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ABSTRACT
Some natural epistemic properties which may arise in applications
can only be expressed in standard epistemic logic by formulae which
are exponentially long in the number of agents in the system.An
example is the property “at leastm agents know that at mostn
agents knowϕ”. We present Epistemic Logic with Quantifica-
tion over Coalitions (ELQC), where the standard common knowl-
edge operator has been replaced allowing expressions of theform
〈P〉Cϕ and[P ]Cϕ whereP is acoalition predicate, meaning that
there is a coalition satisfyingP which have common knowledge
of ϕ and that all coalitions satisfyingP have common knowledge
of ϕ, respectively; and similarly for distributed knowledge and
everybody-knows. While the language is no more expressive than
standard epistemic logic, it is exponentially more succinct. We give
a sound and complete axiomatisation for ELQC, and characterise
the complexity of its model checking problem.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
epistemic logic, expressivity, succinctness, model checking, com-
plexity

1. INTRODUCTION
Epistemic logic has proved to be a highly influential formalism for
expressing properties of multi-agent and distributed systems [3, 8].
Central to the success of epistemic logic has been the concept of
group knowledge, in the form of, e.g., common and distributed
knowledge. However, conventional epistemic logics provide only
very simple mechanisms for expressing group properties of knowl-
edge, and specifically, some natural notions of group knowledge
cannot be succinctly expressed within conventional epistemic logic.
Consider the following epistemic property that one might wish to
express of a system:
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At least two agents know that at most three agents
knowϕ, from an overall set of agents{1, 2, 3, 4}.

The obvious way to express this fact in the conventional S5C ,D
n

logic of knowledge is as follows:

E{1,2}ψ ∨ E{1,3}ψ ∨ E{1,4}ψ ∨
E{2,3}ψ ∨ E{2,4}ψ ∨ E{3,4}ψ ∨
E{1,2,3}ψ ∨ E{1,2,4}ψ ∨ E{1,3,4}ψ ∨
E{2,3,4}ψ ∨ E{1,2,3,4}ψ

whereψ is:

(¬K1ϕ ∨ ¬K2ϕ ∨ ¬K3ϕ ∨ ¬K4ϕ)

However, the construction has a very obvious disadvantage:the
formula is (very) big. Can we do any better in S5C ,D

n ? As we will
see later, the answer is no. In fact, to express the fact that at least
m out ofn agents knowϕ using S5C ,D

n will require a formula that
is exponential inn. Since such formulae are clearly unrealistic for
any practical purposes, this seems to imply that we cannot use log-
ics like S5C ,D

n if we are interested in properties such as that above.
The obvious answer (cf. the discussion in [1]) is to add an appara-
tus for quantifying over coalitions to S5C ,D

n ; one might imagine a
formula something like the following, expressing the aboveprop-
erty:

∃G : (|G| ≥ 2) ∧ EGψ

However, adding this kind of quantification into S5C ,D
n in a naive

way will rapidly lead to very high complexity (possibly undecid-
ability). So, can we add quantification over coalitions to S5C ,D

n in
such a way that we are able to succinctly express properties such as
the one above, without the logic becoming too complex to manage
computationally? This paper addresses this issue. Our approach
is inspired by [1], in which a similar issue was considered inthe
context of logics of strategic ability. We develop a logic ELQC
(“Epistemic Logic with Quantification over Coalitions”), in which
for example theC operator of S5C ,D

n is replaced by operators〈P〉C
and[P ]C , whereP is acoalition predicate. The idea is that〈P〉Cϕ
means “there exists a coalitionG satisfying propertyP such thatϕ
is common knowledge inG”, while [P ]Cϕ means “it is common
knowledge in every coalitionG satisfying propertyP thatϕ”.

The paper is organised as follows. In the next section we intro-
duce the language of coalition predicates. Then we present ELQC
by defining its syntax and semantics, showing the definition of
some general epistemic properties in the language, and discussing
examples of logical validities. In Section 4 we discuss the ex-
pressivity of ELQC and show that while it is equally expressive
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eq(G) =̂ subseteq(G) ∧ supseteq(G)
subset(G) =̂ subseteq(G) ∧ ¬eq(G)
supset(G) =̂ supseteq(G) ∧ ¬eq(G)

incl(i) =̂ supseteq({i})
excl(i) =̂ ¬incl(i)

any =̂ supseteq(∅)
nei(G) =̂

W

i∈G
incl(i)

ei(G) =̂ ¬nei(G)
gt(n) =̂ geq(n + 1)
lt(n) =̂ ¬geq(n)

leq(n) =̂ lt(n + 1)
maj (n) =̂ geq(⌈(n + 1)/2⌉)
ceq(n) =̂ (geq(n) ∧ leq(n))

Table 1: Derived coalition predicates.

as S5C ,D
n it is exponentially more succinct. We also provide a

sound and complete axiomatisation of the logic. In Section 5we
present some detailed case studies, showing how the logic can be
used in the specification and analysis of systems, while in section 6
we study and give a complete characterisation of the computational
complexity of the model checking problem. We conclude in Sec-
tion 7.

2. COALITION PREDICATES
We first introduce the language of coalition predicates (from [1]).
In what follows we assume a setAg = {1, . . . ,n} of agents. Syn-
tactically, the language of coalition predicates is built from three
atomic predicatessubseteq , supseteq , geq and we derive a stock
of other predicate forms from these1. Formally, the syntax of coali-
tion predicates is given by the following grammar:

P ::= subseteq(G) | supseteq(G) | geq(n) | ¬P | P ∨ P

whereG ⊆ Ag is a set of agents andn ∈ N is a natural number.
The circumstances under which a coalitionG0 ⊆ Ag satisfies

a coalition predicateP are specified by the satisfaction relation
“ |=cp ”, defined by the following rules:

G0 |=cp subseteq(G) iff G0 ⊆ G

G0 |=cp supseteq(G) iff G0 ⊇ G

G0 |=cp geq(n) iff |G0| ≥ n

G0 |=cp ¬P iff not G0 |=cp P

G0 |=cp P1 ∨ P2 iff G0 |=cp P1 or G0 |=cp P2

We assume the conventional definitions of implication (→), bicon-
ditional (↔), conjunction (∧), and exclusive-or (

`
) in terms of¬

and∨. We also find it convenient to make use of the derived predi-
cates defined in Table 1.

