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ABSTRACT
This paper analyzes bilateral multi-issue negotiation between self-
interested autonomous agents. The agents have time constraints in
the form of both deadlines and discount factors. There are m > 1
issues for negotiation where each issue is viewed as a pie of size
one. The issues are “indivisible” (i.e., individual issues cannot be
split between the parties; each issue must be allocated in its en-
tirety to either agent). Here different agents value different issues
differently. Thus, the problem is for the agents to decide how to
allocate the issues between themselves so as to maximize their in-
dividual utilities. For such negotiations, we first obtain the equi-
librium strategies for the case where the issues for negotiation are
known a priori to the parties. Then, we analyse their time com-
plexity and show that finding the equilibrium offers is an NP-hard
problem, even in a complete information setting. In order to over-
come this computational complexity, we then present negotiation
strategies that are approximately optimal but computationally effi-
cient, and show that they form an equilibrium. We also analyze the
relative error (i.e., the difference between the true optimum and the
approximate). The time complexity of the approximate equilibrium
strategies is O(nm/ε2) where n is the negotiation deadline and ε
the relative error. Finally, we extend the analysis to online negotia-
tion where different issues become available at different time points
and the agents are uncertain about their valuations for these issues.
Specifically, we show that an approximate equilibrium exists for
online negotiation and show that the expected difference between
the optimum and the approximate is O(

√
m) . These approximate

strategies also have polynomial time complexity.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
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1. INTRODUCTION
Negotiation is a key form of interaction in multiagent systems. It
is a process in which disputing agents decide how to divide the
gains from cooperation. Since this decision is made jointly by the
agents themselves [20, 19, 13, 15], each party can only obtain what
the other is prepared to allow them. Now, the simplest form of
negotiation involves two agents and a single issue. For example,
consider a scenario in which a buyer and a seller negotiate on the
price of a good. To begin, the two agents are likely to differ on the
price at which they believe the trade should take place, but through
a process of joint decision-making they either arrive at a price that
is mutually acceptable or they fail to reach an agreement. Since
agents are likely to begin with different prices, one or both of them
must move toward the other, through a series of offers and counter
offers, in order to obtain a mutually acceptable outcome. However,
before the agents can actually perform such negotiations, they must
decide the rules for making offers and counter offers. That is, they
must set the negotiation protocol [20]. On the basis of this protocol,
each agent chooses its strategy (i.e., what offers it should make
during the course of negotiation). Given this context, this work
focuses on competitive scenarios with self-interested agents. For
such cases, each participant defines its strategy so as to maximise
its individual utility.

However, in most bilateral negotiations, the parties involved need
to settle more than one issue. For this case, the issues may be di-
visible or indivisible [4]. For the former, the problem for the agents
is to decide how to split each issue between themselves [21]. For
the latter, the individual issues cannot be divided. An issue, in its
entirety, must be allocated to either of the two agents. Since the
agents value different issues differently, they must come to terms
about who will take which issue. To date, most of the existing
work on multi-issue negotiation has focussed on the former case
[7, 2, 5, 23, 11, 6]. However, in many real-world settings, the is-
sues are indivisible. Hence, our focus here is on negotiation for
indivisible issues. Such negotiations are very common in multi-
agent systems. For example, consider the case of task allocation
between two agents. There is a set of tasks to be carried out and
different agents have different preferences for the tasks. The tasks
cannot be partitioned; a task must be carried out by one agent. The
problem then is for the agents to negotiate about who will carry out
which task.

A key problem in the study of multi-issue negotiation is to de-
termine the equilibrium strategies. An equally important problem,
especially in the context of software agents, is to find the time com-
plexity of computing the equilibrium offers. However, such com-
putational issues have so far received little attention. As we will
show, this is mainly due to the fact that existing work (describe in
Section 5) has mostly focused on negotiation for divisible issues



and finding the equilibrium for this case is computationally easier
than that for the case of indivisible issues. Our primary objective is,
therefore, to answer the computational questions for the latter case
for the types of situations that are commonly faced by agents in
real-world contexts. Thus, we consider negotiations in which there
is incomplete information and time constraints. Incompleteness of
information on the part of negotiators is a common feature of most
practical negotiations. Also, agents typically have time constraints
in the form of both deadlines and discount factors. Deadlines are an
essential element since negotiation cannot go on indefinitely, rather
it must end within a reasonable time limit. Likewise, discount fac-
tors are essential since the goods may be perishable or their value
may decline due to inflation. Moreover, the strategic behaviour of
agents with deadlines and discount factors differs from those with-
out (see [21] for single issue bargaining without deadlines and [23,
13] for bargaining with deadlines and discount factors in the con-
text of divisible issues).

Given this, we consider indivisible issues and first analyze the
strategic behaviour of agents to obtain the equilibrium strategies
for the case where all the issues for negotiation are known a priori
to both agents. For this case, we show that the problem of finding
the equilibrium offers is NP-hard, even in a complete information
setting. Then, in order to overcome the problem of time complex-
ity, we present strategies that are approximately optimal but com-
putationally efficient, and show that they form an equilibrium. We
also analyze the relative error (i.e., the difference between the true
optimum and the approximate). The time complexity of the ap-
proximate equilibrium strategies is O(nm/ε2) where n is the ne-
gotiation deadline and ε the relative error. Finally, we extend the
analysis to online negotiation where different issues become avail-
able at different time points and the agents are uncertain about their
valuations for these issues. Specifically, we show that an approx-
imate equilibrium exists for online negotiation and show that the
expected difference between the optimum and the approximate is
O(

√
m) . These approximate strategies also have polynomial time

complexity.
In so doing, our contribution lies in analyzing the computational

complexity of the above multi-issue negotiation problem, and find-
ing the approximate and online equilibria. No previous work has
determined these equilibria. Since software agents have limited
computational resources, our results are especially relevant to such
resource bounded agents.

