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ABSTRACT
We develop a model of normative systems in which agents are as-
sumed to have multiple goals of increasing priority, and investi-
gate the computational complexity and game theoretic properties of
this model. In the underlying model of normative systems, weuse
Kripke structures to represent the possible transitions ofa multi-
agent system. A normative system is then simply a subset of the
Kripke structure, which contains the arcs that are forbidden by the
normative system. We specify an agent’s goals as a hierarchyof
formulae of Computation Tree Logic (CTL), a widely used logic
for representing the properties of Kripke structures: the intuition is
that goals further up the hierarchy are preferred by the agent over
those that appear further down the hierarchy. Using this scheme,
we define a model of ordinal utility, which in turn allows us to
interpret our Kripke-based normative systems as games, in which
agents must determine whether to comply with the normative sys-
tem or not. We then characterise the computational complexity of
a number of decision problems associated with these Kripke-based
normative system games; for example, we show that the complex-
ity of checking whether there exists a normative system which has
the property of being a Nash implementation isNP-complete.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory
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1. INTRODUCTION
Normative systems, or social laws, have proved to be an attractive
approach to coordination in multi-agent systems [13, 14, 10, 15, 1].
Although the various approaches to normative systems proposed in
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the literature differ on technical details, they all share the same ba-
sic intuition that a normative system is a set of constraintson the
behaviour of agents in the system; by imposing these constraints,
it is hoped that some desirable objective will emerge. The idea of
using social laws to coordinate multi-agent systems was proposed
by Shoham and Tennenholtz [13, 14]; their approach was extended
by van der Hoeket al. to include the idea of specifying a desirable
global objective for a social law as a logical formula, with the idea
being that the normative system would be regarded as successful
if, after implementing it (i.e., after eliminating all forbidden ac-
tions), the objective formula was guaranteed to be satisfiedin the
system [15]. However, this model did not take into account the
preferencesof individual agents, and hence neglected to account
for possible strategic behaviour by agents when deciding whether
to comply with the normative system or not. This model of nor-
mative systems was further extended by attributing to each agent
a single goal in [16]. However, this model was still too impover-
ished to capture the kinds of decision making that take placewhen
an agent decides whether or not to comply with a social law. In
reality, strategic considerations come into play: an agenttakes into
account not just whether the normative system would be beneficial
for itself, but also whether other agents will rationally choose to
participate.

In this paper, we develop a model of normative systems in which
agents are assumed to havemultiple goals, of increasing priority.
We specify an agent’s goals as a hierarchy of formulae of Com-
putation Tree Logic (CTL), a widely used logic for representing the
properties of Kripke structures [8]: the intuition is that goals further
up the hierarchy are preferred by the agent over those that appear
further down the hierarchy. Using this scheme, we define a model
of ordinal utility, which in turn allows us to interpret our Kripke-
based normative systems as games, in which agents must determine
whether to comply with the normative system or not. We thus pro-
vide a very natural bridge between logical structures and languages
and the techniques and concepts of game theory, which have proved
to be very powerful for analysing social contract-style scenarios
such as normative systems [3, 4]. We then characterise the com-
putational complexity of a number of decision problems associated
with these Kripke-based normative system games; for example, we
show that the complexity of checking whether there exists a norma-
tive system which has the property of being a Nash implementation
is NP-complete.

2. KRIPKE STRUCTURES AND CTL
We useKripke structuresas our basic semantic model for multi-
agent systems [8]. A Kripke structure is essentially a directed
graph, with the vertex setS corresponding to possiblestatesof the
system being modelled, and the relationR ⊆ S × S capturing the



possibletransitionsof the system; intuitively, these transitions are
caused byagentsin the system performingactions, although we do
not include such actions in our semantic model (see, e.g., [13, 2,
15] for related models which include actions as first class citizens).
We let S0 denote the set of possibleinitial statesof the system.
Our model is intended to correspond to the well-knowninterleaved
concurrencymodel from the reactive systems literature: thus an
arc corresponds to the execution of an atomic action by one ofthe
processes in the system, which we callagents.

It is important to note that, in contrast to such models as [2,15],
we are therefore herenot modellingsynchronousaction. This as-
sumption is not in fact essential for our analysis, but itgreatlysim-
plifies the presentation. However, we find it convenient to include
within our model the agents that cause transitions. We therefore
assume a setA of agents, and we label each transition inR with
the agent that causes the transition via a functionα : R → A. Fi-
nally, we use a vocabularyΦ = {p, q , . . .} of Boolean variables
to express the properties of individual statesS : we use a function
V : S → 2Φ to label each state with the Boolean variables true (or
satisfied) in that state.

Collecting these components together, anagent-labelled Kripke
structure(overΦ) is a 6-tuple:

K = 〈S ,S0
,R,A, α,V 〉, where:

• S is a finite, non-empty set ofstates,

• S0 ⊆ S (S0 6= ∅) is the set ofinitial states;

• R ⊆ S × S is a total binary relation onS , which we refer to
as thetransition relation1;

• A = {1, . . . ,n} is aset of agents;

• α : R → A labels each transition inR with an agent; and

• V : S → 2Φ labels each state with the set of propositional
variables true in that state.

