
An Anytime Approximation Method
for the Inverse Shapley Value Problem

Shaheen Fatima
Department of

Computer Science,
Loughborough University

Loughborough LE11 3TU, UK.
s.s.fatima@lboro.ac.uk

Michael Wooldridge
Department of

Computer Science,
University of Liverpool

Liverpool L69 3BX, UK.
mjw@csc.liv.ac.uk

Nicholas R. Jennings
School of Electronics and

Computer Science
University of Southampton

Southampton SO17 1BJ, UK.
nrj@ecs.soton.ac.uk

ABSTRACT
Coalition formation is the process of bringing together two or more
agents so as to achieve goals that individuals on their own cannot,
or to achieve them more efficiently. Typically, in such situations,
the agents have conflicting preferences over the set of possible joint
goals. Thus, before the agents realize the benefits of cooperation,
they must find a way of resolving these conflicts and reaching a
consensus. In this context, cooperative game theory offers the vot-
ing game as a mechanism for agents to reach a consensus. It also
offers the Shapley value as a way of measuring the influence or
power a player has in determining the outcome of a voting game.
Given this, the designer of a voting game wants to construct a game
such that a player’s Shapley value is equal to some desired value.
This is called the inverse Shapley value problem. Solving this prob-
lem is necessary, for instance, to ensure fairness in the players’ vot-
ing powers. However, from a computational perspective, finding
a player’s Shapley value for a given game is #P-complete. Con-
sequently, the problem of verifying that a voting game does in-
deed yield the required powers to the agents is also #P-complete.
Therefore, in order to overcome this problem we present a compu-
tationally efficient approximation algorithm for solving the inverse
problem. This method is based on the technique of ‘successive ap-
proximations’; it starts with some initial approximate solution and
iteratively updates it such that after each iteration, the approximate
gets closer to the required solution. This is an anytime algorithm
and has time complexity polynomial in the number of players. We
also analyze the performance of this method in terms of its approx-
imation error and the rate of convergence of an initial solution to
the required one. Specifically, we show that the former decreases
after each iteration, and that the latter increases with the number of
players and also with the initial approximation error.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Anytime algorithms, Experimentation

Keywords
Game-theory, Mechanism Design, Coalitions, Shapley Value.
Cite as: An Anytime Approximation Method for the Inverse Shapley
Value Problem, Shaheen Fatima, Michael Wooldridge, and Nicholas R. Jen-
nings, Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),
May,12-16.,2008,Estoril,Portugal,pp.935-942.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Coalition formation is the process of bringing together two or more
agents so as to achieve goals that individuals on their own can-
not, or to achieve them more efficiently [12]. However, before the
agents can realize the benefits of such cooperation, they must solve
two key problems. The first is to find a way of reaching consensus
between the agents. The second is to decide how to split the gains
from cooperation between the members of the coalition.

In more detail, the problem of reaching consensus arises in situa-
tions where there is more than one joint goal that a group of agents
may achieve together. In such situations, the agents must decide
which of these goals they will actually achieve. Now, this decision-
making becomes difficult especially when different agents have dif-
ferent preferences over the joint goals. Moreover, the agents must
also decide how to share the gains from cooperation between them-
selves. To tackle both these problems, we turn to cooperative game
theory [12]. Specifically, it provides the voting game as a mecha-
nism for modeling situations that require a group of players to reach
a consensus and the Shapley value as a way of dividing joint gains
between the players.

In yet more detail, the voting game gives different amounts of in-
fluence (or power) over decision making to different players [12].
For example consider a joint stock company where each share-
holder is given a number of votes (or shares) in proportion to his
ownership of stock. Here, each share has equal influence, but dif-
ferent shareholders have different numbers of shares (in game the-
oretic terms, the number of shares an agent has is referred to as
his weight) and hence different powers. Another example is federal
political bodies such as the European Union council of ministers
and the US Presidential Electoral College where the weights reflect
populations, rather than contributions, and the individual votes are
cast as blocks of different sizes. Although the voting mechanism
has so far mostly been used in human contexts, it is now being in-
creasingly studied in the context of multi-agent systems where the
agents must reach consensus on what joint goals they will accom-
plish [15, 18, 4]. In what follows, we will analyze voting games in
the abstract without reference to their different contexts.

A voting game can be analyzed from two different perspectives:
from that of the individual players, and from that of the designer of
a voting game. From the former perspective, the analysis deals with
finding how much power a player has in changing the outcome of a
voting game. Here an agent’s power can be viewed as being analo-
gous to his gains from cooperation; the more his power, the greater
are his gains. To this end, cooperative game theory offers a number
of ways of measuring a player’s voting power including the Shap-
ley value [17]. Thus, analyzing a game from a player’s perspective
involves taking the parameters of the game as input and finding

935

these power indices. In contrast, a game can also be analyzed from
the designer’s perspective. This involves taking the power indices
of the individual players as input and then finding a voting game
that gives the required power to the players1. This paper is in this
vein. Specifically, we focus on the Shapley value2. Our objective
is to solve the inverse Shapley value problem (i.e., find a voting
game that yields some required Shapley values). This problem is
important because the players’ voting powers are not immediately
obvious from a casual inspection of a voting game (Section 2.2 il-
lustrates this point with an example).