The remainder of the paper is organised as follows. We begin by
giving a brief overview of single-issue negotiation in Section 2. In
Section 3, we obtain the equilibrium for multi-issue negotiation and
show that finding equilibrium offers is an NP-hard problem. We
then present an approximate equilibrium and evaluate its approx-
imation error. Section 4 analyzes online multi-issue negotiation.
Section 5 discusses the related literature and Section 6 concludes.

2. SINGLE-ISSUE NEGOTIATION
We adopt the single issue model of [27] because this is a model
where, during negotiation, the parties are allowed to make offers
from a set of discrete offers. Since our focus is on indivisible issues
(i.e., parties are allowed to make one of two possible offers: zero
or one), our scenario fits in well with [27]. Hence we use this basic
single issue model and extend it to multiple issues. Before doing
so, we give an overview of this model and its equilibrium strategies.

There are two strategic agents: a and b. Each agent has time
constraints in the form of deadlines and discount factors. The two
agents negotiate over a single indivisible issue (i). This issue is a
‘pie’ of size 1 and the agents want to determine who gets the pie.
There is a deadline (i.e., a number of rounds by which negotiation

must end). Let n ∈ N
+ denote this deadline. The agents use an

alternating offers protocol (as the one of Rubinstein [18]), which
proceeds through a series of time periods. One of the agents, say
a, starts negotiation in the first time period (i.e., t = 1) by making
an offer (xi = 0 or 1) to b. Agent b can either accept or reject the
offer. If it accepts, negotiation ends in an agreement with a getting
xi and b getting yi = 1 − xi. Otherwise, negotiation proceeds to
the next time period, in which agent b makes a counter-offer. This
process of making offers continues until one of the agents either
accepts an offer or quits negotiation (resulting in a conflict). Thus,
there are three possible actions an agent can take during any time
period: accept the last offer, make a new counter-offer, or quit the
negotiation.

An essential feature of negotiations involving alternating offers
is that the agents’ utilities decrease with time [21]. Specifically,
the decrease occurs at each step of offer and counteroffer. This
decrease is represented with a discount factor denoted 0 < δi ≤ 1
for both1 agents.

Let [xt

i, y
t

i ] denote the offer made at time period t where xt

i and
yt

i denote the share for agent a and b respectively. Then, for a given
pie, the set of possible offers is:

{[xt

i , y
t

i ] : xt

i = 0 or 1, yt

i = 0 or 1, and xt

i + yt

i = 1}

At time t, if a and b receive a share of xt

i and yt

i respectively, then
their utilities are:

ua

i (xt

i, t) =



xt

i × δt−1 if t ≤ n
0 otherwise

ub

i (y
t

i , t) =



yt

i × δt−1 if t ≤ n
0 otherwise

The conflict utility (i.e., the utility received in the event that no deal
is struck) is zero for both agents.

For the above setting, the agents reason as follows in order to
determine what to offer at t = 1. We let A(1) (B(1)) denote a’s
(b’s) equilibrium offer for the first time period. Let agent a denote
the first mover (i.e., at t = 1, a proposes to b who should get the
pie). To begin, consider the case where the deadline for both agents
is n = 1. If b accepts, the division occurs as agreed; if not, neither
agent gets anything (since n = 1 is the deadline). Here, a is in a
powerful position and is able to propose to keep 100 percent of the
pie and give nothing to b 2. Since the deadline is n = 1, b accepts
this offer and agreement takes place in the first time period.

Now, consider the case where the deadline is n = 2. In order to
decide what to offer in the first round, a looks ahead to t = 2 and
reasons backwards. Agent a reasons that if negotiation proceeds
to the second round, b will take 100 percent of the pie by offering
[0, 1] and leave nothing for a. Thus, in the first time period, if a
offers b anything less than the whole pie, b will reject the offer.
Hence, during the first time period, agent a offers [0, 1]. Agent b
accepts this and an agreement occurs in the first time period.

In general, if the deadline is n, negotiation proceeds as follows.
As before, agent a decides what to offer in the first round by look-
ing ahead as far as t = n and then reasoning backwards. Agent a’s

1Having a different discount factor for different agents only makes
the presentation more involved without leading to any changes in
the analysis of the strategic behaviour of the agents or the time com-
plexity of finding the equilibrium offers. Hence we have a single
discount factor for both agents.
2It is possible that b may reject such a proposal. However, irrespec-
tive of whether b accepts or rejects the proposal, it gets zero utility
(because the deadline is n = 1). Thus, we assume that b accepts
a’s offer.



offer for t = 1 depends on who the offering agent is for the last
time period. This, in turn, depends on whether n is odd or even.
Since a makes an offer at t = 1 and the agents use the alternating
offers protocol, the offering agent for the last time period is b if n
is even and it is a if n is odd. Thus, depending on whether n is odd
or even, a makes the following offer at t = 1:

A(1) =



OFFER [1, 0] IF ODD n
ACCEPT IF b’s TURN

B(1) =



OFFER [0, 1] IF EVEN n
ACCEPT IF a’s TURN

Agent b accepts this offer and negotiation ends in the first time
period. Note that the equilibrium outcome depends on who makes
the first move. Since we have two agents and either of them could
move first, we get two possible equilibrium outcomes.

On the basis of the above equilibrium for single-issue negotia-
tion with complete information, we first obtain the equilibrium for
multiple issues and then show that computing these offers is a hard
problem. We then present a time efficient approximate equilibrium.

3. MULTI-ISSUE NEGOTIATION
We first analyse the complete information setting. This section
forms the base which we extend to the case of information uncer-
tainty in Section 4.

