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ABSTRACT
Agents that must reach agreements with other agents need to rea-
son about how their preferences, judgments, and beliefs might be
aggregated with those of others by the social choice mechanisms
that govern their interactions. The recently emerging field of judg-
ment aggregation studies aggregation from a logical perspective,
and considers how multiple sets of logical formulae can be ag-
gregated to a single consistent set. As a special case, judgment
aggregation can be seen to subsume classical preference aggrega-
tion. We present a modal logic that is intended to support reasoning
about judgment aggregation scenarios (and hence, as a special case,
about preference aggregation): the logical language is interpreted
directly in judgment aggregation rules. We present a sound and
complete axiomatisation of such rules. We show that the logic can
express aggregation rules such as majority voting; rule properties
such as independence; and results such as the discursive paradox,
Arrow’s theorem and Condorcet’s paradox – which are derivable
as formal theorems of the logic. The logic is parameterised in such
a way that it can be used as a general framework for comparing
the logical properties of different types of aggregation – including
classical preference aggregation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods—Modal logic

General Terms
Theory
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1. INTRODUCTION
In this paper, we are interested in knowledge representation for-

malisms for systems in which agents need to aggregate their pref-
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erences, judgments, beliefs, etc. For example, an agent may need
to reason about majority voting in a group he is a member of. Pref-
erence aggregation – combining individuals’ preference relations
over some set of alternatives into a preference relation which rep-
resents the joint preferences of the group by so-called social wel-
fare functions – has been extensively studied in social choice theory
[2]. The recently emerging field of judgment aggregation studies
aggregation from a logical perspective, and discusses how, given
a consistent set of logical formulae for each agent, representing
the agent’s beliefs or judgments, we can aggregate these to a sin-
gle consistent set of formulae. A variety of judgment aggregation
rules have been developed to this end. As a special case, judgment
aggregation can be seen to subsume preference aggregation [5].

In this paper we present a logic, called Judgment Aggregation
Logic (), for reasoning about judgment aggregation. The formu-
lae of the logic are interpreted as statements about judgment aggre-
gation rules, and we give a sound and complete axiomatisation of
all such rules. The axiomatisation is parameterised in such a way
that we can instantiate it to get a range of different judgment aggre-
gation logics. For example, one instance is an axiomatisation, in
our language, of all social welfare functions – thus we get a logic
of classical preference aggregation as well. And this is one of the
main contributions of this paper: we identify the logical properties
of judgment aggregation, and we can compare the logical proper-
ties of different classes of judgment aggregation – and of general
judgment aggregation and preference aggregation in particular.

Of course, a logic is only interesting as long as it is expres-
sive. One of the goals of this paper is to investigate the represen-
tational and logical capabilities an agent needs for judgment and
preference aggregation; that is, what kind of logical language might
be used to represent and reason about judgment aggregation? An
agent’s knowledge representation language should be able to ex-
press: common aggregation rules such as majority voting; com-
monly discussed properties of judgment aggregation rules and so-
cial welfare functions such as independence; paradoxes commonly
used to illustrate judgment aggregation and preference aggregation,
viz. the discursive paradox and Condorcet’s paradox respectively;
and other important properties such as Arrow’s theorem. In order
to illustrate in more detail what such a language would need to be
able to express, take the example of a potential property of social
welfare functions (SWFs) called independence of irrelevant alter-
natives (IIA): given two preference profiles (each consisting of one
preference relation for each agent) and two alternatives, if for each
agent the two alternatives have the same order in the two preference
profiles, then the two alternatives must have the same order in the
two preference relations resulting from applying the SWF to the
two preference profiles, respectively. From this example it seems
that a formal language for SWFs should be able to express:



• Quantification on several levels: over alternatives; over pref-
erence profiles, i.e., over relations over alternatives (second-
order quantification); and over agents.
• Properties of preference relations for different agents, and

properties of several different preference relations for the same
agent in the same formula.
• Comparison of different preference relations.
• The preference relation resulting from applying a SWF to

other preference relations.

From these points it might seem that such a language would be
rather complex (in particular, these requirements seem to rule out a
standard propositional modal logic). Perhaps surprisingly, the lan-
guage of  is syntactically and semantically rather simple; and yet
the language is, nevertheless, expressive enough to give elegant and
succinct expressions of, e.g., IIA, majority voting, the discursive
dilemma, Condorcet’s paradox and Arrow’s theorem. This means,
for example, that Arrow’s theorem is a formal theorem of , i.e.,
a derivable formula; we thus have a formal proof theory for social
choice.

The structure of the rest of the paper is as follows. In the next
section we review the basics of judgment aggregation as well as
preference aggregation, and mention some commonly discussed
properties of judgment aggregation rules and social welfare func-
tions. In Section 3 we introduce the syntax and semantics of ,
and study the complexity of the model checking problem. Formu-
lae of  are interpreted directly by, and thus represent properties
of, judgment aggregation rules. In Section 4 we demonstrate that
the logic can express commonly discussed properties of judgment
aggregation rules, such as the discursive paradox. We give a sound
and complete axiomatisation of the logic in Section 5, under the as-
sumption that the agenda the agents make judgments over is finite.
As mentioned above, preference aggregation can be seen as a spe-
cial case of judgment aggregation, and in Section 6 we introduce an
alternative interpretation of  formulae directly in social welfare
functions. We obtain a sound and complete axiomatisation of the
logic for preference aggregation as well. Sections 7 and 8 discusses
related work and concludes.

2. JUDGMENT AND PREFERENCE
AGGREGATION

Judgment aggregation is concerned with judgment aggregation
rules aggregating sets of logical formulae; preference aggregation
is concerned with social welfare functions aggregating preferences
over some set of alternatives. Let n be a number of agents; we write
Σ for the set {1, . . . , n}.

