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ABSTRACT

We develop a model of normative systems in which agents are as
sumed to have multiple goals of increasing priority, ancegtis
gate the computational complexity and game theoretic ptiesef
this model. In the underlying model of normative systemsuse
Kripke structures to represent the possible transitiona ofulti-
agent system. A normative system is then simply a subseteof th
Kripke structure, which contains the arcs that are forhidie the
normative system. We specify an agent’s goals as a hierathy
formulae of Computation Tree LogictL), a widely used logic
for representing the properties of Kripke structures: theifion is
that goals further up the hierarchy are preferred by the taoyer
those that appear further down the hierarchy. Using thisrseh
we define a model of ordinal utility, which in turn allows us to
interpret our Kripke-based normative systems as gameshichw
agents must determine whether to comply with the normatige s
tem or not. We then characterise the computational contglexi

a number of decision problems associated with these Kitijalsed
normative system games; for example, we show that the comple
ity of checking whether there exists a normative system whis
the property of being a Nash implementatiomiscomplete.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
1.2.4 [Knowledge representation formalisms and methods

General Terms
Theory
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1. INTRODUCTION

Normative systems, or social laws, have proved to be arctittea
approach to coordination in multi-agent systems [13, 141501].
Although the various approaches to normative systems geapim
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the literature differ on technical details, they all shdre same ba-
sic intuition that a normative system is a set of constraimtghe
behaviour of agents in the system; by imposing these contstra

it is hoped that some desirable objective will emerge. Tlea iof
using social laws to coordinate multi-agent systems wapqsed

by Shoham and Tennenholtz [13, 14]; their approach was é&tén
by van der Hoelet al. to include the idea of specifying a desirable
global objective for a social law as a logical formula, witle idea
being that the normative system would be regarded as stdictess
if, after implementing it (i.e., after eliminating all foidden ac-
tions), the objective formula was guaranteed to be satigfidke
system [15]. However, this model did not take into accouset th
preferenceof individual agents, and hence neglected to account
for possible strategic behaviour by agents when decidingthér

to comply with the normative system or not. This model of nor-
mative systems was further extended by attributing to egeimta

a single goal in [16]. However, this model was still too impov
ished to capture the kinds of decision making that take phdeen

an agent decides whether or not to comply with a social law. In
reality, strategic considerations come into play: an atghgs into
account not just whether the normative system would be beakefi
for itself, but also whether other agents will rationallyoolse to
participate.

In this paper, we develop a model of normative systems inhvhic
agents are assumed to haweltiple goals, of increasing priority.
We specify an agent's goals as a hierarchy of formulae of Com-
putation Tree Logic¢TL), a widely used logic for representing the
properties of Kripke structures [8]: the intuition is thaiads further
up the hierarchy are preferred by the agent over those tipetaap
further down the hierarchy. Using this scheme, we define aginod
of ordinal utility, which in turn allows us to interpret ourrigke-
based normative systems as games, in which agents mushdeter
whether to comply with the normative system or not. We thuas pr
vide a very natural bridge between logical structures anguages
and the techniques and concepts of game theory, which havegr
to be very powerful for analysing social contract-stylensrés
such as normative systems [3, 4]. We then characterise the co
putational complexity of a number of decision problems esded
with these Kripke-based normative system games; for exanasg
show that the complexity of checking whether there existsrana-
tive system which has the property of being a Nash implentienta
is NP-complete.

2. KRIPKE STRUCTURES AND CTL

We useKripke structuresas our basic semantic model for multi-
agent systems [8]. A Kripke structure is essentially a daec
graph, with the vertex set corresponding to possibitatesof the
system being modelled, and the relatiBnC S x S capturing the



possibletransitionsof the system; intuitively, these transitions are
caused bygentsin the system performingctions although we do
not include such actions in our semantic model (see, e.8,,41
15] for related models which include actions as first clagzagis).
We let S° denote the set of possiblaitial statesof the system.
Our model is intended to correspond to the well-kndaterleaved
concurrencymodel from the reactive systems literature: thus an
arc corresponds to the execution of an atomic action by otleeof
processes in the system, which we eaents

It is important to note that, in contrast to such models a2,
we are therefore henmeot modelling synchronousction. This as-
sumption is not in fact essential for our analysis, bgr#atly sim-
plifies the presentation. However, we find it convenient ttide
within our model the agents that cause transitions. We fbere
assume a sefl of agents, and we label each transitionfnwith
the agent that causes the transition via a functianR — A. Fi-
nally, we use a vocabular = {p, q,...} of Boolean variables
to express the properties of individual stafeswe use a function
V : S — 2% to label each state with the Boolean variables true (or
satisfied) in that state.

Collecting these components togetheragent-labelled Kripke
structure(over ®) is a 6-tuple:

K =1(S,5° R,A,a, V), where:

S is a finite, non-empty set attates

SO C S (SY # 0) is the set ofnitial states

e R C S x Sisatotal binary relation o, which we refer to
as thetransition relatiort;

A={1,...,n}is aset of agents
e o : R — Alabels each transition iR with an agent; and

e V : S — 2% labels each state with the set of propositional
variables true in that state.