Here a and b negotiate over m > 1 indivisible issues. These
issues are m distinct pies and the agents want to determine how
to distribute the pies between themselves. Let S = {1, 2, . . . , m}
denote the set of m pies. As before, each pie is of size 1. Let the
discount factor for issue c, where 1 ≤ c ≤ m, be 0 < δc ≤ 1.
For each issue, let n denote each agent’s deadline. In the offer for
time period t (where 1 ≤ t ≤ n), agent a’s (b’s) share for each of
the m issues is now represented as an m element vector xt ∈ B

m

(yt ∈ B
m) where B denotes the set {0, 1}. Thus, if agent a’s share

for issue c at time t is xt

c, then agent b’s share is yt

c = (1−xt

c). The
shares for a and b are together represented as the package [xt, yt].

As is traditional in multi-issue utility theory, we define an agent’s
cumulative utility using the standard additive form [12]. The func-
tions Ua : B

m × B
m × N

+ → R and U b : B
m × B

m × N
+ → R

give the cumulative utilities for a and b respectively at time t. These
are defined as follows:

Ua([xt, yt], t) =

(

Σm

c=1k
a

c ua

c (xt

c, t) if t ≤ n

0 otherwise
(1)

Ub([xt, yt], t) =

(

Σm

c=1k
b

cu
b

c(y
t

c, t) if t ≤ n

0 otherwise
(2)

where ka ∈ N
m

+ denotes an m element vector of constants for
agent a and kb ∈ N

m

+ that for b. Here N+ denotes the set of posi-
tive integers. These vectors indicate how the agents value different
issues. For example, if ka

c > ka

c+1, then agent a values issue c
more than issue c + 1. Likewise for agent b. In other words, the m
issues are perfect substitutes (i.e., all that matters to an agent is its
total utility for all the m issues and not that for any subset of them).
In all the settings we study, the issues will be perfect substitutes.
To begin each agent has complete information about all negotiation
parameters (i.e., n, m, ka

c , kb

c , and δc for 1 ≤ c ≤ m).
Now, multi-issue negotiation can be done using different proce-

dures. Broadly speaking, there are three key procedures for negoti-
ating multiple issues [19]:

1. the package deal procedure where all the issues are settled
together as a bundle,

2. the sequential procedure where the issues are discussed one
after another, and

3. the simultaneous procedure where the issues are discussed in
parallel.

Between these three procedures, the package deal is known to gen-
erate Pareto optimal outcomes [19, 6]. Hence we adopt it here. We
first give a brief description of the procedure and then determine
the equilibrium strategies for it.

3.1 The package deal procedure
In this procedure, the agents use the same protocol as for single-
issue negotiation (described in Section 2). However, an offer for the
package deal includes a proposal for each issue under negotiation.
Thus, for m issues, an offer includes m divisions, one for each
issue. Agents are allowed to either accept a complete offer (i.e., all
m issues) or reject a complete offer. An agreement can therefore
take place either on all m issues or on none of them.

As per the single-issue negotiation, an agent decides what to of-
fer by looking ahead and reasoning backwards. However, since an
offer for the package deal includes a share for all the m issues, the
agents can now make tradeoffs across the issues in order to max-
imise their cumulative utilities.

For 1 ≤ c ≤ m, the equilibrium offer for issue c at time t is
denoted as [at

c, b
t

c] where at

c and bt

c denote the shares for agent a
and b respectively. We denote the equilibrium package at time t
as [at, bt] where at ∈ B

m (bt ∈ B
m) is an m element vector

that denotes a’s (b’s) share for each of the m issues. Also, for
1 ≤ c ≤ m, δc is the discount factor for issue c. The symbols 0
and 1 denote m element vectors of zeroes and ones respectively.
Note that for 1 ≤ t ≤ n, at

c + bt

c = 1 (i.e., the sum of the agents’
shares (at time t) for each pie is one). Finally, for time period t (for
1 ≤ t ≤ n) we let A(t) (respectively B(t)) denote the equilibrium
strategy for agent a (respectively b).

3.2 Equilibrium strategies
As mentioned in Section 1, the package deal allows agents to make
tradeoffs. We let TRADEOFFA (TRADEOFFB) denote agent a’s (b’s)
function for making tradeoffs. We let P denote a set of parameters
to the procedure TRADEOFFA (TRADEOFFB) where P = {ka, kb, δ,m}.
Given this, the following theorem characterises the equilibrium for
the package deal procedure.

THEOREM 1. For the package deal procedure, the following
strategies form a Nash equilibrium. The equilibrium strategy for
t = n is:

A(n) =



OFFER [1, 0] IF a’s TURN

ACCEPT IF b’s TURN

B(n) =



OFFER [0, 1] IF b’s TURN

ACCEPT IF a’s TURN

For all preceding time periods t < n, if [xt, yt] denotes the of-
fer made at time t, then the equilibrium strategies are defined as
follows:

A(t) =

8

<

:

OFFER TRADEOFFA(P, UB(t), t) IF a’s TURN

If (Ua([xt, yt], t) ≥ UA(t)) ACCEPT

else REJECT IF b’s TURN

B(t) =

8

<

:

OFFER TRADEOFFB(P, UA(t), t) IF b’s TURN

If (U b([xt, yt], t) ≥ UB(t)) ACCEPT

else REJECT IF a’s TURN



where UA(t) = Ua([at+1, bt+1], t + 1) and UB(t) = U b([at+1,
bt+1], t + 1).

PROOF. We look ahead to the last time period (i.e., t = n) and
then reason backwards. To begin, if negotiation reaches the dead-
line (n), then the agent whose turn it is takes everything and leaves
nothing for its opponent. Hence, we get the strategies A(n) and
B(n) as given in the statement of the theorem.

