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ABSTRACT

Some natural epistemic properties which may arise in agftins
can only be expressed in standard epistemic logic by forenukich
are exponentially long in the number of agents in the systam.
example is the property “at least agents know that at most
agents knowy”. We present Epistemic Logic with Quantifica-
tion over Coalitions (ELQC), where the standard common Know
edge operator has been replaced allowing expressions @bitime
(P)cy and[P]c¢ whereP is acoalition predicate meaning that
there is a coalition satisfying® which have common knowledge
of ¢ and that all coalitions satisfying have common knowledge
of ¢, respectively; and similarly for distributed knowledgedan
everybody-knows. While the language is no more expreshiap t
standard epistemic logic, it is exponentially more succikide give

a sound and complete axiomatisation for ELQC, and chaiaeter
the complexity of its model checking problem.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
1.2.4 [Knowledge representation formalisms and methods

General Terms
Theory

Keywords

epistemic logic, expressivity, succinctness, model cimegkcom-
plexity

1. INTRODUCTION

Epistemic logic has proved to be a highly influential forraadifor
expressing properties of multi-agent and distributedesyst[3, 8].
Central to the success of epistemic logic has been the cbotep
group knowledgein the form of, e.g., common and distributed
knowledge. However, conventional epistemic logics previchly
very simple mechanisms for expressing group propertiesiofk
edge, and specifically, some natural notions of group kndgée
cannot be succinctly expressed within conventional eistéogic.
Consider the following epistemic property that one mighshwio
express of a system:
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At least two agents know that at most three agents
know ¢, from an overall set of agentd, 2, 3,4}.

The obvious way to express this fact in the conventiond|'85
logic of knowledge is as follows:

Eqn YV EqGn YV EqavV

Ep sy V E 3V Eg 39 vV
EqosyvV Efioay¥V Eq s VvV
B340V Ef12343%

wherev is:

(—|K1(,0 Vv —|K2g0 Vv —|K3g0 Vv —|K4g0)

However, the construction has a very obvious disadvantdge:
formula is (very) big. Can we do any better in&57? As we will
see later, the answer is no. In fact, to express the fact tHatst

m out of n agents knowp using S%"* will require a formula that

is exponential im. Since such formulae are clearly unrealistic for
any practical purposes, this seems to imply that we canreokogs
ics like S5+ if we are interested in properties such as that above.
The obvious answer (cf. the discussion in [1]) is to add araegpp
tus for quantifying over coalitions to $5”; one might imagine a
formula something like the following, expressing the abpvep-
erty:

3G : (|G| > 2) A Egyp

However, adding this kind of quantification into $% in a naive
way will rapidly lead to very high complexity (possibly urmid-
ability). So, can we add quantification over coalitions td/Sbin
such a way that we are able to succinctly express propetEsas
the one above, without the logic becoming too complex to ana
computationally? This paper addresses this issue. Ouioappr
is inspired by [1], in which a similar issue was consideredhia
context of logics of strategic ability. We develop a logic &C
(“Epistemic Logic with Quantification over Coalitions”); which
for example theC' operator of S§"7 is replaced by operato(s) ¢
and[P] ¢, whereP is acoalition predicate The idea is thatP) ¢ p
means “there exists a coalitiah satisfying propertyP such thaty
is common knowledge irz”, while [P]c¢ means “it is common
knowledge in every coalitioiir satisfying propertyP thaty”.

The paper is organised as follows. In the next section we-intr
duce the language of coalition predicates. Then we predeQCE
by defining its syntax and semantics, showing the definitibn o
some general epistemic properties in the language, andsdiisg
examples of logical validities. In Section 4 we discuss tke e
pressivity of ELQC and show that while it is equally expressi



eq(G) = subseteq(G) A supseteq(G)
subset(G) = subseteq(G) A —eq(QG)
supset(G) = supseteq(G) A —eq(G)
incl(i) = supseteq({i})
excl(i) = —incl(i)
any = supseteq((
nei(G) = Vg incl(i)
ei(G) = -mei(G)
gt(n) = geg(n+1)
it(n) = —geq(n)
leg(n) = lt(n+1)
maj(n) = geg([(n+1)/2])
ceq(n) = (geg(n) A leg(n))

Table 1: Derived coalition predicates.

as S%” it is exponentially more succinct. We also provide a
sound and complete axiomatisation of the logic. In Sectiave5
present some detailed case studies, showing how the logibea
used in the specification and analysis of systems, whiledtie6
we study and give a complete characterisation of the cortipotd
complexity of the model checking problem. We conclude in-Sec
tion 7.

