the latter question @ model in which a set of agents, who may have conflicting in-
has received far more attention than the former. Inathplanning terests, may or may not work together to obtain a certain state of
community, for example, it is known as the means-ends reasoningaffairs. Central is the notion of so-calledability: the capability
problem, and indeed thel planning project is directed at devel- of a group of agents to enforce a certain state of affairs, no matter
oping computer programs that can answer it efficiently [4]. In the what actions the other agents take. As in [15], we will call such
logic community, the question has been studied largely through the logics Cooperation Logics
medium of action and program logics, of whielbL is perhaps Notice that in all of these approaches, the ability of groups of
agents to obtain a state of affairs is modeled without an explicit
representation ofiow these agents obtain them. In other words,
these logics do not represent actions and plans in the object lan-
Permission to make digital or hard copies of all or part of this work for guage, even though in some cases, actions or choices are present in
personal or classroom use is granted without fee provided that copies arethe underlying semantics. However, sucheaplicit representation
e oo o ot b1 of ation nth Objectlanguzge Is mportat n many domai. Fo
republish, to post on servers or to redistribute to lists, requires prior speriific example, Certal_n a_ctlons may be more costly tha_n others, _and the
permission and/or a fee. costs may be distributed among the agents helping to achieve the
AAMAS'06May 8-12 2006, Hakodate, Hokkaido, Japan. goal according to the actions they perform. Also, in some situa-
Copyright 2006 ACM 1-59593-303-4/06/0005$5.00.

Agent and multi-agent architectures, Cooperation and coordination
among agents, Logics for agent systems, (Multi-)Agent planning

tions, it seems a good heuristic to formulate a plan before organis- that one of the interesting technical developments of our work re-
ing a coalition to execute it [16, 13]. Finally, using such a language lates to the fact that the completeness result focthabinedogic

for verification of a MAS would not only provide the user — or s straightforward given the completeness of the two logics of the
indeed, the agents themselves— with a pthat a desired goal of underlying modules. We see this as indicative of the success of the
the system can be achieved, but it would also explicitly capture a modularisation approach we adopt in this paper, and a good indica-
plan of how to achieve it. tion that it might be usefully applied elsewhere.

In this paper, we are interested in how the ability to obtain a state Section 3 is devoted to an example, illustrating how the logic can
of affairs relates to the ability to execute certain, possibly complex, be used to represent properties of a multi-agent system. The exam-
and possibly collective, actions. We develop a logic that combines ple is a scenario in which agents in a coalition can collectively set
operators from cooperation logics with an explicit representation variables which they are unable to change on their own. Section 4
of actions. We achieve this by dividing the problem in two parts: a indicates a few of the many possible extensions to our multi-agent
logic for reasoning about actions and their effeédg dynamic system, and Section 5 concludes.
logic) together with a variant of coalition logic to reason about

(groups of) agents and the actions that they can perform. Inmore2 ACTION AND COOPERATION
detail, we study multiagent systems that consist of two separate) . .
In our setting, a multiagent system is composed of imamules

parts: anenvironment moduléhat describes actions and their ef- one module describes thgentsin terms of the actions they can ex-
fects, and amgents moduléescribing how the agents can interact ; . - Y
ecute, another describes taievironmenthat is populated by these

with the environment by performing certain actions. agents, and in particular the effects of performing certain actions
We use the agents module to represent the ability of a coalition 9 ' P P 9)

G to executecertain type of actions. Wheygis a joint action (i.e., 2.1 The environment module
it denotes a set of actions to be executed concurrently), we write
(@) B to indicate that coalitiort? can execute the complex action
B. In the environment, then, we can reason about the effect o
actions using our environment logic, and write, for exaniple

for ‘every successful execution gfresults in state wherg s true’

There are many ways of modeling an environment. One very
f general way to model actions and their effects is by using a La-
beled Transition System (LTS) [6, 2, 10]. An LTS is a directed

graph in which the edges are labeled by elements from a set of
atomic actions and the vertices are labeled with sets of proposi-

(Cf'i'EeDl_c)éo eration modality of Coalition Logic expresses the abil- tional variables. Edges are called transitions, the vertices are called
P 9 P states. The idea is that if a statés connected to another state

ity of a group to obtain a certain state of affairs. This kind of expres- o . . . ;-
sion can now be analysed using the two modules described above:by a transition labeled with an actian this means that’ is a pos

- . sible result of executing actionin states. The sets of variables at
a groupG of agents has the ability to obtain a state of affairs " .
o2 : . o each end of the transition tell us how the performance of the action
just in case there exists a plgrthatG is able to execute, which is

guaranteed to result i, changes the state of the environment, in terms of the propositions

. that change value.
Such an approach presumes that the effect of actions can be mod One of the drawbacks of this basic LTS model is that it does not

eled more or less independently from the behaviour of the agents : ; - ; .
: . . allow for modeling concurrency directly: there is no straightfor-
that perform these actions. This approach seems applicable to man ’ . .
ard way to model the fact that performing certain actions together

real life scenarios. For example, an environment may be a commu- mav have a verv different effect than performing each of them se
nication channel via which agents send and receive messages. Orara¥ely y P 9 P

the environment may be a Database Management System, defining In the present context, we are interested in the way that the choice

actions and constraints in a general way, and the agents are users . : .
- . of actions of different agents interact, so we propose to model the
querying and updating the database.