In the interests of brevity, we shall hereafter refer to arntg
labelled Kripke structure simply as Hripke structure A path
over a transition relatiorR is an infinite sequence of states=
S0, 81, - - - Which must satisfy the property thét, € N: (s, su+1) €
R. If uw € N, then we denote by [u] the component indexed by
u in 7 (thus~[0] denotes the first element[1] the second, and so
on). A pathm such thatr[0] = s is ans-path LetIIz(s) denote
the set ofs-paths overR; since it will usually be clear from con-
text, we often omit reference #®, and simply writelI(s). We will
sometimes refer to and think of aApath as a possible computa-
tion, or system evolution, from.

ExamMPLE 1. Our running example is of a system with a single
non-sharable resource, which is desired by two agents. i@ens
the Kripke structure depicted in Figure 1. We have two statasd
t, and two corresponding Boolean variablgs and p2, which are

In the branching time temporal logic literature, a relatiBnC

S x S is said to be total iffivs3s’ : (s,s’) € R. Note that
the term “total relation” is sometimes used to refer to fiefa

R C S x S such that for every pair of elementss’ € S we
have eithel(s,s’) € R or (s’,s) € R; we arenot using the term
in this way here. It is also worth noting that for some domains
other constraints may be more appropriate than simpl&tiotabr
example, one might consider tagent totalityrequirement, that in
every state, every agent has at least one possible tramaiail-
able:VsVi € A3s" : (s,s") € Randa(s,s’) = i.

1

Figure 1: The resource control running example.

mutually exclusive. Think gf; as meaning “agent has currently
control over the resource”. Each agent has two possiblecendj
when in possession of the resource: either give it away, ep ke
Obviously there are infinitely many differesipaths and¢-paths.
Let us say that our set of initial state®’ equals{s, t}, i.e., we
don’t make any assumptions about who initially has contka@ro
the resource.

21 CTL
We now define Computation Tree LogicTL), a branching time
temporal logic intended for representing the propertieKrifke
structures [8]. Note that sineerL is well known and widely docu-
mented in the literature, our presentation, though corapleill be
somewhat terse. We will userL to express agents’ goals.

The syntax ofcTL is defined by the following grammar:

pu=T|pl-p|eVe|EOQe|EleUp) | ADp | AlpU )

wherep € ®. We denote the set afTL formula overd by Ls;
since® is understood, we usually omit reference to it.

The semantics of TL are given with respect to the satisfaction
relation “=", which holds between pairs of the fori, s, (where
K is a Kripke structure and is a state inK'), and formulae of the
language. The satisfaction relation is defined as follows:

K,sE=T,;
K,sEpiff pe V(s)
K,s = —piffnot K,s = ¢;
K,sEeVvyiff K,sEporK,s =1
K,s = AOyiff vr € II(s) : K,n[1] E ¢;
K,s EEQyiff Ir € II(s) : K,7[1] = ¢;

K,s = A(pU)iff Vr € II(s),3u € N, s.t. K, w[u] = ¢
andvo, (0 < v < u): K,n[v] E ¢

K,s = E(eU) iff 3r € II(s),Fu € N, s.t. K, w[u] E ¢
andvo, (0 < v < u): K,n[v] = ¢

(wherep € 9);

The remaining classical logic connectives\(}' “ —", “<") are
assumed to be defined as abbreviations in terms,of, in the
conventional manner. The remainigL temporal operators are
defined:

A<><p E<><P

AQe EQe

We sayy is satisfiableif K, s = ¢ for some Kripke structuré(
and states in K; ¢ isvalidif K,s = ¢ for all Kripke structures
K and states in K. The problem of checking whethéf, s = ¢
for given K, s, ¢ (model checkingcan be done in deterministic
polynomial time, while checking whether a giveris satisfiable or
whethery is valid isexPTIME-complete [8]. We writeX |= ¢ if
K,s = gforallsy € S°, and= ¢if K |= o forall K.

A(TU )
—EQ -y

E(TU o)
A



3. NORMATIVE SYSTEMS

For our purposes, mormative systerns simplya set of constraints
on the behaviour of agents in a systgth More precisely, a nor-
mative system defines, for every possible system transitibather
or not that transition is considered to be legal or not. Défe
normative systems may differ on whether or not a transit®n i
legal. Formally, a normative system (w.r.t. a Kripke structure
K =(S8,8° R, A, a, V))is simply a subset oR, such that? \ n

is a total relation. The requirement thatn is total is areasonable-
nessconstraint: it prevents normative systems which lead testa
with no successor. LeV(R) = {n: (n C R) & (R \ nistota)}
be the set of normative systems over The intended interpreta-
tion of a normative system is that(s, s’) € n means transition
(s,s") is forbidden in the context of;; henceR \ n denotes the
legal transitions ofy). Since it is assumed is reasonable, we are
guaranteed that a legal outward transition exists for esete. We
denote theemptynormative system byyy, sony = (. Note that
the empty normative systemy is reasonable with respect &my
transition relation?.

