
Reasoning about Action and Cooperation

Luigi Sauro

Jelle Gerbrandy
Dipartimento di Informatica
University of Torino, Italia

jelle@gerbrandy.com
sauro@di.unito.it

Wiebe van der Hoek
Michael Wooldridge

Department of Computer Science
University of Liverpool, United Kingdom

wiebe@csc.liv.ac.uk
mjw@csc.liv.ac.uk

ABSTRACT
We present a logic for reasoning both about the ability of agents to
cooperate to execute complex actions, and how this relates to their
ability to reach certain states of affairs. We show how the logic can
be obtained in a modularised way, by combining a model for rea-
soning about actions and their effects with a model that describes
what actions an agent can perform. More precisely, we show how
one can combine an action logic which resembles Propositional
Dynamic Logic with a cooperation logic which resembles Coali-
tion Logic. We give a sound and complete axiomatisation for the
logic, illustrate its use by means of an example, and discuss possi-
ble future extensions to it.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
coherence and coordination, multiagent systems

General Terms
Theory

Keywords
Agent and multi-agent architectures, Cooperation and coordination
among agents, Logics for agent systems, (Multi-)Agent planning

1. INTRODUCTION
When reasoning about cooperation in multi-agent systems, at

least two questions seem important:Whocan achieve some state of
affairs andHow can they obtain it? Historically, the latter question
has received far more attention than the former. In theAI planning
community, for example, it is known as the means-ends reasoning
problem, and indeed theAI planning project is directed at devel-
oping computer programs that can answer it efficiently [4]. In the
logic community, the question has been studied largely through the
medium of action and program logics, of whichPDL is perhaps
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the best known example [7]. A basic issue in such logics is the
construction of complex programs from simpler ones. Typical con-
structs to build complex programs include sequential composition,
non-deterministic choice and tests. However, there are limits to
what one can say in such logics. For example, in standardPDL, one
cannot express that an action isnotexecuted; nor is not straightfor-
ward to say that one complex actionsubsumes, or impliesanother.
Last but not least, although there is a notion of concurrency inPDL,
all processes are expected to behave as specified by the program
under consideration, and there is no notion of competition or co-
operation, and hence no need to expresswho can achieve some-
thing. Building on work inPDL and related formalisms, some early
attempts in the multi-agent systems community to formalise the
ability of agents to execute plans and bring about states of affairs
include [8, 14, 9].

The question ofwho can achieve some state of affairs has re-
ceived much less attention within theAI and logic community. Al-
though Moore presented a modal analysis of ability as long ago as
1977 [11], and a number of other authors built on this work over the
intervening three decades, it is only recently that the logical anal-
ysis of ability has entered the mainstream of multi-agent systems
research. Two closely related formalisms have received particu-
lar attention: the Alternating-time Temporal Logic (ATL , [1]), in
which one can express that a coalition can enforce a certain tem-
poral property, and Coalition Logic ([12]), in which the basic ex-
pression states that a coalition is effective for some outcome. An-
other closely related formalism is the Coalition Logic for Proposi-
tional Control (CL-PC, [15]), where the propositional atoms under
the control of an agent determine what he, or any coalition he is
a member of, can achieve. All these approaches revolve around
a model in which a set of agents, who may have conflicting in-
terests, may or may not work together to obtain a certain state of
affairs. Central is the notion of so-calledα-ability: the capability
of a group of agents to enforce a certain state of affairs, no matter
what actions the other agents take. As in [15], we will call such
logicsCooperation Logics.

Notice that in all of these approaches, the ability of groups of
agents to obtain a state of affairs is modeled without an explicit
representation ofhow these agents obtain them. In other words,
these logics do not represent actions and plans in the object lan-
guage, even though in some cases, actions or choices are present in
the underlying semantics. However, such anexplicit representation
of action in the object language is important in many domains. For
example, certain actions may be more costly than others, and the
costs may be distributed among the agents helping to achieve the
goal according to the actions they perform. Also, in some situa-



tions, it seems a good heuristic to formulate a plan before organis-
ing a coalition to execute it [16, 13]. Finally, using such a language
for verification of a MAS would not only provide the user — or
indeed, the agents themselves— with a proofthat a desired goal of
the system can be achieved, but it would also explicitly capture a
plan of how to achieve it.

In this paper, we are interested in how the ability to obtain a state
of affairs relates to the ability to execute certain, possibly complex,
and possibly collective, actions. We develop a logic that combines
operators from cooperation logics with an explicit representation
of actions. We achieve this by dividing the problem in two parts: a
logic for reasoning about actions and their effects (à la dynamic
logic) together with a variant of coalition logic to reason about
(groups of) agents and the actions that they can perform. In more
detail, we study multiagent systems that consist of two separate
parts: anenvironment modulethat describes actions and their ef-
fects, and anagents moduledescribing how the agents can interact
with the environment by performing certain actions.

We use the agents module to represent the ability of a coalition
G to executecertain type of actions. Whereβ is a joint action (i.e.,
it denotes a set of actions to be executed concurrently), we write
〈〈G〉〉β to indicate that coalitionG can execute the complex action
β. In the environment, then, we can reason about the effect of
actions using our environment logic, and write, for example[β]φ
for ‘every successful execution ofβ results in state whereφ is true’
(cf. PDL).

The cooperation modality of Coalition Logic expresses the abil-
ity of a group to obtain a certain state of affairs. This kind of expres-
sion can now be analysed using the two modules described above:
a groupG of agents has the ability to obtain a state of affairsφ
just in case there exists a planβ thatG is able to execute, which is
guaranteed to result inφ.