Separating actions from the agents that perform them is not only effect of actions being performed concurrently directly in the model.

practical from an operative viewpoint, but from a logical standpoint We do this by labeling the transitions not with single actions, but

. with setsof actions. Intuitively, a transition labeled with a set of
as well. It allows us to break up the problem of reasoning about actions A represents the effect of executing exactly those actions
planning in a multi-agent environment into two sub-problems, and P g y

to study the logic of each of these ‘modules’ in isolation before together, and no others. This approach to deal with concurrency is

putting them together. This approach is also interesting, because its'mIlar to that taken in [5].

f'allow_s us to ‘reuse’ existing logics and exploit them as ‘modules’ DEFINITIONL (ENVIRONMENT MODULE).

ina r|che_r system. . - An environment module Env isSet-Labeled Transition System
In Section _2we will prese_nt the t\/_/o building blpcks of our frame- (SLTS) is a tuplés, Ac, (—) ac ac, P,) where:

work. In section 2.1 we define a logic for the environment, in which =

one can reason about the effect of executing joint actions. The lan- 1. S is a set of states.

guage can express that an action is not taken, but also, in a natural) o)

way, compares joint actions in relative 'strength’: if the joint action 2. Acis afinite set of actions.

[is stronger thanmy, then we also have that whatever is true as a

result ofa, is true when executing. We then (in section 2.2) de-

fine our agents’ module, in which thkeability of coalitions can be 4. Pis a set of propositional variables

expressed — but now, not with respect to states of affairs that can

be reached, but for joint actions that can be guaranteed. .m: (8 x P) — {1,0} is an interpretation function that
Section 2.3 puts these blocks together in a module called a multi- assigns to each state and each propositional variable a truth

agent system. Here, we defi(&)) ¢, the a-ability of coalitionG value.

to bring about state of affaiks, in terms of{G)« and a]¢. Apart We require that the accessibility relations 4 are serialfor each

from the completeness results for the separate building blocks, Whiclget of actionsd. i.e.. that for each statethere is always as’ with
we judge to provide insight in the systems themselves, we believeS s e y O

w

. ForeachA C Ac, — 4 is arelation overs.

(4]

A states is characterised by the propositional variables that are As usual we writeEnv |=° ¢ when for all states € S, Env, s =°
true and false in it, as given by(s), and by the possible effects ¢. For example, ifa is an atomic action, thefu]¢ is true just in
of executing combinations of actioasconcurrently, as defined by case executing will always result in a state wherg is true, no
the accessibility relations- 4. We will refer to a set of actions matter what other actions are performed concurrently.

A as aconcurrent action Actions may benon-deterministicin A sentencg—a]¢ expresses thatot doing a will always result
the sense that the outcome of performing a set of actions may notin a state where is true — performing any concurrent action that
always determine a unique result. does not involve: will results in a state wherg is true.

To reason about actions and their effect inqrrs, we use a In a precise sense, the formiitg ¢ expresses that being of type

language that is similar to that of Propositional Dynamic Logic. « is a sufficient condition for a set of actions to guarantee ¢Hae
PDL has a language that consists of two parts: an action languagetrue; the formulgd—«a]—¢ expresses that doing an action of type
to describe actions, and a ‘static’ language to describe propertiesis anecessargondition for reaching a state whepes true — if the
of states. However, rather than directly incorporating the program action is not of typex, for all the states in which the system will
constructs oPDL, we useBoolean combinationsf atomic actions resulte is false.
to reason about sets of actions. The logic that results from this semantics is given by the follow-
ing set of axioms and rules.
DEFINITION 2 (ACTION EXPRESSIONS.

Given the set of atomic actionéc, the set ofiction expressions DEFINITION 6 (ENVIRONMENT LOGIC). _
is defined by the grammar: Theenvironment logi¢-°) has the following axioms
az=alanhal-a 1. All axioms of propositional logic
wherea € Ac. 2. [o)(¢ — ¢) — ([a]¢p — [a]y) for eacha (distribution)

w

To interpret this action language, we define a relatieh be- . All axioms of the fornfn]¢ — [B]¢, if = 8 — « in proposi-
tween subsets olc and action expressionsl =" « is to be read tional logic.

as ‘concurrent action is of typeca’, or ‘ « is true of A’. o
4. ([a)¢ A [B]o) — |a Vv B¢ (additivity)

DEFINITION 3 (INTERPRETATION OF ACTIONS). 5. =[a]—T if o is consistent in propositional logic (seriality)