Our approach to solving the inverse Shapley value problem is as
follows. We know that, for a given voting game, finding a player’s
Shapley value is a #P-complete problem [2]. Consequently, the
problem of verifying that a voting game does indeed yield the re-
quired powers to the agents is also #P-complete. Therefore, in
order to overcome this problem we present a computationally ef-
ficient approximation algorithm for solving the inverse problem.
This method is based on the technique of ‘successive approxima-
tions’; it starts with some initial approximate solution and itera-
tively updates it such that after each iteration, the approximate gets
closer to the required solution. This is an anytime algorithm; the
iterative process can be stopped after any number of iterations, but
the more the number of iterations, the better the approximation.
For a game of n players, the time complexity of a single iteration is
O(n2). We also analyze the performance of this method in terms
of its approximation error and the rate of convergence of an initial
solution to the required one. Specifically, we show that the former
decreases after each iteration, and that the latter increases with the
number of players and also with the initial approximation error.

In so doing, this paper presents the first such method for solv-
ing the inverse Shapley value problem. The inverse problem was
investigated in the past, but for the weighted Shapley values of the
form given in [3], not for the Shapley values as defined in [17] (see
Section 5 for details). Moreover, this solution has time complex-
ity exponential in the number of players. In contrast, this paper
presents an algorithm for solving the inverse problem for the val-
ues defined by Shapley in [17]. Furthermore, the proposed method
has two key advantages: it is an anytime algorithm, and it has time
complexity polynomial in the number of players.

The rest of the paper is organised as follows. Section 2 provides
the background to the Shapley value and voting games, and intro-
duces the inverse Shapely value problem. In Section 3, we present
our approximation method for solving the inverse problem. In Sec-
tion 4, we provide an experimental analysis of our method in terms
of its error of approximation and its rate of convergence. Section 5
discusses related literature, and Section 6 concludes.

2. BACKGROUND
We begin by introducing coalitional games and the Shapley value
and then define the voting game. A a coalition game, 〈N, v〉, con-
sists of:

1. a finite set (N = {1, 2, . . . , n}) of players and

2. a function (v) that associates with every non-empty subset S
of N (i.e., a coalition) a real number v(S) (the worth of S).

For each coalition S, the number v(S) is the total payoff that is
available for division among the members of S (i.e., the set of joint
actions that coalition S can take consists of all possible divisions of
1This analysis may be used to ensure, for example, fairness in the
players’ voting powers.
2Future work will deal with the other indices.

v(S) among the members of S). Note that, viewed in this abstract
way, a coalitional game gives no indication of how a coalition’s
value might or should be divided amongst coalition members.

In a voting game, the players will only join a coalition if they ex-
pect to gain from it. Here, the players are allowed to form binding
agreements, and so there is often an incentive to work together to
receive the largest total payoff. The problem then is how to split
the total payoff between the players. In this context, Shapley [17]
constructed a solution using an axiomatic approach. In particular,
he defined a value for games to be a function that assigns to a game
〈N, v〉, a number ϕi(N, v) for each i in N . This function satisfies
three axioms [16]:

1. Symmetry: The names of the players play no role in deter-
mining the value. That is, two players who are identical with
respect to what they contribute to a coalition should have the
same Shapley value.

2. Carrier: The sum of ϕi(N, v) for all players i in any car-
rier C equals v(C). A carrier C is a subset of N such that
v(S) = v(S ∩ C) for any subset of players S ⊂ N .

3. Additivity: This specifies how the values of different games
must be related to one another. It requires that for any games
〈N, v〉 and 〈N, v′〉, ϕi(N, v) + ϕi(N, v

′) = ϕi(N, v + v′)
for all i in N .

Shapley showed that there is a unique function that satisfies these
three axioms. He also viewed this value as an index for measuring
the power of players in a game. Like a price index or other market
indices, the value uses averages (or weighted averages in some of
its generalizations) to aggregate the power of players in their vari-
ous cooperation opportunities. Alternatively, one can think of the
Shapley value as a measure of the utility of risk neutral players in a
game [16].

Having given these intuitions, we now turn to their formalization.
Specifically, we first introduce some notation and then define the
Shapley value. Let S denote the setN −{i} and fi : S → 2N−{i}

be a random variable that takes its values in the set of all subsets of
N − {i}, and has the probability distribution function (g) defined
as:

g(fi(S) = S) =
|S|!(n− |S| − 1)!

n!

The random variable fi is interpreted as the random choice of a
coalition that player i joins. Then, a player’s Shapley value is de-
fined in terms of its marginal contribution. The marginal contribu-
tion of player i to coalition S with i /∈ S is a function ∆iv that is
defined as follows:

∆iv(S) = v(S ∪ {i})− v(S)

Thus a player’s marginal contribution to a coalition S is the in-
crease in the value of S as a result of i joining it. Given this, the
Shapley value is defined as follows [17]:

DEFINITION 1. The Shapley value (ϕi) of the game 〈N, v〉 for
player i is the expectation (E) of its marginal contribution to a
coalition that is chosen randomly:

ϕi(N, v) = E[∆iv ◦ fi] (1)

The Shapley value may be interpreted as follows. Suppose that
all the players are arranged in some order, all orderings being equally
likely. Then ϕi(N, v) is the expected marginal contribution, over
all orderings, of player i to the set of players who precede him.

936

Now, the method for finding a player’s Shapley value depends on
the definition of the value function (v). This function is different
for different games, but here we focus specifically on the voting
game because it is an important way of modeling situations where
there are multiple agents that have different preferences and they
want to reach a consensus.

2.1 The Voting Game
For a set N of players, the weighted voting game [12] is a game
G = 〈N, v〉 in which:

v(S) =

1 if w(S) ≥ q
0 otherwise

for some q ∈ IR+ and wi ∈ IR+, where:

w(S) =
X
i∈S

wi

for any coalition S. Thus wi is the number of votes that player
i has and q is the number of votes needed to win the game (i.e.,
the quota). A weighted voting game with quota q is denoted as
〈q;w1, . . . , wn〉 and it is said to be a k-majority game if the quota
for the game is q = k × µn where µ denotes the mean weight of
the n players and 0 < k < 1.