3. ELQC
We now introduce our Epistemic Logic with Quantification over
Coalitions – ELQC. We begin with some intuition about the logic.
Recall that conventional S5C ,D

n contains individual epistemic op-
eratorsKi (“agent i knows. . . ”), as well as group knowledge op-
eratorsCG (“it is common knowledge inG that. . . ”), DG (“it is
1We could work with a smaller base of predicates, deriving the
remaining predicates from these, but the definitions would not be
succinct; see the discussion in [1].

distributed knowledge inG that. . . ”) andEG (“everybody inG

knows that. . . ”). Although we can (and do) define these operators
in ELQC, we start from a rather different looking operator base. For
each of the modes of group knowledgeX ∈ {C ,D ,E}, we intro-
duce operators〈P〉X and [P ]X , whereP is a coalition predicate,
as defined above. Then〈P〉Xϕ will mean “there exists a group
G such thatG satisfiesP andG hasX -knowledge thatϕ”, while
[P ]Xϕ means “in every groupG satisfyingP it is X -knowledge
thatϕ”. Notice that we introduce both the existentialanduniversal
operators as primitives, which may at first sight seem unnecessary;
we return to this point later.

The following formula expresses the property described in the
introduction to this paper:

〈geq(2)〉E¬〈gt(3)〉Eϕ.

3.1 Syntax
The syntax of ELQC is defined by the grammar of Figure 1, with
respect to a setΦ of atomic propositions, andAg of agents. As
usual, we use parentheses to disambiguate formulae, and define the
remaining connectives of classical logic as abbreviations: ⊥ =̂¬⊤,
ϕ → ψ =̂ (¬ϕ) ∨ ψ, ϕ ↔ ψ =̂ (ϕ → ψ)∧ (ψ → ϕ), and
ϕ

`
ψ=̂(ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ). q

3.2 Semantics
Our semantics very closely follow the conventional S5C ,D

n seman-
tics for knowledge, and in particular, the models over whichwe
interpret formulae of ELQC are the same as those used to interpret
formulae of S5C ,D

n . Since the language is parameterised by the
language of coalition predicates, the semantics are parameterised
by the semantics|=cp for coalition predicates, as defined in sec-
tion 2. Moreover, models are implicitly parameterised by a set
Ag = {1, . . . ,n} of agents, and a setΦ of Boolean variables.

Formally, amodel, M , (overAg , Φ) is an(n+2)-tuple [3, p.17]:

M = 〈S ,∼1, . . . ,∼n , π〉,

where:

• S is a finite, non-empty set ofstates;

• ∼i⊆ S × S is anepistemic accessibility relationfor each
agenti ∈ Ag — we require that each∼i is an equivalence
relation; and

• π : S → 2Φ is a Kripke valuation function, which gives the
set of primitive propositions satisfied in each state.

If G ⊆ Ag , we denote the union ofG ’s accessibility relations
by ∼E

G , so∼E
G= (

S

i∈G
∼i). We use∼C

G to denote the transitive
closure of∼E

G . Finally,∼D
G denotes the intersection ofG ’s accessi-

bility relations. We use these relations to give a semanticsto group
knowledge modalities (cf. [3, p.66–70]).

A pointed structureis a pairM , s, whereM is a model ands is a
state inM . We interpret formulae of ELQC with respect to pointed
structures, via the following rules (note that the rules make use of
the semantic satisfaction relation|=cp for coalition predicates, and
implicitly assume a setAg of agents; also, in what follows, we let
X denote one of the three modes of knowledge{E ,D ,C}).

• M , s |= ⊤

• M , s |= p iff
p ∈ π(s) (wherep ∈ Φ)
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ϕ ::= ⊤ /* truth constant */
| p /* Boolean variables */
| ¬ϕ /* negation */
| ϕ ∨ ϕ /* disjunction */
| 〈P〉Eϕ /* there exists aP coalition in which every agent knowsϕ */
| 〈P〉Dϕ /* there exists aP coalition in which it is distributed knowledge thatϕ */
| 〈P〉Cϕ /* there exists aP coalition in which it is common knowledge thatϕ */
| [P ]Eϕ /* in everyP coalition, every agent knowsϕ */
| [P ]Dϕ /* in everyP coalition, it is distributed knowledge thatϕ */
| [P ]Cϕ /* in everyP coalition, it is common knowledge thatϕ */

Figure 1: Syntax of ELQC – P is a coalition predicate overAg , p ∈ Φ is a Boolean variable.

• M , s |= ¬ϕ iff
M , s 6|= ϕ

• M , s |= ϕ ∨ ψ iff
M , s |= ϕ or M , s |= ψ

• M , s |= 〈P〉Xϕ iff
∃G ⊆ Ag , G |=cp P and∀s ′ ∈ S s.t. s ∼X

G s ′, we have
M , s ′ |= ϕ

• M , s |= [P ]Xϕ iff
∀G ⊆ Ag , if G |=cp P then∀s ′ ∈ S s.t.s ∼X

G s ′, we have
M , s ′ |= ϕ.