2. COALITION PREDICATES

We first introduce the language of coalition predicatesnfid]).
In what follows we assume a sdy = {1,...,n} of agents. Syn-
tactically, the language of coalition predicates is buitinh three
atomic predicatesubseteq, supseteq, geq and we derive a stock
of other predicate forms from the'sécormally, the syntax of coali-
tion predicates is given by the following grammar:

P ::= subseteq(G) | supseteq(G) | geq(n) | ~P | PV P

whereG C Ag is a set of agents and € N is a natural number.
The circumstances under which a coaliti6hh C Ag satisfies

a coalition predicateP are specified by the satisfaction relation

“I=¢p", defined by the following rules:

Go E=cp subseteq(G) iff Go C G

Go =ep supseteq(G) iff Go O G

Go Feep geq(n) iff [Gol > n

Go f=ep —Piffnot Go =¢p P

Go Eep P1V Paiff Go f=ep P1or Go =op Po

We assume the conventional definitions of implicatien)( bicon-
ditional («~), conjunction {\), and exclusive-or\() in terms of—
andV. We also find it convenient to make use of the derived predi-
cates defined in Table 1.

3. ELQC

We now introduce our Epistemic Logic with Quantification ove
Coalitions — ELQC. We begin with some intuition about thei¢og
Recall that conventional $5” contains individual epistemic op-
eratorsK; (“agents knows..."), as well as group knowledge op-
eratorsC¢ (“it is common knowledge inG that...”), Dg (“it is

We could work with a smaller base of predicates, deriving the
remaining predicates from these, but the definitions wowlthe
succinct; see the discussion in [1].
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distributed knowledge irG that...”) andE¢ (“everybody in G
knows that..."). Although we can (and do) define these opesat
in ELQC, we start from a rather different looking operatos®aFor
each of the modes of group knowledgec {C, D, E'}, we intro-
duce operator$P) x and[P]x, whereP is a coalition predicate,
as defined above. ThefP)x ¢ will mean “there exists a group
G such thatG satisfiesP and G has X -knowledge thaty”, while
[P]x¢ means “in every groug satisfyingP it is X-knowledge
thaty”. Notice that we introduce both the existentadd universal
operators as primitives, which may at first sight seem urssag;
we return to this point later.

The following formula expresses the property describechin t
introduction to this paper:

(9eq(2)) E~(gt(3)) e

3.1 Syntax

The syntax of ELQC is defined by the grammar of Figure 1, with
respect to a seb of atomic propositions, andlg of agents. As
usual, we use parentheses to disambiguate formulae, ame tled
remaining connectives of classical logic as abbreviatidng- — T,
p =Y =() Vi, o o Y =(¢ = YA (Y — ), and
eVi=(e V) A-(eAY).

3.2 Semantics

Our semantics very closely follow the conventional/S% seman-
tics for knowledge, and in particular, the models over whioé
interpret formulae of ELQC are the same as those used tneter
formulae of S%”. Since the language is parameterised by the
language of coalition predicates, the semantics are paesised
by the semantic$=, for coalition predicates, as defined in sec-
tion 2. Moreover, models are implicitly parameterised byea s
Ag ={1,...,n} of agents, and a sét of Boolean variables.
Formally, amode|] M, (over Ag, ®) is an(n+2)-tuple [3, p.17]:

M=(S~,...,

Nnyﬂ—>7

where:

e Sis afinite, non-empty set aftates

e ~;C § x S is anepistemic accessibility relatiofor each
agenti € Ag — we require that eack-; is an equivalence
relation; and

e 7 : 5 — 2% is a Kripke valuation function, which gives the
set of primitive propositions satisfied in each state.

If G C Ag, we denote the union of’s accessibility relations
by ~&, so~¢= (U,c ~i). We use~§ to denote the transitive
closure of~%. Finally,~Z. denotes the intersection 6f's accessi-
bility relations. We use these relations to give a semamdicgoup
knowledge modalities (cf. [3, p.66—70]).

A pointed structurés a pairM, s, whereM is amodel and is a
state inM. We interpret formulae of ELQC with respect to pointed
structures, via the following rules (note that the rules emake of
the semantic satisfaction relatig¢a., for coalition predicates, and
implicitly assume a setlg of agents; also, in what follows, we let
X denote one of the three modes of knowleddg D, C'}).

e M,sET

e M,s Epiff
p € 7(s) (Wherep € D)



p =T /* truth constant */
| p /* Boolean variables */
| - /* negation */
| @Ve [*disjunction */
|  (P)ey [*there exists aP coalition in which every agent knows */
|  (P)py [*there exists aP coalition in which it is distributed knowledge that*/
| (P)cye [I*there exists aP coalition in which it is common knowledge that*/
| [Plee [I*inevery P coalition, every agent knows */
| [P]lpp [*inevery P coalition, it is distributed knowledge that*/
| [Pley [I*inevery P coalition, it is common knowledge that*/

Figure 1: Syntax of ELQC — P is a coalition predicate overAg, p € ® is a Boolean variable.

M, s |E —piff
M,s ¢

M,s |E e Viff
Ms = porM,s =

M,s E (P)xypiff
3G C Ag, G |=¢p P andvs’ € Ssit.s ~% s/, we have
M,s" = ¢

M,s | [Plxeiff
VG C Ag,if G = Pthenvs' € Ss.it.s ~% s, we have
M,s' .