1. AP aiffac A 6. [1] L
P i p
2. AEP —aiff AP o Rules:

3. AFP aABIff AR aandA = 8. 1. from-¢ ¢ andk¢ ¢ — 1, deriver-© +» (modus ponens)

So, for example, the concurrent actifm b} is of typea A —c, but 2. from+° ¢, derive* [a]¢ (necessitation for each action
it is not of type—b. Formally, the action language is of course sim- expressiony)

ply classical Boolean propositional logic, with Boolean variables
corresponding to atomic actions. We can define additional connec-We writeX ¢ ¢ if ¢ can be derived from the set of senten&es

tives, such as or —, in the usual way. using these rules and axioms.
DEFINITION4 (LANGUAGE OF ENVIRONMENT LOGIC). Axiom 2 and the rule of necessitation state that [daoperators
Given a set of actiond ¢ and a set of propositional variableB, are normal modal operators. Axiom 3 says thaf iimplies « in
the language of environment logic is given by: propositional logic, then, if an-action always results in @ state,

then ag-action will as well (since anys-action is ana-action).
Axiom 4 says that if allv-actions and alB-actions result in a state
pu=ploANd| 9| [a]o whereq is true, then also atk\ 3-actions will. Finally, the seriality
axiom reflects that any consistent combination of actions will lead
to some resulting state.
This logic is sound and complete with respect to the semantics.

wherep € P, anda is an expression of the action language.

In effect, the resulting language is Boolean Modal Logic [3]. The
truth of sentences of environment logic is defined in the standard

PROPOSITION7 (SOUNDNESS AND COMRETENESS.
way, as follows.

Environment logic is sound and complete with respect to envi-

DEFINITION5 (SEMANTICS OF ENVIRONMENT LOGIQ. Let ronment models.

Env = (S, Ac, (—)acac, P,m) be a SLTS, and is a state inS. Fe ¢ iff Envi=° ¢ for each environment model Env
Truth of sentences of the language of environment logic is defined
inductively as follows: proof: We give the main steps of a proof. Construct a canonical
model in the usual way, by taking maximal consistent sets of the
1. Enys ¢ piff w(s,p) = 1 logic as states in the model. The followitiyith lemmaholds for

each maximal consisteit:
2. Enys =° ¢1 A @2 iffEnv, s =° ¢1 and Envs =° ¢s.

, .) ¢ € Xiff 3 E° ¢ in the canonical model
3. Enys =° ¢ iffEnv, s £° ¢

i) ,) So, supposéa]yy € 3. We need to show that =° [a]y. If
4. Enys =° [a]g iffforall AC Acands’' € S,if A " a a is not consistent this holds trivially. So, assume that>4 I’

ands — . s" then Enys’ |=° ¢. for someA such thatd =7 «. Theny € T' by definition of the

canonical model, and by induction hypothedisi=° . Sincel’
was arbitrary, it follows that =° [a]y

DEFINITION9 (ABILITY FOR ACTIONS).
Let (Ag, Ac, act) be an agents module, & C Ag be a set of

For the other direction. Before proving the general case, we first agents.

consider the case where our action expression is of the form=
ANAAN{—a]|a€ Acanda ¢ A} for some set of actiond.

Suppos€a]y ¢ 3 for someA. With axiom 2 and the con-
sistency ofY, this means thafy | [aa]x € X} U {—¢} is con-
sistent. This set can be extended to a maximal consistefwe
show that — 4 T'. To see this, take an arbitrajgt]x € X such
that A =" a. Then, in propositional logidc a4 — «, and by
axiom 3, it must hold thafaa]x € X. But then, by construction
of T, x € T'. Putting everything together, we have that— 4 T,
A EP a4, and, by induction hypothesi$, ~° ¢. We conclude
thaty p£¢ [aaly

Now we move to the general case. Suppose ¥hat*® [a]y
for arbitrary a. If « is not consistent, then we can use axioms
6 and 3 to conclude thdt]+ is in 3. If « is consistent, then
the sentencex is equivalent in propositional logic to the sentence
a¥ :=\/{aa | A E" o}. Clearly, we have thaf =° [«"]+; and
also that, for axiom 32 |=° [aa]v for eachA such thatd =P «
By the previous argument, we have that1]i) € X for eachA
such thatd =" a. With axiom 4, it follows then thafn¥] € 3.
We can now use axiom 3 and the fact that — «, and conclude
that[a]y € X. O

So, what we have now is a dynamic logic in which we can rea-
son aboutoncurrentactions. That is, we have a way of reasoning
about the effect of performingombinationsof actions, as well as
about the effect ohot performing certain actions. This dynamic
logic will serve as the environment module of our multi-agent sys-
tem. We will now proceed to define the agents that will populate
this environment.

2.2 Agents Module

Agents are identified with the set of actions that they can per-
form.

DEFINITION8 (AGENTS MODULE).

Given a set of agentslg and a set of actionsic, an agents
module is a tuple(Ag, Ac, act), whereact is a function g +—
P(Ac) that assigns to each agent subsetct(z) of actions from
Ac.

We require that J,_ ,, act(i) = Ac.
We will abuse notation somewhat, and wriset’ as apars pro toto
for (Ag, Ac,act). We denote withact(G) the setl J, ., act(s) of
actions that the grou@ of agents can perform.