2.1 Judgment Aggregation Rules
Let L be a logic with language L(L). We require that the lan-

guage has negation and material implication, with the usual seman-
tics. We will sometimes refer to L as “the underlying logic”. An
agenda over L is a non-empty set A ⊆ L(L), where for every for-
mula φ that does not start with a negation, φ ∈ A iff ¬φ ∈ A. We
sometimes call a member ofA an agenda item. A subset A′ ⊆ A is
consistent unless A′ entails both ¬φ and φ in L for some φ ∈ L(L);
A′ is complete if either φ ∈ A′ or ¬φ ∈ A′ for every φ ∈ A which
does not start with negation. An (admissible) individual judgment
set is a complete and consistent subset Ai ⊆ A of the agenda. The
idea here is that a judgment set Ai represents the choices from A
made by agent i. Two rationality criteria demand that an agents’
choices at least be internally consistent, and that each agent makes
a decision between every item and its negation. An (admissible)

judgment profile is an n-tuple 〈A1, . . . ,An〉, where Ai is the individ-
ual judgment set of agent i. J(A,L) denotes the set of all individual
(complete and L-consistent) judgment sets over A, and J(A,L)n

the set of all judgment profiles overA. When γ ∈ J(A,L)n, we use
γi to denote the ith element of γ, i.e., agent i’s individual judgment
set in judgment profile γ.

A judgment aggregation rule (JAR) is a function f that maps each
judgment profile 〈A1, . . . ,An〉 to a complete and consistent collec-
tive judgment set f (A1, . . . ,An) ∈ J(A,L). Such a rule hence is a
recipe to enforce a rational group decision, given an tuple of ratio-
nal choices by the individual agents. Of course, such a rule should
to a certain extent be ‘fair’. Some possible properties of a judgment
aggregation rule f over an agendaA:

Non-dictatorship (ND1) There is no agent i such that for every
judgment profile 〈A1, . . . ,An〉, f (A1, . . . ,An) = Ai

Independence (IND) For any p ∈ A and judgment profiles
〈A1, . . . ,An〉 and 〈B1, . . . ,Bn〉, if for all agents i (p ∈ Ai iff
p ∈ Bi), then p ∈ f (A1, . . . ,An) iff p ∈ f (B1, . . . ,Bn)

Unanimity (UNA) For any judgment profile 〈A1, . . . ,An〉 and any
p ∈ A, if p ∈ Ai for all agents i, then p ∈ f (A1, . . . ,An)

2.2 Social Welfare Functions
Social welfare functions (SWFs) are usually defined in terms of

ordinal preference structures, rather than cardinal structures such as
utility functions. An SWF takes a preference relation, a binary re-
lation over some set of alternatives, for each agent, and outputs an-
other preference relation representing the aggregated preferences.

The most well known result about SWFs is Arrow’s theorem [1].
Many variants of the theorem appear in the literature, differing in
assumptions about the preference relations. In this paper, we take
the assumption that all preference relations are linear orders, i.e.,
that neither agents nor the aggregated preference can be indifferent
between distinct alternatives. This gives one of the simplest formu-
lations of Arrow’s theorem (Theorem 1 below). Cf., e.g., [2] for a
discussion and more general formulations.

Formally, let K be a set of alternatives. We henceforth implic-
itly assume that there are always at least two alternatives. A pref-
erence relation (over K) is, here, a total (linear) order on K, i.e.,
a relation R over K which is antisymmetric (i.e., (a, b) ∈ R and
(b, a) ∈ R implies that a = b), transitive (i.e., (a, b) ∈ R and
(b, c) ∈ R implies that (a, c) ∈ R), and total (i.e., either (a, b) ∈
R or (b, a) ∈ R). We sometimes use the infix notation aRb for
(a, b) ∈ R. The set of preference relations over alternatives K is
denoted L(K). Alternatively, we can view L(K) as the set of all
permutations of K. Thus, we shall sometimes use a permutation of
K to denote a member of L(K). For example, when K = {a, b, c},
we will sometimes use the expression acb to denote the relation
{(a, c), (a, b), (c, b), (a, a), (b, b), (c, c)}. aRb means that b is pre-
ferred over a if a and b are different. Rs denotes the irreflexive
version of R, i.e., Rs = R \ {(a, a) : a ∈ K}. aRsb means that b is
preferred over a and that a , b.

A preference profile for Σ over alternatives K is a tuple
(R1, . . . ,Rn) ∈ L(K)n, consisting of one preference relation Ri for
each agent i. A social welfare function (SWF) is a function

F : L(K)n → L(K)

mapping each preference profile to an aggregated preference rela-
tion. The class of all SWFs over alternatives K is denoted F (K).

Properties of SWFs F corresponding to the judgment aggrega-
tion rule properties discussed in Section 2.1 are:



Non-dictatorship (ND2) ¬∃i∈Σ∀(R1, . . . ,Rn) ∈ L(K)n

F(R1, . . . ,Rn) = Ri (corresponds to ND1)

Independence of irrelevant alternatives (IIA) ∀(R1, . . . ,Rn)
∈ L(K)n∀(S1, . . . , Sn) ∈ L(K)n∀a ∈ K∀b ∈ K((∀i ∈ Σ(aRib⇔
aSib))⇒ (aF(R1, . . . ,Rn)b⇔ aF(S1, . . . , Sn)b)) (corresponds
to IND)

Pareto Optimality (PO) ∀(R1, . . . ,Rn) ∈ L(K)n∀a ∈ K∀b ∈ K
((∀i ∈ ΣaRs

i b)⇒aF(R1, . . . ,Rn)sb) (corresponds to UNA)

Arrow’s theorem says that the three properties above are incon-
sistent if there are more than two alternatives.

T 1 (A). If there are more than two alternatives,
no SWF has all the properties PO, ND2 and IIA.

3. JUDGMENT AGGREGATION LOGIC:
SYNTAX AND SEMANTICS

The language of Judgment Aggregation Logic () is parame-
terised by a set of agents Σ = {1, 2, . . . , n} (we will assume that
there are at least two agents) and an agenda A. The following
atomic propositions are used:

Π = {i, σ,hp | p ∈ A, i ∈ Σ}

The language L(Σ,A) of  is defined by the following grammar:

φ ::= α | �φ | �φ | φ ∧ φ | ¬φ

where α ∈ Π. This language will be formally interpreted in struc-
tures consisting of an agenda item, a judgment profile and a judg-
ment aggregation function; informally, i means that the agenda item
is in agent i’s judgment set in the current judgment profile; σmeans
that the agenda item is in the aggregated judgment set of the current
judgment profile; hp means that the agenda item is p; �φmeans that
φ is true in every judgment profile; �φ means that φ is true in every
agenda item.