As usual, we writeM |= ϕ if M , s |= ϕ for all s in M , and|= ϕ
if M |= ϕ for all M ; in this latter case, we say thatϕ is valid.
Let us now consider why we needed to introduce both〈. . .〉X and
[. . .]X as primitives, rather than taking the usual modal logic route
of defining one as the dual of the other. Taking duals of〈P〉X and
[P ]X gives the following semantics:

• M , s |= ¬〈P〉X¬ϕ iff
∀G ⊆ Ag , if G |=cp P then∃s ′ ∈ S s.t. s ∼X

G s ′ and
M , s ′ |= ϕ.

• M , s |= ¬[P ]X¬ϕ iff
∃G ⊆ Ag , G |=cp P and∃s ′ ∈ S s.t. s ∼X

G s ′, we have
M , s ′ |= ϕ

Thus¬〈P〉X¬ϕ holds if all P -coalitions considersϕ to be X -
possible, and¬[P ]X¬ϕ holds if there is aP -coalition which con-
sidersϕ to beX -possible. In particular, the dual of〈P〉X is not the
same as[P ]X , and vice versa. Hence the need to introduce both as
atomic.

Note that ifP is anAg-inconsistent predicate, then|= [P ]Xϕ
for all modesX and formulaeϕ, and, similarly|= ¬〈P〉Xϕ. If P

is a predicate denoting the empty set of agents, we have for all X

that|= [P ]Xϕ↔ 〈P〉Xϕ, and also|= [P ]Eϕ∧ [P ]Cϕ∧¬[P ]Dϕ,
for all formulaeϕ.

3.3 Some Definitions
The conventional epistemic operatorKi (“agenti knows. . . ”) can
be recovered from ELQC via the following definition:

Kiϕ =̂ 〈eq({i})〉Eϕ

Similarly, the standard common knowledge, distributed knowledge,
and everyone knows operators (CG , DG , andEG , respectively) can
be recovered as follows:

CGϕ =̂ 〈eq(G)〉Cϕ
DGϕ =̂ 〈eq(G)〉Dϕ
EGϕ =̂ 〈eq(G)〉Eϕ

Thus, ELQC includes as a fragment the conventional S5C ,D
n logic

of multi-agent knowledge, with common knowledge, distributed
knowledge, and everyone-knows operators [3, 4]. We addressthe
question of its exact relationship to S5C ,D

n in the following section.
In what follows, we will make frequent use of these abbreviations.

Before proceeding further, note thatDA is monotone in the coali-
tion A, whereasEA andCA are anti-monotone. That is, suppose
A ⊆ B ; then, for all formulaeϕ, we have:

|= DAϕ → DBϕ
|= EBϕ → EAϕ
|= CBϕ→ CAϕ.

SinceD-knowledge is monotonic, it may happen that taking an
agent away from a coalition poses a threat to some distributedly
known fact in the coalition. The following notion is analogous to
one in [1], where aweak veto playerfor ϕ is an agent that must be
present in any coalition that has the ability to achieveϕ. We define
a weak veto knower:

WVETO(i ,D , ϕ) =̂ ¬〈excl(i)〉Dϕ

This says that no coalition withouti has distributed knowledge
thatϕ. This still does not imply that agenti would makeϕ dis-
tributed knowledge, hence we also define a notion ofstrong veto
knower, which is an agent that is both necessary to form distributed
knowledge ofϕ, and at least in one case sufficient:

SVETO(i ,D , ϕ) =̂ WVETO(i , ϕ) ∧ 〈supset({i})〉Dϕ

Finally, we might consider a general notion of a veto knower as
an agent that is both necessary and sufficient for distributed knowl-
edge: if you have this agent in your group, you will have distributed
knowledge ofϕ, and without him, you will not have distributed
knowledge ofϕ.

VETO(i ,D , ϕ) =̂ WVETO(i ,D , ϕ) ∧ [supset({i})]Dϕ.

Notice that we do note require that[incl({i})]Dϕ, since this
would imply Kiϕ. Assuming at least two agents in the system (i

and one other), for allX we have|= [incl({i})]Xϕ→ 〈incl({i})〉Xϕ.
Thus, we have:

|= VETO(i ,D , ϕ) → SVETO(i ,D , ϕ)
|= SVETO(i ,D , ϕ) → WVETO(i ,D , ϕ).
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EXAMPLE 1. The notion of a weak veto knower is not very in-
teresting on its own – we have for instance that for every agent i ,
WVETO(i ,D ,⊥): everybody is a veto knower for a group to dis-
tributedly know a contradiction. For the concept of a strongveto
knower, consider a clerkF who is an expert in legislation about
registering companies and organisations. For one thing, heknows
that if an organisation has been paying tax for three years (t), or
is registered with the chamber of commerce (c), it can call itself an
official association (a). So,KF ((t ∨ c) → a). Now, a particu-
lar organisationO is very keen on getting statusa. Its treasurer
A knows thatt , and its secretaryB that c. Then our clerk is a
strong veto player in{A,B ,F} for distributedly knowinga, i.e.,
we haveSVETO(F ,D , a). Everybody is a veto knower in this
case, because the minimal coalitions for distributedly knowing a

are{A,F} and{B ,F}. Would the clerk instead know the stronger
rule (t ∧ c) → a, then every agent in{A,B ,F} would have been
a strong veto player wrta.