In the interests of brevity, we shall hereafter refer to an agent-
labelled Kripke structure simply as aKripke structure. A path
over a transition relationR is an infinite sequence of statesπ =
s0, s1, . . .which must satisfy the property that∀u ∈ N: (su , su+1) ∈
R. If u ∈ N, then we denote byπ[u] the component indexed by
u in π (thusπ[0] denotes the first element,π[1] the second, and so
on). A pathπ such thatπ[0] = s is ans-path. Let ΠR(s) denote
the set ofs-paths overR; since it will usually be clear from con-
text, we often omit reference toR, and simply writeΠ(s). We will
sometimes refer to and think of ans-path as a possible computa-
tion, or system evolution, froms.

EXAMPLE 1. Our running example is of a system with a single
non-sharable resource, which is desired by two agents. Consider
the Kripke structure depicted in Figure 1. We have two states, s and
t , and two corresponding Boolean variablesp1 andp2, which are

1In the branching time temporal logic literature, a relationR ⊆
S × S is said to be total iff∀s ∃s ′ : (s, s ′) ∈ R. Note that
the term “total relation” is sometimes used to refer to relations
R ⊆ S × S such that for every pair of elementss, s ′ ∈ S we
have either(s, s ′) ∈ R or (s ′, s) ∈ R; we arenot using the term
in this way here. It is also worth noting that for some domains,
other constraints may be more appropriate than simple totality. For
example, one might consider theagent totalityrequirement, that in
every state, every agent has at least one possible transition avail-
able:∀s∀i ∈ A∃s ′ : (s, s ′) ∈ R andα(s, s ′) = i .
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Figure 1: The resource control running example.

mutually exclusive. Think ofpi as meaning “agenti has currently
control over the resource”. Each agent has two possible actions,
when in possession of the resource: either give it away, or keep it.
Obviously there are infinitely many differents-paths andt-paths.
Let us say that our set of initial statesS0 equals{s, t}, i.e., we
don’t make any assumptions about who initially has control over
the resource.

2.1 CTL
We now define Computation Tree Logic (CTL), a branching time
temporal logic intended for representing the properties ofKripke
structures [8]. Note that sinceCTL is well known and widely docu-
mented in the literature, our presentation, though complete, will be
somewhat terse. We will useCTL to express agents’ goals.

The syntax ofCTL is defined by the following grammar:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | E fϕ | E(ϕU ϕ) | A fϕ | A(ϕU ϕ)

wherep ∈ Φ. We denote the set ofCTL formula overΦ by LΦ;
sinceΦ is understood, we usually omit reference to it.

The semantics ofCTL are given with respect to the satisfaction
relation “|=”, which holds between pairs of the formK , s, (where
K is a Kripke structure ands is a state inK ), and formulae of the
language. The satisfaction relation is defined as follows:

K , s |= ⊤;

K , s |= p iff p ∈ V (s) (wherep ∈ Φ);

K , s |= ¬ϕ iff not K , s |= ϕ;

K , s |= ϕ ∨ ψ iff K , s |= ϕ or K , s |= ψ;

K , s |= A fϕ iff ∀π ∈ Π(s) : K , π[1] |= ϕ;

K , s |= E fϕ iff ∃π ∈ Π(s) : K , π[1] |= ϕ;

K , s |= A(ϕU ψ) iff ∀π ∈ Π(s),∃u ∈ N, s.t.K , π[u] |= ψ

and∀v , (0 ≤ v < u) : K , π[v ] |= ϕ

K , s |= E(ϕU ψ) iff ∃π ∈ Π(s),∃u ∈ N, s.t.K , π[u] |= ψ

and∀v , (0 ≤ v < u) : K , π[v ] |= ϕ

The remaining classical logic connectives (“∧”, “→”, “↔”) are
assumed to be defined as abbreviations in terms of¬,∨, in the
conventional manner. The remainingCTL temporal operators are
defined:

A♦ϕ ≡ A(⊤U ϕ) E♦ϕ ≡ E(⊤U ϕ)

A ϕ ≡ ¬E♦¬ϕ E ϕ ≡ ¬A♦¬ϕ

We sayϕ is satisfiableif K , s |= ϕ for some Kripke structureK
and states in K ; ϕ is valid if K , s |= ϕ for all Kripke structures
K and statess in K . The problem of checking whetherK , s |= ϕ

for given K , s, ϕ (model checking) can be done in deterministic
polynomial time, while checking whether a givenϕ is satisfiable or
whetherϕ is valid is EXPTIME-complete [8]. We writeK |= ϕ if
K , s0 |= ϕ for all s0 ∈ S0, and|= ϕ if K |= ϕ for all K .



3. NORMATIVE SYSTEMS
For our purposes, anormative systemis simplya set of constraints
on the behaviour of agents in a system[1]. More precisely, a nor-
mative system defines, for every possible system transition, whether
or not that transition is considered to be legal or not. Different
normative systems may differ on whether or not a transition is
legal. Formally, a normative systemη (w.r.t. a Kripke structure
K = 〈S ,S0,R,A, α,V 〉) is simply a subset ofR, such thatR \ η
is a total relation. The requirement thatR\η is total is areasonable-
nessconstraint: it prevents normative systems which lead to states
with no successor. LetN (R) = {η : (η ⊆ R) & (R \ η is total)}
be the set of normative systems overR. The intended interpreta-
tion of a normative systemη is that(s, s ′) ∈ η means transition
(s, s ′) is forbidden in the context ofη; henceR \ η denotes the
legal transitions ofη. Since it is assumedη is reasonable, we are
guaranteed that a legal outward transition exists for everystate. We
denote theemptynormative system byη∅, soη∅ = ∅. Note that
the empty normative systemη∅ is reasonable with respect toany
transition relationR.