For these games, a player’s marginal contribution is either zero
or one because the value of any coalition is either zero or one. A
coalition with value zero is called a “losing coalition” and with
value one a “winning coalition”. If a player’s entry to a coalition
changes it from losing to winning, then the player’s marginal con-
tribution for that coalition is one; otherwise it is zero. A coalition
S is said to be a swing for player i if S is losing but S ∪ {i} is
winning.

2.2 The Inverse Problem
A player’s weight in a weighted voting game cannot be interpreted
as a measure of his power (i.e., his ability to turn a losing coalition
into a winning one) [13]. The following example illustrates this
point.

EXAMPLE 1. A company has three shareholders. Two of them
have 49 percent of the shares and one of them has 2 percent. Then
these figures (that represent the shareholders weights) do not de-
scribe the share of the power a shareholder has in running the
company. This is because if the voting game requires 51 percent
majority, (i.e., the game {51; 49, 49, 2}), then any two sharehold-
ers are sufficient to form a winning coalition. Thus each player has
a Shapley value of 1/3 despite the disparity in their weights. Since
any shareholder can win by joining together with any other, the one
with 2 percent shares has exactly the same power as the ones with
49 percent shares.

The above example illustrates that the relation between the players’
weights and their values is not obvious. Given this, the designer of
a voting game wants to know the weights that need to be given to
the individual players such that they yield some desired Shapley
values. This problem, of finding the players’ weights given their
Shapley values, is called the inverse problem.

As motivated in Section 1, we will now present a new method
for solving the inverse problem. In more detail, for a game with
n players and quota q, let Φ ∈ IRn denote the required Shapley
values. Given this, our method takes Φ and q as input and generates
a vector w ∈ IRn such that the Shapley values (ϕ ∈ IRn) for the
game 〈q;w1, . . . , wn〉 are approximately equal to Φ. Here, µ is the
mean of the n weights in w.

The method we propose works as follows. We start with an ini-
tial allocation of weights (w). For w, we compute the Shapley
values. Then, using a suitable rule (described in Section 3) to up-
date the weights, we iteratively update the players’ weights in w
such that their Shapley values converge to those required. Now, as
mentioned earlier, finding the Shapley values for a voting game is
a #P-complete problem. Therefore, in order to overcome this prob-
lem, we use the approximation algorithm proposed in [5] to com-
pute the Shapley values. This algorithm has time complexity linear
in the number of players. For this method, we first prove a key
property that shows how the players’ Shapley values change when
we update the weights inw. Then we use this property to formulate
a rule for updating the weights in w such that the Shapley values
for w converge to Φ. In the following section, we briefly describe
the approximation method proposed in [5] to find the approximate
Shapley values. Then, in Section 3, we present our method for
solving the inverse problem.

2.3 Finding an approximate Shapley value
We use the method proposed in [5] to find a player’s approximate
Shapley value. In this section we give a brief overview of this
method. The intuition behind it is as follows As per Definition 1,
in order to find a player’s Shapley value, we first need to find his
marginal contribution to all possible coalitions. For n players, there
are 2n−1 possible coalitions. Finding a player’s marginal contri-
bution to each one of these possible coalitions is computationally
infeasible. So, instead of finding the marginal contribution to each
possible coalition, the method samples random coalitions from the
set of players. There are n sample coalitions that are drawn from
N . The first sample coalition is of size one, the second sample is
of size two, and so on. Let player i’s approximate marginal contri-
bution to sample Z ⊆ N of z players be denoted E∆z

i . Then, i’s
marginal contribution to each of the n samples (i.e., for 1 ≤ z ≤ n)
is found and the average of all these marginal contributions gives
the player’s approximate Shapley value.

Now, the approximate marginal contribution of player i to a ran-
dom sample of size z is one if the total weight of the z players in
the sample is greater than or equal to a = q − wi but less than
b = q − ε (where ε is an infinitesimally small quantity). Other-
wise, his marginal contribution is zero. This approximate marginal
contribution is determined using the following rule from sampling
theory.

Let the players’ weights in N be defined by a probability distri-
bution function. Irrespective of the actual probability distribution
function, let µ be the mean weight for the set of players and ν be
the variance in the players’ weights. From this set (N) if we ran-
domly draw a sample, then the sum of the players’ weights in the
sample is given by the following rule [6]:

Rule A. If w1, w2, . . . , wz is a random sample of size
z drawn from any distribution with mean µ and vari-
ance ν, then the sample sum has an approximate Nor-
mal distribution,N , with mean zµ and variance ν

z
(the

larger the z the better the approximation3).

Given this rule, player i’s approximate marginal contribution to
a random coalition is the area under the curve defined byN (zµ, ν

z
)

in the interval [a, b]. This area is shown as regionB in Figure 1 (the
dotted line in the figure is the mean zµ). Hence i’s approximate

3Also, for large z, any measurement done on a sample drawn with
replacement is the same as that for a sample drawn without replace-
ment [6].

937

B

aa a Sum of weights2 1 b µz

Figure 1: A normal distribution for the sum of players’ weights
in a coalition of size z.

marginal contribution to Z is:

E∆z
i =

1p
(2πν/z)

Z b

a

e−z
(x−zµ)2

2ν dx. (2)

Player i’s approximate Shapley value (ϕi) is the average of its
aproximate marginal contribution to all possible coalitions:

ϕi =
1

n

nX
z=1

E∆z
i (3)

This method is described in Algorithm 1. Note that this method
only requires the number of players, the quota, the mean weights,
and the variance in the weights – the weights of the individual play-
ers are not needed. Also, note that Algorithm 1 is based on the nor-
mal approximation given in Rule A; the larger the n, the better the
approximation. The time complexity of Algorithm 1 is O(n).