The effect oimplementing normative system on a Kripke struc-
ture is to eliminate from it all transitions that are forbéfdaccord-
ing to this normative system (see [15, 1]). Af is a Kripke struc-
ture, andn is a normative system oveft, then K { n denotes the
Kripke structure obtained frorA” by deleting transitions forbidden
in 5. Formally, if K = (S,5° R, A,«, V), andn € N(R), then
let K tn = K’ be the Kripke structur&”’ = (S’, S R', A'.a/, V')
where:

e $=9,8=8Y A=A andV = V/;
e R =R\nand

e o is the restriction ofx to R’:

a'(s,s') = { afs,s’)  if(s,s’) e R

undefined otherwise.

Notice that for allK’, we haveK tny = K.

EXAMPLE 1. (continued) When thinking in termsfairness it
seems natural to consider normative systentlat contain(s, s)
or (t,t). A normative system witfs, ¢) would not be fair, in the
sense thatb>A []-p; v AA[]-p, holds: in all paths, from
some moment on, one agent will have control forever. Letaus, f
later reference, fixn = {(s, )}, m2 = {(¢, ¢)}, andns = {(s, s),
(t. 1)}

Later, we will address the issue of whether or not agentsidhou
rationally choose t@omplywith a particular normative system. In
this context, it is useful to define operators on normativeeys
which correspond to groups of agents “defecting” from themres
tive system. Formally, lek = (S, S° R, A,a, V) be a Kripke
structure, letC C A be a set of agents oveét, and letn be a
normative system ovek'. Then:

e 1 [ C denotes the normative system that is the same as
except that it only contains the arcs#that correspond to
the actions of agents i@'. We callp | C therestriction ofn
to C, and it is defined as:

nl C={(s,s):(s,8)€n&als,s') e C}

ThusK 1 (n | C) is the Kripke structure that results if only
the agents irC' choose to comply with the normative system.

e 11 C denotes the normative system that is the sameeas
cept that it only contains the arcspthatdo notcorrespond
to actions of agents i6’. We calln | C theexclusion ofC
fromn, and it is defined as:

n1C={(s,5):(s,5)eEn& a(s,s') g C}.

ThusK 1 (n 1 C) is the Kripke structure that results if only
the agents inC' choosenot to comply with the normative
system (i.e., the only ones who comply are thosd in C).

Note thatwe havg | C =n [ (A\C)andn | C =n1 (A\C).

ExampPLE 1. (Continued) We have: | {1} =m = {(s,$)},
whilen, 1 {1} = ny = m | {2}. Similarly, we haveys | {1} =
{(s,s)}andms 1 {1} = {(¢, 1)}

4. GOALS AND UTILITIES

Next, we want to be able to capture the goals that agents have,
these will drive an agent’s strategic considerations -i@ddrly, as
we will see, considerations about whether or not to compty wi
normative system. We will model an agent’s goals gsiaritised
list of cTL formulae, representing increasingly desired properties
that the agent wishes to hold. The intended interpretaticuch a
goal hierarchy-~; for agenti € A is that the “further up the hier-
archy” a goal is, the more it is desired by Note that we assume
thatif an agent can achieve a goal at a particular level in its goal
hierarchy, then it is unconcerned about goals lower dowrhilee-
archy. Formally, agoal hierarchy ~, (over a Kripke structures)

is a finite, non-empty sequence@fL formulae

v = (po,¢1,--, k)

in which, by conventionypg = T. We use a natural number in-
dexing notation to extract the elements of a goal hierarshyif

v = (o, @1, -, k) theny[0] = ¢o, v[1] = 1, and so on. We
denote the largest index of any elementyihy |/

A particular Kripke structureX is said to satisfy a goal at in-
dexz in goal hierarchyy if K = v[z], i.e., if y[z] is satisfied in all
initial statesS® of K. An obvious potential property of goal hierar-
chies ismonotonicity where goals at higher levels in the hierarchy
logically imply those at lower levels in the hierarchy. Faiiy, a
goal hierarchyy is monotonic if for allz € {1,...,|v|} C N, we
have= ~[z] — ~[z — 1]. The simplest type of monotonic goal
hierarchy is where/[z + 1] = v[z] A 1)z+1 for somey, 41, SO at
each successive level of the hierarchy, we add new contstriain
the goal of the previous level. Although this is a naturalperty
of many goal hierarchies, it is not a property we demanallajoal
hierarchies.

