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ABSTRACT
In hedonic games, players have the opportunity to form coalitions,
and have preferences over the coalitions they might join. Such
games can be used to model a variety of settings ranging from
multi-agent coordination to group formation in social networks.
However, the practical application of hedonic games is hindered by
the fact that the naive representation for such games is exponential
in the number of players. In this paper, we study hedonic coali-
tion nets—a succinct, rule-based representation for hedonic games.
This formalism is based on marginal contribution nets, which were
developed by Ieong and Shoham for representing coalitional games
with transferable utility. We show that hedonic coalition nets are
universally expressive, yet are at least as succinct as other existing
representation schemes for hedonic games. We then investigate the
complexity of many natural decision problems for hedonic coali-
tion nets. In particular, we provide a complete characterisation of
the computational difficulty of problems related to coalitional sta-
bility for hedonic games represented with hedonic nets.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory
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1. INTRODUCTION
In coalitional games, players may form coalitions, and have prefer-
ences over the possible resulting coalition structures, i.e., partitions
of the players into coalitions. Hedonic games [4, 2] are a subclass
of coalitional games in which players are indifferent about coali-
tions formed by the players outside of their own coalition. In other
words, in hedonic games players only care about who they will join
with: the term “hedonic” stems from the idea that the players can
be thought of as “enjoying the pleasure of each other’s company”.
Hedonic games can be used to model many multi-agent coordina-
tion scenarios. They also provide an interesting approach to repre-
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senting concepts in social networking services such as Facebook or
MySpace. In particular, the framework of hedonic games is useful
for capturing the notion of stability in these settings. Intuitively,
a coalition structure is stable if no individual player or group of
players prefers to deviate from it; this intuition can be formalised
in several ways, depending on what deviations are allowed. Stable
coalition structures can be seen as feasible outcomes of the game;
therefore, identifying such coalition structures allows us to predict
the behavior of players.

A key problem in applying concepts from hedonic games in multi-
agent settings is, of course, that of representation: naive represen-
tations for hedonic games are exponential in the number of play-
ers. Accordingly, it is important to develop representations that
are capable of succinctly capturing preferences in hedonic games,
without being too computationally complex to be practically use-
ful. (Of course, ultimately, the more compact and expressive a rep-
resentation is, the more complex it is to reason with it: the key is to
understand the tradeoffs involved.)

In this paper, we put forward a representation scheme for hedo-
nic games, which we call hedonic coalition nets. This represen-
tation scheme is based on the marginal contribution nets formal-
ism, which was developed by Ieong and Shoham for representing
coalitional games with transferable utility (TU games) [12], and
extended to coalitional games with non-transferable utility (NTU
games) by Malizia et al. [13]. Hedonic coalition nets inherit many
of the positive properties of marginal contribution nets: they pro-
vide a representation language that is complete, i.e., can be used
to represent any hedonic game, yet is succinct for many interesting
classes of games.

We begin by presenting the technical framework of hedonic games
and the key solution concepts for such games. We then intro-
duce hedonic coalition nets, and investigate their relationship to
other representation schemes for hedonic games. Next, we study
the complexity of natural decision problems for hedonic coalition
nets. Specifically, we first consider problems of checking equiva-
lence of hedonic nets: when a pair of hedonic nets are equivalent
with respect to the actual values of every coalition, and when they
are equivalent with respect to the preference relations they induce.
We then investigate the computational aspects of stability in hedo-
nic games, and provide a complete characterisation of the compu-
tational complexity of stability-related solution concepts in these
games. We focus on the core, which is perhaps one of the most im-
portant solution concepts in hedonic games, as it represents coali-
tion structures resistant to group deviations. Using the ideas of [12]
as a starting point, we identify a class of hedonic games that admits
efficient algorithms for checking if a particular outcome is in the
core. Our argument demonstrates that TU-games and NTU-games
are very different from a computational perspective.
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2. HEDONIC GAMES
We give a self-contained but brief introduction to the technical
framework of hedonic games; for more details, including motiva-
tions for studying such games, we refer the reader to, e.g., [4]. Let
N = {1, . . . , n} be a set of players. A coalition in N is a non-
empty subset of N ; for i ∈ N , let Ni be the coalitions in N that
contain i : Ni = {C ∪ {i} : C ⊆ N %= ∅}. A hedonic game
(hereafter referred to simply as a “game”) is then a structure

G = 〈N ,(1, . . . ,(n〉

where N = {1, . . . , n} is the set of players, and (i ⊆ 2Ni ×2Ni

is a complete, reflexive, and transitive preference relation for player
i ∈ N , with the intended interpretation that if C1 (i C2, then
player i prefers coalition C1 at least as much as coalition C2. As
usual, for each player we can define the indifference relationship
∼i by setting C1 ∼i C2 iff C1 (i C2 and C2 (i C1 and the
strict preference order ,i by setting C1 ,i C2 iff C1 (i C2

and C1 %∼i C2. To simplify our presentation, we will often abuse
notation by writing C1 (i C2 for arbitrary coalitions C1 and C2,
understanding that this is an abbreviation for C1∪{i} (i C2∪{i}.