To represent the ability of agents to perform actions of a certain
type, we will use some notation from cooperation logic. For an
action expressiom, a sentence of the forf{G))a expresses the
fact thatG has the power to bring it about that a set of actions of
typea will be performed; we say tha¥ is effective for, thatG is
able to enforcey, or simply thatG is able to dox. It is important
to note thatx here is an action type: we are dealing with the ability
to carry out a complex actigmot the ability tobring about some
state of affairs

A group G is able to enforcex exactly if there is a subset from

the actions under their control that, no matter what actions the other

(Ag, Ac,act) E* (G)«iff there is anA C act(G) such that for
all B C act(Ag \ G) itholds thatAU B E? «

So, for example, ifict is an agents module in which an agéoan
execute action, thenact =* {({i}))a: ¢ can enforce.. However;
can only enforce-a if he is the only one that can executeact =*
{({#}))—a only if a & act(j) for any j other thani. Similarly,
act =? (G))(a A —b) exactly when at least one agent@hcan
executez, while no agent outside a¥ can dob.

DEFINITION 10 (COALITION LOGIC FOR ACTIONS).

The coalition logic for actions is given by the following axioms,
together with all axiom schemes of propositional logic, and modus
ponens. We denote derivability in this logic with.

1. (G)T,forall GC Ag

2. (Gha — =((Ag\ G)~a

3. (GYa — (G)pif F a — Gin propositional logic.
4

(UGYan(G2)B) — (G1 U Ga)(ang)forall Gi, G2 C
Ag such thats NGz =

AGha = Ve ({i})a, forall GC Ag and atomica € Ac

. ((GYan{(G)B) — (G)(anp) if a andB have no atomic
actions in common.

. (G)—a — {G))a for atomica € Ac.

A(Gha — V{(GHY A ® | @ is a set of literals such that
N®— a}

(4]

An explanation of some of the axioms is in order.

The first axiom states that any group of agents is able to enforce
some trivial action. Axiom 2 is typical of cooperation logics, and
states that if a groui? is able to enforce an action, then the
agents outside that group cannot enforce that an action that is not
of type a will happen. This follows directly from the definitions.

Axiom 3 says that if a group of agents is able to enforcexan
action, and alkx-actions are also of typ#g, then(is also able to
enforce g3-action. Note that the axioms 1 and 3 give us a kind of
necessitation, even for actionsuliis a classical tautology, then we
also have-* (G)a.

Axiom 4 states that if two independent groups of agents have
the ability to enforce, respectively, actions of typand of types,
then they can combine forces to enforcenang-action. This holds
only if the two groups are disjoint: if this is not the case, and the
two groups have an agent in common, say agetiten it may be
thats needs to execute actiarto (help) enforcey, while he needs
to refrain from doinga to enforces: there is no single choice of
actions that guarantees that\ 5 will happen.

Axiom 5 says that if a group of agents has the ability to enforce
an atomic action, then at least one of them must have that ability by
himself.

Axiom 6 says that if a group can enforce actienandj3, anda

agents choose, is such that the resulting concurrent action is of typeand 3 involve completely different atomic actions, then the group

Q.

The way the semantics is defined is similar to that of the Coali-
tion Logic of Propositional Control of [15], except that we explic-
itly allow for different agents to ‘control’ the same action.

can also enforca A 3 (by choosing the actions needed to guarantee
« and performing them together with those that guarafijee

The validity of axiom 7 is a consequence of the assumption in
definition 8 that any atomic action can be executed by at least one
agent. It says that if a group of agents can guarantee tregtbamic

action isnot performed, then one of the agents in that group must 1. (S, (—as) ac ac, P, m) is an environment (in the sense of def-
be able to execute that action. inition 1).

Axiom 8 says that if a group of agents can perfornmaaction, . . -
then there must be a set of literals (that is, formulas of the foom 2. (Ac, Ag, act) is an agent module (in the sense of definition
—a) that together implyy, that they can enforce —that is, there must 8).

be a ‘I’ecipe' that tells them which actions to execute and which not Of course, everything that we could express with the |anguages we

to execute, that guarantees thatesults. used to talk about the environment and about the capabilities of
PROPOSITION11 (SOUNDNESS AND COMRETENESS. the agents remains interesting in the combined system as well, so
Coalition logic for actions is sound and complete with respect to @ 10gic for reasoning about a multi-agent system should include
agent models. both. But in the new, more complex_system, there are other notions
of interest that did not make sense in the separate modules.
proof: Soundness is relatively straightforward. To prove complete- | particular, we are interested in the more standard operators of
ness, we define, given a maxintel-consistent set of sentences coalition logic that reason not about ability to enforce complex
a functionact for which the following truth lemma holds: tions, but ability to enforce certairesults We will overload the op-
act =% ¢iff p € erators{(G)) for this purpose, and add sentences of the f@(&)) ¢

to the language, wherg can be any sentence. IntuitivelyG)) ¢
means that the agents @ have the power to obtain a state where
¢ is true.

This leads to the following definition of a language for multi-
agent systems:

which gives us an immediate completeness result. We dedine
by settingact(i) = {a | {i))a € X}. Note that with axioms 4 and
5, we have for atomic actionsthata € act(G) iff (G)a € 3, a
fact that we will use in the proof.

Before proving the truth lemma, we define, for a group of agents
G and a set of actiond C act(G), the setd(A, G) to consist of du=p|loNd| ¢ |[ald]| (Gha | (Ghe
all literals AU {—a | a € act(G), a ¢ Aanda & act(4g \ G)}.
The sentenc@(A, G) characterises exactly those possible courses
of action that might result whe@ chooses to dol.