We have the following properties:

|= ϕ→ ψ ⇒ |= WVETO(i ,D , ψ) → WVETO(i ,D , ϕ)
|= WVETO(i ,D , ϕ) ↔ ¬〈eq(Ag \ {i})〉Dϕ
|= SVETO(i ,D , ϕ) ↔ (¬〈eq(Ag \ {i})〉Dϕ ∧ 〈eq(Ag)〉Dϕ)

From the latter properties we derive an easy characterisation for
strong veto knowers:

M ,w |= SVETO(i ,D , ϕ) iff for all v such thatw ∼D
Ag

v we haveM , v |= ϕ, but for somev such thatw ∼D
Ag\{i}

v , we haveM , v |= ¬ϕ. In words: look at all the
worlds that are accessible according to all of the agents
simultaneously: they must satisfyϕ. However, at the
same time, there must be a world considered possible
by all agents excepti , in which¬ϕ holds.

In fact, we can lift theVETO predicates from individuals to
coalitionsA in several ways, on the positive side saying that a coali-
tion B ⊇ A has distributed knowledge ofϕ, but on the negative
side varying from requiring that no coalition not includingA dis-
tributedly knowsϕ, or that no coalition with some intersection with
A has this property. LetA ≡ Ag \ A.

WVETO1(A,D , ϕ) =̂ ¬〈subseteq(A〉Dϕ

That is, no coalition leaving outall members ofA distributively
knowsϕ. We have that

|= WVETO1(A,D , ϕ) ↔ ¬〈eq(A)〉Dϕ.

Another variant is the following.

WVETO2(A,D , ϕ) =̂
V

i∈A
¬〈excl(i)〉Dϕ

This says that every agent inA is necessary for distributedly
knowingϕ.

A coalition A is weakly minimal forDϕ if no subset ofA dis-
tributedly knowsϕ.

WMIND(A, ϕ) =̂ ¬〈subset(A)〉Dϕ

A is minimal for Dϕ if it in addition in fact has distributed
knowledge ofϕ.

MIND(A, ϕ) =̂ DAϕ ∧ WMIND(A, ϕ)

Now, for common knowledge and everybody’s knowledge, one
can define similar notions, but rather than veto knowers and mini-
mal coalitions, one has spoilers and maximal coalitions. A spoiler
for ϕ is an agent that, would he enter a groupA, would ensure
thatϕ would not be known by everybody inA any longer, orϕ
would not be common knowledge any more. Similarly, a maximal
coalition forEϕ or Cϕ is a coalition that cannot absorb any new
member without giving up theE (C )-knowledge ofϕ.

These predicates might be useful in the analysis of communica-
tion. For example, letMIND(A, ϕ), and leti andj be two agents
in A. Then a phone call betweeni andj , if ϕ is a purely proposi-
tional formula (no epistemic operators), would have the effect that
MIND(A \ {i}, ϕ) andMIND(A \ {j}, ϕ): the weakly minimal
set forDϕ does not need bothi andj any longer!

3.4 Example Validities
Before we provide a sound and complete axiomatisation of ELQC
in the next section, let us consider some examples of logicalvalidi-
ties.

The following express the monotonicity properties of the three
knowledge modes (see also Section 3.3).

〈subseteq(G)〉Dϕ→ [supseteq(G)]Dϕ
〈supseteq(G)〉Eϕ → [subseteq(G)]Eϕ
〈supseteq(G)〉Cϕ→ [subseteq(G)]Cϕ

Next, consider the interaction between the “diamonds” and the
“boxes”. LetX ∈ {D ,E ,C} be a mode of knowledge and letP

be an arbitrary coalition predicate. The relationship between the
operators and their duals (see Section 3.2) is as follows:

〈P〉Xϕ→ ¬[P ]X¬ϕ
[P ]Xϕ→ ¬〈P〉X¬ϕ

Neither of these hold in the other direction.
We have that

〈eq(G)〉Xϕ↔ [eq(G)]Xϕ

– the two operators coincide for uniquely satisfiable predicates. In
fact, we have the more general property ([1])

[P ]Xϕ ↔
^

G|=cpP

〈eq(G)〉Xϕ

which shows that[P ]X is definable in terms of〈P〉X . The reason
that we still include it in the language is succinctness, as discussed
in the next section.

Finally, let us look at some interaction properties betweenthe
modes of knowledge. For distributed knowledge, we have that:

[subseteq(G)]Dϕ ↔ [
_

i∈G

eq({i})]Eϕ

and for common knowledge we have that:

[supseteq(G)]Cϕ ↔ CAgϕ

for arbitraryG.

4. EXPRESSIVE POWER
We know from the discussion above that ELQC contains S5C ,D

n

as a fragment; this naturally raises the question of exactlyhow the
two logics are related. There are two obvious questions to ask.
The first is whether ELQC isstrictly more expressivethan S5C ,D

n ,
i.e., whether there is some property of models that can be captured
via a formula of ELQC that cannot be captured with S5C ,D

n . The
second is whether ELQC isstrictly more succinctthan S5C ,D

n : that
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P0a ⊢cp supseteq(∅)
P0b ⊢cp subseteq(Ag)
P1 ⊢cp supseteq(G) ∧ supseteq(G ′)

↔ supseteq(G ∪ G ′)
P2 ⊢cp supseteq(G) → ¬subseteq(G ′)
P3 ⊢cp subseteq(G ∪ {a}) ∧ ¬supseteq({a})

→ subseteq(G)
P4 ⊢cp subseteq(G) → subseteq(G ′)
GEQ ⊢cp geq(n) ↔

W

G⊆Ag,|G|≥n
supseteq(G)

Prop ⊢cp ψ
MP ⊢cp ϕ→ ψ, ⊢cp ϕ ⇒⊢cp ψ
δAx ⊢ELQC δ(Ax)
δ〈〉 ⊢ELQC 〈P〉Xϕ↔

W

{G|⊢cpeq(G)→P}〈eq(G)〉Xϕ

δ[] ⊢ELQC [P ]Xϕ↔
V

{G|⊢cpeq(G)→P}〈eq(G)〉Xϕ

δR δ(R)

Table 2: Axioms and Rules for Epistemic Logic with Quantifi-
cation over Coalitions. The condition ofP2 is G 6⊆ G ′, for P4
it is G ⊆ G ′, ψ in Prop is a propositional tautology;Ax in δAx

is any S5C ,D
n -axiom, R in δR is any S5C ,D

n -rule, X ranges over
{C ,D ,E}.

is, whether there is a class of formulae of ELQC that can only be
expressed in S5C ,D

n with an unreasonable blow-up in the size of
formulae. As an added bonus of our consideration of these issues,
we will see that we get an axiomatisation of ELQC “for free” as
a consequence of considering the relative expressive powerof the
logics. The methodology used here follows the pattern used in [1].