Such an approach presumes that the effect of actions can be mod-
eled more or less independently from the behaviour of the agents
that perform these actions. This approach seems applicable to many
real life scenarios. For example, an environment may be a commu-
nication channel via which agents send and receive messages. Or,
the environment may be a Database Management System, defining
actions and constraints in a general way, and the agents are users
querying and updating the database.

Separating actions from the agents that perform them is not only
practical from an operative viewpoint, but from a logical standpoint
as well. It allows us to break up the problem of reasoning about
planning in a multi-agent environment into two sub-problems, and
to study the logic of each of these ‘modules’ in isolation before
putting them together. This approach is also interesting, because it
allows us to ‘reuse’ existing logics and exploit them as ‘modules’
in a richer system.

In Section 2 we will present the two building blocks of our frame-
work. In section 2.1 we define a logic for the environment, in which
one can reason about the effect of executing joint actions. The lan-
guage can express that an action is not taken, but also, in a natural
way, compares joint actions in relative ’strength’: if the joint action
β is stronger thanα, then we also have that whatever is true as a
result ofα, is true when executingβ. We then (in section 2.2) de-
fine our agents’ module, in which theα-ability of coalitions can be
expressed — but now, not with respect to states of affairs that can
be reached, but for joint actions that can be guaranteed.

Section 2.3 puts these blocks together in a module called a multi-
agent system. Here, we define〈〈G〉〉φ, theα-ability of coalitionG
to bring about state of affairsφ, in terms of〈〈G〉〉α and[α]φ. Apart
from the completeness results for the separate building blocks, which
we judge to provide insight in the systems themselves, we believe

that one of the interesting technical developments of our work re-
lates to the fact that the completeness result for thecombinedlogic
is straightforward given the completeness of the two logics of the
underlying modules. We see this as indicative of the success of the
modularisation approach we adopt in this paper, and a good indica-
tion that it might be usefully applied elsewhere.

Section 3 is devoted to an example, illustrating how the logic can
be used to represent properties of a multi-agent system. The exam-
ple is a scenario in which agents in a coalition can collectively set
variables which they are unable to change on their own. Section 4
indicates a few of the many possible extensions to our multi-agent
system, and Section 5 concludes.

2. ACTION AND COOPERATION
In our setting, a multiagent system is composed of twomodules:

one module describes theagentsin terms of the actions they can ex-
ecute, another describes theenvironmentthat is populated by these
agents, and in particular the effects of performing certain actions.

2.1 The environment module
There are many ways of modeling an environment. One very

general way to model actions and their effects is by using a La-
beled Transition System (LTS) [6, 2, 10]. An LTS is a directed
graph in which the edges are labeled by elements from a set of
atomic actions and the vertices are labeled with sets of proposi-
tional variables. Edges are called transitions, the vertices are called
states. The idea is that if a states is connected to another states′

by a transition labeled with an actiona, this means thats′ is a pos-
sible result of executing actiona in states. The sets of variables at
each end of the transition tell us how the performance of the action
changes the state of the environment, in terms of the propositions
that change value.

One of the drawbacks of this basic LTS model is that it does not
allow for modeling concurrency directly: there is no straightfor-
ward way to model the fact that performing certain actions together
may have a very different effect than performing each of them sep-
arately.

In the present context, we are interested in the way that the choice
of actions of different agents interact, so we propose to model the
effect of actions being performed concurrently directly in the model.
We do this by labeling the transitions not with single actions, but
with setsof actions. Intuitively, a transition labeled with a set of
actionsA represents the effect of executing exactly those actions
together, and no others. This approach to deal with concurrency is
similar to that taken in [5].

DEFINITION 1 (ENVIRONMENT MODULE).
An environment module Env is aSet-Labeled Transition System

(SLTS) is a tuple〈S,Ac, (→)A⊆Ac , P, π〉 where:

1. S is a set of states.

2. Ac is a finite set of actions.

3. For eachA ⊆ Ac, →A is a relation overS.

4. P is a set of propositional variables

5. π : (S × P ) → {1, 0} is an interpretation function that
assigns to each state and each propositional variable a truth
value.

We require that the accessibility relations→A are serialfor each
set of actionsA, i.e., that for each states there is always ans′ with
s→A s′. 2



A states is characterised by the propositional variables that are
true and false in it, as given byπ(s), and by the possible effects
of executing combinations of actionsA concurrently, as defined by
the accessibility relations→A. We will refer to a set of actions
A as aconcurrent action. Actions may benon-deterministic, in
the sense that the outcome of performing a set of actions may not
always determine a unique result.

To reason about actions and their effect in anSLTS, we use a
language that is similar to that of Propositional Dynamic Logic.
PDL has a language that consists of two parts: an action language
to describe actions, and a ‘static’ language to describe properties
of states. However, rather than directly incorporating the program
constructs ofPDL, we useBoolean combinationsof atomic actions
to reason about sets of actions.

DEFINITION 2 (ACTION EXPRESSIONS).
Given the set of atomic actionsAc, the set ofaction expressions

is defined by the grammar:

α ::= a | α ∧ α | ¬α
wherea ∈ Ac.

To interpret this action language, we define a relation|=p be-
tween subsets ofAc and action expressions.A |=p α is to be read
as ‘concurrent actionA is of typeα’, or ‘α is true ofA’.

DEFINITION 3 (INTERPRETATION OF ACTIONS).