In all the preceding time periods (t < n), the offering agent pro-
poses a package that gives its opponent a cumulative utility equal
to what the opponent would get from its own equilibrium offer for
the next time period. During time period t, either a or b could
be the offering agent. Consider the case where a makes an offer
at t. The package that a offers at t gives b a cumulative utility
of Ub([at+1, bt+1], t + 1). However, since there is more than one
issue, there is more than one package that gives b this cumulative
utility. From among these packages, a offers the one that maximises
its own cumulative utility (because it is a utility maximiser). Thus,
the problem for a is to find the package [at, bt] so as to:

maximize
m

X

c=1

ka

c (1 − bt

c)δ
t−1
c (3)

such that
m

X

c=1

bt

ck
b

c ≥ UB(t)

bt

c = 0 or 1 for 1 ≤ c ≤ m

where UB(t), δt−1
c , ka

c , and kb

c are constants and bt

c (1 ≤ c ≤ m)
is a variable.

Assume that the function TRADEOFFA takes parameters P , UB(t),
and t, to solve the maximisation problem given in Equation 3 and
returns the corresponding package. If there is more than one pack-
age that solves Equation 3, then TRADEOFFA returns any one of
them (because agent a gets equal utility from all such packages
and so does agent b). The function TRADEOFFB for agent b is anal-
ogous to that for a.

On the other hand, the equilibrium strategy for the agent that
receives an offer is as follows. For time period t, let b denote the
receiving agent. Then, b accepts [xt, yt] if UB(t) ≤ U b([xt, yt], t),
otherwise it rejects the offer because it can get a higher utility in
the next time period. The equilibrium strategy for a as receiving
agent is defined analogously.

In this way, we reason backwards and obtain the offers for the
first time period. Thus, we get the equilibrium strategies (A(t) and
B(t)) given in the statement of the theorem.

The following example illustrates how the agents make tradeoffs
using the above equilibrium strategies.

EXAMPLE 1. Assume there are m = 2 issues for negotiation,
the deadline for both issues is n = 2, and the discount factor for
both issues for both agents is δ = 1/2. Let ka

1 = 3, ka

2 = 1,
kb

1 = 1, and kb

2 = 5. Let agent a be the first mover. By us-
ing backward reasoning, a knows that if negotiation reaches the
second time period (which is the deadline), then b will get a hun-
dred percent of both the issues. This gives b a cumulative utility of
UB(2) = 1/2 + 5/2 = 3. Thus, in the first time period, if b gets
anything less than a utility of 3, it will reject a’s offer. So, at t = 1,
a offers the package where it gets issue 1 and b gets issue 2. This
gives a cumulative utility of 3 to a and 5 to b. Agent b accepts the
package and an agreement takes place in the first time period.

The maximization problem in Equation 3 can be viewed as the 0-1
knapsack problem3. In the 0-1 knapsack problem, we have a set
3Note that for the case of divisible issues this is the fractional knap-

of m items where each item has a profit and a weight. There is a
knapsack with a given capacity. The objective is to fill the knapsack
with items so as to maximize the cumulative profit of the items in
the knapsack. This problem is analogous to the negotiation problem
we want to solve (i.e., the maximization problem of Equation 3).
Since ka

c and δt−1
c are constants, maximizing

P

m

c=1 ka

c (1−bt

c)δ
t−1
c

is the same as minimizing
P

m

c=1 ka

c bt

c. Hence Equation 3 can be
written as:

minimize
m

X

c=1

ka

c bt

c (4)

such that
m

X

c=1

bt

ck
b

c ≥ UB(t)

bt

c = 0 or 1 for 1 ≤ c ≤ m

Equation 4 is a minimization version of the standard 0-1 knapsack
problem4 with m items where ka

c represents the profit for item c,
kb

c the weight for item c, and UB(t) the knapsack capacity.
Example 1 was for two issues and so it was easy to find the equi-

librium offers. But, in general, it is not computationally easy to
find the equilibrium offers of Theorem 1. The following theorem
proves this.

THEOREM 2. For the package deal procedure, the problem of
finding the equilibrium offers given in Theorem 1 is NP-hard.

PROOF. Finding the equilibrium offers given in Theorem 1 re-
quires solving the 0-1 knapsack problem given in Equation 4. Since
the 0-1 knapsack problem is NP-hard [17], the problem of finding
equilibrium for the package deal is also NP-hard.

3.3 Approximate equilibrium
Researchers in the area of algorithms have found time efficient
methods for computing approximate solutions to 0-1 knapsack prob-
lems [10]. Hence we use these methods to find a solution to our ne-
gotiation problem. At this stage, we would like to point out the
main difference between solving the 0-1 knapsack problem and
solving our negotiation problem. The 0-1 knapsack problem in-
volves decision making by a single agent regarding which items to
place in the knapsack. On the other hand, our negotiation problem
involves two players and they are both strategic. Hence, in our case,
it is not enough to just find an approximate solution to the knapsack
problem, we must also show that such an approximation forms an
equilibrium.

The traditional approach for overcoming the computational com-
plexity in finding an equilibrium has been to use an approximate
equilibrium (see [14, 26] for example). In this approach, a strategy
profile is said to form an ε approximate Nash equilibrium if neither
agent can gain more than the constant ε by deviating. Hence, our
aim is to use the solution to the 0-1 knapsack problem proposed
in [10] and show that it forms an approximate equilibrium to our
negotiation problem. Before doing so, we give a brief overview of
the key ideas that underlie approximation algorithms.

There are two key issues in the design of approximate algorithms
[1]:

sack problem. The factional knapsack problem is computationally
easy; it can be solved in time polynomial in the number of items in
the knapsack problem [17]. In contrast, the 0-1 knapsack problem
is computationally hard.
4Note that for the standard 0-1 knapsack problem the weights, prof-
its and the capacity are positive integers. However a 0-1 knapsack
problem with fractions and non positive values can easily be trans-
formed to one with positive integers in time linear in m using the
methods given in [8, 17].