We prove the truth lemma by induction @h where the only

wherep € P, anda is an expression of the action language, as
in definition 2. The satisfaction of formulae of the tyfié/)) ¢ is
defined as follows.

interesting case is the one whefrés of the form((G)) . DEFINITION 13 (ABILITY).

Suppose first thadct = (G))a. That means that there is an MaS s ™ (G)é iff there is a set of actionsl C act(G, s)
A C act(G) such thatfor allB C act(Ag \ G) : AUB " a. such that for allB C act(Ag\ G) and for all states, if s —aus t,
Clearly, thenf- A ®(A, G) — « in propositional logic. then MaSt =™ 6.

By definition of act, it holds that{(G))a € X for eacha € A.
Similarly, we have for each ¢ act(A4g\G) that{{4g \ G))a € %, So, ((G)) ¢ is true in a certain state just in case the agents are
from which it follows with maximality and axiom 2 th#tG))—a € able to execute a concurrent action that guarantees, independently
3. Axiom 6 allows us to conclude th&G) A (A, G) € X, and from what the other agents do, the truthgof As for the environ-
by the monotony axiom 3 it follows th#{G))a € X. ment moduleMaSE"™ ¢ means that for alk € S, MaS s E™ ¢.

For the other direction, assume tha&))a € X. SinceX in- The following proposition provides a precise link between the
cludes axiom 8, there must be a set of literalsuch that\ @ ability to obtain a certain state of affairs, and the ability to execute
a € Yand(G) A ® € X. With axiom 3, we know that for each an action that is guaranteed to result in such a state. It states that a
of the literals! in @ it holds that(G))l € . group has the ability to enforce the truth of a sentence just in case

For positive literals:, we immediately have thatG))a implies it is able to enforce a concurrent action that is guaranteed to result
thata € act(G). in a state in which that sentence is true:

For negative literals-a, we have with axiom 7 thaf{G)) —a im- . .
plies thata € act(G). Moreover, for the negative literals we can O_BSERV_AT'ON 1‘_" Given a multi-agent system MaS and a state
use axiom 2 to conclude that¢ act(Ag \ G). s of its enwrglnment.

But this means thatct |=* (G)) A @, and since ® — a, that Mas s TL: (G ¢ iff there e>§L§ts an action expressienwith
act ':a <<G>>Oé 0 MaS§ s ': <<G>>Oé and MaS s ': [a]¢

. L proof: Assume thaMaS s ™ (G))¢, and letA be a witness
2.3 A multi-agent system —agents actinginan for this fact. The action expressiof ®(A,G) (the set of sen-
environment tences we used in the proof of proposition 11) is the witness we are

In the previous two subsections we defined a module describ- l0oking for: it holds thatMaS s =" (G)) A ®(4, G), and that
ing an environment, and a separate module describing the actiondMasS s =™ [\ ®(G, A)]¢.
that agents can choose to perform, either by themselves or together. For the other direction, let be such thaMaS s ™ (G)a
These two modules can be related by identifying the set of actions andMaS s =™ [a]#. By definition it follows fromMaS s ="
in the two respective modules. Such a combination provides us {(G))« that there must be a set of actiodsc act(G, s) such that
with a semantics for reasoning about agents that act in an environ-A U B =™ « for eachB C act(A4g \ G, s). Take thisA, and

ment by way of performing certain actions. take anyB C act(Ag \ G) andt such thats —aup t. Since
Formally, a multi-agent system is an environment together with AU B = a andMaS s =™ [a]¢, it must hold that =" ¢. So

an agent module that shares its action repertoire. MaS s =" (G))¢. u
DEFINITION 12 (MULTI-AGENT SYSTEM). The logic for the multiagent system obviously contains all ax-
A multi-agent system MasS is a tuple ioms we already had from the two separate models. To obtain a

(S, Ac, (—) Py, Ag, act) complete axiom system, it suffices to add just two axioms that re-
» AG T)Ac A 15T £, Ac late the ability to obtain a state of affairs with the ability to execute
where: concurrent actions.

DEFINITION 15 (COOPERATION LOGIC WITH ACTIONS.
The cooperation logic with actions,™, is given by:

1. All axioms and rules from the environment logic of section
2.1

2. All axioms and rules from the agent logic of section 2.2
3. ((Gha A [a]¢) — (G ¢ for eacha

4. (G)¢ — V{{GYaAa]¢ | ais the conjunction of a set of
action literals}

where ‘action literals’ are atomic actions or their negations-a.

The two new axioms relate the ability to execute actions with the
ability to enforce the truth of propositions, in the same way as is
done in observation 14.

PROPOSITION16 (SOUNDNESS AND COMRETENESS.
Cooperation logic with actions is sound and complete with re-
spect to action models:

F™ ¢ iff MaSE™ ¢ for all models MaS

proof: Soundness follows from the soundness of the two modules
and the previous observation 14.

Completeness is relatively straightforward with the complete-
ness results of sections 2.1 and 2.2. We first construct a nvatel
combining the constructions of the previous proofs in the straight-
forward way.