4.1 Absolute Expressive Power
To begin, consider the following translationτ from ELQC formulae
to S5C ,D

n formulae. For atomsp and⊤, τ is the identity, and it
distributes over negation and disjunction, and moreover:

τ (〈P〉Xϕ) =
W

{G|G|=pcP} XG(τ (ϕ))

τ ([P ]Xϕ) =
V

{G|G|=pcP} XG(τ (ϕ))

We obviously have a translation in the other direction: let us
call it δ, with defining clauseδ(XGϕ) = 〈eq(G)〉X δ(ϕ). Hence,
one can think ofδ(τ (ϕ)) as a normal form forϕ, where the only
coalition predicate inϕ is eq . That ELQC and S5C ,D

n are equal with
respect to absolute expressive power follows from the fact that the
two translations preserve truth: the following is readily established.

THEOREM 1. Let M , s be a pointed structure,ϕ be a ELQC
formula, andψ be an S5C ,D

n formula. Then:

1. M , s |=ELQC ϕ iff M , s |=
S5

C ,D
n

τ (ϕ)

2. M , s |=
S5

C ,D
n

ψ iff M , s |=ELQC δ(ψ).

4.2 Axiomatisation
The translations introduced above provide the key to a complete
axiomatisation of ELQC, which can be derived from axiomatisa-
tions of coalition predicates and the underlying logic S5C ,D

n . First,
ELQC includes theδ translation of all the S5C ,D

n axioms and rules,
and axioms that state that theδ-translation is correct: see the lower
part of Table 2. On top of that, ELQC is parametrised by an infer-
ence relation⊢cp for coalition predicates. The axioms for this in
Table 2 are taken from [1]2.

2Note, again, that the basic predicates are not independent,but we
include all of them for succinctness.

THEOREM 2.

1. ⊢cp is sound and complete: for anyP , |=cp P ⇔⊢cp P [1]

2. For any S5C ,D
n formulaϕ, ⊢

S5
C ,D
n

ϕ ⇒⊢ELQC δ(ϕ)

3. Letϕ be any ELQC formula. Then⊢ELQC ϕ ↔ δ(τ (ϕ))
and, in particular,⊢ELQC ϕ iff ⊢ELQC δ(τ (ϕ)).

The following is now immediate.

THEOREM3 (COMPLETENESS ANDSOUNDNESS). Letϕ be
an arbitrary ELQC-formula. Then⊢ELQC ϕ iff |=ELQC ϕ.

4.3 Succinctness
So, ELQC and S5C ,D

n are equal with respect to absolute expressive
power: but, as we now show, they are not equivalent with respect
to succinctness. Define the lengthℓ(ϕ) of both ELQC and S5C ,D

n

formulaeϕ, as follows, whereX ranges over the three modes of
knowledge{C ,D ,E}, Y over{C ,D} andi overAg :

ℓ(⊤) = ℓ(p) = 1
ℓ(ϕ1 ∨ ϕ2) = ℓ(ϕ1) + ℓ(ϕ2) + 1
ℓ(¬ϕ) = ℓ(ϕ) + 1
ℓ(〈P〉Xϕ) = ℓ([P ]Xϕ) = prsize(P) + ℓ(ϕ) + 1
ℓ(YGϕ) = 1 + coalsize(G) + ℓ(ϕ)
ℓ(Kiϕ) = 2 + ℓ(ϕ)

where

prsize(subseteq(G)) = coalsize(G) + 1
prsize(supseteq(G)) = coalsize(G) + 1
prsize(¬P) = prsize(P) + 1
prsize(P1 ∨ P2) = prsize(P1) + prsize(P2) + 1
coalsize(G) = | G |

Let ϕ andψ be L1 andL2 formulae, respectively, whereL1 and
L2 both range over ELQC and S5C ,D

n . Then we say that they are
equivalent with respect to some class of models if they have the
same satisfying pairsM , s, that is, for eachM , s in the class of
models it is the case thatM , s |=L1

ϕ iff M , s |=L2
ψ. In the fol-

lowing theorem we show that ELQC isexponentially more succinct
than S5C ,D

n . This notion of relative succinctness is taken from [7],
who demonstrates that public announcement logic is exponentially
more succinct than epistemic logic, and is also used in [1].

THEOREM 4. There is an infinite sequence of distinct ELQC
formulaeϕ0, ϕ1, . . . such that, not only is the S5C ,D

n formulaτ (ϕi)
equivalent toϕi for everyi ≥ 0, buteveryS5C ,D

n formulaψi that
is equivalent toϕi has the propertyℓ(ψi) ≥ 2|ϕi |.

5. TWO CASE STUDIES
In this section, we give two case studies, to illustrate how ELQC
can be used in the analysis and specification of systems.