We define ^ψ = ¬�¬ψ, intuitively meaning “ψ is true for some
judgment profile”, and _ψ = ¬�¬ψ, intuitively meaning “ψ is true
for some agenda item”, as usual, in addition to the usual derived
propositional connectives.

We now define the formal semantics of L(Σ,A). A model wrt.
L(Σ,A) and underlying logic L is a judgment aggregation rule f
over A. Recall that J(A,L)n denotes the set of complete and L-
consistent judgment profiles overA. A table is a tuple T = 〈f , γ, p〉
such that f is a model, γ ∈ J(A,L)n and p ∈ A. A formula is
interpreted on a table as follows.

f , γ, p |=L hq ⇔ p = q
f , γ, p |=L i ⇔ p ∈ γi

f , γ, p |=L σ ⇔ p ∈ f (γ)
f , γ, p |=L �ψ ⇔ ∀γ′ ∈ J(A,L)n f , γ′, p |=L ψ
f , γ, p |=L �ψ ⇔ ∀p′ ∈ A f , γ, p′ |=L ψ
f , γ, p |=L φ ∧ ψ ⇔ f , γ, p |=L φ and f , γ, p |=L ψ
f , γ, p |=L ¬φ ⇔ f , γ, p 6|=L φ

So, e.g., we have that f , γ, p |=L
∧

i∈Σ i if everybody chooses p in γ.

E 1. A committee of three agents are voting on the fol-
lowing three propositions: “the candidate is qualified” (p), “if the
candidate is qualified he will get an offer” (p → q), and “the
candidate will get an offer” (q). One possible voting scenario
is illustrated in the left part of Table 1. In the table, the results
of proposition-wise majority voting, i.e., the JAR fmaj accepting a
proposition iff it is accepted by a majority of the agents, are also

p p→ q q

1 yes yes yes
2 no yes yes
3 yes no no

fmaj yes yes yes

1 mdc
2 mcd
3 cmd

Fmaj mcd

Table 1: Examples

shown. This example can be modelled by taking the agenda to
be A = {p, p → q, q,¬p,¬(p → q),¬q} (recall that agendas are
closed under single negation) and L to be propositional logic. The
agents’ votes can be modelled by the following judgment profile:
γ = 〈γ1, γ2, γ3〉, where γ1 = {p, p → q, q}, γ2 = {¬p, p → q, q},
γ3 = {p,¬(p→ q),¬q}. We then have that:

• fmaj, γ, p |=L 1∧¬2∧ 3 (agents 1 and 3 judges p to be true in
the profile γ, while agent 2 does not)
• fmaj, γ, p |=L σ (majority voting on p given the preference

profile γ leads to acceptance of p)
• fmaj, γ, p |=L _(1 ∧ 2) (agents 1 and 2 agree on some agenda

item, under the judgment profile γ. Note that this formula
does not depend on which agenda item is on the table.)
• fmaj, γ, p |=L ^((1 ↔ 2) ∧ (2 ↔ 3) ∧ (1 ↔ 3)) (there is some

judgment profile on which all agents agree on p. Note that
this formula does not depend on which judgment profile is on
the table.)
• fmaj, γ, p |=L ^�((1 ↔ 2) ∧ (2 ↔ 3) ∧ (1 ↔ 3)) (there

is some judgment profile on which all agents agree on all
agenda items. Note that this formula does not depend on any
of the elements on the table.)
• fmaj, γ, p |=L σ ↔

∨
G⊆{1,2,3},|G|≥2

∧
i∈G i (the JAR fmaj imple-

ments majority voting)

We write f |=L φ iff f , γ, p |=L φ for every γ over A and p ∈ A;
|=L φ iff f |=L φ for all models f . Given a possible property of a
JAR, such as, e.g., independence, we say that a formula expresses
the property if the formula is true in an aggregation rule f iff f has
the property.

Note that when we are given a formula φ ∈ L(Σ,A), validity,
i.e., |=L φ, is defined with respect to models of the particular lan-
guage L(Σ,A) defined over the particular agenda A (and similar
for validity with respect to a JAR, i.e., f |=L φ). The agenda, like
the set of agents Σ, is given when we define the language, and is
thus implicit in the interpretation of the language1.

Let an outcome o be a maximal conjunction of literals
(¬)1, . . . , (¬)n. The set O is the set of all possible outcomes. Note
that the decision of the society is not incorporated here: an outcome
only collects votes of agents from Σ.

3.1 Model Checking
Model checking is currently one of the most active areas of re-

search with respect to reasoning in modal logics [4], and it is natural
to investigate the complexity of this problem for judgment aggre-
gation logic. Intuitively, the model checking problem for judgment
aggregation logic is as follows:

Given f , γ, p and formula φ of , is it the case that
f , γ, p |= φ or not?

1Likewise, in classical modal logic the language is parameterised
with a set of primitive propositions, and validity is defined with
respect to all models with valuations over that particular set.



While this problem is easy to understand mathematically, it presents
some difficulties if we want to analyse it from a computational
point of view. Specifically, the problem lies in the representa-
tion of the judgment aggregation rule, f . Recall that this func-
tion maps judgment profiles to complete and consistent judgment
sets. A JAR must be defined for all judgment profiles over some
agenda, i.e., it must produce an output for all these possible in-
puts. But how are we to represent such a rule? The simplest rep-
resentation of a function f : X → Y is as the set of ordered pairs
{(x, y) | x ∈ X & y = f (x)}. However, this is not a feasible repre-
sentation for JARs, as there will be exponentially many judgment
profiles in the size of the agenda, and so the representation would
be unfeasibly large in practice. If we did assume this representa-
tion for JARs, then it is not hard to see that model checking for our
logic would be decidable in polynomial time: the naive algorithm,
derivable from semantics, serves this purpose.