EXAMPLE 1. (continued) Suppose the agents have similar, but
opposing goals: each ageftvants to keep the source as often and
long as possible for himself. Define each agent’s goal h@nagas:

vi=( =T, ol =EQm,

¢y = E[JEQp:, ¢ =EQEp;,

¢y =AEQp, ¢k =EQAp

ot = ACIAO D, b = ALIAO D AEC ),
ps =Alpi )

The most desired goal of ageiis to, in every computation, al-
ways have the resource; (this is expressed ip$). Thanks to our
reasonableness constraint, this goal impligiswhich says that, no
matter how the computation paths evolve, it will always la #l



continuations will hit a point in whichy;, and, moreover, there is a
continuation in whichp; always holds. Goap is a fairness con-
straint implied by it. Note thaA<>pZ- says that every computation
eventually reaches g; state. This may mean that after has hap-
pened, it will never happen agaigy; circumvents this: it says that,
no matter where you are, there should be a fuiuretate. The goal

pt is like the strong goab} but it accepts that this is only achieved

in some computation, eventually} requires that in every path,
there is always a continuation that eventually giyes Goal @3

says thap; should be true on some branch, from some moment on.
It implies5 which expresses that there is a computation such that

everywhere during it, it is possible to choose a continuatioat
eventually satisfiep;. This impliesp], which says thap; should

at least not be impossible. If we even drop that demand, we hav

the trivial goal },.

We remark that it may seem more natural to express a fairness

constraintypy asA[] <>p2-. However, this is not a propezTL for-
mula. Itis in fact a formula ircTL* [9], and in this logic, the two
expressions would be equivalent. However, our basic codtple
results in the next sections would not hold for the richemgiaage

cTL*2, and the price to pay for this is that we have to formulate
our desired goals in a somewhat more cumbersome manner than
we might ideally like. Of course, our basic framework doet no

demand that goals are expresseddnL; they could equally well
be expressed ieTL* or indeedATL [2] (as in [15]). We com-
ment on the implications of alternative goal representadiat the
conclusion of the next section.

A multi-agent systemollects together a Kripke structure (rep-

resenting the basic properties of a system under consiolerats

state space, and the possible state transitions that may iocit),

together with a goal hierarchy, one for each agent, reptieggetine
aspirations of the agents in the system. Formally, a mgkira
system,M, is an(n + 1)-tuple:

M= <K,’Y1,...,’Yn>

where K is a Kripke structure, and for each agernh K, ~; is a
goal hierarchy oveK .

4.1 The Utility of Normative Systems

We can now define thetility of a Kripke structurefor an agent.
The idea is that the utility of a Kripke structure is the highiadex
of any goal that is guaranteed for that agent in the Kripkecstire.
We make this precise in the functien(-):

ui(K) =max{j: 0 <j < |yl & K |= vlj]}

Note that using these definitions of goals and utility, it erev
makes sense to have a gaalat index n if there is a logically
weaker goak) at indexn + & in the hierarchy: by definition of
utility, it could never ben for any structurek’.

ExAMPLE 1. (continued) LetM = (K ,~1,72) be the multi-
agent system of Figure 1, with and~- as defined earlier in this
example. Recall that we have defingtas{s, t}. Then,u (K) =
ug(K) = 4: goal ¢4 is true in S°, but o5 is not. To see that
3 = ALJE > p2 is true ins for instance: note that on ever path it
is always the case that there is a transition;tdn whichps is true.

Notice that since for any goal hierarchy we havey[0] = T,
then for all Kripke structuresy; (K) is well defined, withu; (K') >

2cTL* model checking ispsPACEcomplete, and hence much
worse (under standard complexity theoretic assumptiohah t
model checkingcTL [8].

n | 61(K,m) | 02(K, 1)

yl 0 0 C D
m 0 3 C|(2,2)](0,3)
2 3 0 D[ (3,0)1(0,0)
n3 2 2

Figure 2: Benefits of implementing a normative systemy (left)
and pay-offs for the gameX ;.

0. Note that this is amrdinal utility measure: it tells us, for any
given agent, theelative utility of different Kripke structures, but
utility values are not on some standard system-wide scéie fact
that u; (K1) > w;i(K2) certainly means that strictly prefersk;
over K, but the fact that,; (K) > u;(K) doesnot mean thati
valuesK more highly thary. Thus, it does not make sense to com-
pare utility valuedbetweeragents, and so for example, some system
wide measures of utility, (notably those measures thatsggge in-
dividual utilities, such as social welfare), do not makesgewhen
applied in this setting. However, as we shall see shorthemomea-
sures — such as Pareto efficiency — can be usefully applied.

There are other representations for goals, which wouldvali®
to define cardinal utilities. The simplest would be to spegialsy
for an agent as a finite, non-empty, one-to-one relatiofi: £ x R.
We assume that the values in pairgy, z) € ~ are specified so
thatz for agenti means the same asfor agentj, and so we have
cardinal utility. We then define the utility farof a Kripke structure
K asu;(K) = max{z : (p,z) € v & K = ¢}. The results of
this paper in fact hold irrespective of which of these repnéations
we actually choose; we fix upon the goal hierarchy approathen
interests of simplicity.