The effect ofimplementinga normative system on a Kripke struc-
ture is to eliminate from it all transitions that are forbidden accord-
ing to this normative system (see [15, 1]). IfK is a Kripke struc-
ture, andη is a normative system overK , thenK † η denotes the
Kripke structure obtained fromK by deleting transitions forbidden
in η. Formally, ifK = 〈S ,S0,R,A, α,V 〉, andη ∈ N (R), then
letK †η = K ′ be the Kripke structureK ′ = 〈S ′, S0′,R′,A′, α′,V ′〉
where:

• S = S ′, S0 = S0′, A = A′, andV = V ′;

• R′ = R \ η; and

• α′ is the restriction ofα to R′:

α
′(s, s ′) =



α(s, s ′) if (s, s ′) ∈ R′

undefined otherwise.

Notice that for allK , we haveK † η∅ = K .

EXAMPLE 1. (continued) When thinking in terms offairness, it
seems natural to consider normative systemsη that contain(s, s)
or (t , t). A normative system with(s, t) would not be fair, in the
sense thatA♦A ¬p1 ∨ A♦A ¬p2 holds: in all paths, from
some moment on, one agent will have control forever. Let us, for
later reference, fixη1 = {(s, s)}, η2 = {(t , t)}, andη3 = {(s, s),
(t , t)}.

Later, we will address the issue of whether or not agents should
rationally choose tocomplywith a particular normative system. In
this context, it is useful to define operators on normative systems
which correspond to groups of agents “defecting” from the norma-
tive system. Formally, letK = 〈S ,S0,R, A,α,V 〉 be a Kripke
structure, letC ⊆ A be a set of agents overK , and letη be a
normative system overK . Then:

• η ↾ C denotes the normative system that is the same asη

except that it only contains the arcs ofη that correspond to
the actions of agents inC . We callη ↾ C therestriction ofη
to C , and it is defined as:

η ↾ C = {(s, s ′) : (s, s ′) ∈ η & α(s, s ′) ∈ C}.

ThusK † (η ↾ C ) is the Kripke structure that results if only
the agents inC choose to comply with the normative system.

• η ↿ C denotes the normative system that is the same asη ex-
cept that it only contains the arcs ofη thatdo notcorrespond
to actions of agents inC . We callη ↿ C theexclusion ofC
fromη, and it is defined as:

η ↿ C = {(s, s ′) : (s, s ′) ∈ η & α(s, s ′) 6∈ C}.

ThusK † (η ↿ C ) is the Kripke structure that results if only
the agents inC choosenot to comply with the normative
system (i.e., the only ones who comply are those inA \ C ).

Note that we haveη ↿ C = η ↾ (A\C ) andη ↾ C = η ↿ (A\C ).

EXAMPLE 1. (Continued) We haveη1 ↾ {1} = η1 = {(s, s)},
while η1 ↿ {1} = η∅ = η1 ↾ {2}. Similarly, we haveη3 ↾ {1} =
{(s, s)} andη3 ↿ {1} = {(t , t)}.

4. GOALS AND UTILITIES
Next, we want to be able to capture the goals that agents have,as
these will drive an agent’s strategic considerations – particularly, as
we will see, considerations about whether or not to comply with a
normative system. We will model an agent’s goals as aprioritised
list of CTL formulae, representing increasingly desired properties
that the agent wishes to hold. The intended interpretation of such a
goal hierarchyγi for agenti ∈ A is that the “further up the hier-
archy” a goal is, the more it is desired byi . Note that we assume
that if an agent can achieve a goal at a particular level in its goal
hierarchy, then it is unconcerned about goals lower down thehier-
archy. Formally, agoal hierarchy, γ, (over a Kripke structureK )
is a finite, non-empty sequence ofCTL formulae

γ = (ϕ0, ϕ1, . . . , ϕk )

in which, by convention,ϕ0 = ⊤. We use a natural number in-
dexing notation to extract the elements of a goal hierarchy,so if
γ = (ϕ0, ϕ1, . . . , ϕk ) thenγ[0] = ϕ0, γ[1] = ϕ1, and so on. We
denote the largest index of any element inγ by |γ|.

A particular Kripke structureK is said to satisfy a goal at in-
dexx in goal hierarchyγ if K |= γ[x ], i.e., if γ[x ] is satisfied in all
initial statesS0 of K . An obvious potential property of goal hierar-
chies ismonotonicity: where goals at higher levels in the hierarchy
logically imply those at lower levels in the hierarchy. Formally, a
goal hierarchyγ is monotonic if for allx ∈ {1, . . . , |γ|} ⊆ N, we
have|= γ[x ] → γ[x − 1]. The simplest type of monotonic goal
hierarchy is whereγ[x + 1] = γ[x ] ∧ ψx+1 for someψx+1, so at
each successive level of the hierarchy, we add new constraints to
the goal of the previous level. Although this is a natural property
of many goal hierarchies, it is not a property we demand ofall goal
hierarchies.