However, we emphasise that this result is of no practical signifi-
cance, since it assumes an unreasonable representation for models
– a representation that simply could not be used in practice for ex-
amples of anything other than trivial size.

So, what is a more realistic representation for JARs? Let us say
a representation Rf of a JAR f is reasonable if: (i) the size of Rf

is polynomial in the size of the agenda; and (ii) there is a poly-
nomial time algorithm A, which takes as input a representation Rf

and a judgment profile γ, and produces as output f (γ). There are,
of course, many such representations Rf for JARs f . Here, we will
look at one very general one: where the JAR is represented as a
polynomially bounded two-tape Turing machine Tf , which takes
on its first tape a judgment profile, and writes on its second tape
the resulting judgment set. The requirement that the Turing ma-
chine should be polynomially bounded roughly corresponds to the
requirement that a JAR is “reasonable” to compute; if there is some
JAR that cannot be represented by such a machine, then it is ar-
guably of little value, since it could not be used in practice2. With
such a representation, we can investigate the complexity of our
model checking problem.

In modal logics, the usual source of complexity, over and above
the classical logic connectives, is the modal operators. With re-
spect to judgment aggregation logic, the operator � quantifies over
all judgment profiles, and hence over all consistent subsets of the
agenda. It follows that this is a rather powerful operator: as we will
see, it can be used as an  oracle [9, p.339]. In contrast, the oper-
ator � quantifies over members of the agenda, and is hence much
weaker, from a computational perspective (we can think of it as a
conjunction over elements of the agenda).

The power of the � quantifier suggests that the complexity of
model checking judgment aggregation logic over relatively suc-
cinct representations of JAR is going to be relatively high; we now
prove that the complexity of model checking judgment aggregation
logic is as hard as solving a polynomial number of -hard prob-
lems [9, pp.424–429].

T 2. The model checking problem for judgment aggre-
gation logic, assuming the representation of JARs described above,
is ∆p

2-hard; it is -hard even if the formula to be checked is of the
form ^ψ, where ψ contains no further � or ^ operators.

P. For ∆p
2-hardness, we reduce  (“sequentially nested

2Of course, we have no general way of checking whether any
given Turing machine is guaranteed to terminate in polynomial
time; the problem is undecidable. As a consequence, we cannot
always check whether a particular Turing machine representation
of a JAR meets our requirements. However, this does not prevent
specific JARs being so represented, with corresponding proofs that
they terminate in polynomial time.

satisfiability”). An instance is given by a series of equations of the
form

z1 = ∃X1.φ1(X1) z2 = ∃X2.φ2(X2, z1) z3 = ∃X3.φ3(X3, z1, z2)
. . .

zk = ∃Xk.φk(Xk, z1, . . . , zk−1)

where X1, . . . ,Xk are disjoint sets of variables, and each φi(Y) is a
propositional logic formula over the variables Y; the idea is we first
check whether φ1(X1) is satisfiable, and if it is, we assign z1 the
value true, otherwise assign it false; we then check whether φ2 is
satisfiable under the assumption that z1 takes the value just derived,
and so on. Thus the result of each equation depends on the value of
the previous one. The goal is to determine whether zk is true.

To reduce this problem to judgment aggregation logic model
checking, we first fix the JAR: this rule simply copies whatever
agent 1’s judgment set is. (Clearly this can be implemented by a
polynomially bounded Turing machine.) The agenda is assumed to
contain the variables X1 ∪ · · · ∪Xk ∪ {z1, . . . , zk} and their negations.
We fix the initial judgment profile γ to be X1∪· · ·∪Xk∪{z1, . . . , zk},
and fix p = x1. Given a variable xi, define x∗i to be_(hxi ∧1). If φi is
one of the formulae φ1, . . . , φk, define φ∗i to be the formula obtained
from φi by systematically substituting x∗i for each variable xi and z∗i
similarly.

Now, we define the function ξi for natural numbers i > 0 as:

ξk =

{
z∗1 ↔ ^(φ∗1) if i = 1
z∗i ↔ ^(φ∗i ∧

i−1
j=1 ξj) otherwise.

And we define the formula to be model checked as:

^
(
φ∗k ∧

k−1
j=1 ξj

)
It is now straightforward from construction that this formula is true
under the interpretation iff zk is true in the  instance. The proof
of the latter half of the theorem is immediate from the special case
where k = 1.

3.2 Some Properties
We have thus defined a language which can be used to express

properties of judgment aggregation rules. An interesting question
is then: what are the universal properties of aggregation rules ex-
pressible in the language; which formulae are valid? Here, in order
to illustrate the logic, we discuss some of these logical properties.
In Section 5 we give a complete axiomatisation of all of them.

Recall that we defined the set O of outcomes as the set of all
conjunctions with exactly one, possibly negated, atom from Σ. Let
P = {o ∧ σ, o ∧ ¬σ : o ∈ O}; p ∈ P completely describes the
decisions of the agents and the aggregation function. Let 5 denote
“exclusive or”.

We have that:

|=L 5p∈Pp – any agent and the JAR always have to make a decision

|=L (i ∧ ¬j)→ ^¬i – if some agent can think differently about an
item than i does, then also i can change his mind about it. In
fact this principle can be strengthened to

|=L (^i ∧ ^¬j)→ ^(¬i ∧ j)

|=L �_x – for any x ∈ {i,¬i, σ,¬σ : i ∈ Σ} – both the individual
agents and the JAR will always judge some agenda item to
be true, and conversely, some agenda item to be false

|=L ^_(i ∧ j) – there exist admissible judgment sets such that agents
i and j agree on some judgment.

|=L ^�(i↔ j) – there exist admissible judgment sets such that agents
i and j always agree.