1. A |=p a iff a∈ A
2. A |=p ¬α iff A 6|=p α

3. A |=p α ∧ β iff A |=p α andA |=p β.

So, for example, the concurrent action{a, b} is of typea∧¬c, but
it is not of type¬b. Formally, the action language is of course sim-
ply classical Boolean propositional logic, with Boolean variables
corresponding to atomic actions. We can define additional connec-
tives, such as∨ or →, in the usual way.

DEFINITION 4 (LANGUAGE OF ENVIRONMENT LOGIC).
Given a set of actionsAc and a set of propositional variablesP ,

the language of environment logic is given by:

φ ::= p | φ ∧ φ | ¬φ | [α]φ

wherep ∈ P , andα is an expression of the action language.

In effect, the resulting language is Boolean Modal Logic [3]. The
truth of sentences of environment logic is defined in the standard
way, as follows.

DEFINITION 5 (SEMANTICS OF ENVIRONMENT LOGIC). Let
Env = 〈S,Ac, (→)A⊆Ac , P, π〉 be a SLTS, ands is a state inS.
Truth of sentences of the language of environment logic is defined
inductively as follows:

1. Env, s |=e p iff π(s, p) = 1

2. Env, s |=e φ1 ∧ φ2 iff Env, s |=e φ1 and Env, s |=e φ2.

3. Env, s |=e ¬φ iff Env, s 6|=e φ

4. Env, s |=e [α]φ iff for all A⊆ Ac and s′ ∈ S, if A |=p α
ands→A s′ then Env, s′ |=e φ.

As usual we writeEnv |=e φ when for all statess∈ S, Env, s |=e

φ. For example, ifa is an atomic action, then[a]φ is true just in
case executinga will always result in a state whereφ is true, no
matter what other actions are performed concurrently.

A sentence[¬a]φ expresses thatnot doinga will always result
in a state whereφ is true – performing any concurrent action that
does not involvea will results in a state whereφ is true.

In a precise sense, the formula[α]φ expresses that being of type
α is a sufficient condition for a set of actions to guarantee thatφ be
true; the formula[¬α]¬φ expresses that doing an action of typeα
is anecessarycondition for reaching a state whereφ is true – if the
action is not of typeα, for all the states in which the system will
resultφ is false.

The logic that results from this semantics is given by the follow-
ing set of axioms and rules.

DEFINITION 6 (ENVIRONMENT LOGIC).
Theenvironment logic(`e) has the following axioms

1. All axioms of propositional logic

2. [α](φ → ψ) → ([α]φ → [α]ψ) for eachα (distribution)

3. All axioms of the form[α]φ → [β]φ, if ` β → α in proposi-
tional logic.

4. ([α]φ ∧ [β]φ) → [α ∨ β]φ (additivity)

5. ¬[α]¬> if α is consistent in propositional logic (seriality)

6. [⊥] ⊥

Rules:

1. from`e φ and`e φ→ ψ, derive`e ψ (modus ponens)

2. from `e φ, derive`e [α]φ (necessitation for each action
expressionα)

We writeΣ `e φ if φ can be derived from the set of sentencesΣ
using these rules and axioms.

Axiom 2 and the rule of necessitation state that the[α]-operators
are normal modal operators. Axiom 3 says that ifβ impliesα in
propositional logic, then, if anα-action always results in aφ state,
then aβ-action will as well (since anyβ-action is anα-action).
Axiom 4 says that if allα-actions and allβ-actions result in a state
whereφ is true, then also allα∨β-actions will. Finally, the seriality
axiom reflects that any consistent combination of actions will lead
to some resulting state.

This logic is sound and complete with respect to the semantics.

PROPOSITION7 (SOUNDNESS AND COMPLETENESS).
Environment logic is sound and complete with respect to envi-

ronment models.

`e φ iff Env |=e φ for each environment model Env.

proof: We give the main steps of a proof. Construct a canonical
model in the usual way, by taking maximal consistent sets of the
logic as states in the model. The followingtruth lemmaholds for
each maximal consistentΣ:

φ ∈ Σ iff Σ |=e φ in the canonical model

So, suppose[α]ψ ∈ Σ. We need to show thatΣ |=e [α]ψ. If
α is not consistent this holds trivially. So, assume thatΣ →A Γ
for someA such thatA |=p α. Thenψ ∈ Γ by definition of the



canonical model, and by induction hypothesis,Γ |=e ψ. SinceΓ
was arbitrary, it follows thatΣ |=e [α]ψ.

For the other direction. Before proving the general case, we first
consider the case where our action expression is of the formαA =∧
A ∧ ∧{¬a | a ∈ Ac anda 6∈ A} for some set of actionsA.
Suppose[αA]ψ 6∈ Σ for someA. With axiom 2 and the con-

sistency ofΣ, this means that{χ | [αA]χ ∈ Σ} ∪ {¬ψ} is con-
sistent. This set can be extended to a maximal consistentΓ. We
show thatΣ →A Γ. To see this, take an arbitrary[α]χ ∈ Σ such
thatA |=p α. Then, in propositional logic,̀ αA → α, and by
axiom 3, it must hold that[αA]χ ∈ Σ. But then, by construction
of Γ, χ ∈ Γ. Putting everything together, we have thatΣ →A Γ,
A |=p αA, and, by induction hypothesis,Γ 6|=e ψ. We conclude
thatΣ 6|=e [αA]ψ.