We need to prove a truth lemma stating tMaS X ™ ¢ iff
¢ € X. This is proven by induction om, leaving the proofs of
propositions 11 and 7 practically unchanged. The only interesting
case is the new operator. So suppose that

¢ is of the form{(G))+)

SupposeMaS ¥ =™ (G)vy. With observation 14, there is an
action expressiom such thatX ™ (G)a andX E™ [a]y.

By induction hypothesis and the previous two cases, we have that

{(G)a € X and[a]¢ € %, and therefore, with our axiom 3 and the
fact thatX is maximal, that{(G))¢ € .

For the other direction, assume th@#)):) € X. Then, with the
axiom 4 and maximality oE, there is a set of action literadssuch
that[A @]y € ¥ and that(G)) A ® in 3. We can conclude (by in-
duction hypothesis and the previous cases)hat™ [A @]y and
E E™ (G) A\ ®. We then use observation 14 again to conclude
thaty =" (G)v. O

Summarising, we have defined an environment as a Set-Labelled

Transition System, and definedraL-like logic for representing
the performance of complex actions in such an environment. We
gave a sound and complete logic for this logic. We then defined

agents as actors that can choose to do certain sets of actions, and

defined a sound and complete logic for reasoning about the ability

of groups of agents to enforce that a certain type of concurrent ac-

tion is executed. We then defined a notion of cooperative ability.
This modularisationof a multi-agent system paid off: it turned out
to be relatively easy to find a sound and complete axiomatisation
for the combination of these two logics.

3. AN EXAMPLE

changed by any agent. For another example, a website may accept
a request for information without further ado, but for accepting a
transaction with a credit card, it will need the consent of both the
customer and the credit card company. Similarly, a website such
as Ebay will accept advertisements that are submitted by a single
agent acting alone, but will not accept a transaction if this is not
confirmed by all parties involved.

All of these examples are instances of a case in which certain
variables are under control of single agents, while other variables
can only be changed by groups of agents acting together. We will
consider an instance of this schema, in which two agents control
two variables. To make the example concrete, we will talk about
prison guards that control two doors (see Figure 1). A prison is
composed of two interiors, a dormitory and a courtyard. One door
opens to the outside, and it is important that it is not opened by
accident. It can therefore only be opened if both guards act to-
gether; if it is open, each of the agents can close it at will. The
other door separates the cell block from the courtyard, and each
guard can open that door by himself. The fact that the inner gate
is open is expressed by a propositimnopen; if the outer gate is
open,out_open is true.

The state of the gates is ruled by four buttoms: b1, az andbs.

The gatein_open toggles its state if and only if at least one «f
andas is pressed. The outer gatet_open toggles its state if and
only if both b; andb, are pressed.

This description can be captured by an environment mBde|
with four states determined by the fact whether the gates are open
or not. For example, we will writ®1 for the state in which the
inner door is closed and the outer door is open. Each of the buttons
corresponds to an atomic action in the model, and the transitions are
as described (so, for example, it will hold thdt —,, 5,1 11).

With our environment language, we can express properties of the
environment such that the fact that the actigm b; A b2 ensures,
in the stateh0, that in the next state both the gates will be open:

Env, 00 E=° [a1 A b1 A bo](in_open A out_open)

Similarly, the fact that if the outer gate is closed, the achipnb,
is both a sufficient and necessary condition to open the outer gate
is captured by:

Env=® —out_open — ([b1Abz]out_openA[—(b1Abz2)]—out_open)

Two guards,gd, and gd,, control the buttons. The first guard

gd, has access to the buttons andb,, whereagyd,, has access to
a2 andbs. This situation can be captured by an agents model with
the same set of atomic actions as the environment, and a function
act such thatct(gd,) = {a1, b1} andact(gd,) = {a2,b2}.
We can express that the actibn can be executed only by the
guardgd, as((gd,))b1 A ={{gd,)b: (strictly speaking, we should
have written((gd,)) instead of(({gd, }), but we are omitting the
curly brackets for readability).

Together, the agents can push béthand b,, that is,act =*
{(gdy, gd5)) (b1 A b2). Analogously, both of them can, individually,
execute the disjunction af; andas: act =* ((gd,))(a1 V a2) A
(gd2)) (a1 V az).

Combining the environment and the agents modules in multia-
gent systenMaS we obtain a model of the guards controlling the

Often in a multi-agent system, certain variables can be changedprison.

only when two or more agents cooperate, while other variables can

For example, sincé; A bs is a necessary condition to open the

be changed by the agents acting by themselves. For example, auter gate, and each guagd, can prevent the execution 6f, it
database may contain crucial data that can be changed only with thefollows that both guards are needed to open the outer gate. In-
consent of all operators, while data of a lesser importance can bedeed, it holds thaMaS =™ —out_open — (—{(gd1))out_open A

gd1 gd2 such that, no matter what the other agentsdlwijll be true
in all the states along the resulting paths.