The interpretation of formulae depends on the agendaA and the
underlying logic L, in the quantification over the set J(A,L)n of ad-
missible, e.g., complete and L-consistent, judgment profiles. Note
that this means that some  formula might be valid under one un-
derlying logic, while not under another. For example, if the agenda
contains some formula which is inconsistent in the underlying logic
(and, by implication, some tautology), then the following hold:

|=L �_(i ∧ σ) – for every judgment profile, there is some agenda
item (take a tautology) which both agent i and the JAR judges
to be true

But this property does not hold when every agenda item is con-
sistent with respect to the underlying logic. One such agenda and
underlying logic will be discussed in Section 6.

4. EXPRESSIVITY EXAMPLES
Non-dictatorship can be expressed as follows:

ND =
∧
i∈Σ

^_¬(σ↔ i) (1)

L 1. f |=L ND iff f has the property ND1.

Independence can be expressed as follows:

IND = �
∧
o∈O

�((o ∧ σ)→ �(o→ σ)) (2)

L 2. f |=L IND iff f has the property IND.

Unanimity can be expressed as follows:

UNA = ��((1 ∧ · · · ∧ n)→ σ) (3)

L 3. f |=L UNA iff f has the property UNA.

4.1 The Discursive Paradox
As illustrated in Example 1, the following formula expresses

proposition-wise majority voting over some proposition p

MV = σ↔
∨

G⊆Σ,|G|> n
2

∧
i∈G

i (4)

i.e., the following property of a JAR f and admissible profile
〈A1, . . . ,An〉:

p ∈ f (A1, . . . ,An)⇔ |{i : p ∈ Ai}| > |{i : p < Ai}|

f |= MV exactly iff f has the above property for all judgment pro-
files and propositions.

However, we have the following in our logic. Assume that the
agenda contains at least two distinct formulae and their material
implication (i.e.,A contains p, q, p→ q for some p, q ∈ L(L)).

P 1 (D P).

|=L ^((�MV)→ ⊥)

when there are at least three agents and the agenda contains at
least two distinct formulae and their material implication.

P. Assume the opposite, e.g., that A = {p, p → q, q,¬p,
¬(p → q),¬q, . . .} and there exists an aggregation rule f over A
such that f |=L ��(σ ↔

∨
G⊆Σ,|G|> n

2

∧
i∈G i). Let γ be the judg-

ment profile γ = 〈A1,A2,A3〉 where A1 = {p, p → q, q, . . .}, A2 =

{p,¬(p → q),¬q, . . .} and A3 = {¬p, p → q,¬q, . . .}. We have
that f , γ, p′ |=L �(σ ↔

∨
G⊆Σ,|G|> n

2

∧
i∈G i) for any p′, so f , γ, p |=L

σ ↔
∨

G⊆Σ,|G|> n
2

∧
i∈G i. Because f , γ, p |=L 1 ∧ 2, it follows that

f , γ, p |=L σ. In a similar manner it follows that f , γ, p → q |=L σ
and f , γ, q |=L ¬σ. In other words, p ∈ f (γ), p → q ∈ f (γ) and
q < f (γ). Since f (γ) is complete, ¬q ∈ f (γ). But that contradicts
the fact that f (γ) is required to be consistent.

Proposition 1 is a logical statement of a variant of the well-known
discursive dilemma: if three agents are voting on propositions p, q
and p → q, proposition-wise majority voting might not yield a
consistent result.

5. AXIOMATISATION
Given an underlying logic L, a finite agendaA over L, and a set

of agents Σ, Judgment Aggregation Logic ((L), or just  when
L is understood) for the language L(Σ,A), is defined in Table 2.

¬(hp ∧ hq) if p , q Atmost∨
p∈A hp Atleast
_hp p ∈ A Agenda
_(hp ∧ ϕ)→ �(hp → ϕ) Once
_(hp ∧ x) ∨ _(h′p ∧ x) CpJS

all instantiations of propositional tautologies taut
�(ψ1 → ψ2)→ (�ψ1 → �ψ2) K
�ψ→ ψ T
�ψ→ � � ψ 4
¬ � ψ→ �¬ � ψ 5
(^i ∧ ^¬j)→

∧
o∈O ^o C

��ψ↔ ��ψ (COMM)

From p1, . . . pn `L q infer
_(hp1 ∧ x) ∧ · · · ∧ _(hpn ∧ x)→
�(hq → x) ∧ �(h′q → ¬x) Closure

From ϕ→ ψ and ϕ infer ψ MP
From ψ infer �ψ Nec

Table 2: The logic (L) for the languageL(Σ,A). p, pi, q range
over the agenda A; φ,ψ,ψi over L(Σ,A); x over {σ, i : i ∈ Σ}; �
over {�,�}; i, j over Σ; o over the set of outcomes O. h′p means
hq when p = ¬q for some q, otherwise it means h¬p. L is the
underlying logic.

The first 5 axioms represent properties of a table and of judgment
sets. Axiom Atmost says that there is at most one item on the table
at a time, and Atleast says that we always have an item on the table.
Axiom Agenda says that every agenda item will appear on the table,
whereas Once says that every item of the agenda only appears on
the table once. Note that a conjunction hp ∧ x reads: item p is on
the agenda, and x is in favour of it, or x judges it true. Axiom CpJS
corresponds to the requirement that judgment sets are complete.
Note that from Agenda, CsJS and CpJS we derive the scheme _x∧
_¬x, which says that everybody should at least express one opinion
in favour of something, and against something.

The axioms taut − 5 are well familiar from modal logic: they
directly reflect the unrestricted quantification in the truth definition
of � and �. Axiom C says that for any agenda item for which it
is possible to have opposing opinions, every possible outcome for
that item should be achievable. COMM says that everything that
is true for an arbitrary profile and item, is also true for an arbitrary
item and profile. Closure guarantees that agents behave consis-
tently with respect to consequence in the logic L. MP and Nec are
standard. We use `JAL(L) to denote derivability in (L).

T 3. If the agenda is finite, we have that for any formula
ψ ∈ L(Σ,A), `JAL(L) ψ iff |=L ψ.