Now we move to the general case. Suppose thatΣ |=e [α]ψ
for arbitraryα. If α is not consistent, then we can use axioms
6 and 3 to conclude that[α]ψ is in Σ. If α is consistent, then
the sentenceα is equivalent in propositional logic to the sentence
α∨ :=

∨{αA | A |=p α}. Clearly, we have thatΣ |=e [α∨]ψ; and
also that, for axiom 3,Σ |=e [αA]ψ for eachA such thatA |=p α.
By the previous argument, we have that[αA]ψ ∈ Σ for eachA
such thatA |=p α. With axiom 4, it follows then that[α∨]ψ ∈ Σ.
We can now use axiom 3 and the fact thatα∨ → α, and conclude
that [α]ψ ∈ Σ. 2

So, what we have now is a dynamic logic in which we can rea-
son aboutconcurrentactions. That is, we have a way of reasoning
about the effect of performingcombinationsof actions, as well as
about the effect ofnot performing certain actions. This dynamic
logic will serve as the environment module of our multi-agent sys-
tem. We will now proceed to define the agents that will populate
this environment.

2.2 Agents Module
Agents are identified with the set of actions that they can per-

form.

DEFINITION 8 (AGENTS MODULE).
Given a set of agentsAg and a set of actionsAc, an agents

module is a tuple〈Ag,Ac, act〉, whereact is a functionAg 7→
P(Ac) that assigns to each agenti a subsetact(i) of actions from
Ac.

We require that
⋃

i∈Ag act(i) = Ac.

We will abuse notation somewhat, and write ‘act’ as apars pro toto
for 〈Ag,Ac, act〉. We denote withact(G) the set

⋃
i∈G act(i) of

actions that the groupG of agents can perform.
To represent the ability of agents to perform actions of a certain

type, we will use some notation from cooperation logic. For an
action expressionα, a sentence of the form〈〈G〉〉α expresses the
fact thatG has the power to bring it about that a set of actions of
typeα will be performed; we say thatG is effective forα, thatG is
able to enforceα, or simply thatG is able to doα. It is important
to note thatα here is an action type: we are dealing with the ability
to carry out a complex action, not the ability tobring about some
state of affairs.

A groupG is able to enforceα exactly if there is a subset from
the actions under their control that, no matter what actions the other
agents choose, is such that the resulting concurrent action is of type
α.

The way the semantics is defined is similar to that of the Coali-
tion Logic of Propositional Control of [15], except that we explic-
itly allow for different agents to ‘control’ the same action.

DEFINITION 9 (ABILITY FOR ACTIONS).
Let 〈Ag ,Ac, act〉 be an agents module, letG ⊆ Ag be a set of

agents.

〈Ag ,Ac, act〉 |=a 〈〈G〉〉α iff there is anA ⊆ act(G) such that for
all B ⊆ act(Ag \G) it holds thatA ∪B |=p α

So, for example, ifact is an agents module in which an agenti can
execute actiona, thenact |=a 〈〈{i}〉〉a: i can enforcea. However,i
can only enforce¬a if he is the only one that can executea: act |=a

〈〈{i}〉〉¬a only if a 6∈ act(j) for any j other thani. Similarly,
act |=a 〈〈G〉〉(a ∧ ¬b) exactly when at least one agent inG can
executea, while no agent outside ofG can dob.

DEFINITION 10 (COALITION LOGIC FOR ACTIONS).
The coalition logic for actions is given by the following axioms,

together with all axiom schemes of propositional logic, and modus
ponens. We denote derivability in this logic with`a.

1. 〈〈G〉〉>, for all G⊆ Ag

2. 〈〈G〉〉α→ ¬〈〈Ag \G〉〉¬α
3. 〈〈G〉〉α→ 〈〈G〉〉β if ` α→ β in propositional logic.

4. (〈〈G1〉〉α∧〈〈G2〉〉β) → 〈〈G1 ∪G2〉〉(α∧β) for all G1, G2⊆
Ag such thatG1 ∩G2 = ∅

5. 〈〈G〉〉a→ ∨
i∈G 〈〈{i}〉〉a, for all G⊆ Ag and atomica∈ Ac

6. (〈〈G〉〉α∧〈〈G〉〉β) → 〈〈G〉〉(α∧β) if α andβ have no atomic
actions in common.

7. 〈〈G〉〉¬a→ 〈〈G〉〉a for atomica ∈ Ac.

8. 〈〈G〉〉α → ∨{〈〈G〉〉∧
Φ | Φ is a set of literals such that∧

Φ → α}
An explanation of some of the axioms is in order.

The first axiom states that any group of agents is able to enforce
some trivial action. Axiom 2 is typical of cooperation logics, and
states that if a groupG is able to enforce an actionα, then the
agents outside that group cannot enforce that an action that is not
of typeα will happen. This follows directly from the definitions.

Axiom 3 says that if a group of agents is able to enforce anα-
action, and allα-actions are also of typeβ, thenG is also able to
enforce aβ-action. Note that the axioms 1 and 3 give us a kind of
necessitation, even for actions: Ifα is a classical tautology, then we
also havè a 〈〈G〉〉α.

Axiom 4 states that if two independent groups of agents have
the ability to enforce, respectively, actions of typeα and of typeβ,
then they can combine forces to enforce anα∧β-action. This holds
only if the two groups are disjoint: if this is not the case, and the
two groups have an agent in common, say agenti, then it may be
thati needs to execute actiona to (help) enforceα, while he needs
to refrain from doinga to enforceβ: there is no single choice of
actions that guarantees thatα ∧ β will happen.

Axiom 5 says that if a group of agents has the ability to enforce
an atomic action, then at least one of them must have that ability by
himself.