25 | .
. — 2. MaS s = (G))<¢ iff there is a strategy for the agents@h
\ !‘l iy | such that, no matter what the other agents do, will eventually
< AR result in a state wherg is true.
a1 b1 a2 b2 What we want to do is ‘decompose’ these notions into independent

[| statements about the environment and about the agent module, to
|:._| obtain a theorem similar to that of observation 14. We will focus on
| ; : the second construct: the ability of a coalitioneeentuallybring
: about some state of affairs.
: To express the type of actions that guarantee that some state will
and obtain at some point arbitrarily far in the future, we need a richer
action language. A more program-like language is suitable here,
in which we can express things like ‘continue doinguntil ¢ is
true.” One well-studied set of operators for expressing these kinds
of properties are those of Propositional Dynamic Logic [7]. We
obtain an action repertoire like the following:

or

dormitory courtyard

a,Biu=v7 ;B8]aUf]a”

where~ is a simple action expression (a Boolean combination of
atomic actions), as in definition 2 agds a sentence as in definition

4. These operators can be given their standard semantics, which we
do not repeat here.

Figure 1: The prison example. We will call these types of action expression ‘plans’, in confor-
mance with the usage we make of them. Now, what we are look-
ing for is the following type of ‘decomposition’ of the meaning of
{(G)<©¢ — which is defined in terms of strategies — into a state-
ment about the ability to execute a certain action and a statement
about the effect of this action, in a way that is similar to observation

inner gate outer gate

—({(gdz2))out_open)). Together, they can, indeed, open the door:
MaSE™ ((gd,, gd,))out_open. To escape, the prisoner will need
to take both of the guards hostage to open the outer door.

On the other hand, we want to be sure that when either one of
the guards notes that there’s a fire in the dormitory, he can open
the inner gate to let the prisoners into the courtyard. Since both
the guards are able to execute at least one of the acdtipasd
az, act = ((gd,) (a1 V a2) A {gd,)) (a1 V az), and an action of
type a1 V a2 opens the inner gat&nv =° —in_open — [a1 V
az]in_open, each of the guards has the power to open the inner gate

Let MaS consist of an agent modulet and an environment
module Env. Then:

MaS s = ((G)<¢ iff there is a plana such thatG has the
ability to performa (in the action modulact), and« is guaranteed
to reach a state wherg is true (in the environment module Env).

With action expressions to express complex plans, then, we need

if required: a way of expressing that a plan is guaranteed to result in a state
whereg is true. Somewhat disappointingly, PDL does not provide
MaSE" —in_open — ({(gd,))in-open A {(gd,))in_open). us with a way of doing that: the expressiffi¢ captures that all
halting executions end up ingastate. The problem is thatmight
4. RICHER SYSTEMS not halt at all, in which cas¢ may never become true, everjdf|¢
is

We have studied a system in which ‘plans’ of agents to obtain
certain goals (i.e., complex action expressions) never look more
than one transition ahead. There are different ways of enriching
the system. First of all, one may enrich the model itself, and, for
example, take a more sophisticated view of agents, taking the infor-
mation they have and/or their goals into account as well. But also
if we leave the semantical model the way it is, there are ways to en-
rich the language to allow us to express other interesting properties
of a system.

One obvious choice is to enrich the language on the level of the 1. act |= (G))?¢ (since agents can observe anything)
multi-agent system with other operators borrowed from ATL [1].

Let a strategy for a group of agenisbe a function that assigns 2. act = (G)o; Biff act = (G))ovandact |= (G)B
to each state a subset of actions fram(G). A strategy forG a
G

One way of remedying this lack of expressive power is to add
a new predicate to the language to obtain sentences of the form
halt(«), that are true in a stateexactly when all executions ef
are guaranteed to halt.

We also need to extend the language of the agent module of the
previous section with expressions that express the ability to perform
these complex actions. If we assume that all agents can observe all
static sentences, the following definitions are reasonable:

together with a strategy for the agents notGndefines a unique 3. act |= (GhaU Biff act |= (G))a andact |= (G)

path through the model, and we can define logical operators that 4. act = (G)a* iff act = (G)a

not only talk about those states that can be reached by performing a

single action, but also about strategies that guarantee that a sentencgutting all of this together, we obtain the following conjecture:

will always remain true, or will eventually become so: CONJECTURE 17. MaS s = ((G))F'é iff there is a plana (in

1. MaS s = ((G)Og¢ iff there is a strategy for the agentsdh the language extended with PDL-operators) such that Mas

[a]¢ (if o« halts, itis in ag-state, MaSs = () T (« is executable), [2] E. M. Clarke and E. A. Emerson. Design and synthesis of

MaS s = halts(a) (o is guaranteed to halt), and Ma$ = (G))« synchronization skeletons using branching-time temporal
(the agent in are able to enforcey). logic. In Logic of Programs, Workshoi982.

[3] G. Gargov and S. Passy. A note on boolean modal logic. In
5. CONCLUSIONS P. Petkov, editoiMathematical Logic, Proc. of Heyting88

pages 311-321. Plenum Press, 1990.

[4] M. Ghallab, D. Nau, and P. Traversdutomated Planning:
Theory and PracticeMorgan Kaufmann Publishers: San
Mateo, CA, 2004.

[5] Laura Giordano, Alberto Martelli, and Camilla Schwind.
Dealing with concurrent actions in modal action logic. In
Henri Prade, editoECAI 98. 13th European Conference on
Artificial Intelligence 1998.