P. Soundness is straightforward. For completeness (we fo-
cus on the main idea here and leave out trivial details), we build a



 table for a consistent formula ψ as follows. In fact, our axioma-
tisation completely determines a table, except for the behaviour of
f . To be more precise, let a table description be a conjunction of
the form hp ∧ o ∧ (¬)σ. It is easy to see that table descriptions are
mutually exclusive, and, moreover, we can derive

∨
τ∈T τ, where T

is the set of all table descriptions. Let D be the set of all maxi-
mal consistent sets ∆. We don’t want all of those: it might well
be that ψ requires σ to be in a certain way, which is incompatible
with some ∆’s. We define two accessibility relations in the standard
way: R�∆1∆2 iff for all �ψ: �ψ ∈ ∆1 ⇒ ψ ∈ ∆2. Similarly for R�
with respect to �. Both relations are equivalences (due to taut-5),
and moreover, when R�∆1∆2 and R�∆2∆3 then for some ∆′2, also
R�∆1∆

′
2 and R�∆′2∆3 (because of axiom COMM).

Let ∆0 be a MCS containing ψ. We now define the set Tables =

{∆0} ∪ {∆1,∆2 | (R�∆0∆1 and R�∆1∆2) or (R�∆0∆1 and R�∆1∆2)}

Every ∆ ∈ Tables can be conceived as a pair γ, p, since every ∆
contains a unique _(hq ∧ o ∧ (¬)σ) for every hq and a unique hp.

It is then easy to verify that, for every ∆ ∈ Tables, and every
formula ϕ, ∆ |= ϕ iff ϕ ∈ ∆, where |= here means truth in the
ordinary modal logic sense when the set of states is taken to be
Tables. Now, we extract an aggregation function f and pairs γ, p as
follows:

For every ∆ ∈ Tables, find a conjunction hp ∧ o ∧ (¬)σ. There
will be exactly one such p. This defines the p we are looking for.
Furthermore, the γ is obtained, for every agent i, by finding all q for
which _(hq ∧ i) is currently true. Finally, the function f is a table
of all tuples hp, o(p), σ for which _(hp ∧ o(o) ∧ σ) is contained in
some set in Tables.

We point out that  has all the axioms taut,K,T , 4, 5 and the
rules MP and Nec of the modal logic S5. However, uniform sub-
stitution, a principle of all normal modal logics (cf., e.g., [3]), does
not hold. A counter example is the fact that the following is valid:

�_σ (5)

– no matter what preferences the agents have, the JAR will always
make some judgment – while this is not valid:

�_(σ ∧ i) (6)

– the JAR will not necessarily make the same judgments as agent i.
So, for example, we have that the discursive paradox is provable

in (L): `JAL(L) ^((�MV) → ⊥). An example of a derivation of
the less complicated (valid) property _^(i∧ j) is shown in Table 3.

6. PREFERENCE AGGREGATION
Recently, Dietrich and List [5] showed that preference aggrega-

tion can be embedded in judgment aggregation. In this section we
show that our judgment aggregation logic also can be used to rea-
son about preference aggregation.

Given a set K of alternatives, [5] defines a simple predicate logic
LK with language L(LK) as follows:

• L(LK) has one constant a for each alternative a ∈ K, vari-
ables v1, v2, . . ., a binary identity predicate =, a binary pred-
icate P for strict preference, and the usual propositional and
first order connectives
• Z is the collection of the following axioms:

– ∀v1 ∀v2 (v1Pv2 → ¬v2Pv1)
– ∀v1 ∀v2 ∀v3 ((v1Pv2 ∧ v2Pv3)→ v1Pv3)
– ∀v1 ∀v2 (¬v1 = v2 → (v1Pv2 ∨ v2Pv1))

• When Γ ⊆ L(LK) and φ is a formula, Γ |= φ is defined to hold
iff Γ ∪ Z entails φ in the standard sense of predicate logic

1 _(hp ∧ i) ∨ _(h′p ∧ i) CpJS(i)
2 _(hp ∧ j) ∨ _(h′p ∧ j) CpJS(j)
3 Call 1 A ∨ B and 2 C ∨ D abbreviation, 1, 2
4 (A ∧ C) ∨ (A ∧ D) ∨ (B ∧ C) ∨ (B ∧ D) taut, 3
5 derive ^_(i ∧ j) from every disjunct of 4 strategy is ∨ elim
6 _(hp ∧ i) ∧ _(hp ∧ j) assume A ∧ C
7 �(hp → (i ∧ j)) Once, 6,K(�)
8 _(i ∧ j) 7, Agenda
9 ^_(i ∧ j) 8, T(�)
10 _(hp ∧ i) ∧ _(h′p ∧ j) assume A ∧ D
11 _(hp ∧ x)↔ _(h′p ∧ ¬x) Agenda, Closure
12 _(hp ∧ i) ∧ _(hp ∧ ¬j) 10, 11
13 _(hp ∧ i ∧ ¬j) 12, Once,K(�)
14 _(i ∧ ¬j) 13, taut
15 ^_(i ∧ ¬j) 14, K(�)
16 _^(i ∧ ¬j) 15, COMM
17 _(^i ∧ D¬j) 16, K(�)
18 _^(i ∧ j) 17, C
19 _(h′p ∧ i) ∧ _(h′p ∧ j) assume B ∧ D
20 goes as 6-9
21 _(h′p ∧ i) ∧ _(hp ∧ j) assume B ∧ C
22 goes as 10 - 18
23 _^(i ∧ j) ∨-elim, 1, 2, 9, 18,

20, 22

Table 3:  derivation of _^(i ∧ j)

It is easy to see that there is an one-to-one correspondence between
the set of preference relations (total linear orders) over K and the set
of LK-consistent and complete judgment sets over the preference
agenda

AK = {aPb,¬aPb : a, b ∈ K, a , b}

Given a SWF F over K, the corresponding JAR f F over the prefer-
ence agenda AK is defined as follows f F(A1, . . . ,An) = A, where
A is the consistent and complete judgment set corresponding to
F(L1, . . . ,Ln) where Li is the preference relation corresponding to
the consistent and complete judgment set Ai.