EXAMPLE 1. (continued) Suppose the agents have similar, but
opposing goals: each agenti wants to keep the source as often and
long as possible for himself. Define each agent’s goal hierarchy as:

γi = ( ϕi
0 = ⊤, ϕi

1 = E♦pi ,

ϕi
2 = E E♦pi , ϕi

3 = E♦E pi ,

ϕi
4 = A E♦pi , ϕi

5 = E♦A pi

ϕi
6 = A A♦pi , ϕi

7 = A (A♦pi ∧ E pi),

ϕi
8 = A pi )

The most desired goal of agenti is to, in every computation, al-
ways have the resource,pi (this is expressed inϕi

8). Thanks to our
reasonableness constraint, this goal impliesϕi

7 which says that, no
matter how the computation paths evolve, it will always be that all



continuations will hit a point in whichpi , and, moreover, there is a
continuation in whichpi always holds. Goalϕi

6 is a fairness con-
straint implied by it. Note thatA♦pi says that every computation
eventually reaches api state. This may mean that afterpi has hap-
pened, it will never happen again.ϕi

6 circumvents this: it says that,
no matter where you are, there should be a futurepi state. The goal
ϕi

5 is like the strong goalϕi
8 but it accepts that this is only achieved

in some computation, eventually.ϕi
4 requires that in every path,

there is always a continuation that eventually givespi . Goal ϕi
3

says thatpi should be true on some branch, from some moment on.
It impliesϕi

2 which expresses that there is a computation such that
everywhere during it, it is possible to choose a continuation that
eventually satisfiespi . This impliesϕi

1, which says thatpi should
at least not be impossible. If we even drop that demand, we have
the trivial goalϕi

0.
We remark that it may seem more natural to express a fairness

constraintϕi
6 asA ♦pi . However, this is not a properCTL for-

mula. It is in fact a formula inCTL∗ [9], and in this logic, the two
expressions would be equivalent. However, our basic complexity
results in the next sections would not hold for the richer language
CTL∗2, and the price to pay for this is that we have to formulate
our desired goals in a somewhat more cumbersome manner than
we might ideally like. Of course, our basic framework does not
demand that goals are expressed inCTL; they could equally well
be expressed inCTL∗ or indeedATL [2] (as in [15]). We com-
ment on the implications of alternative goal representations at the
conclusion of the next section.

A multi-agent systemcollects together a Kripke structure (rep-
resenting the basic properties of a system under consideration: its
state space, and the possible state transitions that may occur in it),
together with a goal hierarchy, one for each agent, representing the
aspirations of the agents in the system. Formally, a multi-agent
system,M , is an(n + 1)-tuple:

M = 〈K , γ1, . . . , γn〉

whereK is a Kripke structure, and for each agenti in K , γi is a
goal hierarchy overK .

4.1 The Utility of Normative Systems
We can now define theutility of a Kripke structurefor an agent.

The idea is that the utility of a Kripke structure is the highest index
of any goal that is guaranteed for that agent in the Kripke structure.
We make this precise in the functionui(·):

ui(K ) = max{j : 0 ≤ j ≤ |γi | & K |= γi [j ]}

Note that using these definitions of goals and utility, it never
makes sense to have a goalϕ at indexn if there is a logically
weaker goalψ at indexn + k in the hierarchy: by definition of
utility, it could never ben for any structureK .

EXAMPLE 1. (continued) LetM = 〈K , γ1, γ2〉 be the multi-
agent system of Figure 1, withγ1 andγ2 as defined earlier in this
example. Recall that we have definedS0 as{s, t}. Then,u1(K ) =
u2(K ) = 4: goal ϕ4 is true in S0, but ϕ5 is not. To see that
ϕ2

4 = A E♦p2 is true ins for instance: note that on ever path it
is always the case that there is a transition tot , in whichp2 is true.

Notice that since for any goal hierarchyγi we haveγ[0] = ⊤,
then for all Kripke structures,ui(K ) is well defined, withui(K ) ≥

2CTL∗ model checking isPSPACE-complete, and hence much
worse (under standard complexity theoretic assumptions) than
model checkingCTL [8].

η δ1(K , η) δ2(K , η)
η∅ 0 0
η1 0 3
η2 3 0
η3 2 2

C D

C (2, 2) (0, 3)
D (3, 0) (0, 0)

Figure 2: Benefits of implementing a normative systemη (left)
and pay-offs for the gameΣM .

0. Note that this is anordinal utility measure: it tells us, for any
given agent, therelative utility of different Kripke structures, but
utility values are not on some standard system-wide scale. The fact
that ui(K1) > ui(K2) certainly means thati strictly prefersK1

over K2, but the fact thatui(K ) > uj (K ) doesnot mean thati
valuesK more highly thanj . Thus, it does not make sense to com-
pare utility valuesbetweenagents, and so for example, some system
wide measures of utility, (notably those measures that aggregate in-
dividual utilities, such as social welfare), do not make sense when
applied in this setting. However, as we shall see shortly, other mea-
sures – such as Pareto efficiency – can be usefully applied.

There are other representations for goals, which would allow us
to define cardinal utilities. The simplest would be to specify goalsγ
for an agent as a finite, non-empty, one-to-one relation:γ ⊆ L×R.
We assume that thex values in pairs(ϕ, x) ∈ γ are specified so
thatx for agenti means the same asx for agentj , and so we have
cardinal utility. We then define the utility fori of a Kripke structure
K asui(K ) = max{x : (ϕ, x) ∈ γi & K |= ϕ}. The results of
this paper in fact hold irrespective of which of these representations
we actually choose; we fix upon the goal hierarchy approach inthe
interests of simplicity.