Axiom 6 says that if a group can enforce actionsα andβ, andα
andβ involve completely different atomic actions, then the group
can also enforceα∧β (by choosing the actions needed to guarantee
α and performing them together with those that guaranteeβ).

The validity of axiom 7 is a consequence of the assumption in
definition 8 that any atomic action can be executed by at least one
agent. It says that if a group of agents can guarantee that anatomic



action isnot performed, then one of the agents in that group must
be able to execute that action.

Axiom 8 says that if a group of agents can perform anα-action,
then there must be a set of literals (that is, formulas of the forma or
¬a) that together implyα, that they can enforce – that is, there must
be a ‘recipe’ that tells them which actions to execute and which not
to execute, that guarantees thatα results.

PROPOSITION11 (SOUNDNESS AND COMPLETENESS).
Coalition logic for actions is sound and complete with respect to

agent models.

proof: Soundness is relatively straightforward. To prove complete-
ness, we define, given a maximal`a-consistent set of sentencesΣ,
a functionact for which the following truth lemma holds:

act |=a φ iff φ ∈ Σ

which gives us an immediate completeness result. We defineact
by settingact(i) = {a | 〈〈i〉〉a ∈ Σ}. Note that with axioms 4 and
5, we have for atomic actionsa thata ∈ act(G) iff 〈〈G〉〉a ∈ Σ, a
fact that we will use in the proof.

Before proving the truth lemma, we define, for a group of agents
G and a set of actionsA ⊆ act(G), the setΦ(A,G) to consist of
all literalsA ∪ {¬a | a ∈ act(G), a 6∈ A anda 6∈ act(Ag \ G)}.
The sentenceΦ(A,G) characterises exactly those possible courses
of action that might result whenG chooses to doA.

We prove the truth lemma by induction onφ, where the only
interesting case is the one whereφ is of the form〈〈G〉〉α.

Suppose first thatact |=a 〈〈G〉〉α. That means that there is an
A ⊆ act(G) such that for allB ⊆ act(Ag \ G) : A ∪ B |=p α.
Clearly, then,̀

∧
Φ(A,G) → α in propositional logic.

By definition of act, it holds that〈〈G〉〉a ∈ Σ for eacha ∈ A.
Similarly, we have for eacha 6∈ act(Ag \G) that〈〈Ag \G〉〉a 6∈ Σ,
from which it follows with maximality and axiom 2 that〈〈G〉〉¬a ∈
Σ. Axiom 6 allows us to conclude that〈〈G〉〉∧

Φ(A,G) ∈ Σ, and
by the monotony axiom 3 it follows that〈〈G〉〉α ∈ Σ.

For the other direction, assume that〈〈G〉〉α ∈ Σ. SinceΣ in-
cludes axiom 8, there must be a set of literalsΦ such that

∧
Φ `

α ∈ Σ and〈〈G〉〉∧
Φ ∈ Σ. With axiom 3, we know that for each

of the literalsl in Φ it holds that〈〈G〉〉l ∈ Σ.
For positive literalsa, we immediately have that〈〈G〉〉a implies

thata ∈ act(G).
For negative literals¬a, we have with axiom 7 that〈〈G〉〉¬a im-

plies thata ∈ act(G). Moreover, for the negative literals we can
use axiom 2 to conclude thata 6∈ act(Ag \G).

But this means thatact |=a 〈〈G〉〉∧
Φ, and since

∧
Φ → α, that

act |=a 〈〈G〉〉α. 2

2.3 A multi-agent system – agents acting in an
environment

In the previous two subsections we defined a module describ-
ing an environment, and a separate module describing the actions
that agents can choose to perform, either by themselves or together.
These two modules can be related by identifying the set of actions
in the two respective modules. Such a combination provides us
with a semantics for reasoning about agents that act in an environ-
ment by way of performing certain actions.

Formally, a multi-agent system is an environment together with
an agent module that shares its action repertoire.

DEFINITION 12 (MULTI -AGENT SYSTEM).
A multi-agent system MaS is a tuple

〈S,Ac, (→)A⊆Ac , P, π,Ag , act〉
where:

1. 〈S, (→A′)A⊆Ac , P, π〉 is an environment (in the sense of def-
inition 1).

2. 〈Ac,Ag , act〉 is an agent module (in the sense of definition
8).

Of course, everything that we could express with the languages we
used to talk about the environment and about the capabilities of
the agents remains interesting in the combined system as well, so
a logic for reasoning about a multi-agent system should include
both. But in the new, more complex system, there are other notions
of interest that did not make sense in the separate modules.

In particular, we are interested in the more standard operators of
coalition logic that reason not about ability to enforce complexac-
tions, but ability to enforce certainresults. We will overload the op-
erators〈〈G〉〉 for this purpose, and add sentences of the form〈〈G〉〉φ
to the language, whereφ can be any sentence. Intuitively,〈〈G〉〉φ
means that the agents inG have the power to obtain a state where
φ is true.

This leads to the following definition of a language for multi-
agent systems:

φ ::= p | φ ∧ φ | ¬φ | [α]φ | 〈〈G〉〉α | 〈〈G〉〉φ
wherep ∈ P , andα is an expression of the action language, as
in definition 2. The satisfaction of formulae of the type〈〈G〉〉φ is
defined as follows.

DEFINITION 13 (ABILITY ).
MaS, s |=m 〈〈G〉〉φ iff there is a set of actionsA ⊆ act(G, s)

such that for allB ⊆ act(Ag \G) and for all statest, if s→A∪B t,
then MaS, t |=m φ.