Thus we can use  to reason about preference aggregation as
follows. Take the logical languageL(Σ,AK), for some set of agents
Σ, and take the underlying logic to be LK . We can then interpret our
formulae in an SWF F over K, a preference profile L ∈ L(K) and a
pair (a, b) ⊆ K × K, a , b, as follows:

F,L, (a, b) |=swf φ⇔ f F , γL, aPb |=LK φ

where γL is the judgment profile corresponding to the preference
profile L.

While in the general judgment aggregation case a formula is in-
terpreted in the context of an agenda item, in the preference aggre-
gation case a formula is thus interpreted in the context of a pair of
alternatives.

E 2. Three agents must decide between going to dinner
(d), a movie (m) or a concert (c). Their individual preferences
are illustrated on the right in Table 1 in Section 3, along with the
result of a SWF Fmaj implementing pair-wise majority voting. Let
L = 〈mdc,mcd, cmd〉 be the preference profile corresponding to the
preferences in the example. We have the following:

• Fmaj,L, (m, d) |=swf 1 ∧ 2 ∧ 3 (all agents agree, under the
individual rankings L, on the relative ranking of m and d –
they agree that d is better than m)

• Fmaj,L, (m, d) |=swf _¬(1 ↔ 2) (under the individual rank-
ings L, there is some pair of alternatives on which agents 1
and 2 disagree)



• Fmaj,L, (m, d) |=swf ^_(1 ∧ 2) (agents 1 and 2 can choose
their preferences such that they will agree on some pair of
alternatives)
• Fmaj,L, (m, d) |=swf σ ↔

∨
G⊆{1,2,3},|G|≥2

∧
i∈G i (the SWF Fmaj

implements pair-wise majority voting)

As usual, we write F |=swf φ when F,L, (a, b) |=swf φ for any L
and (a, b), and so on. Thus, our formulae can be seen as expressing
properties of social welfare functions.

E 3. Take the formula ^�(i↔ σ). When this formula is
interpreted as a statement about a social welfare function, it says
that there exists a preference profile such that for all pairs (a, b) of
alternatives, b is preferred over a in the aggregation (by the SWF)
of the preference profile if and only if agent i prefers b over a.

6.1 Expressivity Examples
We make precise the claim in Section 2.2 that the three men-

tioned SWF properties correspond to the three mentioned JAR prop-
erties, respectively. Recall the formulae defined in Section 4.

P 2.

F |=swf ND iff F has the property ND2
F |=swf IND iff F has the property IIA
F |=swf UNA iff F has the property PO

The properties expressed above are properties of SWFs. Let us
now look at properties of the set of alternatives K we can express.
Properties involving cardinality is often of interest, for example in
Arrow’s theorem. Let:

MT2 = ^ (_(1 ∧ 2) ∧ _(1 ∧ ¬2))

P 3. Let F ∈ F (K). |K| > 2 iff F |=swf MT2.

P. For the direction to the left, let F |=swf MT2. Thus, there
is a γ such that there exists (a1, b1), (a2, b2) ∈ K × K, where a1 ,
b1, and a2 , b2, such that (i) a1Pb1 ∈ γ1, (ii) a1Pb1 ∈ γ2, (iii)
a2Pb2 ∈ γ1 and (iv) a2Pb2 < γ2. From (ii) and (iv) we get that
(a1, b1) , (a2, b2), and from that and (i) and (iii) it follows that
γ1 contains two different pairs a1Pb1 and a2Pb2 each having two
different elements. But that is not possible if |K| = 2, because if K =
{a, b} then AK = {aPb,¬aPb, bPa,¬bPa} and thus it is impossible
that γ1 ⊆ A

K since we cannot have aPb, bPa ∈ γ1.
For the direction to the right, let |K| > 2; let a, b, c be three

distinct elements of K. Let γ1 be the judgment set corresponding
to the ranking abc and γ2 the judgment set corresponding to acb.
Now, for any aggregation rule f , f , γ, aPb |= 1 ∧ 2 and f , γ, bPc |=
1 ∧ ¬2. Thus, F |=swf MT2, for any SWF F.

We now have everything we need to express Arrow’s statement
as a formula. It follows from his theorem that the formula is valid
on the class of all social welfare functions.

T 4. |=swf MT2→ ¬(PO ∧ ND ∧ IIA)

P. Note that MT2,PO,ND and IIA are true SWF properties,
their truth value wrt. a table is determined solely by the SWF. For
example, F,L, (a, b) |=swf MT2 iff F |= MT2, for any F,L, a, b.
Let F ∈ F (K), and F,L, (a, b) |=swf MT2 for some L and a, b. By
Proposition 3, K has more than two alternatives. By Arrow’s the-
orem, F cannot have all the properties PO, ND2 and IIA. W.l.o.g
assume that F does not have the PO property. By Proposition 2,
F 6|=swf PO. Since PO is a SWF property, this means that
F,L, (a, b) 6|=swf PO (satisfaction of PO is independent of L, a, b),
and thus that F,L, (a, b) |=swf ¬PO ∨ ¬ND ∨ ¬IIA.

Note that the formula in Theorem 4 does not mention any agenda
items (i.e., pairs of alternatives) such as haPb directly in an expres-
sion. This means that the formula is a member of L(Σ,AK) for any
set of alternatives K, and is valid no matter which set of alternatives
we assume.

The formula MV which in the general judgment aggregation case
expresses proposition-wise majority voting, expresses in the pref-
erence aggregation case pair-wise majority voting, as illustrated in
Example 2. The preference aggregation correspondent to the dis-
cursive paradox of judgment aggregation is the well known Con-
dorcet’s voting paradox, stating that pair-wise majority voting can
lead to aggregated preferences which are cyclic (even if the indi-
vidual preferences are not). We can express Condorcet’s paradox
as follows, again as a universally valid logical property of SWFs.

P 4. |=swf MT2 → ^_¬MV, when there are at least
three agents.