Many logic-based formalisms — cooperation logics — have been
developed in order to represent the power of groups of agents to
achieve certain states of affairs.

Pauly [12] provides a modal logic, Coalition Logic, which ax-
iomatisesx-ability — a notion of power developed in game theory.

A state of affairs is denoted as a set of states that satisfy a proposi-
tional formulag and, informally, a group of agen€s is a-effective
for ¢ if and only if there exists a joint strategy f6f which, no mat-

ter what the other agents do, ensures the satisfactign Ahother [6] D. Harel. Dynamic logic. In D. Gabbay and F. Guenther,

example is CL-PC, van der Hoek et al. [15]. In CL-PC each agent editors,Handbook of Philosophical Logic Volume I —

controls the truth value of a set of variables. In this way, the no- Extensions of Classical Logipages 497-604. D. Reidel

tion of a-ability can be formalised a standard multi-modal Kripke Publishing Company: Dordrecht, The Netherlands, 1984.

model and the usual semantics for box and diamond operators can [7] David Harel, Jerzy Tiuryn, and Dexter KozeDynamic

be used. Finally another well-known logic to reason aboutithe Logic. MIT Press, Cambridge, MA, USA, 2000.

ability is ATL, in which the expressivity of the previous approaches [8] D. Kinny, M. Ljungberg, A. S. Rao, E. Sonenberg, G. Tidhar,

is enriched with CTL temporal formulas [1]. and E. Werner. Planned team activity. In C. Castelfranchi and
All these approaches directly describe the achievement power E. Werner, editorsévtificial Social Systems — Selected

of groups of agents without explicitly representing what they actu- Papers from the Fourth European Workshop on Modelling

ally do in order to achieve a certain state of affairs. This fact has Autonomous Agents in a Multi-Agent World, MAAMAW-92

two drawbacks. First, it may not be easy to reason about meta- (LNAI Volume 83Q)pages 226-256. Springer-Verlag: Berlin,

information such as the costs required to achieve a certain state of Germany, 1992.
affairs or how these costs are distributed. Second, even if these [9] B. van Linder, W. van der Hoek, and J.J-Ch. Meyer.
logics correctly describe whether a group of agents has the power Formalizing abilities and opportunities of agents.

achieve a state of affairs, they do not provide, as required in coop- Fundamenta Informaticag4(1,2):53-101, 1998.

erative problem solving or social reasoning mechanism, any clue [10] K.L. McMillan. Symbolic Model CheckinghD thesis,

about which group of agents has the power to achieve a desired CMU University, 1992.

state of affairs. [11] R. C. Moore. Reasoning about knowledge and action. In
Thus, inspired by work on cooperative problem solving [16] and Proceedings of the Fifth International Joint Conference on

social reasoning mechanisms [13], we have formalised a notion of Artificial Intelligence (IJCAI-77)Cambridge, MA, 1977.

power in two modules: in the first module, the environment mod- 12] M. Pauly. A Modal Logic for Coalitional Power in Games.
ule, we addressed the problem to describe a causal model of an' ~ joymal of Logic and Computatiori2:146—-166, 2002.

environment in which several agents act at the same time. In this [13] J. S. Sichman and Y. Demazeau. On social reasoning in
module it is possible to describe the fact that a plan, intended as a multi-agent systemsRevista Iberoamericana de Inteligencia
set of concurrent actions, assures a certain state of affairs. In the Artificial. 13:68—84. 2001.
second module, the agents module, the capabilities of the agent: ' ’
are modeled and in particular the possibility for a group of agents for Intentions, Know-How, and Communications (LNAI
to execute a plan no matter what the other agents do. Combining Volume 799)épringer-Ver]ag' Berlin, Germany, 1994
these two modules provides a straightforward way to describe the ’ L 1 '
achievement power a group of agents: a group of agents has thells] W. van d_er Hoek and M.__Noolldrldge. Ofn t_hcls Iog||<|:_ of
power to achieve a state of affaifsif there exists a plam assur- cogperatlon and proposntlor\a contraktificial Intelligence,
ing ¢ and the group can executewithout being obstructed by the 64:1-2, Pp. 81_119'64(1_2)181_119’ 2005.
other agents. [16] M. Woold_rldge and J. Jen_nlngs. Towards a theory of

We have provided a complete axiomatisation for the two sepa- cooperative problem solving. Frocs. of the Sixth European
rated modules as well as for their combination. We noted that the Workshop on Modelling Autonomous Agents in Multi-Agent
axiomatisation of the combined module is straightforward, given Worlds (MAAMAW-94)1994.
the completeness of the two logics of the underlying modules. This
is evidence that the modularisation of the notion of power is possi-
ble.

Finally we also provided an indication of how to enrich the ex-
pressiveness of our framework, maintaining the modularisation un-
injured, with operators borrowed from Dynamic Logic. Our future
work is devoted to provide formal results in this sense.

S[14] M. P. Singh Multiagent Systems: A Theoretical Framework

6. REFERENCES

[1] R. Alur, T.A. Henzinger, and O. Kupferman.
Alternating-time temporal logiclournal of ACM
49(5):672-713, 2002.