Our next step is to show how, in much the same way, we can lift
the utility function from Kripke structures to normativestgms.
Suppose we are given a multi-agent systéfr= (K, v1,...,vn)
and an associated normative systgrover K. Let for agents,
3:(K, K') be the difference in his utility when moving froid to
K':6;(K,K") = w(K") — wi(K). Then the utility ofn to agenti
wrt K isd;(K, K Tn). We will sometimes abuse notation and just
write 0; (K, n) for this, and refer to it as the benefit for agenf
implementingn in K. Note that this benefit can be negative.

Summarising, the utility of a normative system to an agetiies
difference between the utility of the Kripke structure iniahthe
normative system was implemented and the original Kripkecst
ture. If this value is greater thah then the agent would be better
off if the normative system were imposed, while if it is lebaun
0 then the agent would be worse offiifwere imposed than in the
original system. We say is individually rational for ¢ wrt K if
0;(K,n) > 0, and individually rationasimpliciterif n is individu-
ally rational for every agent.

A social systenrmow is a pair

=(M,n)

whereM is a multi-agent system, ands a normative system over
M.

EXAMPLE 1. The table at the left hand in Figure 2 displays the
utilities §; (K, n) of implementing; in the Kripke structure of our
running example, for the normative systems ny, 71, 72 andns,
introduced before. Recall thai (K) = u2(K) = 4.

4.2 Universal and Existential Goals



Keeping in mind that a norm restrictsthe possible transitions
of the model under consideration, we make the following plzse
tion, borrowing from [15]. Some classes of goals are morioton
or anti-monotonic with respect to adding additional ccaistis to
a system. Let us therefore define two fragments of the largguag
of cTL: the universal languagg" with typical elemenf:, and the
existential fragmentL® with typical element.

pu=T|p|-p[pVulAOu | AL [ A(pU p)

ex=T|p|-pleve|EQe|EQe |E(sUe)
Let us say, for two Kripke structures; = (S, 5% Ri1, A, a, V)
andK> = (S, 5% Ra, A, a, V) that K] is a subsystem ok and
K is a supersystem dk;, written K1 C K> iff R4 C R». Note
that typically K { n C K. Then we have (cf. [15]).

THEOREM 1. Supposek; C K», ands € S. Then
VeeL°: Ki,sfEe= Ky, s=e¢
YueLl': Koy, sEpu=Ki,sEp

This has the following effect on imposing a new norm:

COROLLARY 1. Let K be a structure, and) a normative sys-
tem. Lety; denote a goal hierarchy for agent

1. Suppose agerits utility w;(K) is n, and~;[n] € L", (i.e.,
~i[n] is a universal formula). Then, for any normative system
n, 6:(K,m) > 0.

2. Suppose agents utility u;(K t n) is n, and v;[n] is an
existential formula. Then,d; (K tn, K) > 0.

Corollary 1’s first item says that an agent whose current max-
imal goal in a system is a universal formula, need never fear t
imposition of a new normy. The reason is that his current goal will
at least remain true (in fact a goal higher up in the hierarclay
becomerue). It follows from this that an agent with only universal
goals can only gain from the imposition of normative systems
The opposite is true for existential goals, according tostheond
item of the corollary: it can never be bad for an agent to “tiralo
normy. Hence, an agent with only existential goals might well fear
any nornmw.

However, these observations implicitly assume that alhtgm
the system will comply with the norm. Whether they will in fato
so, of course, is a strategic decision: it partly depends loat the
agent thinks that other agents will do. This motivates ustider
normative system games

5. NORMATIVE SYSTEM GAMES

We now have a principled way of talking about the utility of ma-
tive systems for agents, and so we can start to apply theitadhn
apparatus of game theory to analyse them.

Suppose we have a multi-agent systéin= (K,~v1,...,7x)
and a normative system over K. It is proposed to the agents
in M thatn should be imposed of, (typically to achieve some
coordination objective). Our agent — let's say agents then faced
with a choice: should itomplywith the strictures of the normative
system, or not? Note that this reasoning takes fiaferethe agent
is “in” the system — it is alesign timeconsideration.

We can understand the reasoning here as a game, as follows.
game in strategic normal form (cf. [11, p.11]) is a structure

G =(AG,S1,...,8, Ui, ..., U,) Where:

e AG ={1,...,n}isasetof agents —the players of the game;

e S; is the set of strategies for each agerg AG (a strategy
for an agent is nothing else than a choice between alterna-
tive actions); and

e U : (81 x---x8,) — Ris the utility function for agent
i € Ag, which assigns a utility to every combination of
strategy choices for the agents.

Now, suppose we are given a social system= (M,n) where
M = (K,v1,...,7). Then we can associate a game —tloe-
mative system gamegs. with 3, as follows. The agentdG in G,
are as inx. Each agent has just two strategies available to it:

e (C —comply(cooperat¢ with the normative system; and

e D —do not comply witl{defect fromithe normative system.