Our next step is to show how, in much the same way, we can lift
the utility function from Kripke structures to normative systems.
Suppose we are given a multi-agent systemM = 〈K , γ1, . . . , γn〉
and an associated normative systemη over K . Let for agenti ,
δi(K ,K ′) be the difference in his utility when moving fromK to
K ′: δi(K ,K ′) = ui(K

′)−ui(K ). Then the utility ofη to agenti
wrt K is δi(K ,K † η). We will sometimes abuse notation and just
write δi(K , η) for this, and refer to it as the benefit for agenti of
implementingη in K . Note that this benefit can be negative.

Summarising, the utility of a normative system to an agent isthe
difference between the utility of the Kripke structure in which the
normative system was implemented and the original Kripke struc-
ture. If this value is greater than0, then the agent would be better
off if the normative system were imposed, while if it is less than
0 then the agent would be worse off ifη were imposed than in the
original system. We sayη is individually rational for i wrt K if
δi(K , η) > 0, and individually rationalsimpliciter if η is individu-
ally rational for every agent.

A social systemnow is a pair

Σ = 〈M , η〉

whereM is a multi-agent system, andη is a normative system over
M .

EXAMPLE 1. The table at the left hand in Figure 2 displays the
utilities δi(K , η) of implementingη in the Kripke structure of our
running example, for the normative systemsη = η∅, η1, η2 andη3,
introduced before. Recall thatu1(K ) = u2(K ) = 4.

4.2 Universal and Existential Goals



Keeping in mind that a normη restrictsthe possible transitions
of the model under consideration, we make the following observa-
tion, borrowing from [15]. Some classes of goals are monotonic
or anti-monotonic with respect to adding additional constraints to
a system. Let us therefore define two fragments of the language
of CTL: the universal languageLu with typical elementµ, and the
existential fragmentLe with typical elementε.

µ ::= ⊤ | p | ¬p | µ ∨ µ | A fµ | A µ | A(µU µ)

ε ::= ⊤ | p | ¬p | ε ∨ ε | E fε | E♦ε | E(εU ε)

Let us say, for two Kripke structuresK1 = 〈S ,S0,R1,A, α,V 〉
andK2 = 〈S ,S0,R2,A, α,V 〉 thatK1 is a subsystem ofK2 and
K2 is a supersystem ofK1, writtenK1 ⊑ K2 iff R1 ⊆ R2. Note
that typicallyK † η ⊑ K . Then we have (cf. [15]).

THEOREM 1. SupposeK1 ⊑ K2, ands ∈ S . Then

∀ε ∈ Le : K1, s |= ε⇒ K2, s |= ε

∀µ ∈ Lu : K2, s |= µ⇒ K1, s |= µ

This has the following effect on imposing a new norm:

COROLLARY 1. Let K be a structure, andη a normative sys-
tem. Letγi denote a goal hierarchy for agenti .

1. Suppose agenti ’s utility ui(K ) is n, andγi [n] ∈ Lu , (i.e.,
γi [n] is a universal formula). Then, for any normative system
η, δi(K , η) ≥ 0.

2. Suppose agenti ’s utility ui(K † η) is n, and γi [n] is an
existential formulaε. Then,δi(K † η,K ) ≥ 0.

Corollary 1’s first item says that an agent whose current max-
imal goal in a system is a universal formula, need never fear the
imposition of a new normη. The reason is that his current goal will
at least remain true (in fact a goal higher up in the hierarchymay
becometrue). It follows from this that an agent with only universal
goals can only gain from the imposition of normative systemsη.
The opposite is true for existential goals, according to thesecond
item of the corollary: it can never be bad for an agent to “undo” a
normη. Hence, an agent with only existential goals might well fear
any normη.

However, these observations implicitly assume that all agents in
the system will comply with the norm. Whether they will in fact do
so, of course, is a strategic decision: it partly depends on what the
agent thinks that other agents will do. This motivates us to consider
normative system games.

5. NORMATIVE SYSTEM GAMES
We now have a principled way of talking about the utility of norma-
tive systems for agents, and so we can start to apply the technical
apparatus of game theory to analyse them.

Suppose we have a multi-agent systemM = 〈K , γ1, . . . , γn〉
and a normative systemη over K . It is proposed to the agents
in M that η should be imposed onK , (typically to achieve some
coordination objective). Our agent – let’s say agenti – is then faced
with a choice: should itcomplywith the strictures of the normative
system, or not? Note that this reasoning takes placebeforethe agent
is “in” the system – it is adesign timeconsideration.

We can understand the reasoning here as a game, as follows. A
game in strategic normal form (cf. [11, p.11]) is a structure:

G = 〈AG,S1, . . . ,Sn ,U1, . . . ,Un〉 where:

• AG = {1, . . . ,n} is a set of agents – the players of the game;

• Si is the set of strategies for each agenti ∈ AG (a strategy
for an agenti is nothing else than a choice between alterna-
tive actions); and

• Ui : (S1 × · · · × Sn) → R is the utility function for agent
i ∈ AG, which assigns a utility to every combination of
strategy choices for the agents.

Now, suppose we are given a social systemΣ = 〈M , η〉 where
M = 〈K , γ1, . . . , γn〉. Then we can associate a game – thenor-
mative system game–GΣ with Σ, as follows. The agentsAG in GΣ

are as inΣ. Each agenti has just two strategies available to it:

• C – comply(cooperate) with the normative system; and

• D – do not comply with(defect from) the normative system.