5.1 Voting
Voting mechanismsare of great interest for multi-agent systems,
and have been studied extensively in social choice theory. Apartic-
ular focus has been on aspects related to strategy proofness, often
under the assumption that the preferences of the voters are com-
mon knowledge. In some cases, however, voters may not want
their preferences and votes to become public. Thus, it mightbe de-
sirable that the voting mechanism is designed in such a way that the
information it reveals about the votes of the individuals islimited
(under the assumption that the result of the voting is made pub-
lic). Of course, it is difficult to demand a “zero-knowledge”voting
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mechanism where the publication of the result does not reveal any-
thingabout the individual votes, because the result will usuallytell
us somethingwe did not already know. On the other hand, it is
not only the case where a mechanism reveals the actual votes of
particular individuals that may be problematic. It might, e.g., also
be undesirable that two voters could pool their knowledge about
their own respective votes together with the result of the voting (and
common knowledge about the mechanism) and deduce the vote ofa
third voter. ELQC allows a fine grained epistemic analysis ofsuch
aspects of voting under incomplete information, as the following
examples illustrate.

EXAMPLE 2. Assume that a committee consisting of Ann, Bill,
Cath and Dave vote for who should be the leader of the committee
(it is possible to vote for oneself). The winner is decided bymajority
voting (majority means at least three votes, if there is no majority
there is no winner). After the secret voting, the winner is announced
to be Ann. What do the voters know after this announcement?

We can model this situation formally by considering a Kripke
structure with statesAAAA,AAAB ,AAAC , . . ., whereAAAA

is the state where all agents voted for Ann,AAAB the state where
Ann, Bill and Cath voted for Ann and Dave voted for Bill, and so
on. We model the situation after the announcement that Ann isthe
winner, so we only consider statesxyzw with at least threeAs.
The accessiblity relation is defined in the straightforwardway, e.g.,
xyzw ∼A x ′y ′z ′w ′ iff x = x ′. We can use atomic propositions to
express the votes in each state:ab means that Ann votes for Bill,
and is true in all statesBxyz for any x , y and z . Let Votes =
{xf ∧ yg ∧ zh ∧ wi | x , y , z ,w , f , g , h, i ∈ Ag} be the set of
formulae representing complete votes. In any state of this model
we have the following:

•
V

vote∈Votes
(vote → ¬〈gt(1)〉Evote). At most one agent

knows the complete voting.

•
V

vote∈Votes
(vote → CAg¬〈gt(1)〉Evote). The above is com-

mon knowledge among all agents.

•
V

vote∈Votes

`

vote →
V

i
¬Ki¬〈geq(1)〉Evote

´

. Every agent
considers it possible that some agent knows the complete vot-
ing.

•
V

vote∈Votes
((vote ∧ ¬(aa ∧ ba ∧ ca ∧ da)) → 〈geq(1)〉Evote).

If the voting is not unanimous, then there is some agent who
knows the complete voting.

•
V

vote∈Votes
(vote → [geq(4)]Dvote). The complete voting

is distributed knowledge.

The third property above can be generalised, using distributed knowl-
edge, for majority voting for a general number of agentsn:

V

vote∈Votes

`

vote →
V

i
¬Ki¬[gt(⌊n−1

2
⌋)]Dvote

´

– every agent considers it possible that any group consisting of at
least (approximately) half of the agents have distributed knowledge
of the complete voting.

EXAMPLE 3. Consider the same situation as in Example 2, ex-
cept that the winner is not announced. Let propositiona mean that
A wins (gets at least three votes) and propositionunaa mean that A
wins unanimously. The following hold (in any state of the model):

• ¬a → 〈geq(2)〉D¬〈geq(3)〉E (¬unaB ∧¬unaC ∧¬unaD ).
If A does not win, there is a group of at least two agents who
distributively know that at most two agents know that neither
B nor C nor D wins unanimously.

• ¬a → 〈geq(2)〉E¬〈geq(4)〉E (¬unaB ∧¬unaC ∧¬unaD ).
If A does not win, at least two agents know that at most three
agents know that neither B nor C nor D wins unanimously.

5.2 Gossiping
Consider the following situation.

Four friends each know a secret. They call each other.
In each call they exchange all the secrets that they cur-
rently know of. Which phone calls should take place
in order to spread all the secrets?

Let us call the friendsF = {1, 2, 3, 4} and the secrets they know
S = {s1, s2, s3, s4} (1 knowss1, etc.). Letσ bes1 ∧ s2 ∧ s3 ∧ s4.
The aim of the communication protocol is that〈eq(F )〉Eσ: each
of the friends knowsσ.

In order to find out which telephone calls should be made, we
could analyse the individual knowledge of the agents in detail. For
example, let firstXiT mean thati exactly knows the elements of
T ⊆ S :

XiT =
^

t∈T

Ki t ∧
^

s∈S\T

(¬Kis ∧ ¬Ki¬s)

Consider now a call between agentsi andj . If

XkTk ∧ KiTi ∧ KjTj

holds before the call, wherek is an agent different fromi and j ,
then the following holds after the call:

XkTk ∧ Ki(Ti ∪ Tj ) ∧ Kj (Tj ∪ Ti)

An alternative, which ELQC lends itself to, is to reason about
distributed knowledge of coalitions. A precondition and postcon-
ditions of the scenario written in ELQC terms are

Pre = MIND(F , σ) Post =
^

f∈F

MIND(f , σ)

In words: before any phone call is being made, the smallest set
that has distributed knowledge of the combination of all thesecrets
is the set of all friends, whereas the postcondition stipulates that af-
terwards, every individual has (distributed) knowledge ofthis com-
bination. So the idea would be that at every call, someA such that
MIND(A, σ) holds should decrease.