So,〈〈G〉〉φ is true in a certain state just in case the agents inG are
able to execute a concurrent action that guarantees, independently
from what the other agents do, the truth ofφ. As for the environ-
ment module,MaS|=m φ means that for alls∈ S, MaS, s |=m φ.

The following proposition provides a precise link between the
ability to obtain a certain state of affairs, and the ability to execute
an action that is guaranteed to result in such a state. It states that a
group has the ability to enforce the truth of a sentence just in case
it is able to enforce a concurrent action that is guaranteed to result
in a state in which that sentence is true:

OBSERVATION 14. Given a multi-agent system MaS and a state
s of its environment:

MaS, s |=m 〈〈G〉〉φ iff there exists an action expressionα with
MaS, s |=m 〈〈G〉〉α and MaS, s |=m [α]φ

proof: Assume thatMaS, s |=m 〈〈G〉〉φ, and letA be a witness
for this fact. The action expression

∧
Φ(A,G) (the set of sen-

tences we used in the proof of proposition 11) is the witness we are
looking for: it holds thatMaS, s |=m 〈〈G〉〉∧

Φ(A,G), and that
MaS, s |=m [

∧
Φ(G,A)]φ.

For the other direction, letα be such thatMaS, s |=m 〈〈G〉〉α
andMaS, s |=m [α]φ. By definition it follows fromMaS, s |=m

〈〈G〉〉α that there must be a set of actionsA ∈ act(G, s) such that
A ∪ B |=m α for eachB ⊆ act(Ag \ G, s). Take thisA, and
take anyB ⊆ act(Ag \ G) and t such thats →A∪B t. Since
A ∪ B |=p α andMaS, s |=m [α]φ, it must hold thatt |=m φ. So
MaS, s |=m 〈〈G〉〉φ. 2

The logic for the multiagent system obviously contains all ax-
ioms we already had from the two separate models. To obtain a
complete axiom system, it suffices to add just two axioms that re-
late the ability to obtain a state of affairs with the ability to execute
concurrent actions.



DEFINITION 15 (COOPERATION LOGIC WITH ACTIONS).
The cooperation logic with actions,̀m , is given by:

1. All axioms and rules from the environment logic of section
2.1

2. All axioms and rules from the agent logic of section 2.2

3. (〈〈G〉〉α ∧ [α]φ) → 〈〈G〉〉φ for eachα

4. 〈〈G〉〉φ→ ∨{〈〈G〉〉α∧ [α]φ | α is the conjunction of a set of
action literals}

where ‘action literals’ are atomic actionsa or their negations¬a.

The two new axioms relate the ability to execute actions with the
ability to enforce the truth of propositions, in the same way as is
done in observation 14.

PROPOSITION16 (SOUNDNESS AND COMPLETENESS).
Cooperation logic with actions is sound and complete with re-

spect to action models:

`m φ iff MaS |=m φ for all models MaS

proof: Soundness follows from the soundness of the two modules
and the previous observation 14.

Completeness is relatively straightforward with the complete-
ness results of sections 2.1 and 2.2. We first construct a modelMaS
combining the constructions of the previous proofs in the straight-
forward way.

We need to prove a truth lemma stating thatMaS,Σ |=m φ iff
φ ∈ Σ. This is proven by induction onφ, leaving the proofs of
propositions 11 and 7 practically unchanged. The only interesting
case is the new operator. So suppose that
φ is of the form〈〈G〉〉ψ

SupposeMaS,Σ |=m 〈〈G〉〉ψ. With observation 14, there is an
action expressionα such thatΣ |=m 〈〈G〉〉α and Σ |=m [α]ψ.
By induction hypothesis and the previous two cases, we have that
〈〈G〉〉α ∈ Σ and[α]φ ∈ Σ, and therefore, with our axiom 3 and the
fact thatΣ is maximal, that〈〈G〉〉φ ∈ Σ.

For the other direction, assume that〈〈G〉〉ψ ∈ Σ. Then, with the
axiom 4 and maximality ofΣ, there is a set of action literalsΦ such
that[

∧
Φ]ψ ∈ Σ and that〈〈G〉〉∧

Φ in Σ. We can conclude (by in-
duction hypothesis and the previous cases) thatΣ |=m [

∧
Φ]ψ and

Σ |=m 〈〈G〉〉∧
Φ. We then use observation 14 again to conclude

thatΣ |=m 〈〈G〉〉ψ. 2

Summarising, we have defined an environment as a Set-Labelled
Transition System, and defined aPDL-like logic for representing
the performance of complex actions in such an environment. We
gave a sound and complete logic for this logic. We then defined
agents as actors that can choose to do certain sets of actions, and
defined a sound and complete logic for reasoning about the ability
of groups of agents to enforce that a certain type of concurrent ac-
tion is executed. We then defined a notion of cooperative ability.
This modularisationof a multi-agent system paid off: it turned out
to be relatively easy to find a sound and complete axiomatisation
for the combination of these two logics.

3. AN EXAMPLE
Often in a multi-agent system, certain variables can be changed

only when two or more agents cooperate, while other variables can
be changed by the agents acting by themselves. For example, a
database may contain crucial data that can be changed only with the
consent of all operators, while data of a lesser importance can be

changed by any agent. For another example, a website may accept
a request for information without further ado, but for accepting a
transaction with a credit card, it will need the consent of both the
customer and the credit card company. Similarly, a website such
as Ebay will accept advertisements that are submitted by a single
agent acting alone, but will not accept a transaction if this is not
confirmed by all parties involved.