1. the quality of their solution, and

2. the time taken to compute the approximation.

The quality of an approximate algorithm is determined by compar-
ing its performance to that of the optimal algorithm and measuring
the relative error [3, 1]. The relative error is defined as (z−z∗)/z∗

where z is the approximate solution and z∗ the optimal one. In
general, we are interested in finding approximate algorithms whose
relative error is bounded from above by a certain constant ε, i.e.,

(z − z∗)/z∗ ≤ ε (5)

Regarding the second issue of time complexity, we are interested in
finding fully polynomial approximation algorithms. An approxima-
tion algorithm is said to be fully polynomial if for any ε > 0 it finds
a solution satisfying Equation 5 in time polynomially bounded by
size of the problem (for the 0-1 knapsack problem, the problem size
is equal to the number of items) and by 1/ε [1].

For the 0-1 knapsack problem, Ibarra and Kim [10] presented a
fully polynomial approximation method. This method is based on
dynamic programming. It is a parametric method that takes ε as a
parameter and for any ε > 0, finds a heuristic solution z with rela-
tive error at most ε, such that the time and space complexity grow
polynomially with the number of items m and 1/ε. More specifi-
cally, the space and time complexity are both O(m/ε2) and hence
polynomial in m and 1/ε (see [10] for the detailed approximation
algorithm and proof of time and space complexity).

Since the Ibarra and Kim method is fully polynomial, we use it to
solve our negotiation problem. This is done as follows. For agent
a, let APRX-TRADEOFFA(P, UB(t), t, ε) denote a procedure that
returns an ε approximate solution to Equation 4 using the Ibarra and
Kim method. The procedure APRX-TRADEOFFB(P, UA(t), t, ε) for
agent b is analogous.

For 1 ≤ c ≤ m, the approximate equilibrium offer for issue c
at time t is denoted as [āt

c, b̄
t

c] where āt

c and b̄t

c denote the shares
for agent a and b respectively. We denote the equilibrium package
at time t as [āt, b̄t] where āt ∈ B

m (b̄t ∈ B
m) is an m element

vector that denotes a’s (b’s) share for each of the m issues. Also,
as before, for 1 ≤ c ≤ m, δc is the discount factor for issue c.
Note that for 1 ≤ t ≤ n, āt

c + b̄t

c = 1 (i.e., the sum of the agents’
shares (at time t) for each pie is one). Finally, for time period t (for
1 ≤ t ≤ n) we let Ā(t) (respectively B̄(t)) denote the approximate
equilibrium strategy for agent a (respectively b).The following the-
orem uses this notation and characterizes an approximate equilib-
rium for multi-issue negotiation.

THEOREM 3. For the package deal procedure, the following
strategies form an ε approximate Nash equilibrium. The equilib-
rium strategy for t = n is:

Ā(n) =



OFFER [1, 0] IF a’s TURN

ACCEPT IF b’s TURN

B̄(n) =



OFFER [0, 1] IF b’s TURN

ACCEPT IF a’s TURN

For all preceding time periods t < n, if [xt, yt] denotes the of-
fer made at time t, then the equilibrium strategies are defined as
follows:

Ā(t) =

8

<

:

OFFER APRX-TRADEOFFA(P, UB(t), t, ε) IF a’s TURN

If (Ua([xt, yt], t) ≥ UA(t)) ACCEPT

else REJECT IF b’s TURN

B̄(t) =

8

<

:

OFFER APRX-TRADEOFFB(P, UA(t), t, ε) IF b’s TURN

If (U b([xt, yt], t) ≥ UB(t)) ACCEPT

else REJECT IF a’s TURN

where UA(t) = Ua([āt+1, b̄t+1], t + 1) and UB(t) = U b([āt+1,
b̄t+1], t + 1). An agreement takes place at t = 1.

PROOF. As in the proof for Theorem 1, we use backward rea-
soning. We first obtain the strategies for the last time period t = n.
It is straightforward to get these strategies; the offering agent gets
a hundred percent of all the issues.

Then for t = n − 1, the offering agent must solve the maximiza-
tion problem of Equation 4 by substituting t = n−1 in it. For agent
a (b), this is done by APPROX-TRADEOFFA (APPROX-TRADEOFFB).
These two functions are nothing but the Ibarra and Kim’s approx-
imation method for solving the 0-1 knapsack problem. These two
functions take ε as a parameter and use the Ibarra and Kim’s ap-
proximation method to return a package that approximately maxi-
mizes Equation 4. Thus, the relative error for these two functions
is the same as that for Ibarra and Kim’s method (i.e., it is at most ε
where ε is given in Equation 5).

Assume that a is the offering agent for t = n − 1. Agent a must
offer a package that gives b a cumulative utility equal to what it
would get from its own approximate equilibrium offer for the next
time period (i.e., U b([āt+1, b̄t+1], t + 1) where [āt+1, b̄t+1] is the
approximate equilibrium package for the next time period). Recall
that for the last time period, the offering agent gets a hundred per-
cent of all the issues. Since a is the offering agent for t = n − 1
and the agents use the alternating offers protocol, it is b’s turn at
t = n. Thus U b([āt+1, b̄t+1], t + 1) is equal to b’s cumulative
utility from receiving a hundred percent of all the issues. Using this
utility as the capacity of the knapsack, a uses APPROX-TRADEOFFA

and obtains the approximate equilibrium package for t = n − 1.
On the other hand, if b is the offering agent at t = n − 1, it uses
APPROX-TRADEOFFB to obtain the approximate equilibrium pack-
age.