2.1 Solution Concepts
The outcome of a game is a coalition partition: a partition of the
players N into disjoint coalitions. If π is a coalition partition and
i ∈ N then we denote by πi the coalition in π of which i is a
member. We let ΠG denote the possible coalition partitions over
G , dropping reference to G where the context is clear. Now, let π
be a coalition partition over G = 〈N ,(1, . . . ,(n〉; then a number
of solution concepts suggest themselves, as follows [4, p.207–208]:

• A coalition C ⊆ N blocks π if C ,i πi for all i ∈ C . The
core of a game is the set of coalition partitions that are not
blocked by any coalition. We denote the core of game G by
core(G).

• π is individually rational if πi (i {i} for all i ∈ N . We
denote the set of individually rational partitions for G by
ir(G). If π is individually rational, then every player does at
least as well in π as it would do alone.

• π is Nash stable if for all i ∈ N we have πi (i Ck ∪ {i}
for all Ck ∈ π. Thus Nash stability means that no player
would want to join any other coalition in π, assuming the
other coalitions did not change. Let ns(G) denote the set of
Nash stable solutions for game G .

• π is individually stable if there do not exist i ∈ N and C ∈
π ∪ {∅} such that C ∪ {i} ,i πi and C ∪ {i} (j C for all
j ∈ C . Intuitively, individual stability means no player could
move to another coalition that it preferred without making
some member of the coalition it joined unhappy.

• π is contractually individually stable (CIS) if there do not
exist i ∈ N and C ∈ π ∪ {∅} such that:

C ∪ {i} ,i πi and C ∪ {i} (j C for all j ∈ C ; and

πi \ {i} (j πi for all j ∈ πi \ {i}.

Intuitively, a CIS partition is one in which no player can move
to another coalition that it prefers so that the move is accept-
able to both coalitions it joins and leaves.

It is easy to see that, for example, any Nash stable coalition partition
or core coalition partition is individually rational (see [4, p.208]).

An obvious issue when considering hedonic games from a com-
putational point of view is that of representation: the naive repre-
sentation (explicitly listing preference orders (i for each player i)
will be exponential in the number of players. A number of repre-
sentations for hedonic games have been proposed in the literature;
we will discuss these in later sections, where we formally compare
them to hedonic coalition nets.

3. HEDONIC COALITION NETWORKS
We now introduce hedonic coalition nets, a succinct representation
for hedonic games which draws upon the marginal contribution nets
formalism for coalitional games [12]. The basic idea behind hedo-
nic coalition nets is to represent a player’s preference relation (i

as a collection of rules of the form ϕ -→i x , where ϕ is a predicate
over coalitions, expressed as a formula of propositional logic, and
x is a real number. To determine the value of a coalition to a player,
we take the player’s rule set, and sum the values on the right hand
side of rules for which the predicate part of the rule is satisfied by
the coalition. These values then induce the preference orderings(i

in the obvious way.
We make use of classical propositional logic, and for complete-

ness, we thus begin by recalling the technical framework of this
logic. Let Φ be a (finite, fixed, non-empty) vocabulary of Boolean
variables, and let LΦ denote the set of (well-formed) formulae
of propositional logic over Φ, constructed using the conventional
Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as well as the
truth constants “2” (for truth) and “⊥” (for falsity). We assume
a conventional semantic satisfaction relation “|=” for propositional
logic. A valuation, ξ, is a subset of Φ: a variable p ∈ Φ is con-
sidered to be true under valuation ξ iff p ∈ ξ. We write ξ |= ϕ
to mean that ϕ is true under, or satisfied by, valuation ξ ⊆ Φ, in
which case ξ is a satisfying assignment for ϕ, while if ξ %|= ϕ then
ξ is a falsifying assignment.