All of these examples are instances of a case in which certain
variables are under control of single agents, while other variables
can only be changed by groups of agents acting together. We will
consider an instance of this schema, in which two agents control
two variables. To make the example concrete, we will talk about
prison guards that control two doors (see Figure 1). A prison is
composed of two interiors, a dormitory and a courtyard. One door
opens to the outside, and it is important that it is not opened by
accident. It can therefore only be opened if both guards act to-
gether; if it is open, each of the agents can close it at will. The
other door separates the cell block from the courtyard, and each
guard can open that door by himself. The fact that the inner gate
is open is expressed by a propositionin open; if the outer gate is
open,out open is true.

The state of the gates is ruled by four buttons:a1, b1, a2 andb2.
The gatein open toggles its state if and only if at least one ofa1

anda2 is pressed. The outer gateout open toggles its state if and
only if both b1 andb2 are pressed.

This description can be captured by an environment modelEnv
with four states determined by the fact whether the gates are open
or not. For example, we will write01 for the state in which the
inner door is closed and the outer door is open. Each of the buttons
corresponds to an atomic action in the model, and the transitions are
as described (so, for example, it will hold that01 →{a2,b2} 11).

With our environment language, we can express properties of the
environment such that the fact that the actiona1 ∧ b1 ∧ b2 ensures,
in the state00, that in the next state both the gates will be open:

Env, 00 |=e [a1 ∧ b1 ∧ b2](in open ∧ out open)

Similarly, the fact that if the outer gate is closed, the actionb1∧b2
is both a sufficient and necessary condition to open the outer gate
is captured by:

Env |=e ¬out open → ([b1∧b2]out open∧[¬(b1∧b2)]¬out open)

Two guards,gd1 andgd2, control the buttons. The first guard
gd1 has access to the buttonsa1 andb1, whereasgd2 has access to
a2 andb2. This situation can be captured by an agents model with
the same set of atomic actions as the environment, and a function
act such thatact(gd1) = {a1, b1} andact(gd2) = {a2, b2}.

We can express that the actionb1 can be executed only by the
guardgd1 as〈〈gd1〉〉b1 ∧ ¬〈〈gd2〉〉b1 (strictly speaking, we should
have written〈〈gd1〉〉 instead of〈〈{gd1}〉〉, but we are omitting the
curly brackets for readability).

Together, the agents can push bothb1 and b2, that is,act |=a

〈〈gd1, gd2〉〉(b1 ∧ b2). Analogously, both of them can, individually,
execute the disjunction ofa1 anda2: act |=a 〈〈gd1〉〉(a1 ∨ a2) ∧
〈〈gd2〉〉(a1 ∨ a2).

Combining the environment and the agents modules in multia-
gent systemMaS, we obtain a model of the guards controlling the
prison.

For example, sinceb1 ∧ b2 is a necessary condition to open the
outer gate, and each guardgd i can prevent the execution ofbi, it
follows that both guards are needed to open the outer gate. In-
deed, it holds thatMaS |=m ¬out open → (¬〈〈gd1〉〉out open ∧



or and

a1 a2 b2b1

inner gate outer gate

dormitory courtyard

gd1 gd2

Figure 1: The prison example.

¬〈〈gd2〉〉out open)). Together, they can, indeed, open the door:
MaS |=m 〈〈gd1, gd2〉〉out open. To escape, the prisoner will need
to take both of the guards hostage to open the outer door.

On the other hand, we want to be sure that when either one of
the guards notes that there’s a fire in the dormitory, he can open
the inner gate to let the prisoners into the courtyard. Since both
the guards are able to execute at least one of the actionsa1 and
a2, act |=a 〈〈gd1〉〉(a1 ∨ a2) ∧ 〈〈gd2〉〉(a1 ∨ a2), and an action of
type a1 ∨ a2 opens the inner gate,Env |=e ¬in open → [a1 ∨
a2]in open, each of the guards has the power to open the inner gate
if required:

MaS|=m ¬in open → (〈〈gd1〉〉in open ∧ 〈〈gd1〉〉in open).

4. RICHER SYSTEMS
We have studied a system in which ‘plans’ of agents to obtain

certain goals (i.e., complex action expressions) never look more
than one transition ahead. There are different ways of enriching
the system. First of all, one may enrich the model itself, and, for
example, take a more sophisticated view of agents, taking the infor-
mation they have and/or their goals into account as well. But also
if we leave the semantical model the way it is, there are ways to en-
rich the language to allow us to express other interesting properties
of a system.

One obvious choice is to enrich the language on the level of the
multi-agent system with other operators borrowed from ATL [1].

Let a strategy for a group of agentsG be a function that assigns
to each state a subset of actions fromact(G). A strategy forG
together with a strategy for the agents not inG defines a unique
path through the model, and we can define logical operators that
not only talk about those states that can be reached by performing a
single action, but also about strategies that guarantee that a sentence
will always remain true, or will eventually become so:

1. MaS, s |= 〈〈G〉〉2φ iff there is a strategy for the agents inG

such that, no matter what the other agents do,φ will be true
in all the states along the resulting paths.

2. MaS, s |= 〈〈G〉〉3φ iff there is a strategy for the agents inG
such that, no matter what the other agents do, will eventually
result in a state whereφ is true.

What we want to do is ‘decompose’ these notions into independent
statements about the environment and about the agent module, to
obtain a theorem similar to that of observation 14. We will focus on
the second construct: the ability of a coalition toeventuallybring
about some state of affairs.