In the same way for t < n − 1, the offering agent (say a) uses
APPROX-TRADEOFFA to find an approximate equilibrium package
that gives b a utility of U b([āt+1, b̄t+1], t+ 1). By reasoning back-
wards, we obtain the offer for time period t = 1. If a (b) is the offer-
ing agent, it proposes the offer APPROX-TRADEOFFA(P, UB(1), 1, ε)
(APPROX-TRADEOFFB(P, UA(1), 1, ε)). The receiving agent ac-
cepts the offer. This is because the relative error in its cumulative
utility from the offer is at most ε. An agreement therefore takes
place in the first time period.

THEOREM 4. The time complexity of finding the ε approximate
equilibrium offer for the first time period is O(nm/ε2).

PROOF. The time complexity of APPROX-TRADEOFFA and APPROX-
TRADEOFFB is the same as the time complexity of the Ibarra and
Kim method [10] i.e., O(m/ε2)). In order to find the equilibrium
offer for the first time period using backward reasoning, APPROX-
TRADEOFFA (or APPROX- TRADEOFFB) is invoked n times. Hence
the time complexity of finding the ε approximate equilibrium offer
for the first time period is O(nm/ε2).

This analysis was done in a complete information setting. How-
ever an extension of this analysis to an incomplete information set-
ting where the agents have probability distributions over some un-
certain parameter is straightforward, as long as the negotiation is
done offline; i.e., the agents know their preference for each individ-
ual issue before negotiation begins. For instance, consider the case
where different agents have different discount factors, and each
agent is uncertain about its opponent’s discount factor although it
knows its own. This uncertainty is modelled with a probability dis-
tribution over the possible values for the opponent’s discount factor
and having this distribution as common knowledge to the agents.
All our analysis for the complete information setting still holds for



this incomplete information setting, except for the fact that an agent
must now use the given probability distribution and find its oppo-
nent’s expected utility instead of its actual utility. Hence, instead of
analyzing an incomplete information setting for offline negotiation,
we focus on online multi-issue negotiation.

4. ONLINE MULTI-ISSUE NEGOTIATION
We now consider a more general and, arguably more realistic, ver-
sion of multi-issue negotiation, where the agents are uncertain about
the issues they will have to negotiate about in future. In this setting,
when negotiating an issue, the agents know that they will negotiate
more issues in the future, but they are uncertain about the details of
those issues. As before, let m be the total number of issues that are
up for negotiation. The agents have a probability distribution over
the possible values of ka

c and kb

c . For 1 ≤ c ≤ m let ka

c and kb

c be
uniformly distributed over [0,1]. This probability distribution, n,
and m are common knowledge to the agents. However, the agents
come to know ka

c and kb

c only just before negotiation for issue c
begins. Once the agents reach an agreement on issue c, it cannot be
re-negotiated.

This scenario requires online negotiation since the agents must
make decisions about an issue prior to having the information about
the future issues [3]. We first give a brief introduction to online
problems and then draw an analogy between the online knapsack
problem and the negotiation problem we want to solve.

In an online problem, data is given to the algorithm incremen-
tally, one unit at a time [3]. The online algorithm must also pro-
duce the output incrementally: after seeing i units of input it must
output the ith unit of output. Since decisions about the output are
made with incomplete knowledge about the entire input, an on-
line algorithm often cannot produce an optimal solution. Such an
algorithm can only approximate the performance of the optimal al-
gorithm that sees all the inputs in advance. In the design of online
algorithms, the main aim is to achieve a performance that is close
to that of the optimal offline algorithm on each input. An online al-
gorithm is said to be stochastic if it makes decisions on the basis of
the probability distributions for the future inputs. The performance
of stochastic online algorithms is assessed in terms of the expected
difference between the optimum and the approximate solution (de-
noted E[z∗

m−zm] where z∗

m is the optimal and zm the approximate
solution). Note that the subscript m is used to indicate the fact that
this difference depends on m.

We now describe the protocol for online negotiation and then
obtain an approximate equilibrium. The protocol is defined as fol-
lows. Let agent a denote the first mover (since we focus on the
package deal procedure, the first mover is the same for all the m
issues).

Step 1. For c = 1, the agents are given the values of ka

c and kb

c.
These two values are now common5 knowledge.

Step 2. The agents settle issue c using the alternating offers proto-
col described in Section 2. Negotiation for issue c must end
within n time periods from the start of negotiation on the is-
sue. If an agreement is not reached within this time, then
negotiation fails on this and on all remaining issues.

Step 3. The above steps are repeated for issues c = 2, 3, . . . , m.
Negotiation for issue c (2 ≤ c ≤ m) begins in the time
period following an agreement on issue c − 1.

5We assume common knowledge because it simplifies exposition.
However, if ka

c (kb

c) is a’s (b’s) private knowledge, then our analysis
will still hold but now an agent must find its opponent’s expected
utility on the basis of the p.d.fs for ka

c and kb

c.

Thus, during time period t, the problem for the offering agent (say
a) is to find the optimal offer for issue c on the basis of ka

c and
kb

c and the probability distribution for ka

i and kb

i (c < i ≤ m).
In order to solve this online negotiation problem we draw analogy
with the online knapsack problem. Before doing so, however, we
give a brief overview of the online knapsack problem.

In the online knapsack problem, there are m items. The agent
must examine the m items one at a time according to the order they
are input (i.e., as their profit and size coefficients become known).
Hence, the algorithm is required to decide whether or not to in-
clude each item in the knapsack as soon as its weight and profit
become known, without knowledge concerning the items still to be
seen, except for their total number. Note that since the agents have
a probability distribution over the weights and profits of the future
items, this is a case of stochastic online knapsack problem. Our on-
line negotiation problem is analogous to the online knapsack prob-
lem. This analogy is described in detail in the proof for Theorem 5.
Again, researchers in algorithms have developed time efficient ap-
proximate solutions to the online knapsack problem [16]. Hence
we use this solution and show that it forms an equilibrium.