P. The proof is similar to the proof of the discursive para-
dox. Let f F , γ, aPb |=LK MT2; there are thus three distinct el-
ements a, b, c ∈ K. Assume that f F , γ, aPb |=LK ��MV . Let
γ′ be the judgment profile corresponding to the preference pro-
file X = (abc, cab, bca). We have that f F , γ′, aPb |=LK 1 ∧ 2 and,
since f F , γ′, aPb |=LK MV , we have that f F , γ′, aPb |=LK σ and thus
that aPb ∈ f F(γ′) and (a, b) ∈ F(X). In a similar manner we get
that (c, a) ∈ F(X) and (b, c) ∈ F(X). But that is impossible, since
by transitivity we would also have that (a, c) ∈ F(X) which con-
tradicts the fact that F(X) is antisymmetric. Thus, it follows that
f F , γ, aPb 6|=LK ��MV .

6.2 Axiomatisation and Logical Properties
We immediately get, from Theorem 3, a sound and complete

axiomatisation of preference aggregation over a finite set of alter-
natives.

C 1. If the set of alternatives K is finite, we have that
for any formula ψ ∈ L(Σ,AK), `JAL(LK ) ψ iff |=swf ψ.

P. Follows immediately from Theorem 3 and the fact that
for any JAR f , there is a SWF F such that f = f F .

So, for example, Arrow’s theorem is provable in (LK): `JAL(LK )
MT2→ ¬(PO ∧ ND ∧ IIA).

Every formula which is valid with respect to judgment aggrega-
tion rules is also valid with respect to social welfare functions, so
all general logical properties of JARs are also properties of SWFs.

Depending on the agenda, SWFs may have additional properties,
induced by the logic LK , which are not always shared by JARs with
other underlying logics. One such property is ^i. While we have

|=swf ^i,

for other agendas there are underlying logics L such that

6|=L ^i

To see the latter, take an agenda with a formula p which is incon-
sistent in the underlying logic L – p can never be included in a
judgment set. To see the former, take an arbitrary pair of alterna-
tives (a, b). There exists some preference profile in which agent i
prefers b over a.

Technically speaking, the formula ^i holds in SWFs because the
agendaAK does not contain a formula which (alone) is inconsistent
wrt. the underlying logic LK . By the same reason, the following
properties also hold in SWFs but not in JARs in general.

|=swf
∧
o∈O

^o



– for any pair of alternatives (a, b), any possible combination of the
relative ranking of a and b among the agents is possible.

|=swf i→ ^¬i

– given an alternative b which is preferred over some other alter-
native a by agent i, there is some other pair of alternatives c and d
such that d is not preferred over c – namely (c, d) = (b, a).

|=swf �(�(i ∨ j)→ _(i ∧ ¬j))

– if, given preferences of agents and a SWF, for any two alternatives
it is always the case that either agent i or agent j prefers the second
alternative over the first, then there must exist a pair of alternatives
for which the two agents disagree. A justification is that no single
agent can prefer the second alternative over the first for every pair
of alternatives, so in this case if i prefers b over a then j must prefer
a over b. Again, this property does not necessarily hold for other
agendas, because the agenda might contain an inconsistency the
agents could not possibly disagree upon.

Proof theoretically, these additional properties of SWFs are de-
rived using the Closure rule.

7. RELATED WORK
Formal logics related to social choice have focused mostly on the

logical representation of preferences when the set of alternatives is
large and on the computation properties of computing aggregated
preferences for a given representation [6, 7, 8].

A notable and recent exception is a logical framework for judg-
ment aggregation developed by Marc Pauly in [10], in order to be
able to characterise the logical relationships between different judg-
ment aggregation rules. While the motivation is similar to the work
in this paper, the approaches are fundamentally different: in [10],
the possible results from applying a rule to some judgment pro-
file are taken as primary and described axiomatically; in our ap-
proach the aggregation rule and its possible inputs, i.e., judgment
profiles, are taken as primary and described axiomatically. The two
approaches do not seem to be directly related to each other in the
sense that one can be embedded in the other.

The modal logic arrow logic [11] is designed to reason about any
object that can be graphically represented as an arrow, and has var-
ious modal operators for expressing properties of and relationships
between these arrows. In the preference aggregation logic (LK)
we interpreted formulae in pairs of alternatives – which can be seen
as arrows. Thus, (at least) the preference aggregation variant of our
logic is related to arrow logic. However, while the modal operators
of arrow logic can express properties of preference relations such
as transitivity, they cannot directly express most of the properties
we have discussed in this paper. Nevertheless, the relationship to
arrow logic could be investigated further in future work. In par-
ticular, arrow logics are usually proven complete wrt. an algebra.
This could mean that it might be possible to use such algebras as
the underlying structure to represent individual and collective pref-
erences. Then, changing the preference profile takes us from one
algebra to another, and a SWF determines the collective preference,
in each of the algebras.

8. DISCUSSION
We have presented a sound and complete logic  for represent-

ing and reasoning about judgment aggregation.  is expressive:
it can express judgment aggregation rules such as majority voting;
complicated properties such as independence; and important results

such as the discursive paradox, Arrow’s theorem and Condorcet’s
paradox. We argue that these results show exactly which logical
capabilities an agent needs in order to be able to reason about judg-
ment aggregation. It is perhaps surprising that a relatively simple
language provides these capabilities.  provides a proof theory, in
which results such as those mentioned above can be derived3.

The axiomatisation describes the logical principles of judgment
aggregation, and can also be instantiated to reason about specific
instances of judgment aggregation, such as classical Arrovian pref-
erence aggregation. Thus our framework sheds light on the dif-
ferences between the logical principles behind general judgment
aggregation on the one hand and classical preference aggregation
on the other.

In future work it would be interesting to relax the completeness
and consistency requirements of judgment sets, and try to charac-
terise these in the logical language, as properties of general judg-
ment sets, instead.
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3Dietrich and List [5] prove a general version of Arrow’s theorem
for JARs: for a strongly connected agenda, a JAR has the IND
and UNA properties iff it does not have the ND1 property, where
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das. Thus, if we assume that the agenda is strongly connected then
(ND∧UNA)↔ ¬ND1 is valid, and derivable in . An interesting
possibility for future work is to try to characterise conditions such
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