If S is a tuple of strategies, one for each agent, and {C, D},
then we denote bylG% the subset of agents that play strategn

S. Hence, for a social systeld = (M, n), the normative system

n | AGS only implements the restrictions for those agents that
choose to cooperate .. Note that this is the same as| AGZ:

the normative system that excludes all the restrictiongehts that
play D in G=. We then define the utility function®’; for each

1 € AG as:

Ui(S) = 8:(K,n | AGS).

So, for example, ifSp is a collection of strategies in whigvery
agent defects (i.e., does not comply with the norm), then

Ui(Sp) = 0i(K, (n1 AGS,)) = wi(K mp) — wi(K) = 0.

In the same way, iS¢ is a collection of strategies in whiakvery
agent cooperateg.e., complies with the norm), then

Ui(Sc) = 0:(K,(n1 AGS,)) = wi(K 1 (n10)) = uw(K tn).

We can now start to investigate some properties of normative
system games.

ExamMPLE 1. (continued) For our example system, we have dis-
played the different/ values for our multi agent system with the
normns, i.e., {(s, s), (¢, t)} as the second table of Figure 2. For
instance, the paif0, 3) in the matrix under the entr§ = (C, D)
is obtained as followsif: ((C, D)) = 61(K,n3 | Agfam) =
w (K tns | AG{s py) — wi(K). The first term of this is the
utility of 1 in the systen¥ where we implemenys for the co-
operating agent, i.e., 1, only. This means that the traoisgtiare
R\ {(s,5)}. In this system, stilp} = A[JEp, is the highest
goal for agent 1. This is the same utility for 1 asAn and hence,
01 (K,m3 | Agfam) = 0. Agent 2 of course benefits if agent 1
complies withns while 2 does not. His utility would be 3, since
ns | AG( py isin factn:.

5.1 Individually Rational Normative Systems

A normative system is individually rational if every ageruid
fare better if the normative system were imposed than otlserw
This is a necessary, although not sufficient condition onrarto
expect that everybody respects it. Note thatof our example is

Aindividually rational for both 1 and 2, although this is nostable
situation: given that the other plays, i is better of by playing
D. We can easily characterise individually rationality widspect
to the corresponding game in strategic form, as follows. J.et
(M, n) be a social system. Then the following are equivalent:
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Figure 3: The Kripke structure produced in the reduction of
Theorem 2; all transitions are associated with agent 1, therdy
initial state is so.

1. nisindividually rational in}M;
2. Vi € AG,U;(Sc) > U;(Sp) inthe gamegs.

The decision problem associated with individually ratiomar-
mative systems is as follows:

INDIVIDUALLY RATIONAL NORMATIVE SYSTEM (IRNS):
Given Multi-agent system\/.

Question Does there exist an individually rational nor-
mative system fol/ ?

THEOREM 2. IRNSiS NP-complete, even in one-agent systems.

PrROOF For membership ofiP, guess a normative system
and verify that it is individually rational. Sincg C R, we will be
able to guess it in nondeterministic polynomial time. Tafyethat
it is individually rational, we check that for all we haveu; (X t
n) > w;(K); computingK t n is just set subtraction, so can be
done in polynomial time, while determining the valuewgf K') for
any K can be done with a polynomial number of model checking
calls, each of which requires only time polynomial in thieand-y.
Hence verifying that; (K {n) > u;(K) requires only polynomial
time.

ForNpP-hardness, we redusaT [12, p.77]. Given &AT instance
 over Boolean variables,, ..., z;, we produce an instance of
IRNS as follows. First, we define a single ageht= {1}. For each
Boolean variabler; in the SAT instance, we create two Boolean
variablest(z;) andf(z;) in the IRNS instance. We then create a
Kripke structurek,, with 2k + 1 states, as shown in Figure 3: arcs
in this graph correspond to transitionsif),. Let ™ be the result
of systematically substituting for every Boolean variabjen ¢
the cTL expressio(EO t(z:)). Next, consider the following for-
mulae:

A
/\ EO (t(z:) V f(=i)) @)

A

/\ ~((EOt(z:)) A (EOF (2:))) @)

=1

We then define the goal hierarchy for all agéras follows:

71[0] T

nil = MAER)A"
We claim there is an individually rational normative systiemthe
instance so constructed iff is satisfiable. First, notice that any
individually rational normative system must forge[1] to be true,
since in the original system, we do not hayg1].

For the=- direction, if there is an individually rational normative
systenmy, then we construct a satisfying assignmentgdoy con-
sidering the arcs that are forbidden hyformula (1) ensures that
we must forbid an arc to eithertz;) or af(z;) state for all vari-
ablesz;, but (2) ensures that we cannot forbid arcs to both. So, if
we forbid an arc to &(z;) state then in the corresponding valuation
for ¢ we makez; false, while if we forbid an arc to f(z;) state
then we maker; true. The fact thap™ is part of the goal ensures
that the normative system is indeed a valuationfor

For <, note that for any satisfying valuation fgrwe can con-
struct an individually rational normative systeqm as follows: if
the valuation makes; true, we forbid the arc to thé(z;) state,
while if the valuation makes; false, we forbid the arc to thg ;)
state. The resulting normative system ensuygd], and is thus
individually rational.