The following theorem characterizes an approximate equilibrium
for online negotiation. Here the agents have to choose a strat-
egy without knowing the features of the future issues. Because of
this information incompleteness, the relevant equilibrium solution
is that of a Bayes’ Nash Equilibrium (BNE) in which each agent
plays the best response to the other agents with respect to their ex-
pected utilities [18]. However, finding an agent’s BNE strategy is
analogous to solving the online 0-1 knapsack problem. Also, the
online knapsack can only be solved approximately [16]. Hence
the relevant equilibrium solution concept is approximate BNE (see
[26] for example). The following theorem finds this equilibrium
using procedures ONLINE- TRADEOFFA and ONLINE-TRADEOFFB

which are defined in the proof of the theorem. For a given time
period, we let zm denote the approximately optimal solution gen-
erated by ONLINE-TRADEOFFA (or ONLINE-TRADEOFFB) and z∗

m

the actual optimum.

THEOREM 5. For the package deal procedure, the following
strategies form an approximate Bayes’ Nash equilibrium. The equi-
librium strategy for t = n is:

A(n) =



OFFER [1, 0] IF a’s TURN

ACCEPT IF b’s TURN

B(n) =



OFFER [0, 1] IF b’s TURN

ACCEPT IF a’s TURN

For all preceding time periods t < n, if [xt, yt] denotes the of-
fer made at time t, then the equilibrium strategies are defined as
follows:

A(t) =

8

<

:

OFFER ONLINE-TRADEOFFA(P, UB(t), t) IF a’s TURN

If (Ua([xt, yt], t) ≥ UA(t)) ACCEPT

else REJECT IF b’s TURN

B(t) =

8

<

:

OFFER ONLINE-TRADEOFFB(P, UA(t), t) IF b’s TURN

If (U b([xt, yt], t) ≥ UB(t)) ACCEPT

else REJECT IF a’s TURN

where UA(t) = Ua([āt+1, b̄t+1], t + 1) and UB(t) = U b([āt+1,
b̄t+1], t + 1). An agreement on issue c takes place at t = c. For a
given time period, the expected difference between the solution gen-
erated by the optimal strategy and that by the approximate strategy
is E[z∗

m − zm] = O(
√

m).



PROOF. As in Theorem 1 we find the equilibrium offer for time
period t = 1 using backward induction. Let a be the offering agent
for t = 1 for all the m issues. Consider the last time period t = n
(recall from Step 2 of the online protocol that n is the deadline for
completing negotiation on the first issue). Since the first mover is
the same for all the issues, and the agents make offers alternately,
the offering agent for t = n is also the same for all the m issues.
Assume that b is the offering agent for t = n. As in Section 3,
the offering agent for t = n gets a hundred percent of all the m
issues. Since b is the offering agent for t = n, his utility for this
time period is:

UB(n) = kb

1δ
n−1
1 + 1/2

m
X

i=2

δ
i(n−1)
i

(6)

Recall that ka

i and kb

i (for c < i ≤ m) are not known to the
agents. Hence, the agents can only find their expected utilities from
the future issues on the basis of the probability distribution func-
tions for ka

i and kb

i . However, during the negotiation for issue c
the agents know ka

c but not kb

c (see Step 1 of the online protocol).
Hence, a computes UB(n) as follows. Agent b’s utility from issue
c = 1 is kb

1δ
n−1
1 (which is the first term of Equation 6). Then,

on the basis of the probability distribution functions for ka

i and
kb

i , agent a computes b’s expected utility from each future issue i

as δ
i(n−1)
i

/2 (since ka

i and kb

i are uniformly distributed on [0, 1]).
Thus, b’s expected cumulative utility from these m − c issues is
1/2

P

m

i=2 δ
i(n−1)
i

(which is the second term of Equation 6).
Now, in order to decide what to offer for issue c = 1, the offering

agent for t = n − 1 (i.e., agent a) must solve the following online
knapsack problem:

maximize Σm

i=1k
a

i (1 − b̄t

i)δ
n−1
i (7)

such that Σm

i=1k
b

i b̄
t

i ≥ UB(n)

b̄t

i = 0 or 1 for 1 ≤ i ≤ m

The only variables in the above maximization problem are b̄t

i . Now,
maximizing Σm

i=1k
a

i (1−b̄t

i)δ
n−1
i

is the same as minimizing Σm

i=1k
a

i b̄t

i

since δn−1
i

and ka

i are constants. Thus, we write Equation 7 as:

minimize Σm

i=1k
a

i b̄t

i (8)

such that Σm

i=1k
b

i b̄
t

i ≥ UB(n)

b̄t

i = 0 or 1 for 1 ≤ i ≤ m

The above optimization problem is analogous to the online 0-1
knapsack problem. An algorithm to solve the online knapsack prob-
lem has already proposed in [16]. This algorithm is called the
fixed-choice online algorithm. It has time complexity linear in the
number of items (m) in the knapsack problem. We use this to solve
our online negotiation problem. Thus, our ONLINE-TRADEOFFA

algorithm is nothing but the fixed-choice online algorithm and there-
fore has the same time complexity as the latter. This algorithm takes
the values of ka

i and kb

i one at a time and generates an approximate
solution to the above knapsack problem. The expected difference
between the optimum and approximate solution is E[z∗

m − zm] =
O(

√
m) [16] (see [16] for the detailed fixed-choice online algo-

rithm and a proof for E[z∗

m − zm] = O(
√

m)).
The fixed-choice online algorithm of [16] is a generalization of

the basic greedy algorithm for the offline knapsack problem; the
idea behind it is as follows. A threshold value is determined on the
basis of the information regarding weights and profits for the 0-1
knapsack problem. The method then includes into the knapsack all
items whose profit density (profit density of an item is its profit per
unit weight) exceeds the threshold until either the knapsack is filled
or all the m items have been considered.