As usual, we writeM = ¢ if M,s = pforall sin M, andl= ¢

if M | ¢ forall M; in this latter case, we say thatis valid.
Let us now consider why we needed to introduce bjoth) x and
[...]x as primitives, rather than taking the usual modal logic €out
of defining one as the dual of the other. Taking dualé®fx and
[P]x gives the following semantics:

o M,s = —(P)x—piff
VG C Ag, if G ¢ Pthends’ € Ssts ~
M,s' .

o M,s = —[P]x—piff
3G C Ag, G |=ep P and3s’ € Ssts ~% s, we have
M,s" =

Thus =(P) x—¢ holds if all P-coalitions considers to be X-
possible, and-[P]x —¢ holds if there is aP-coalition which con-
sidersy to be X -possible. In particular, the dual 6P) x is notthe
same a$P]x, and vice versa. Hence the need to introduce both as
atomic.

Note that if P is an Ag-inconsistent predicate, théa [P]x¢
for all modesX and formulaep, and, similarly= —(P)x . If P
is a predicate denoting the empty set of agents, we havelfdf al
thatl= [P]x¢ < (P)xp, and alsd= [P]gp A [Plce A—[P]pep,
for all formulaee.

X

& s and

3.3 Some Definitions

The conventional epistemic operath (“agent: knows...") can
be recovered from ELQC via the following definition:

Kip = (eq({i}))m

Similarly, the standard common knowledge, distributediiedge,
and everyone knows operatoiG{, D, andEg, respectively) can
be recovered as follows:
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Cop = (eq(G))cy
Dep = (eq(G))py
Ecp = (eq(@))ryp

Thus, ELQC includes as a fragment the convention&i-83ogic
of multi-agent knowledge, with common knowledge, disttéal
knowledge, and everyone-knows operators [3, 4]. We addhess
question of its exact relationship to $%' in the following section.

In what follows, we will make frequent use of these abbreoiat.
Before proceeding further, note thAt, is monotone in the coali-
tion A, whereask4 and C4 are anti-monotone. That is, suppose

A C B; then, for all formulaep, we have:

FE Dap — Dpy
E Esp — Eap
F Cpp — Cap.

Since D-knowledge is monotonic, it may happen that taking an
agent away from a coalition poses a threat to some distdbute
known fact in the coalition. The following notion is analagoto
one in [1], where aveak veto playefor ¢ is an agent that must be
present in any coalition that has the ability to achievéVe define
aweak veto knower

WVETO(i, D, p) = —(excl(i)) pp

This says that no coalition withouthas distributed knowledge
that . This still does not imply that agentwould make ¢ dis-
tributed knowledge, hence we also define a notiostaing veto
knower which is an agent that is both necessary to form distributed
knowledge ofp, and at least in one case sufficient:

SVETO(i,D,p) = WVETO(i,) A (supset({i}))pp

Finally, we might consider a general notion of a veto knower a
an agent that is both necessary and sufficient for distribkiewl!-
edge: if you have this agent in your group, you will have distred
knowledge ofp, and without him, you will not have distributed
knowledge ofp.

VETO(4,D, @) = WVETO(i, D, ) A [supset({i})]pp.

Notice that we do note require thincl({i})]pep, since this
would imply K;». Assuming at least two agents in the system (
and one other), for alk we have= [incl({i})]x ¢ — (incl({i}))xp.
Thus, we have:

= VETO(i, D, ) — SVETO(i, D, ¢)
= SVETO(i, D, ) — WVETO(i, D, o).



EXAMPLE 1. The notion of a weak veto knower is not very in-
teresting on its own — we have for instance that for every agen
WVETO(i, D, 1): everybody is a veto knower for a group to dis-
tributedly know a contradiction. For the concept of a strorego
knower, consider a clerlf' who is an expert in legislation about
registering companies and organisations. For one thingkhews
that if an organisation has been paying tax for three yeajs ¢r
is registered with the chamber of commereg {t can call itself an
official association ¢). So, Kr((tV ¢) — a). Now, a particu-
lar organisation O is very keen on getting status Its treasurer
A knows thatt, and its secretaryB that ¢. Then our clerk is a
strong veto player i{ A, B, F'} for distributedly knowingg, i.e.,
we haveSVETO(F, D, a). Everybody is a veto knower in this
case, because the minimal coalitions for distributedlyviking a
are{A, F} and{B, F'}. Would the clerk instead know the stronger
rule (¢t A ¢) — a, then every agent ifi4, B, F'} would have been
a strong veto player wrt.

We have the following properties:

¢ — ¥ = WVETO(i,D,v) — WVETO(i, D, )
= WVETO(i, D, p) < —(eq(Ag \ {i}))pe
= SVETO(i, D, @) < (~(eq(Ag \ {i}))pe A (eq(Ag))pe)

From the latter properties we derive an easy charactesiséor
strong veto knowers:

M,w | SVETO(i, D, ) iffforall vsuch that ~7%,
vwe haveM , v = ¢, but for somev such thatw NQQ\“}

v, we haveM,v = —. In words: look at all the
worlds that are accessible according to all of the agents
simultaneously: they must satisfy. However, at the
same time, there must be a world considered possible
by all agents except in which - holds.