Algorithm 1 ShapleyValue(n, q, µ, ν, wi)
1: Ti ⇐ 0; a⇐ q − wi; b⇐ q − ε
2: for z=1 to n do
3: E∆z

i ⇐ 1√
2Πν/z

R b
a
e−z

(x−zµ)2

2ν dx

4: Ti ⇐ Ti + E∆z
i

5: end for
6: ϕi ⇐ Ti/n
7: return ϕi

3. SOLVING THE INVERSE PROBLEM
We first analyze Algorithm1, and prove a key property of this method.
This is done in Theorem 1. We then use this property to solve the
inverse Shapley value problem.

THEOREM 1. For a setN of n players, letG1 = {q;w1, . . . , wn}
and G2 = {q; w̄1, w̄2, . . . , w̄n} be two voting games such that if
the mean and variance of the weights for G1 are µ and ν respec-
tively, then the mean and variance forG2 are µ and ν̄ where ν ≈ ν̄.
Also, for 1 ≤ i ≤ n, let ϕ1

i (ϕ2
i) denote player i’s Shapley value

for G1 (G2). Then, if w̄i > wi, then ϕ2
i ≥ ϕ1

i . Also, if w̄i < wi,
then ϕ2

i ≤ ϕ1
i . Lastly, if w̄i = wi, then ϕ2

i = ϕ1
i – the Shapley

values being computed using Algorithm 1.

PROOF. We need to find the relation between ϕ1
i and ϕ2

i . Both
ϕ1
i and ϕ2

i are computed using Equation 3. This equation, in
turn, depends on Equation 2 which is used to find i’s approximate
marginal contribution to a random coalition. Recall that Z is a
random coalition of z players drawn from N . Let i’s approximate
marginal contribution to a random coalition (Z) of 1 ≤ z ≤ n
players be E1∆z

i for G1 and E2∆z
i that for G2. Also let µ1

z and

ν1
z denote the mean and variance of the sum of the weights of the

coalition Z for G1. Likewise, let µ2
z and ν2

z denote the mean and
variance for G2. Then, from Rule A, we have:

µ1
z = zµ and µ2

z = zµ (4)

ν1
z = ν/z and ν2

z = ν̄/z (5)

Since we are given that ν ≈ ν̄, Equation 4 can be re-written as:

ν1
z = ν/u and ν2

z ≈ ν/z (6)

Let w̄i = wi + ∆w. Also, let a1, b1 denote the limits of integra-
tion in Equation 2 for G1 and a2, b2 those for G2. Then, from Step
1 of Algorithm 1, we get the following:

a1 = q − wi and b1 = q − ε (7)
a2 = q − wi −∆w and b2 = q − ε (8)

We know that q > 0 and wi > 0. Hence, the relation between
a1 and a2 depends on whether ∆w is positive (Case 1), negative
(Case 2), or zero (Case 3). We analyze each case in turn.

Consider Case 1. For this case, we have q > 0, wi > 0, and
∆w > 0. Therefore we have:

a1 > a2 and b1 = b2 (9)

Note that the relation a1 > a2 is true irrespective of the actual
position of a1 on the x-axis of Figure 1. Also, note that the relations
between a1, a2 and b1, b2 do not depend on X , the sample size.

Now, as per Equation 2, E1∆z
i is the area under the normal

distribution N (zµ1
z,
ν1z
z

) between the limits a1 and b = b1 = b2
(see Figure 1), i.e., :

E1∆z
i =

1p
(2πν1

z/z)

Z b1

a1

e
−z (x−zµ1

z)2

2ν1z dx. (10)

Likewise, we get:

E2∆z
i =

1p
(2πν2

z/z)

Z b2

a2

e
−z (x−zµ2

z)2

2ν2z dx. (11)

From Equation 4 we have µ1
z = µ2

z , from Equation 6 we have
ν1
z ≈ ν2

z , and form Equation 9 we have a1 > a2 and b1 = b2. Thus
substituting µ2

z with µ1
z , ν2

z with ν1
z , and b2 with b1 in Equation 11

and comparing it with Equation 10 we get E2∆z
i ≥ E1∆z

i . Given
this and Equation 3, we get ϕ2

i ≥ ϕ1
i . Thus, i’s Shapley value for

G2 is no less than his value for G1.
In the same way, for Case 2 (i.e., ∆w < 0) and Case 3 (i.e.,

∆w = 0) we get ϕ2
i ≤ ϕ1

i and ϕ2
i = ϕ1

i respectively.

As mentioned previously, we use Theorem 1 to solve the inverse
Shapley value problem as follows. The method starts with an initial
allocation of weights in w. For w, we compute the approximate
Shapley values using Algorithm 1. Then, using a suitable updating
rule (described below), we iteratively update the players’ weights
such that the Shapley values for w converge to those required. In
more detail, this is done as follows.

Initial weights. Initially, we assign equal weights to all the play-
ers. Let ω denote this weight. This initial weight is chosen such
that the weights of all the players remain positive even after they
are updated. We first compute the Shapley values for w. We then
update the weights in w. For the updated weights, we recompute
the Shapley values (ϕ). This process is repeated until ϕ gets suffi-
ciently close to Φ (i.e., ϕ converges to Φ).

938

Convergence. Let ∆Φ denote the average percentage difference
between Φ and ϕ for all the n players:

∆Φ =

nX
i=1

100× abs(Φi − ϕi)/Φi (12)

When ∆Φ ≤ ε, we say that ϕ has converged to Φ and stop the
iterative processs.