We are interested in the minimal sets that have distributed knowl-
edge ofσ. For coalitionsG1, . . . ,Gk , let AMσ(G1, . . . ,Gk ) de-
note the fact that exactlyG1, . . . ,Gk are the minimal coalitions
with distributed knowledge ofσ:

AMσ(G1, . . . ,Gk ) =
V

1≤i≤k
MIND(Gi , σ)∧

¬〈
W

1≤i≤k
¬supseteq(Gi )〉Dσ

For instance,AMσ(123, 35) = MIND(123, σ) ∧ MIN (35, σ) ∧
¬〈¬supseteq(123) ∨ ¬supseteq(35)〉Dσ (here and in the follow-
ing we use an abbreviated set notation for simplicity).

Starting with the preconditionAMσ(1234), we must choose a
first phone call. As the situation is symmetric for all agentsthe
choice does not matter, and we chose a call between agents 1 and
2. After this call, it holds thatAMσ(134, 234). Now we must
consider the next call. We have that:

• A call between 1 and 3 givesAMσ(14, 34, 234)

• A call between 3 and 4 givesAMσ(13, 14, 23, 24)

• A call between 2 and 3 givesAMσ(134, 24, 34)
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As the call between 3 and 4 breaks upbothcoalitions134 and234,
we choose that call. We thus have thatAMσ(13, 14, 23, 24), and
in this situation we get the following consequences of a call:

• A call between 1 and 3 givesAMσ(1, 3, 24)

• A call between 1 and 4 givesAMσ(1, 4, 23)

• A call between 2 and 3 givesAMσ(2, 3, 14)

• A call between 2 and 4 givesAMσ(2, 4, 13)

In this case all calls are equally informative when it comes to the
size of minimal coalitions, so we chose the first one. Finally, a call
between 2 and 4 is the only informative call, resulting in thepost
conditionAMσ(1, 2, 3, 4). In summary, the following sequence of
actions were performed, with associated pre- and post- conditions:

AMσ(1234) call(1, 2) AMσ(134, 234)
call(3, 4) AMσ(13, 14, 23, 24)
call(1, 3) AMσ(1, 3, 24)
call(2, 4) AMσ(1, 3, 2, 4)

Rather than analysing this problem by stating who knows that,
we have used ELQC to reason about coalitions: in this case mini-
mal coalitions that have minimal knowledge about the secret. The
focus here has been on capturing pre- and post-conditions ofthe
communication actions succinctly in ELQC, rather than on formal-
ising the how models are updated as a result of actions. Combining
the epistemic operators of ELQC with update operators of dynamic
epistemic logics is an interesting idea for future work.

6. MODEL CHECKING
Model checkingis a widely used approach to verifying, automat-
ically and formally, that a given system has a certain property [2,
10]. The model checking problem for our logic can be understood
as follows: Given a pointed structureM , s and a formulaϕ, is it the
case thatM , s |= ϕ? Now, we know that the model checking prob-
lem for the conventional (S5n ) logic of knowledge can be solved
in time polynomial in the size ofM , s, ϕ, and since this logic is a
fragment of ELQC, we know that model checking for this fragment
of ELQC is not going to be any harder. But, the obvious question
arises, is model checking any harder for ELQCin general. The an-
swer to this question is “yes – a lot harder”. The following theorem
establishes that, in fact, ELQC model checking is as hard as any
problem which requires solving a polynomial number ofNP-hard
problems [9, p.425].

THEOREM 5. Model checking for ELQC is∆p
2 -complete.

PROOF. We prove hardness first. We reduce thesequentially
nested satisfiabilityproblem (SNSAT), introduced in [6]. An in-
stance ofSNSAT is given by a series of equations of the form

z1 = ∃X1.χ1(X1)
z2 = ∃X2.χ2(X2, z1)
z3 = ∃X3.χ3(X3, z1, z2)

· · ·
zk = ∃Xk .χk (Xk , z1, . . . , zk−1)

whereX1, . . . ,Xk ,Z = {z1, . . . , zk} are mutually disjoint sets of
Boolean variables, and eachχi(Y ) is a propositional logic formula
over the variablesY ; the idea is we first check whetherχ1(X1)
is satisfiable, and if it is, we assignz1 the value true, otherwise
assign it false; we then check whetherχ2 is satisfiable under the
assumption thatz1 takes the value just derived, and so on. Thus the

result of each equation depends on the value of the previous one.
The goal is to determine whetherzk is true. Let the input instance
be as described above; we will assume w.l.o.g. that eachχi is of
Conjunctive Normal Form (i.e., a conjunction of clauses), so that
negations are only applied to Boolean variables. The reduction is
as follows. For each of the variablev ∈ Z ∪ X1 ∪ · · · ∪ Xk , we
create two variablesv t andv f , and two agentsat

v anda f
v . We also

create an additional variables0. The overall formula to be model
checked has the following structure:

〈α〉Dβ

where the coalition predicateα and ELQC formulaβ are defined
as follows. Informally, we use theα formula to “guess” a valua-
tion for thezi variables in the input instance, whileβ checks that
the values “guessed” in this way correctly describe the satisfiability
relationship to theχi formulae.

First, we defineα, as follows:

α =̂
^

v∈Z

(incl(at
v)

h
incl(a f

v ))

(Recall that
`

is the exclusive-or operator.) Now, any coalitionG

such thatG |=cp α will correspond to a valuation to the variables
Z = {z1, . . . , zk}, defined byzi = ⊤ if at

i ∈ G and zi = ⊥

if a
f
i ∈ G; from construction, for everyzi we must have either

at
zi
∈ G or a f

zi
∈ G but not both.

Next, we defineβ. First, we define a transformation onχi for-
mulae, to obtain coalition predicates, as follows. Supposethe vari-
ables ofχi arev1, . . . , vm . Then we letχ∗

i be the coalition predi-
cate:

χ∗∗
i ∧

m
^

j=1

(incl(at
vj

)
h

incl(a f
vj

))

whereχ∗∗
i is the formula obtained fromχi by systematically sub-

stitutingincl(v f ) for every negated instance ofv , andincl(v t) for
every un-negated occurrence ofv . (Recall that we assumeϕ is in
Conjunctive Normal Form.)