If S is a tuple of strategies, one for each agent, andx ∈ {C ,D},
then we denote byAGx

S the subset of agents that play strategyx in
S . Hence, for a social systemΣ = 〈M , η〉, the normative system
η ↾ AGC

S only implements the restrictions for those agents that
choose to cooperate inGΣ. Note that this is the same asη ↿ AGD

S :
the normative system that excludes all the restrictions of agents that
play D in GΣ. We then define the utility functionsUi for each
i ∈ AG as:

Ui(S) = δi(K , η ↾ AGC
S ).

So, for example, ifSD is a collection of strategies in whichevery
agent defects (i.e., does not comply with the norm), then

Ui(SD ) = δi(K , (η ↿ AGD
SD

)) = ui(K † η∅) − ui(K ) = 0.

In the same way, ifSC is a collection of strategies in whichevery
agent cooperates(i.e., complies with the norm), then

Ui(SC ) = δi(K , (η ↿ AGD
SC

)) = ui(K † (η ↿ ∅)) = ui(K † η).

We can now start to investigate some properties of normative
system games.

EXAMPLE 1. (continued) For our example system, we have dis-
played the differentU values for our multi agent system with the
norm η3, i.e.,{(s, s), (t , t)} as the second table of Figure 2. For
instance, the pair(0, 3) in the matrix under the entryS = 〈C ,D〉
is obtained as follows.U1(〈C ,D〉) = δ1(K , η3 ↾ AGC

〈C ,D〉) =

u1(K † η3 ↾ AGC
〈C ,D〉) − u1(K ). The first term of this is the

utility of 1 in the systemK where we implementη3 for the co-
operating agent, i.e., 1, only. This means that the transitions are
R \ {(s, s)}. In this system, stillϕ1

4 = A E♦p1 is the highest
goal for agent 1. This is the same utility for 1 as inK , and hence,
δ1(K , η3 ↾ AGC

〈C ,D〉) = 0. Agent 2 of course benefits if agent 1
complies withη3 while 2 does not. His utility would be 3, since
η3 ↾ AGC

〈C ,D〉 is in factη1.

5.1 Individually Rational Normative Systems
A normative system is individually rational if every agent would

fare better if the normative system were imposed than otherwise.
This is a necessary, although not sufficient condition on a norm to
expect that everybody respects it. Note thatη3 of our example is
individually rational for both 1 and 2, although this is not astable
situation: given that the other playsC , i is better of by playing
D . We can easily characterise individually rationality withrespect
to the corresponding game in strategic form, as follows. LetΣ =
〈M , η〉 be a social system. Then the following are equivalent:
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Figure 3: The Kripke structure produced in the reduction of
Theorem 2; all transitions are associated with agent 1, the only
initial state is s0.

1. η is individually rational inM ;

2. ∀i ∈ AG,Ui(SC ) > Ui(SD ) in the gameGΣ.

The decision problem associated with individually rational nor-
mative systems is as follows:

INDIVIDUALLY RATIONAL NORMATIVE SYSTEM (IRNS):
Given: Multi-agent systemM .
Question: Does there exist an individually rational nor-
mative system forM ?

THEOREM 2. IRNS is NP-complete, even in one-agent systems.

PROOF. For membership ofNP, guess a normative systemη,
and verify that it is individually rational. Sinceη ⊆ R, we will be
able to guess it in nondeterministic polynomial time. To verify that
it is individually rational, we check that for alli , we haveui(K †
η) > ui(K ); computingK † η is just set subtraction, so can be
done in polynomial time, while determining the value ofui(K ) for
anyK can be done with a polynomial number of model checking
calls, each of which requires only time polynomial in theK andγ.
Hence verifying thatui(K † η) > ui(K ) requires only polynomial
time.

ForNP-hardness, we reduceSAT [12, p.77]. Given aSAT instance
ϕ over Boolean variablesx1, . . . , xk , we produce an instance of
IRNS as follows. First, we define a single agentA = {1}. For each
Boolean variablexi in the SAT instance, we create two Boolean
variablest(xi) and f (xi) in the IRNS instance. We then create a
Kripke structureKϕ with 2k + 1 states, as shown in Figure 3: arcs
in this graph correspond to transitions inKϕ. Letϕ∗ be the result
of systematically substituting for every Boolean variablexi in ϕ

the CTL expression(E ft(xi )). Next, consider the following for-
mulae:

k̂

i=1

E f(t(xi ) ∨ f (xi )) (1)

k̂

i=1

¬((E ft(xi )) ∧ (E ff (xi))) (2)

We then define the goal hierarchy for all agent1 as follows:

γ1[0] = ⊤
γ1[1] = (1) ∧ (2) ∧ ϕ∗

We claim there is an individually rational normative systemfor the
instance so constructed iffϕ is satisfiable. First, notice that any
individually rational normative system must forceγ1[1] to be true,
since in the original system, we do not haveγ1[1].

For the⇒ direction, if there is an individually rational normative
systemη, then we construct a satisfying assignment forϕ by con-
sidering the arcs that are forbidden byη: formula (1) ensures that
we must forbid an arc to either at(xi ) or a f (xi) state for all vari-
ablesxi , but (2) ensures that we cannot forbid arcs to both. So, if
we forbid an arc to at(xi ) state then in the corresponding valuation
for ϕ we makexi false, while if we forbid an arc to af (xi) state
then we makexi true. The fact thatϕ∗ is part of the goal ensures
that the normative system is indeed a valuation forϕ.