Algorithm 2 InverseShapleyValue(n, q, Φ, δ, ω)
1: w ⇐ ω
2: µ⇐ Average(w); ν ⇐ Variance(w)
3: ∆w ⇐ δ × ω
4: ∆Φ ⇐ 0
5: for i=1 to n do
6: ϕi ⇐ ShapleyValue(n, q, µ, ν, wi)
7: DVi ⇐ Φi − ϕi
8: PEi ⇐ abs

`
DVi×100

Φi

´
9: ∆Φ ⇐ ∆Φ + PEi

10: end for
11: ∆Φ ⇐ ∆Φ/n
12: while ∆Φ > ε do
13: UpdateWeights(w, ϕ, Φ, δ, PE, Rule)
14: ν ⇐ Variance(w)
15: ∆w ⇐ δ × ω
16: ∆Φ ⇐ 0
17: for i=1 to n do
18: ϕi ⇐ ShapleyValue(n, q, µ, ν, wi)
19: DVi ⇐ Φi − ϕi
20: PEi ⇐ abs

`
DVi×100

Φi

´
21: ∆Φ ⇐ ∆Φ + PEi
22: end for
23: ∆Φ ⇐ ∆Φ/n
24: end while
25: return w and ∆Φ

Algorithm 3 UpdateWeights(w, ϕ, Φ, δ, PE, Rule)
1: P ⇐ 0; N ⇐ 0;
2: for i=1 to n do
3: if (Φi > ϕi) then
4: P ⇐ P + 1;PEPP,1 ⇐ i;PEPP,2 ⇐ PEi
5: else
6: if (Φi < ϕi) then
7: N ⇐ N + 1;PENN,1 ⇐ i;PEPN,2 ⇐ PEi
8: end if
9: end if

10: end for
11: Sort(PEP); Sort(PEN);
12: if Rule = Rule1 then
13: T ⇐ 1
14: end if
15: if Rule = Rule2 then
16: T ⇐Minimum(P,N)
17: end if
18: for i=1 to T do
19: j ⇐ PEPi,1; k ⇐ PENi,1
20: wj ⇐ wj + ∆w; wk ⇐ wk −∆w

21: end for
22: return w

Updating rule. We define two rules (Rule1 and Rule2) for up-
dating the player’s weights. Both rules are formulated in such a

way that the conditions given in Theorem 1 are satisfied. That is, if
G1 represents the game before updating andG2 that after updating,
then the updating is done in such a way that the mean weight for
both G1 and G2 is µ. Also, the variance in the weights for G1 is
approximately equal to the variance for G2 (i.e., ν ≈ ν̄). Given
this, we first introduce some notation and then describe the rules.

Assume that the n players are separated into two categories:
those for whom the required Shapley values are more than their
values from w, and those for whom the required Shapley values
are less than their values from w. Let the details about the players
in the former (latter) category be stored in PEP (PEN) where
PEP (PEN) is a two dimensional array of P (N) rows and 2 (2)
columns. The first column in PEP (PEN) gives a player’s index
in w, and the second column gives the absolute percentage differ-
ence between the player’s required Shapley value and its value from
w. Also, let the rows in PEP (PEN) be sorted in the decreasing
order of their second column entries. Finally, let T denote the min-
imum of P and N . Given this, the two rules are defined as follows:

Rule1: Increment the weight of the first player in PEP by ∆w,
and decrement the weight of the first player in PEN by the same
amount. Here ∆w is chosen such that the variance in the weights
for G1 (i.e., before the update) is approximately equal to the vari-
ance in the weights for G2 (i.e., after the update).

Rule2: Increment the weight of the first T players in PEP by
∆w, and decrement the weight of the first T players in PEN by
the same amount. Here ∆w is chosen such that the variance in the
weights for G1 (i.e., before the update) is approximately equal to
the variance in the weights for G2 (i.e., after the update).

Note that both rules satisfy the conditions of Theorem 1; we in-
crement the weights of one set of T players by ∆w and decrement
the weights of another disjoint set of T players by an equal amount.
Thus the mean weight remains unchanged after updating. Also, as
per the above defined rules, ν ≈ ν̄. Hence, from Theorem 1, we
know that the Shapley values of the first T players in PEP are no
less than their values before updating Also, the Shapley values of
the first T players in PEN are no more than their values before up-
dating. Finally, the Shapley values of those players whose weights
are not updated remain unchanged.

The above method is described in Algorithm 2. Specifically, Step
1 of the algorithm initializes w to ω. In Step 2, we find the average
(µ) and the variance (ν) for the weights inw. In Step 3, we find ∆w

as δ×ω where 0 < δ < 1 is an input parameter4. Step 4 initializes
the average percentage difference (∆Φ) to zero. In the for loop of
Step 5, for each player 1 ≤ i ≤ n, we first use Algorithm 1 to find
the approximate Shapley value (ϕi). Then we find PEi which is
the absolute percentage difference between Φi and ϕi. In Step 9,
we find the sum of PEi for all the n players. After exiting the for
loop, in Step 11, we find the average absolute percentage difference
(∆Φ). If (∆Φ > ε), then we enter the while loop of Step 12. In
this loop we update the players weights using Algorithm 3. Then,
for the updated weights, we recompute the Shapley values and ∆Φ.
This is done in Steps 14 to 23 (which are the same as Steps 2 to 11).
The while loop in Step 12 is repeated until ∆Φ becomes smaller
than ε. At this stage, Algorithm 2 returns the weights in w and the
average percentage difference in ∆Φ.