Next, we define a sequenceΨ0, . . . ,Ψk of formulae, as follows:

Ψi =̂

8

>

>

<

>

>

:

⊤ if i = 0

(z t
i ↔ CAg(s0 → 〈χ∗

i 〉D
V

0≤j≤i−1 Ψj )) ∧

(z f
i ↔ CAg(s0 → ¬〈χ∗

i 〉D
V

0≤j≤i−1 Ψj )) for i > 0.

We defineβ as:

β ≡ z
t
k ∧

0

@

^

1≤i≤k

Ψi

1

A

We must now define the Kripke structure against which〈α〉Dβ is
to be checked; the structure contains1 + 2|Z ∪ X1 ∪ · · · ∪ Xk |
states, and is illustrated in Figure 2. We have one initial states0
in which all propositions are true, and then for every variable v ∈
Z∪X1∪· · ·∪Xk , we have two states, one corresponding to the truth
of v (v t will be true in this state, butv f will not), while the other
corresponds tov being false (v f will be true in this state, while
v t will not). For the epistemic accessibility relations, every state
obviously has a self loop, the construction is shown in Figure 2.

We now claim thatM , s0 |= 〈α〉Dβ iff zk = ⊤ in the input
instance ofSNSAT. The correctness of the reduction is from con-
struction: roughly, the outer part of the formula guesses a coalition,
corresponding to a valuation for theZ variables, while theβ part
of the construction verifies the correctness of the assignment.

We now turn to membership of∆p
2 . We sketch a polynomial time

dynamic programming algorithm that decides the problem, making
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Figure 2: Illustrating the model construction for Theorem 5.
(We omit reflexive, transitive, and Euclidean links.)

use of anNP oracle. The algorithm is closely related to conven-
tional model checking algorithms for epistemic logics and modal
logics in general [4, p.337]. In what follows, letsf : ELQC →
2ELQC be a function that, given a formulaϕ of ELQC, returns the
set of ELQC sub-formulae ofϕ [4, p.323]. Given input formulaϕ
and pointed structureM , s, the algorithm constructs, via dynamic
programming, a functionL : sf (ϕ) → 2S , such that

∀ψ ∈ sf (ϕ) : L(ψ) = {s ′ | M , s ′ |= ψ}.

The algorithm is as follows:

1. Generatesf (ϕ) and put them in a sequenceσ = ϕ1, . . . , ϕ,
in order of length, shortest first through to longest last, with
ties broken arbitrarily. Letl be the length ofσ, soσ[l ] = ϕ.

2. Fori = 1 to l do:

(a) if σ[i ] ∈ Φ thenL(σ[i ]) = π(σ[i ]);

(b) if σ[i ] = ¬ψ thenL(σ[i ]) = S \ L(ψ);

(c) if σ[i ] = ψ ∨ χ thenL(σ[i ]) = L(ψ) ∪ L(χ);

(d) if σ[i ] is of the form〈P〉Xψ or [P ]Xψ, then:

i. setL(σ[i ]) = ∅

ii. for eachs ′ ∈ S , invoke the oracle to check whether
M , s ′ |= σ[i ], and if so, setL(σ[i ]) = L(σ[i ]) ∪
{s ′}.

3. If s ∈ L(ϕ) return “yes”, otherwise return “no”.

With respect to correctness of the approach, the only non-obvious
step is of course the evaluation of〈P〉X and[P ]X operators; in par-
ticular, we need to show that the evaluation step for these operators
can indeed by done with anNP oracle. In fact, this is straightfor-
ward. For example, supposeσ[i ] is of the form〈P〉Xψ. Then
we simply guess aG ⊆ Ag , and verify that bothG |=cp P and
M , s ′ |= XGψ. The former verification step can obviously be done
in polynomial time. To see that the latter step can also, observe that
ψ is a strict sub-formula ofσ[i ], and soL(ψ) will be defined by
the time we evaluateσ[i ], and so checkingM , s ′ |= XGψ simply
involves checking that{s ′′ | s ′ ∼X

G s ′′} ⊆ L(ψ). This can clearly
be done in polynomial time.

7. CONCLUSIONS
By adding a limited form of quantification, we demonstrated how
epistemic group logic can become more succinct. In one sensewe
have been unnecessarily restrictive in our quantification:for in-
stance, in our language, one cannot succinctly express “there is a
coalition of size at least 3, which had distributed but not common
knowledge thatϕ”. It would be possible to allow for Boolean op-
erators between the “type of knowledge” claims, with which the
example above could be represented as〈geq(3)〉D∧¬Cϕ.

Where our way of quantification is very careful and limited, and
did not increase the expressive power of the epistemic logic, an
approach at the other end of the spectrum is taken in [5], where
the subject of knowledge can be very general terms (for instance,
if you receive a mailing announcing you are one of the five lucky
winners of some lottery, it is common knowledge among those five
that there was such a lottery, even if none of the winners knows any
of the others). The logic presented in [5] is not finitely axiomati-
sable however, and even its monadic fragment is undecidable([5,
p. 177]). It will be interesting to see how rich the coalitionpred-
icate logic can become before it increases the expressivityof the
epistemic logic, and also what “natural” cut-offs points for such a
coalition predicate logic is before the overall logic becomes unde-
cidable.

Another interesting direction for future work is to incorporate the
epistemic coalition predicates into dynamic epistemic logics [11].
Such a combination could be useful for analysing scenarios involv-
ing both dynamic epistemics and reasoning about the knowledge of
coalitions of different sizes.
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