In fact, we can lift theVETO predicates from individuals to
coalitionsA in several ways, on the positive side saying that a coali-
tion B O A has distributed knowledge @f, but on the negative
side varying from requiring that no coalition not includingdis-
tributedly knowsyp, or that no coalition with some intersection with
A has this property. Lefl = Ag \ A.

—(subseteq(A)py

WVETO; (A, D, ¢)

That is, no coalition leaving owtll members of4 distributively
knowsy. We have that

= WVETO\(A, D, ¢) < =(eq(A)) pp.

Another variant is the following.

WVETO:(A,D,) = N\;ca—(excl(i))pe

This says that every agent i is necessary for distributedly
knowing .

A coalition A is weakly minimal forD¢ if no subset ofA dis-
tributedly knowsp.

WMINp(A, ) = —(subset(A))pp
A is minimal for D if it in addition in fact has distributed

knowledge ofp.

MINp (A, @) = Dap AN WMIND (A, ¢)
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Now, for common knowledge and everybody’s knowledge, one
can define similar notions, but rather than veto knowers aimi- m
mal coalitions, one has spoilers and maximal coalitionspdiler
for ¢ is an agent that, would he enter a grodp would ensure
that ¢ would not be known by everybody iAd any longer, orp
would not be common knowledge any more. Similarly, a maximal
coalition for Ep or C'¢ is a coalition that cannot absorb any new
member without giving up th& (C)-knowledge ofp.

These predicates might be useful in the analysis of comraunic
tion. For example, leMINp (A, ), and let; and; be two agents
in A. Then a phone call betweerandj, if o is a purely proposi-
tional formula (no epistemic operators), would have theafthat
MINp(AN\ {i}, ) and MINp (A \ {5}, ¢): the weakly minimal
set for Dy does not need bothand; any longer!

3.4 Example Validities

Before we provide a sound and complete axiomatisation of ELQ
in the next section, let us consider some examples of logadali-
ties.

The following express the monotonicity properties of theeéh
knowledge modes (see also Section 3.3).

(subseteq(G))pp — [supseteq(G)]p
(supseteq(G)) g — [subseteq(G)] ¢
(supseteq(G)) cp — [subseteq(G)]cp

Next, consider the interaction between the “diamonds” dmed t
“boxes”. LetX € {D, E, C'} be a mode of knowledge and It
be an arbitrary coalition predicate. The relationship et the
operators and their duals (see Section 3.2) is as follows:

(P)xp — =[Plx—p
[Plxyp — ~(P)x—p

Neither of these hold in the other direction.
We have that

(eq(G))xp < [eq(G)]x e

— the two operators coincide for uniquely satisfiable pratis. In
fact, we have the more general property ([1])

[Plxp = J\ (ea(@)xp
GEepP

which shows thafP]x is definable in terms of P) x. The reason
that we still include it in the language is succinctness,issudsed
in the next section.

Finally, let us look at some interaction properties betwéen
modes of knowledge. For distributed knowledge, we have that

[subseteq(G)]pp < [\/ eq({i})]ep
i€G

and for common knowledge we have that:
[supseteq(G)]cp — Cagp
for arbitrary G.

4. EXPRESSIVE POWER

We know from the discussion above that ELQC contain§°85
as a fragment; this naturally raises the question of exdly the
two logics are related. There are two obvious questions ko as
The first is whether ELQC istrictly more expressivthan S%7,
i.e., whether there is some property of models that can beiegp
via a formula of ELQC that cannot be captured withSS%, The
second is whether ELQC &rictly more succincthan S%"°: that



POa  bp supseteq(D)
POb  Fp subseteq(Ag)
P1 Fep supseteq(G) A supseteq(G )
— supseteq(G U G')
P2 Fep supseteq(G) — —subseteq(G")
P3 Fep subseteq(G U {a}) A —supseteq({a})
— subseteq( Q)
P4 Fep subseteq(G) — subseteq(G")
GEQ e geq(n) < Vg, )50 Supseteq(G)
Prop Fep ¢
MP  Fopeo—th by =Fapd
0Ax l_ELQC 5(AI)
() Frrgo (P)xp < V{G\Fcpeq(G)ﬂP}<eq(G)>X90
5[] FELQC [P]XSO - /\{G\Fcpcq((})ﬁP}<eq(G)>XSO
0R O(R)

Table 2: Axioms and Rules for Epistemic Logic with Quantifi-
cation over Coalitions. The condition of P2is G € G’, for P4
itis G C G’,+ in Prop is a propositional tautology; Az in § Az
is any S5;'-axiom, R in §R is any S5*"-rule, X ranges over
{C,D,E}.