Notice that the Kripke structure constructed in the redunction-
tains just a single agent, and so the Theorem is proven.

5.2 Pareto Efficient Normative Systems

Pareto efficiency is a basic measure of how good a particular
outcome is for a group of agents [11, p.7]. Intuitively, atomume
is Pareto efficient if there is no other outcome that makesyeve
agent better off. In our framework, suppose we are given mkoc
systemX = (M, n), and asked whetheris Pareto efficient. This
amounts to asking whether or not there is some other norenativ
systemn’ such that every agent would be better off ungethan
with . If n” makes every agent better off thanthen we say)’
Pareto dominateg. The decision problem is as follows:

PARETO EFFICIENT NORMATIVE SYSTEMPENY):
Given Multi-agent system\/ and normative system
over M.

Question Is n Pareto efficient fol\/ ?

THEOREM 3. PENSIs coNP-complete, even for one-agent sys-
tems.

PROOF Let M andn be as in the Theorem. We show that the
complement problem tBENS which we refer to aBARETO DOM
INATED, is NP-complete. In this problem, we are givéd andy,
and we are asked whethgis Pareto dominated, i.e., whether or not
there exists somg’ over M such that;” makes every agent better
off thann. For membership afip, simply guess a hormative system
n’, and verify that for alk € A, we haveu;(K t7') > wi (K tn)

— verifying requires a polynomial number of model checkingtp
lems, each of which takes polynomial time. Sing¢eC R, the
normative system can be guessed in non-deterministic polial
time. Fornp-hardness, we redueeNs, which we know to bexp-

complete from Theorem 2. Given an instarideof IRNS, we let M

in the instance oPARETO DOMINATED be as in therNs instance,
and define the normative system fotRETO DOMINATEDtO benyg,

the empty normative system. Now, it is straightforward thatre
exists a normative systeri which Pareto dominates, in M iff

there exist an individually rational normative systemdh Since
the complement problem isP-complete, it follows thaPENSIis

co-NP-complete. [



Mo M M2 M3 M4 75 MNe N7 N8
w(Ktn) |4 4 7 6 5 0 0 8 0
w(Ktn)|4 7 4 6 0 5 8 0 0

Table 1: Utilities for all possible norms in our example

How about Pareto efficient norms for our toy example? Settlin
this question amounts to finding the dominant normativeesyst
amongrno = ng, M1, 12, n3 defined before, angy = {(s, ¢)}, 75 =
{(t7 5)}1 Ne = {(87 3)7 (t7 3)}! n = {(tv t)7 (37 t)} andng =
{(s, t), (¢, s)}. The utilities for each system are given in Table 1.
From this, we infer that the Pareto efficient norms#are)s, 13, 76
andny. Note thatns prohibits the resource to be passed from one
agent to another, and this is not good for any agent (sinceawe h
chosens® = {s, t}, no agent can be sure to ever get the resource,
i.e., goaly! is not true inK 1 nsg).

5.3 Nash Implementation Normative Systems

The most famous solution concept in game theory is of course
Nash equilibrium [11, p.14]. A collection of strategiesedor each
agent, is said to form a Nash equilibrium if no agent can behgfi
doing anything other than playing its strategy, under treiap-
tion that the other agents play theirs. Nash equilibria @mgoirtant
because they provide stable solutions to the problem of wthait- Figure 4: Reduction for Theorem 4.
egy an agent should play. Note that in our toy example, atthou
s is individually rational for each agent, it is not a Nash digui
rium, since given this norm, it would be beneficial for agerib1

deviate (and likewise for 2). In our framework, we say a socia we argued above, verifying that it forms a Nash implemeotati

systemX = (M, n) (wheren # ny) is aNash implementatioif can be done in polynomial time.

Sc (i.e., everyone complying with the normative system) foans ForNpP-hardness, we redusaT. Suppose we are giversaT in-
Nash equilibrium in the gamgs. The intuition is that if¥ is a stancep over Boolean variables, , . . ., 2. Then we construct an
Nash implementation, then complying with the normativeterys instance of\I as follows. We create two agentd, = {1,2}. For

is a reasonable solution for all concerned: there can be ne-be each Boolean variable; we create two Boolean variablesz; )

fit to deviating from it, indeed, there is a positive inceatior all andf(z;), and we then define a Kripke structure as shown in Fig-
to comply. I3 is nota Nash implementation, then the normative yre 4, withs, being the only initial state; the arc labelling in Fig-
system is unlikely to succeed, since compliance is notmatitor ure 4 gives the: function, and each state is labelled with the propo-
some agents. (Our choice of terminology is deliberatelysehdo sitions that are true in that state. For each Boolean variablwe

reflect the way the term “Nash implementation” is used in Bapl  define the formulae,” andz;- as follows:

mentation theory, or mechanism design [11, p.185], wheranaeg

designer seeks to achieve some outcomes by designing #seaful

the game such that these outcomes are equilibria.)