In more detail, the algorithm ONLINE-TRADEOFFA works as fol-
lows. It first gets the values of ka

1 and kb

1 and finds b̄t

c. Since we
have a 0-1 knapsack problem, b̄t

c can be either zero or one. Now, if
b̄t

c = 1 for t = n, then b̄t

c must be one for 1 ≤ t < n (i.e., a must
offer b̄t

c = 1 at t = 1). If b̄t

c = 1 for t = n, but a offers b̄t

c = 0
at t = 1, then agent b gets less utility than what it expects from a’s
offer and rejects the proposal. Thus, if b̄t

c = 1 for t = n, then the
optimal strategy for a is to offer b̄t

c = 1 at t = 1. Agent b accepts
the offer. Thus, negotiation on the first issue starts at t = 1 and an
agreement on it is also reached at t = 1.

In the next time period (i.e., t = 2), negotiation proceeds to the
next issue. The deadline for the second issue is n time periods from
the start of negotiation on the issue. For c = 2, the algorithm
ONLINE-TRADEOFFA is given the values of ka

2 and kb

2 and finds b̄t

c

as described above. Agent offers bc at t = 2 and b accepts. Thus,
negotiation on the second issue starts at t = 2 and an agreement
on it is also reached at t = 2.

This process repeats for the remaining issues c = 3, . . . , m.
Thus, each issue is agreed upon in the same time period in which
it starts. As negotiation for the next issue starts in the following
time period (see step 3 of the online protocol), agreement on issue
i occurs at time t = i.

On the other hand, if b is the offering agent at t = 1, he uses
the algorithm ONLINE-TRADEOFFB which is defined analogously.
Thus, irrespective of who makes the first move, all the m issues are
settled at time t = m.

THEOREM 6. The time complexity of finding the approximate
equilibrium offers of Theorem 5 is linear in m.

PROOF. The time complexity of ONLINE-TRADEOFFA and ONLINE-
TRADEOFFB is the same as the time complexity of the fixed-choice
online algorithm of [16]. Since the latter has time complexity linear
in m, the time complexity of ONLINE-TRADEOFFA and ONLINE-
TRADEOFFB is also linear in m.

It is worth noting that, for the 0-1 knapsack problem, the lower
bound on the expected difference between the optimum and the so-
lution found by any online algorithm is Ω(1) [16]. Thus, it follows
that this lower bound also holds for our negotiation problem.

5. RELATED WORK
Work on multi-issue negotiation can be divided into two main types:
that for indivisible issues and that for divisible issues. We first
describe the existing work for the case of divisible issues. Since
Schelling [24] first noted that the outcome of negotiation depends
on the choice of negotiation procedure, much research effort has
been devoted to the study of different procedures for negotiating
multiple issues. However, most of this work has focussed on the se-
quential procedure [7, 2]. For this procedure, a key issue is the ne-
gotiation agenda. Here the term agenda refers to the order in which
the issues are negotiated. The agenda is important because each
agent’s cumulative utility depends on the agenda; if we change the
agenda then these utilities change. Hence, the agents must decide
what agenda they will use. Now, the agenda can be decided before
negotiating the issues (such an agenda is called exogenous) or it
may be decided during the process of negotiation (such an agenda
is called endogenous). For instance, Fershtman [7] analyze sequen-
tial negotiation with exogenous agenda. A number of researchers
have also studied negotiations with an endogenous agenda [2].

In contrast to the above work that mainly deals with sequential
negotiation, [6] studies the equilibrium for the package deal proce-
dure. However, all the above mentioned work differs from ours in
that we focus on indivisible issues while others focus on the case



where each issue is divisible. Specifically, no previous work has
determined an approximate equilibrium for multi-issue negotiation
or for online negotiation.

Existing work for the case of indivisible issues has mostly dealt
with task allocation problems (for tasks that cannot be partioned)
to a group of agents. The problem of task allocation has been pre-
viously studied in the context of coalitions involving more than
two agents. For example [25] analyze the problem for the case
where the agents act so as to maximize the benefit of the system
as a whole. In contrast, our focus is on two agents where both of
them are self-interested and want to maximize their individual util-
ities. On the other hand [22] focus on the use of contracts for task
allocation to multiple self interested agents but this work concerns
finding ways of decommitting contracts (after the initial allocation
has been done) so as to improve an agent’s utility. In contrast, our
focuses on negotiation regarding who will carry out which task.

Finally, online and approximate mechanisms have been studied
in the context of auctions [14, 9] but not for bilateral negotiations
(which is the focus of our work).

6. CONCLUSIONS
This paper has studied bilateral multi-issue negotiation between
self-interested autonomous agents with time constraints. The issues
are indivisible and different agents value different issues differ-
ently. Thus, the problem is for the agents to decide how to allocate
the issues between themselves so as to maximize their individual
utilities. Specifically, we first showed that finding the equilibrium
offers is an NP-hard problem even in a complete information set-
ting. We then presented approximately optimal negotiation strate-
gies and showed that they form an equilibrium. These strategies
have polynomial time complexity. We also analysed the difference
between the true optimum and the approximate optimum. Finally,
we extended the analysis to online negotiation where the issues be-
come available at different time points and the agents are uncertain
about the features of these issues. Specifically, we showed that an
approximate equilibrium exists for online negotiation and analysed
the approximation error. These approximate strategies also have
polynomial time complexity.

There are several interesting directions for future work. First,
for online negotiation, we assumed that the constants ka

c and kb

c are
both uniformly distributed. It will be interesting to analyze the case
where ka

c and kb

c have other, possibly different, probability distri-
butions. Apart from this, we treated the number of issues as being
common knowledge to the agents. In future, it will be interesting
to treat the number of issues as uncertain.
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