For⇐, note that for any satisfying valuation forϕ we can con-
struct an individually rational normative systemη, as follows: if
the valuation makesxi true, we forbid the arc to thef (xi) state,
while if the valuation makesxi false, we forbid the arc to thet(xi )
state. The resulting normative system ensuresγ1[1], and is thus
individually rational.

Notice that the Kripke structure constructed in the reduction con-
tains just a single agent, and so the Theorem is proven.

5.2 Pareto Efficient Normative Systems
Pareto efficiency is a basic measure of how good a particular

outcome is for a group of agents [11, p.7]. Intuitively, an outcome
is Pareto efficient if there is no other outcome that makes every
agent better off. In our framework, suppose we are given a social
systemΣ = 〈M , η〉, and asked whetherη is Pareto efficient. This
amounts to asking whether or not there is some other normative
systemη′ such that every agent would be better off underη′ than
with η. If η′ makes every agent better off thanη, then we sayη′

Pareto dominatesη. The decision problem is as follows:

PARETO EFFICIENT NORMATIVE SYSTEM(PENS):
Given: Multi-agent systemM and normative systemη
overM .
Question: Is η Pareto efficient forM ?

THEOREM 3. PENSis co-NP-complete, even for one-agent sys-
tems.

PROOF. Let M andη be as in the Theorem. We show that the
complement problem toPENS, which we refer to asPARETO DOM-
INATED, is NP-complete. In this problem, we are givenM andη,
and we are asked whetherη is Pareto dominated, i.e., whether or not
there exists someη′ overM such thatη′ makes every agent better
off thanη. For membership ofNP, simply guess a normative system
η′, and verify that for alli ∈ A, we haveui(K † η′) > ui(K † η)
– verifying requires a polynomial number of model checking prob-
lems, each of which takes polynomial time. Sinceη′ ⊆ R, the
normative system can be guessed in non-deterministic polynomial
time. ForNP-hardness, we reduceIRNS, which we know to beNP-
complete from Theorem 2. Given an instanceM of IRNS, we letM
in the instance ofPARETO DOMINATEDbe as in theIRNS instance,
and define the normative system forPARETO DOMINATEDto beη∅,
the empty normative system. Now, it is straightforward thatthere
exists a normative systemη′ which Pareto dominatesη∅ in M iff
there exist an individually rational normative system inM . Since
the complement problem isNP-complete, it follows thatPENS is
co-NP-complete.



η0 η1 η2 η3 η4 η5 η6 η7 η8

u1(K † η) 4 4 7 6 5 0 0 8 0
u2(K † η) 4 7 4 6 0 5 8 0 0

Table 1: Utilities for all possible norms in our example

How about Pareto efficient norms for our toy example? Settling
this question amounts to finding the dominant normative systems
amongη0 = η∅, η1, η2, η3 defined before, andη4 = {(s, t)}, η5 =
{(t , s)}, η6 = {(s, s), (t , s)}, η7 = {(t , t), (s, t)} and η8 =
{(s, t), (t , s)}. The utilities for each system are given in Table 1.
From this, we infer that the Pareto efficient norms areη1, η2, η3, η6
andη7. Note thatη8 prohibits the resource to be passed from one
agent to another, and this is not good for any agent (since we have
chosenS0 = {s, t}, no agent can be sure to ever get the resource,
i.e., goalϕi

1 is not true inK † η8).

5.3 Nash Implementation Normative Systems
The most famous solution concept in game theory is of course

Nash equilibrium [11, p.14]. A collection of strategies, one for each
agent, is said to form a Nash equilibrium if no agent can benefit by
doing anything other than playing its strategy, under the assump-
tion that the other agents play theirs. Nash equilibria are important
because they provide stable solutions to the problem of whatstrat-
egy an agent should play. Note that in our toy example, although
η3 is individually rational for each agent, it is not a Nash equilib-
rium, since given this norm, it would be beneficial for agent 1to
deviate (and likewise for 2). In our framework, we say a social
systemΣ = 〈M , η〉 (whereη 6= η∅) is aNash implementationif
SC (i.e., everyone complying with the normative system) formsa
Nash equilibrium in the gameGΣ. The intuition is that ifΣ is a
Nash implementation, then complying with the normative system
is a reasonable solution for all concerned: there can be no bene-
fit to deviating from it, indeed, there is a positive incentive for all
to comply. If Σ is not a Nash implementation, then the normative
system is unlikely to succeed, since compliance is not rational for
some agents. (Our choice of terminology is deliberately chosen to
reflect the way the term “Nash implementation” is used in imple-
mentation theory, or mechanism design [11, p.185], where a game
designer seeks to achieve some outcomes by designing the rules of
the game such that these outcomes are equilibria.)

NASH IMPLEMENTATION (NI) :
Given: Multi-agent systemM .
Question: Does there exist a non-empty normative sys-
temη overM such that〈M , η〉 forms a Nash imple-
mentation?

Verifyingthat a particular social system forms a Nash implementa-
tion can be done in polynomial time – it amounts to checking:

∀i ∈ A : ui(K † η) ≥ ui(K † (η ↿ {i})).

This, clearly requires only a polynomial number of model checking
calls, each of which requires only polynomial time.

THEOREM 4. The NI problem isNP-complete, even for two-
agent systems.

PROOF. For membership ofNP, simply guess a normative sys-
temη and check that it forms a Nash implementation; sinceη ⊆ R,
guessing can be done in non-deterministic polynomial time,and as
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Figure 4: Reduction for Theorem 4.

we argued above, verifying that it forms a Nash implementation
can be done in polynomial time.