Algorithm 3 works as follows. In Step 1, we initialize P and N .
Recall that P (N) denotes the number of players whose required
Shapley values are more (less) than their values from w. In the for
4In Section 4.3, we show the effect of ∆w on the performance of
Algorithm 2

939

0 2 4 6 8 10 12
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Player

Sh
ap

le
y

va
lu

e

n=12 !w= 0.02 × " !I
#

= 20%

Required
Initial
After 10 iterations
After 20 iterations
After 50 iterations

Figure 2: Convergence of the initial Shapley values to the re-
quired values.

loop in Step 2, we compare Φi with ϕi (1 ≤ i ≤ n). If (Φi >
ϕi), we store i in the first column of PEP and PEi in the second
column. On the other hand, if (Φi < ϕi), we store i in the first
column of PEN and PEi in the second column. Step 11 sorts the
rows of PEP and PEN in the decreasing order of their second
column entries. Then, if the updating rule is Rule1, then in Step 13
we initialize T to 1. However, if the updating rule is Rule2, then,
in Step 16, we initialize T to Minimum(P , N). Finally, in the for
loop of Step 18, we increment (decrement) the weights of the first
T players in PEP (PEN) by ∆w.

As explained earlier, both Rule 1 and Rule 2 ensure convergence.
Hence, Algorithm 2 is an anytime algorithm; it can be stopped after
any number of iterations but the more the number of iterations, the
smaller the error ∆Φ.

We now analyze the time complexity of Algorithm 3 and then
that of Algorithm 2. The time taken by the for loop in Step 2 of
Algorithm 3 isO(n). The sorting in Step 11 takesO(nlogn) time.
The time for the if statement of Step 12 is O(1), and that for the
if statement of Step 15 is O(n). Finally, the time taken by the for
loop of Step 18 isO(n). Hence the time complexity of Algorithm 3
is O(nlogn). Now consider Algorithm 2. The time complexity of
the for loop of Step 5 is O(n2). This is because the time complex-
ity of finding the Shapley value (in Step 6 of Algorithm 2) using
Algorithm 1 is O(n). Since the for loop of Step 5 is repeated n
times, its complexity isO(n2). Consequently, the time taken to ex-
ecute Steps 1 to 11 is alsoO(n2). We already know that them time
taken by Step 13 (i.e., Algorithm 3) is O(nlogn). The time taken
to execute Steps 14 to 23 is exactly the same as the time taken by
Steps 2 to11 (i.e., O(n2)). Given this, the time taken by a single
iteration of the while loop of Step 12 isO(n2). Thus the time com-
plexity of a single iteration of Algorithm 2 (by single iteration of
Algorithm 2, we mean executing Steps 1 to 11 and then executing
the while loop in Step 12 once) is O(n2).

Since Algorithm 2 is an approximation, in addition to its time
complexity, we also need to analyze its performance in terms of
the approximation error ∆Φ. We do this experimentally5 in the
following section.

4. EXPERIMENTAL ANALYSIS
In order to analyze the performance of Algorithm 2 in terms of its
approximation error (∆Φ), we conducted experiments in a range of
settings. The set up for our experiments is as follows. For a game
5Future work will determine the bound on approximation error.

0 2 4 6 8 10 12
8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

Player

W
eig

ht
s

n=12 !w= 0.02 × " !I
#

= 20%

Initial
After 10 iterations
After 20 iterations
After 50 iterations

Figure 3: Variation in the players’ weights with the number of
iterations.

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

Iterations

Av
er

ag
e

pe
rc

en
ta

ge
 e

rro
r (

 !
w)

n=12 !w = 0.01× "

!I
#

=15

!I
#

=45

!I
#

=70

!I
#

=90

Figure 4: Effect of the initial error (∆I
Φ) on ∆Φ.

of n players, we choose the initial weights ω as ω = 9. We do this
in order to ensure that for all our experiments, the weights of all the
players are positive even after they are updated. Also, all the games
we consider are two thirds majority games (i.e., q = (2/3) × n ×
ω). For this set up, let ∆I

Φ denote ∆Φ for the initial weights (i.e.,
w = ω). From Equation 12, we know that ∆Φ depends on ∆I

Φ,
∆w, and n. Hence our objective is to study the effect of each of
these three parameters on ∆Φ. Before doing so, we first consider a
sample voting game and show how the players’ Shapley values in
ϕ converge to those in Φ and how their weights in w vary with the
number of iterations.

4.1 Convergence of ϕ to Φ for Rule1

For a game of n = 12 players, Figure 2 shows how ϕ converges
to Φ for each player, and Figure 3 shows the players’ weights at the
end of each iteration. As seen in Figure 2, initially all the players
have equal values (i.e., ϕi = 1/12 for 1 ≤ i ≤ 12) because they all
have equal weights (i.e., wi = 9 for 1 ≤ i ≤ 12). But after every
iteration, the weights are updated such that the weight of a player
whose value from w falls short of his required value is increased
by ∆w. Likewise, the weight of a player whose value from w is in
excess of his required value, is decremented by ∆w. For instance,
consider player 8 in Figure 2. The initial Shapley value for this
player is 0.0825 but his required value is 0.09. Thus in Figure 3,
the weight of this player is increased from 9 to 9.3. On the other

940

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Iteration

Av
er

ag
e

pe
rc

en
ta

ge
 e

rro
r (

 !
"

)

n=12 !I
"

= 35%

!w= 0.02 × #

!w= 0.1 × #

!w= 0.2 × #

!w= 0.25 × #

Figure 5: Effect of the weight increment (∆w) on ∆Φ.

hand, consider player 6. The initial Shapley value of this player is
0.0825 but his required value is 0.075. Thus in Figure 3, his weight
is decreased from 9 to 8.8. Likewise for all other players.