is, whether there is a class of formulae of ELQC that can orly b
expressed in S5” with an unreasonable blow-up in the size of
formulae. As an added bonus of our consideration of thesesss
we will see that we get an axiomatisation of ELQC “for free” as
a consequence of considering the relative expressive pofitbie
logics. The methodology used here follows the pattern usétl i

4.1 Absolute Expressive Power

To begin, consider the following translatierfrom ELQC formulae
to S5 formulae. For atomg and T, 7 is the identity, and it
distributes over negation and disjunction, and moreover:

T((P)x¢) V{G\G\:WP} Xa(T())
T([Plx¢p) /\{(;\(;\:Wp} Xa(T())

We obviously have a translation in the other direction: Ist u
call it 6, with defining clausé(Xq¢) = (eq(G))xd(p). Hence,
one can think ob(7(¢)) as a normal form forp, where the only
coallition predicate i is eg. That ELQC and S8 are equal with
respect to absolute expressive power follows from the fzat the
two translations preserve truth: the following is readisyablished.

THEOREM 1. Let M, s be a pointed structurep be a ELQC
formula, andy be an S§°” formula. Then:

1. M7 S ':ELQC ® M7 S ':SS,?’D T(SD)

2. M,s g0 ¥ M, s =ELqc 0(¢).

iff
iff

4.2 Axiomatisation

The translations introduced above provide the key to a cetapl
axiomatisation of ELQC, which can be derived from axiomeatis
tions of coalition predicates and the underlying logi¢/S5. First,
ELQC includes thd translation of all the S&© axioms and rules,
and axioms that state that theranslation is correct: see the lower
part of Table 2. On top of that, ELQC is parametrised by anrinfe
ence relationt-, for coalition predicates. The axioms for this in
Table 2 are taken from [1]

2Note, again, that the basic predicates are not indepenblenive
include all of them for succinctness.
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THEOREM 2.
1. +, is sound and complete: foramy, =, P <+, P [1]

2. Forany S§°” formulag, ¢ c.0 ¢ = Frroc 6(p)

3. Lety be any ELQC formula. TheRgLgc ¢ < 0(7(¢))
and, in particular,-zroc ¢ iff FrLoc 6(7(p)).

The following is now immediate.

THEOREM3 (COMPLETENESS ANDSOUNDNESS. Letyp be
an arbitrary ELQC-formula. Thek groc ¢ iff EeLoc ¢.

4.3 Succinctness

So, ELQC and S5 are equal with respect to absolute expressive
power: but, as we now show, they are not equivalent with retspe
to succinctness. Define the lendtfy) of both ELQC and S&:”
formulae ¢, as follows, whereX ranges over the three modes of
knowledge{C, D, E}, Y over{C, D} andi over Ag:

2(T) =4(p) =1
(o1 V @2) = Up1) +lp2) +1
t(~p) = lp)+1
L((P)xp) = U([Plxp) = prsize(P)+£(p) + 1
140 ch,o) = 1+ coalsize(G) + £(p)
U(Kigp) = 244y
where

prsize(subseteq(G))
prsize(supseteq(G))
prsize(—P) =
prsize(P1 V Ps)
coalsize( Q)

= coalsize(G) + 1

coalsize(G) + 1

prsize(P) + 1

prsize(P1) + prsize(P2) + 1
G|

Let ¢ and+ be L; and L, formulae, respectively, wherg; and
Lo both range over ELQC and §5°. Then we say that they are
equivalent with respect to some class of models if they hhee t
same satisfying paird/, s, that is, for eachi/, s in the class of
models it is the case that, s =1, ¢ iff M, s =L, ¥. Inthe fol-
lowing theorem we show that ELQC éxponentially more succinct
than S%"2. This notion of relative succinctness is taken from [7],
who demonstrates that public announcement logic is expi@ign
more succinct than epistemic logic, and is also used in [1].

THEOREM 4. There is an infinite sequence of distinct ELQC
formulaeyo, @1, . . . such that, not only is the $5° formular (¢;)
equivalent tap; for every: > 0, buteveryS5;>? formulas; that
is equivalent tap; has the property(v;) > 2/¢:l.

5. TWO CASE STUDIES

In this section, we give two case studies, to illustrate hdvQE
can be used in the analysis and specification of systems.

5.1 Voting

Voting mechanismare of great interest for multi-agent systems,
and have been studied extensively in social choice theoparfic-
ular focus has been on aspects related to strategy proofftss
under the assumption that the preferences of the votersaane c
mon knowledge. In some cases, however, voters may not want
their preferences and votes to become public. Thus, it nighite-
sirable that the voting mechanism is designed in such a vyt
information it reveals about the votes of the individualdinsited
(under the assumption that the result of the voting is made pu
lic). Of course, it is difficult to demand a “zero-knowledge&sting



mechanism where the publication of the result does not targa
thing about the individual votes, because the result will usuailly
us somethingwe did not already know. On the other hand, it is

not only the case where a mechanism reveals the actual vbtes o

particular individuals that may be problematic. It mighg.ealso

be undesirable that two voters could pool their knowledgeuab
their own respective votes together with the result of théwp(and
common knowledge about the mechanism) and deduce the vate of
third voter. ELQC allows a fine grained epistemic analysiswth
aspects of voting under incomplete information, as theofalhg
examples illustrate.