To express the type of actions that guarantee that some state will
obtain at some point arbitrarily far in the future, we need a richer
action language. A more program-like language is suitable here,
in which we can express things like ‘continue doingα until φ is
true.’ One well-studied set of operators for expressing these kinds
of properties are those of Propositional Dynamic Logic [7]. We
obtain an action repertoire like the following:

α, β ::= γ |?φ | α;β | α ∪ β | α∗

whereγ is a simple action expression (a Boolean combination of
atomic actions), as in definition 2 andφ is a sentence as in definition
4. These operators can be given their standard semantics, which we
do not repeat here.

We will call these types of action expression ‘plans’, in confor-
mance with the usage we make of them. Now, what we are look-
ing for is the following type of ‘decomposition’ of the meaning of
〈〈G〉〉3φ — which is defined in terms of strategies — into a state-
ment about the ability to execute a certain action and a statement
about the effect of this action, in a way that is similar to observation
14:

Let MaS consist of an agent moduleact and an environment
module Env. Then:

MaS, s |= 〈〈G〉〉3φ iff there is a planα such thatG has the
ability to performα (in the action moduleact), andα is guaranteed
to reach a state whereφ is true (in the environment module Env).

With action expressions to express complex plans, then, we need
a way of expressing that a plan is guaranteed to result in a state
whereφ is true. Somewhat disappointingly, PDL does not provide
us with a way of doing that: the expression[α]φ captures that all
halting executions end up in aφ-state. The problem is thatα might
not halt at all, in which caseφmay never become true, even if[α]φ
is.

One way of remedying this lack of expressive power is to add
a new predicate to the language to obtain sentences of the form
halt(α), that are true in a states exactly when all executions ofα
are guaranteed to halt.

We also need to extend the language of the agent module of the
previous section with expressions that express the ability to perform
these complex actions. If we assume that all agents can observe all
static sentences, the following definitions are reasonable:

1. act |= 〈〈G〉〉?φ (since agents can observe anything)

2. act |= 〈〈G〉〉α;β iff act |= 〈〈G〉〉α andact |= 〈〈G〉〉β
3. act |= 〈〈G〉〉α ∪ β iff act |= 〈〈G〉〉α andact |= 〈〈G〉〉β
4. act |= 〈〈G〉〉α∗ iff act |= 〈〈G〉〉α

Putting all of this together, we obtain the following conjecture:

CONJECTURE 17. MaS, s |= 〈〈G〉〉Fφ iff there is a planα (in
the language extended with PDL-operators) such that MaS, s |=



[α]φ (if α halts, it is in aφ-state, MaS, s |= 〈α〉> (α is executable),
MaS, s |= halts(α) (α is guaranteed to halt), and MaS, s |= 〈〈G〉〉α
(the agent inG are able to enforceα).

5. CONCLUSIONS
Many logic-based formalisms – cooperation logics – have been

developed in order to represent the power of groups of agents to
achieve certain states of affairs.

Pauly [12] provides a modal logic, Coalition Logic, which ax-
iomatisesα-ability – a notion of power developed in game theory.
A state of affairs is denoted as a set of states that satisfy a proposi-
tional formulaφ and, informally, a group of agentsG isα-effective
for φ if and only if there exists a joint strategy forGwhich, no mat-
ter what the other agents do, ensures the satisfaction ofφ. Another
example is CL-PC, van der Hoek et al. [15]. In CL-PC each agent
controls the truth value of a set of variables. In this way, the no-
tion of α-ability can be formalised a standard multi-modal Kripke
model and the usual semantics for box and diamond operators can
be used. Finally another well-known logic to reason about theα-
ability is ATL, in which the expressivity of the previous approaches
is enriched with CTL temporal formulas [1].

All these approaches directly describe the achievement power
of groups of agents without explicitly representing what they actu-
ally do in order to achieve a certain state of affairs. This fact has
two drawbacks. First, it may not be easy to reason about meta-
information such as the costs required to achieve a certain state of
affairs or how these costs are distributed. Second, even if these
logics correctly describe whether a group of agents has the power
achieve a state of affairs, they do not provide, as required in coop-
erative problem solving or social reasoning mechanism, any clue
about which group of agents has the power to achieve a desired
state of affairs.

Thus, inspired by work on cooperative problem solving [16] and
social reasoning mechanisms [13], we have formalised a notion of
power in two modules: in the first module, the environment mod-
ule, we addressed the problem to describe a causal model of an
environment in which several agents act at the same time. In this
module it is possible to describe the fact that a plan, intended as a
set of concurrent actions, assures a certain state of affairs. In the
second module, the agents module, the capabilities of the agents
are modeled and in particular the possibility for a group of agents
to execute a plan no matter what the other agents do. Combining
these two modules provides a straightforward way to describe the
achievement power a group of agents: a group of agents has the
power to achieve a state of affairsφ if there exists a planα assur-
ing φ and the group can executeα without being obstructed by the
other agents.

We have provided a complete axiomatisation for the two sepa-
rated modules as well as for their combination. We noted that the
axiomatisation of the combined module is straightforward, given
the completeness of the two logics of the underlying modules. This
is evidence that the modularisation of the notion of power is possi-
ble.

Finally we also provided an indication of how to enrich the ex-
pressiveness of our framework, maintaining the modularisation un-
injured, with operators borrowed from Dynamic Logic. Our future
work is devoted to provide formal results in this sense.
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