ForNP-hardness, we reduceSAT. Suppose we are given aSAT in-
stanceϕ over Boolean variablesx1, . . . , xk . Then we construct an
instance ofNI as follows. We create two agents,A = {1, 2}. For
each Boolean variablexi we create two Boolean variables,t(xi )
andf (xi), and we then define a Kripke structure as shown in Fig-
ure 4, withs0 being the only initial state; the arc labelling in Fig-
ure 4 gives theα function, and each state is labelled with the propo-
sitions that are true in that state. For each Boolean variable xi , we
define the formulaex⊤

i andx⊥
i as follows:

x⊤
i = E f(t(xi ) ∧ E f((E f(t(xi ))) ∧ A f(¬f (xi))))

x⊥
i = E f(f (xi) ∧ E f((E f(f (xi))) ∧ A f(¬t(xi ))))

Let ϕ∗ be the formula obtained fromϕ by systematically substi-
tuting x⊤

i for xi . Each agent has three goals:γi [0] = ⊤ for both
i ∈ {1, 2}, while

γ1[1] =

k
^

i=1

((E f(t(xi ))) ∧ (E f(f (xi ))))

γ2[1] = E fE f
k

^

i=1

((E f(t(xi ))) ∧ (E f(f (xi))))

and finally, for both agents,γi [2] being the conjunction of the fol-
lowing formulae:



k
^

i=1

(x⊤
i ∨ x

⊥
i ) (3)

k
^

i=1

¬(x⊤
i ∧ x

⊥
i ) (4)

k̂

i=1

¬(E f(t(xi)) ∧ E f(f (xi))) (5)

ϕ
∗ (6)

We denote the multi-agent system so constructed byMϕ. Now,
we prove that theSAT instanceϕ is satisfiable iffMϕ has a Nash
implementation normative system:

For the⇒ direction, supposeϕ is satisfiable, and letX be a
satisfying valuation, i.e., a set of Boolean variables makingϕ true.
We can extract fromX a Nash implementation normative systemη
as follows: ifxi ∈ X , thenη includes the arc froms0 to the state
in which f (xi) is true, and also includes the arc froms(2k + 1)
to the state in whichf (xi) is true; if xi 6∈ X , thenη includes the
arc from s0 to the state in whicht(xi ) is true, and also includes
the arc froms(2k + 1) to the state in whicht(xi ) is true. No
other arcs, apart from those so defined, as included inη. Notice
thatη is individually rational for both agents: if they both comply
with the normative system, then they will have theirγi [2] goals
achieved, which they do not in the basic system. To see thatη

forms a Nash implementation, observe that ifeither agent defects
from η, thenneitherwill have theirγi [2] goals achieved: agent1
strictly prefers(C ,C ) over (D ,C ), and agent2 strictly prefers
(C ,C ) over(C ,D).

For the⇐ direction, suppose there exists a Nash implementation
normative systemη, in which caseη 6= ∅. Thenϕ is satisfiable;
for suppose not. Then the goalsγi [2] are not achievable by any
normative system, (by construction). Now, sinceη must forbid at
least one transition, then at least one agent would fail to have its
γi [1] goal achieved if it complied, so at least one would do better
by defecting, i.e., not complying withη. But this contradicts the
assumption thatη is a Nash implementation, i.e., that(C ,C ) forms
a Nash equilibrium.

This result is perhaps of some technical interest beyond thespecific
concerns of the present paper, since it is related to two problems
that are of wider interest: the complexity of mechanism design [5],
and the complexity of computing Nash equilibria [6, 7]

5.4 Richer Goal Languages
It is interesting to consider what happens to the complexityof

the problems we consider above if we allow richer languages for
goals: in particular,CTL∗ [9]. The main difference is that determin-
ing ui(K ) in a given multi-agent systemM when such a goal lan-
guage is used involves solving aPSPACE-complete problem (since
model checking forCTL∗ is PSPACE-complete [8]). In fact, it seems
that for each of the three problems we consider above, the corre-
sponding problem under the assumption of aCTL∗ representation
for goals is alsoPSPACE-complete. It cannot be any easier, since de-
termining the utility of a particular Kripke structure involves solv-
ing a PSPACE-complete problem. To see membership inPSPACE

we can exploit the fact thatPSPACE= NPSPACE[12, p.150], and so
we can “guess” the desired normative system, applying aPSPACE

verification procedure to check that it has the desired properties.

6. CONCLUSIONS

Social norms are supposed to restrict our behaviour. Of course,
such a restriction does not have to be bad: the fact that an agent’s
behaviour is restricted may seem a limitation, but there maybe ben-
efits if he can assume that others will also constrain their behaviour.
The question then, for an agent is, how to be sure that others will
comply with a norm. And, for a system designer, how to be sure
that the system will behave socially, that is, according to its norm.
Game theory is a very natural tool to analyse and answer these
questions, which involve strategic considerations, and wehave pro-
posed a way to translate key questions concerning logic-based nor-
mative systems to game theoretical questions. We have proposed
a logical framework to reason about such scenarios, and we have
given some computational costs for settling some of the mainques-
tions about them. Of course, our approach is in many senses open
for extension or enrichment. An obvious issue is to consideris the
complexity of the questions we give for more practical representa-
tions of models (cf. [1]), and to consider other classes of allowable
goals.
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