EXAMPLE 2. Assume that a committee consisting of Ann, Bill,
Cath and Dave vote for who should be the leader of the comenitte
(itis possible to vote for oneself). The winner is decidethibjority
voting (majority means at least three votes, if there is ngonityt
there is no winner). After the secret voting, the winner isamced
to be Ann. What do the voters know after this announcement?

We can model this situation formally by considering a Kripke
structure with statestAAA, AAAB, AAAC, ..., whereAAAA
is the state where all agents voted for Aahd A B the state where
Ann, Bill and Cath voted for Ann and Dave voted for Bill, and so
on. We model the situation after the announcement that Atireis
winner, so we only consider stategzw with at least threeAs.
The accessiblity relation is defined in the straightforwesaly, e.g.,
zyzw ~a o'y’ 2w’ iff z = z’. We can use atomic propositions to
express the votes in each state; means that Ann votes for Bill,
and is true in all statesBzyz for any z, y and z. Let Votes
{zr Nyg Nz A wi | z,y,2,w,f,g9,h,i € Ag} be the set of
formulae representing complete votes. In any state of tloidein
we have the following:

® Avotec votes (V0te — —(gt(1)) pvote). At most one agent
knows the complete voting.

® Avotec votes (v0te — Cag—{gt(1)) rvote). The above is com-
mon knowledge among all agents.

i /\votcE Votes (UOt@ - /\z ﬁKi_‘(QEQ(l)>EUOt6)' Every agent

e —a — (geq(2))—(geq(4)) e (—~unas A ~unac A —unap).
If A does not win, at least two agents know that at most three
agents know that neither B nor C nor D wins unanimously.

5.2 Gossiping

Consider the following situation.

Four friends each know a secret. They call each other.
In each call they exchange all the secrets that they cur-
rently know of. Which phone calls should take place
in order to spread all the secrets?

Let us call the friend$” = {1, 2, 3, 4} and the secrets they know
S = {s1, 82, 3,51} (1 knowssq, etc.). Leto besi A s2 A s3 A sa.

The aim of the communication protocol is thag(F))zo: each
of the friends knowsr.

In order to find out which telephone calls should be made, we
could analyse the individual knowledge of the agents iniddtar
example, let firstX; T mean that exactly knows the elements of
TCS:

X,T= N\EKtn |\ (=Kis A=Ki~s)
teT SES\T
Consider now a call between agentand;. If
X T N K; T /\,KJTJ

holds before the call, wherk is an agent different from and,
then the following holds after the call:
Xi T N Ki(Ti U Ty) A K (T U Ti)

An alternative, which ELQC lends itself to, is to reason abou
distributed knowledge of coalitions. A precondition andsfpon-
ditions of the scenario written in ELQC terms are

Pre = MINp(F, o) Post = [\ MINb(f,o)

fer

In words: before any phone call is being made, the smallést se

considers it possible that some agent knows the complete vot that has distributed knowledge of the combination of alltherets

ing.

i /\votcE Votes ((UOte A _‘(a/“ A b(l A Ca A da)) - <g6q(1)>EUOt6)
If the voting is not unanimous, then there is some agent who

knows the complete voting.

® Avotec vores (V0te — [geq(4)]pvote). The complete voting
is distributed knowledge.

The third property above can be generalised, using distetdknowl-
edge, for majority voting for a general number of agents

/\/uotee Votes (UOte - /\L “Klﬁ[gt( LnTilJ )]D'UOte)

— every agent considers it possible that any group congjsifrat
least (approximately) half of the agents have distributeovMdedge
of the complete voting.

ExampPLE 3. Consider the same situation as in Example 2, ex-
cept that the winner is not announced. Let propositiamean that
A wins (gets at least three votes) and propositiera, mean that A
wins unanimously. The following hold (in any state of the efipd

o —a — (geq(2)) p—(geq(3)) e (—unas A ~unac A —unap).
If A does not win, there is a group of at least two agents who
distributively know that at most two agents know that neithe
B nor C nor D wins unanimously.
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is the set of all friends, whereas the postcondition stijgsl¢hat af-
terwards, every individual has (distributed) knowledgéhig com-
bination. So the idea would be that at every call, sofrguch that
MINp (A, o) holds should decrease.

We are interested in the minimal sets that have distributed/k
edge ofo. For coalitionsGy, ..., Gk, let AM, (G, ..., Gi) de-
note the fact that exactlyr, ..., G are the minimal coalitions
with distributed knowledge of:

1‘1]\40(017 e Gk) = /\1§z‘§k MIND(Gi,O')/\
_'<V1§i§k —supseteq(Gi))po

For instance AM,(123,35) = MINp(123,0) A MIN(35,0) A
—(—supseteq(123) V —supseteq(35)) po (here and in the follow-
ing we use an abbreviated set notation for simplicity).