4.2 Effect of ∆I
Φ on ∆Φ for Rule1

For a game of n = 12 players and ∆w = 0.01×ω, Figure 4 shows
how ϕ converges to Φ for ∆I

Φ = 15%, ∆I
Φ = 45%, ∆I

Φ = 70%,
and ∆I

Φ = 90%. As can be seen, the number of iterations it takes
for ϕ to converge to Φ increases with ∆I

Φ. For an initial error of
∆I

Φ = 15%, the error ∆I
Φ drops to 2% within 25 iterations. But

for an initial error of ∆I
Φ = 45%, it takes 250 iterations for the

error to drop to 2%, for ∆I
Φ = 70% it takes 280 iterations, and for

∆I
Φ = 90% it takes 300 iterations. Thus, as ∆I

Φ increases, ϕ gets
further away from Φ and so the number of iterations it takes for ϕ
to converge to Φ also increases.

4.3 Effect of ∆w on ∆Φ for Rule1
For a game of n = 12 players and an initial error of ∆I

Φ = 35%,
Figure 5 shows how ∆Φ varies with the number of iterations. As
shown in the figure, for ∆w = 0.02 × ω the percentage error de-
creases from 35% to 2% in 35 iterations. For ∆w = 0.1 × ω, the
error goes down to 10% in 7 iterations but remains constant after
that. For ∆w = 0.2×ω, after 6 iterations the error remains constant
at 15%. Finally, for ∆w = 0.25×ω, the error decreases to 30% in
two iterations but remains constant after that. Thus, for small ∆w,
the weights are updated in small increments and so it takes longer
for ϕ to converge to Φ but, in the end, ϕ is closer to Φ. However,
as ∆w increases, the weights are updated in bigger increments so
initially, ∆Φ decreases rapidly but it soon stops decreasing any fur-
ther. Thus, the error (∆Φ), can be reduced by reducing ∆w.

4.4 Effect of n on ∆Φ for Rule1
For a game of n players and ∆I

Φ = 35%, Figure 6 shows how ∆Φ

varies with n. We vary n and for each nwe find ∆Φ. Here, for each
n, we chose the weight increment (∆w) such that ∆Φ is minimum.
As shown in the figure, for n = 12, the error ∆Φ decreases to 2%
in 35 iterations. For n = 24, it takes 50 iterations, and for n = 36,
it takes 65 iterations. This shows that, as n increases, it takes longer
for ϕ to converge to Φ. This is because, for small n, incrementing/
decrementing a player’s weight by ∆w has a significant effect on
not only his percentage error but also on the average percentage
error of all the n players. However, as n increases, the effect of
updating a single player’s weight by ∆w on the average percentage
error (∆Φ) decreases. As a result, convergence takes longer.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Iterations

Av
er

ag
e

pe
rc

en
ta

ge
 e

rro
r (

 !
"

)

!I
"

= 35%

n = 12
n = 24
n = 36

Figure 6: Effect of the number of players (n) on ∆Φ.

0 20 40 60 80 100
0

5

10

15

20

25

Iterations

Av
er

ag
e

er
ce

nt
ag

e
er

ro
r (

 !
"

)

!I
"

= 25% !w= 0.01 × #

n=12 Rule 2
n=24 Rule 2
n=36 Rule 2
n=48 Rule 2
n=12 Rule 1
n=24 Rule 1
n=36 Rule 1
n=48 Rule 1

Figure 7: A comparison of convergence for Rule 1 and Rule 2.

4.5 A comparison of Rule1 and Rule2
We then conducted experiments to analyze the effect of ∆I

Φ, ∆w,
and n on ∆Φ, using Rule2. The results of these experiments were
similar to those described in Sections 4.2, 4.3, and 4.4 for Rule1.
However, a key difference in the performance of Rule1 and Rule2
was found to be in terms of the rate of convergence. Figure 7
compares the rate of convergence for the two rules. Here the ini-
tial percentage error is ∆I

Φ = 25% and the weight increment is
∆w = 0.01 × ω. For this set up, we vary the number of players
between n = 12 and n = 48, and for each n, we compare the
average percentage errors (∆Φ) for Rule 1 and Rule 2 at the end of
each iteration. As shown in the figure, for a game of 12 players, it
takes 5 iterations for ϕ to converge to Φ using Rule 2. For the same
number of players, it takes 45 iterations using Rule 1. Likewise for
other values of n. Since Rule 2 updates the weights of 2T players,
it reduces the percentage error for the 2T players in each iteration.
In contrast, Rule1 updates the weights of only 2 players in each
iteration. Hence the convergence of ϕ to Φ is faster for Rule2.

5. RELATED WORK
This section discusses the existing literature on methods for finding
the Shapley value and also the literature on methods for solving the
inverse Shapley value problem. For the Shapley value, two types of
methods have been proposed: exact and approximate. These meth-
ods vary in their approach and computing requirements. Among
the exact methods, we have [11, 1, 7, 8]. While they all give the
exact Shapley value, they each have disadvantages. These include

941

requiring exponential time [11], a large memory space [11], or a
specific representation6 for the voting game [1, 7, 8].