z; = EO(t(zm) ANEO((EO (t(2:))) AAO (=f (2:))))

NASH IMPLEMENTATION (NI) : g = EO(f(m) AEO((EO(f(m:))) A AO (—t(x:))))
Given Multi-agent system\/ .
Question Does there exist a non-empty normative sys-

temn over M such that{(M, n) forms a Nash imple- Let »* be the formula obtained from by systematically substi-

mentation? tuting z;” for z;. Each agent has three goatg]0] = T for both
i € {1, 2}, while

Verifyingthat a particular social system forms a Nash implementa-
tion can be done in polynomial time — it amounts to checking:

Vi€ A u(K )z (KT 0] {})- ml] = AWEO(Hw)) A (EO(f(m)))

This, clearly requires only a polynomial number of modelattieg i=1

calls, each of which requires only polynomial time. k
[l] = EOEO A(EO (=) A (EO(f(x:))))
THEOREM 4. The NI problem isNnP-complete, even for two- i=1
agent systems.

PrROOF For membership ofiP, simply guess a normative sys-
temn and check that it forms a Nash implementation; since R, and finally, for both agentsy;[2] being the conjunction of the fol-
guessing can be done in non-deterministic polynomial tane,as lowing formulae:
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/\ (! Azt) (4)
/\ ~(EO (t(z:) ANEO(f (w:))) (5)
@ (6)

We denote the multi-agent system so constructed/y Now,
we prove that thesAT instancey is satisfiable iffM,, has a Nash
implementation normative system:

For the=- direction, suppose is satisfiable, and leK be a
satisfying valuation, i.e., a set of Boolean variables mgki true.
We can extract fronX a Nash implementation normative system
as follows: ifz; € X, thenn includes the arc from to the state
in which f(z;) is true, and also includes the arc frorRk + 1)
to the state in whiclf (z;) is true; if z; ¢ X, theny includes the
arc from s to the state in which(z;) is true, and also includes
the arc froms(2k + 1) to the state in which(z;) is true. No
other arcs, apart from those so defined, as includegl iNotice
thatn is individually rational for both agents: if they both compl
with the normative system, then they will have theif2] goals
achieved, which they do not in the basic system. To seerthat
forms a Nash implementation, observe thatither agent defects
from 7, thenneitherwill have their~;[2] goals achieved: agent
strictly prefers(C, C') over (D, C'), and agent® strictly prefers
(C,C)over(C,D).

For the< direction, suppose there exists a Nash implementation
normative system, in which casen # 0. Theny is satisfiable;
for suppose not. Then the goajs[2] are not achievable by any
normative system, (by construction). Now, singenust forbid at
least one transition, then at least one agent would fail t lits
~:[1] goal achieved if it complied, so at least one would do better
by defecting, i.e., not complying with. But this contradicts the
assumption thaj is a Nash implementation, i.e., that', C') forms
a Nash equilibrium.

This result is perhaps of some technical interest beyondyikeific
concerns of the present paper, since it is related to twolgmob
that are of wider interest: the complexity of mechanismgleb],
and the complexity of computing Nash equilibria [6, 7]

5.4 Richer Goal Languages

It is interesting to consider what happens to the complexdty
the problems we consider above if we allow richer languages f
goals: in particularcTL* [9]. The main difference is that determin-
ing u; (K) in a given multi-agent systed when such a goal lan-
guage is used involves solvingeaPACEcomplete problem (since
model checking focTL™ is PsPACEcomplete [8]). In fact, it seems
that for each of the three problems we consider above, thre-cor
sponding problem under the assumption a/a* representation
for goals is als®@spPACEcomplete. It cannot be any easier, since de-
termining the utility of a particular Kripke structure irives solv-
ing a PSPACEcomplete problem. To see membershipPsPACE
we can exploit the fact th&sPACE= NPSPACE[12, p.150], and so
we can “guess” the desired normative system, applyiRrgmRACE
verification procedure to check that it has the desired ptigze

6. CONCLUSIONS

Social norms are supposed to restrict our behaviour. Ofsegur
such a restriction does not have to be bad: the fact that amt'sge
behaviour is restricted may seem a limitation, but there bealyen-
efits if he can assume that others will also constrain théiabieur.
The question then, for an agent is, how to be sure that othilrs w
comply with a norm. And, for a system designer, how to be sure
that the system will behave socially, that is, accordinggsamorm.
Game theory is a very natural tool to analyse and answer these
questions, which involve strategic considerations, antiawe pro-
posed a way to translate key questions concerning logieebasr-
mative systems to game theoretical questions. We have gedpo
a logical framework to reason about such scenarios, and we ha
given some computational costs for settling some of the mpaés-
tions about them. Of course, our approach is in many sensas op
for extension or enrichment. An obvious issue is to conslére
complexity of the questions we give for more practical repreaa-
tions of models (cf. [1]), and to consider other classes lofaalble
goals.
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