Starting with the preconditiom M, (1234), we must choose a
first phone call. As the situation is symmetric for all agetfts
choice does not matter, and we chose a call between agents 1 an
2. After this call, it holds thatd M, (134,234). Now we must
consider the next call. We have that:

e A call between 1 and 3 gived M., (14, 34,234)
e A call between 3 and 4 gived M, (13, 14,23, 24)
e A call between 2 and 3 gived M., (134,24, 34)



As the call between 3 and 4 breakshaqth coalitions134 and234,
we choose that call. We thus have tbbi/, (13,14, 23,24), and
in this situation we get the following consequences of a call

e A call between 1 and 3 gived M, (1, 3, 24)
e A call between 1 and 4 gived M, (1, 4,23)
e A call between 2 and 3 gived M, (2, 3, 14)
e A call between 2 and 4 gived M, (2, 4,13)

In this case all calls are equally informative when it coneshe
size of minimal coalitions, so we chose the first one. Finallgall
between 2 and 4 is the only informative call, resulting in plost
condition AM, (1,2, 3,4). In summary, the following sequence of
actions were performed, with associated pre- and post-itonst

AM,(1234)  call(1,2) AM,(134,234)
call(3,4)  AM,(13,14,23,24)
call(1,3) AM,(1,3,24)
call(2,4) AM,(1,3,2,4)

Rather than analysing this problem by stating who knows, that
we have used ELQC to reason about coalitions: in this case min
mal coalitions that have minimal knowledge about the sedrie
focus here has been on capturing pre- and post-conditiotiseof
communication actions succinctly in ELQC, rather than amial-
ising the how models are updated as a result of actions. Gongpi
the epistemic operators of ELQC with update operators oadyin
epistemic logics is an interesting idea for future work.

6. MODEL CHECKING

Model checkings a widely used approach to verifying, automat-
ically and formally, that a given system has a certain prgpg,
10]. The model checking problem for our logic can be undedto
as follows: Given a pointed structuié, s and a formulap, is it the
case thail, s = ©? Now, we know that the model checking prob-
lem for the conventional (S5 logic of knowledge can be solved
in time polynomial in the size ol , s, ¢, and since this logic is a
fragment of ELQC, we know that model checking for this fragine
of ELQC is not going to be any harder. But, the obvious questio
arises, is model checking any harder for EL@@eneral The an-
swer to this question is “yes — a lot harder”. The followingadhem
establishes that, in fact, ELQC model checking is as hardhgs a
problem which requires solving a polynomial numbemsfhard
problems [9, p.425].

THEOREM 5. Model checking for ELQC i&%-complete.

PROOF We prove hardness first. We reduce gegjuentially
nested satisfiabilityproblem ENSAT), introduced in [6]. An in-
stance ofSNSATIs given by a series of equations of the form

21
22

3X1.X1 (X1)
E|X2.X2 (XQ, Zl)

z3 = 3)(3.)(3()(37 21, 22)
Zk = EXk.Xk(Xk7zl7...7Zk,1)
where Xy, ..., Xy, Z = {z, ..., z} are mutually disjoint sets of

Boolean variables, and eagh( Y) is a propositional logic formula
over the variablesy’; the idea is we first check whethgr (X1)

is satisfiable, and if it is, we assign the value true, otherwise
assign it false; we then check whether is satisfiable under the
assumption that; takes the value just derived, and so on. Thus the
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result of each equation depends on the value of the previoes o
The goal is to determine whethey is true. Let the input instance
be as described above; we will assume w.l.0.g. that gadb of
Conjunctive Normal Form (i.e., a conjunction of clauses) st
negations are only applied to Boolean variables. The réalués
as follows. For each of the variablee Z U X; U --- U X}, we
create two variables’ andv’, and two agents! andaf. We also
create an additional variabky. The overall formula to be model
checked has the following structure:

(a)pp

where the coalition predicate and ELQC formulas3 are defined
as follows. Informally, we use the formula to “guess” a valua-
tion for the z; variables in the input instance, whilechecks that
the values “guessed” in this way correctly describe thesgability
relationship to the; formulae.

First, we definey, as follows:

a= /\ (incl(a)) V incl(al))
vEZ
(Recall thatY/ is the exclusive-or operator.) Now, any coalitiéh
such thatG =., a will correspond to a valuation to the variables
Z ={z,...,z)}, defined byz = Tif o/ € Gandz = L
if o/ € G; from construction, for every; we must have either
al, € Gordf, € G butnot both.

Next, we defines. First, we define a transformation gn for-
mulae, to obtain coalition predicates, as follows. Supybsevari-
ables ofy; arews, ..., vn. Then we lety; be the coalition predi-
cate:

m

Xi A /\ (mcl(a;) v mcl(ai))

wherey;* is the formula obtained frony; by systematically sub-
stitutingincl(v') for every negated instance of andincl (v") for
every un-negated occurrence @f (Recall that we assume is in
Conjunctive Normal Form.)