In order to overcome the problem of computational complexity,
approximation methods were developed. The earliest such method
was proposed by Mann and Shapley [10]. This method is based
on Monte Carlo simulation and estimates the Shapley value from a
random sample of coalitions. The advantage of this method is its
linear time complexity. However, its disadvantage is that it does
not give details of how the samples are to be taken, which has a
significant impact on the method’s effectiveness. The multi-linear
extension (MLE) approximation method proposed by Owen [14]
uses randomization. Its advantage is that it has time complexity
linear in the number of players. However, in practice, it only gives
a good approximation for games with many small weights and no
large weights. A modified MLE approximation method of [9] has
a lower approximation error than the original version, but it has
exponential time complexity. The method proposed in [5] uses ran-
domization to find the approximate Shapley value. Like Owen’s,
this method too has linear time complexity. However, as mentioned
before, Owen’s method, only works well for those game with many
small weights and no large weights [14]. In contrast, [5] works for
all weights. Hence we use it to find an approximate Shapley value.

We now turn to the literature on solving the inverse problem. For
coalition games in general, and the weighted voting game in partic-
ular, the Shapley value [17] provides a measure of a player’s power.
But as explained in Section 2.2, a player’s weight in a voting game
cannot be interpreted as his power. Thus the work in [3] uses a dif-
ferent weight scheme. For a coalition game 〈N, v〉, this scheme al-
lows a player’s weight to be interpreted as his power. However, for
this new scheme, the function v is not the same as that described in
Section 2.1. Also, for this new scheme, solving the inverse problem
requires finding the function v for a coalition game 〈N, v〉 such that
it generates some required weighted Shapley values. To this end, an
algorithm was proposed in [3]. For a coalition game of n players,
this algorithm has time complexity O(2nlog22n), i.e., exponential
in the number of players. There are three key differences between
this work and our’s. First, the method we propose is for solving
the inverse problem for the Shapley value as proposed in [17] and
not for the weight scheme presented in [3]. Second, as shown in
Section 3, the time complexity of our method is polynomial in the
number of players, while that for [3] is exponential. Finally, unlike
[3], we present an anytime solution.

6. CONCLUSIONS
This paper presents a computationally efficient approximation method
for solving the inverse Shapley value problem. The method is based
on the technique of ‘successive approximations’. It starts with an
initial assignment of weights to the players and then iteratively up-
dates the weights such that the Shapley values after each iteration
get closer to the required values. This is an anytime method; the
iterative process can be stopped after any number of iterations, but
the greater the number of iterations, the better the approximation.
For a voting game of n players, the time complexity of a single
iteration is O(n2). The paper also presents an analysis of the per-
formance of this method in terms of its approximation error and
the rate of convergence of an initial solution to the required one.
Specifically, it shows that the approximation error decreases after
each iteration, and the rate of convergence decreases with the num-
ber of players and with the initial percentage error.

In future, we would like to generalise our method so that it works

6Note that transforming a voting game into these specific forms
requires additional computational time.

not just for the Shapley value but also for other power indices such
as the Banzhaf index and the Coleman index. We would also like
to generalize our method so that it solves the inverse problem not
just for the voting game but also for other coalitional games. Fi-
nally, our present analysis focused on an experimental analysis of
convergence. In future, we need to determine the bound for the
approximation error for our method.

7. REFERENCES
[1] V. Conitzer and T. Sandholm. Computing Shapley values,

manipulating value division schemes, and checking core
membership in multi-issue domains. In Proceedings of the
National Conference on Artificial Intelligence, pages
219–225, San Jose, California, 2004.

[2] X. Deng and C. H. Papadimitriou. On the complexity of
cooperative solution concepts. Mathematics of Operations
Research, 19(2):257–266, 1994.

[3] I. C. Dragan. The potential basis and the weighted Shapley
value. Libertas Mathematica, XI:139–150, 1991.

[4] E. Elkind, L. A. Goldberg, P. Goldberg, and M. Wooldridge.
Computational complexity of weighted threshold games. In
Proceedings of AAAI-2007, pages 718–723, 2007.

[5] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A
randomized method for the Shapley value for the voting
game. In Proc. Sixth Int. Conference on Autonomous Agents
and Multi-agent Systems, pages 955–962, 2007.

[6] A. Francis. Advanced Level Statistics. Stanley Thornes
Publishers, 1979.

[7] S. Ieong and Y. Shoham. Marginal contribution nets: A
compact representation scheme for coalitional games. In
Proceedings of the Sixth ACM Conference on Electronic
Commerce, pages 193–202, Vancouver, Canada, 2005.

[8] S. Ieong and Y. Shoham. Multi-attribute coalition games. In
Proceedings of the Seventh ACM Conference on Electronic
Commerce, pages 170–179, Ann Arbor, Michigan, 2006.

[9] D. Leech. Computing power indices for large voting games.
Management Science, 49(6):831–837, 2003.

[10] I. Mann and L. S. Shapley. Values for large games iv:
Evaluating the electoral college by Monte Carlo techniques.
Technical report, The RAND Corporation, Santa Monica,
1960.

[11] I. Mann and L. S. Shapley. Values for large games iv:
Evaluating the electoral college exactly. Technical report,
The RAND Corporation, Santa Monica, 1962.

[12] M. J. Osborne and A. Rubinstein. A Course in Game Theory.
The MIT Press, 1994.

[13] G. Owen. A note on the Shapley value. Management
Science, 14:731–732, 1968.

[14] G. Owen. Multilinear extensions of games. Management
Science, 18(5):64–79, 1972.

[15] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT
Press, 1994.

[16] A. E. Roth. Introduction to the Shapley value. In A. E. Roth,
editor, The Shapley value, pages 1–27. University of
Cambridge Press, Cambridge, 1988.

[17] L. S. Shapley. A value for n person games. In A. E. Roth,
editor, The Shapley value, pages 31–40. University of
Cambridge Press, Cambridge, 1988.

[18] O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation. Artificial Intelligence Journal,
101(2):165–200, 1998.

942