Next, we define a sequends, . . ., ¥, of formulae, as follows:

T ifi=0
(2! = Cag(s0 — (Xi)p A0§J§i71 ;) A
(Z{ < Cag(so — =(xi)p /\o§]§¢71 v;))
We definegs as:

fori > 0.

8=z A

/\\Ilz'

1<i<k

We must now define the Kripke structure against whiahp 3 is
to be checked; the structure contaihs- 2|Z U X1 U --- U Xj|
states, and is illustrated in Figure 2. We have one initialest,
in which all propositions are true, and then for every vdeab
ZUX1U- - -UX}, we have two states, one corresponding to the truth
of v (v* will be true in this state, but’ will not), while the other
corresponds ta being false ¢/ will be true in this state, while
»® will not). For the epistemic accessibility relations, evetate
obviously has a self loop, the construction is shown in Fegr

We now claim thatdM/, sy = (a)pfB iff zz = T in the input
instance ofSNSAT. The correctness of the reduction is from con-
struction: roughly, the outer part of the formula guessesadition,
corresponding to a valuation for th¢ variables, while the3 part
of the construction verifies the correctness of the assiginme

We now turn to membership @f5. We sketch a polynomial time
dynamic programming algorithm that decides the problenkinta



...for each variable

Figure 2: lllustrating the model construction for Theorem 5.
(We omit reflexive, transitive, and Euclidean links.)

use of anNP oracle. The algorithm is closely related to conven-
tional model checking algorithms for epistemic logics ancdal
logics in general [4, p.337]. In what follows, lef : ELQC —
2FLQC he a function that, given a formulaof ELQC, returns the
set of ELQC sub-formulae gf [4, p.323]. Given input formulg
and pointed structur@/, s, the algorithm constructs, via dynamic
programming, a functiod. : sf (o) — 2°, such that

VY € sf(p) : L(y) = {s" | M,s" 4}
The algorithm is as follows:
1. Generatef () and put them in a sequenee= 1, ..., v,

in order of length, shortest first through to longest lasthwi
ties broken arbitrarily. Let be the length of, soc[l] = ¢.

2. Fori =1toldo:

(@) ifofi] € @ thenL(o[i]) = w(o[i]);
(b) if oi] = = thenL(o[i]) = S\ L(v);
(©) if oli] = ¥ V x thenL(oi]) = L(¥) U L(x);
(d) if o[7] is of the form(P) x+ or [P]x 1, then:
i. setL(o[i]) =0
ii. foreachs’ € S, invoke the oracle to check whether
M,s" & oli], and if so, sefl(c[i]) = L(o[i]) U
{s'}.

3. If s € L(yp) return “yes”, otherwise return “no”.

With respect to correctness of the approach, the only neteab
step is of course the evaluation(@?) x and[P]x operators; in par-
ticular, we need to show that the evaluation step for theseabprs
can indeed by done with awp oracle. In fact, this is straightfor-
ward. For example, suppossd:] is of the form (P)x. Then
we simply guess & C Ag, and verify that bothG' =., P and

M, s" = Xg1. The former verification step can obviously be done

in polynomial time. To see that the latter step can also, wesbat
1 is a strict sub-formula o&[i], and soL(1)) will be defined by
the time we evaluate[:], and so checkind/, s’ |= X1 simply

involves checking thafs” | s’ ~& s”'} C L(z). This can clearly
be done in polynomial time. [J

672

7. CONCLUSIONS

By adding a limited form of quantification, we demonstratesvh
epistemic group logic can become more succinct. In one sgase
have been unnecessarily restrictive in our quantificatifor: in-
stance, in our language, one cannot succinctly expresse‘ibe
coalition of size at least 3, which had distributed but nanomon
knowledge thaty”. It would be possible to allow for Boolean op-
erators between the “type of knowledge” claims, with whibke t
example above could be representedg@s (3)) pa-ce.

Where our way of quantification is very careful and limitedda
did not increase the expressive power of the epistemic Jaagic
approach at the other end of the spectrum is taken in [5], evher
the subject of knowledge can be very general terms (for itsta
if you receive a mailing announcing you are one of the five yjuck
winners of some lottery, it is common knowledge among thoge fi
that there was such a lottery, even if none of the winners kremy
of the others). The logic presented in [5] is not finitely arati-
sable however, and even its monadic fragment is undecidghle
p. 177]). It will be interesting to see how rich the coalitipred-
icate logic can become before it increases the expressivitiie
epistemic logic, and also what “natural” cut-offs points $oich a
coalition predicate logic is before the overall logic be@smunde-
cidable.

Another interesting direction for future work is to incomate the
epistemic coalition predicates into dynamic epistemiddedl1].
Such a combination could be useful for analysing scenanias-
ing both dynamic epistemics and reasoning about the kngeled
coalitions of different sizes.
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