For hedonic coalition nets, we fix the vocabulary of propositional
variables Φ to be the set of players, N , so that we we have a propo-
sitional variable for every player. Note that every coalition in N
then defines a valuation for LN . A rule for player i ∈ N is then
a pair (ϕ, β), where ϕ ∈ LN and β ∈ R. We write a rule (ϕ, β)
for player i ∈ N using the notation ϕ -→i β, omitting the index
i where it is clear from the context. Let Ri be the set of possible
rules for player i . A hedonic coalition net (hereafter simply “net”)
is a structure

H = 〈N ,R1, . . . , Rn〉,

where N = {1, . . . , n} is a set of players, and Ri ⊆ Ri is a set of
rules for player i , for each i ∈ N . The utility of a coalition C ∈ Ni

for a player i is then:

ui(C ) =
X

ϕ !→iβ∈Ri :
C |=ϕ

β.

We say a net is in simple conjunctive form if the conditions of all
rules are conjunctions of literals, i.e., of the form

p1 ∧ · · · ∧ pk ∧ ¬pk+1 ∧ · · · ∧ ¬pl

for Boolean variables p1, . . . , pk , pk+1, . . . , pl . Similarly, we say
a hedonic net is of simple disjunctive form if conditions are dis-
junctions of literals. We say a net is a unit net if the only value
appearing on the right hand side of rules is 1.

Given a net H = 〈N ,R1, . . . , Rn〉, we let GH = 〈N ,(1

, . . . ,(n〉 denote the game induced by H , i.e., the game such that
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for all i ∈ N and for all C1,C2 ∈ Ni , we have that

C1 (i C2| {z }
game

iff ui(C1) ≥ ui(C2)| {z }
net

.

3.1 Other Representations
The first question to ask is how hedonic nets relate to other existing
representations for hedonic games. When we consider the notion of
a representation, we are typically thinking of representing elements
of a set – in the present paper, we are thinking of representing ele-
ments of the set of hedonic games. Given a representation scheme
ζ for a set S , we denote by ζ(x ) the shortest representation of x
possible using the scheme ζ. When we say that a representation
ζ1 is as compact or succinct as a representation ζ2, we mean that
for every x ∈ S , the size of element x represented using ζ1 (i.e.,
|ζ1(x )|) is at most polynomial in |ζ2(x )|. We will say that a repre-
sentation ζ1 is strictly more expressive than ζ2 if every object that
can be represented using ζ2 can be represented using ζ1, and, more-
over, there exists an object that can be represented using ζ1, but not
ζ2. In this section, we review several representations that appear
in the literature on hedonic games, and for each, show that hedonic
nets are at least as compact.

IRCLs: We start by presenting individually rational coalition lists
(IRCL). This formalism is based on the idea of eliminating redun-
dant information from the naive representation, i.e., eliminating in-
formation that can manifestly play no part in the strategic reasoning
of players [1]. Specifically, in IRCL, instead of listing the complete
preference ordering (i , we only list the ordering for those coali-
tions that are preferred by i over the singleton coalition {i}, that is,
the individually rational coalitions. It is easy to see that only such
individually rational coalitions can form part of a coalition parti-
tion satisfying the solution concepts listed above. So, for the IRCL
representation we define (i by explicitly listing individual ratio-
nal coalitions for i , in order, most preferred first, and indicating
whether two consecutive coalitions in this order are equally pre-
ferred.

Formally, the preference list of the player i is represented as
C1 ∗1 C2 ∗2 · · · ∗r−1 Cr where ∗j ∈ {,i ,∼i}, Cj ⊆ Ni and
Cr = {i}. Although this representation can sometimes eliminate
much redundant information, it is clear that, in many cases, this
representation will be no more succinct than the naive representa-
tion. For example, if the worst outcome for a player is working
alone (which would happen, for example, if the player needed help
to achieve its goal) then IRCLs reduce to the naive representation.
On the positive side, the IRCL representation is complete.

Given an IRCL-representation of a player’s preferences, we can
transform it into a hedonic net representation as follows: given a
preference list C1 ∗1 C2 ∗2 · · · ∗r−1 Cr of player i , define xr = 0
and for j = r − 1, . . . , 1 set xj = xj+1 if Cj ∼i Cj+1 and xj =
xj+1 + 1 if Cj ,i Cj+1. Now, the rule set Ri contains r rules,
where the j th rule in Ri is:

0

@
^

k∈Cj

k

1

A ∧

0

@
^

l∈N\Cj

¬l

1

A -→i xj .

It is easy to see that the size of the resulting representation is at
most a factor of n larger than that of the original representation
(the worst-case blowup corresponds to coalitions of size 1, which
are represented as rules with n literals).

We will now review several representation formalisms that are
not complete, i.e., strictly less expressive than hedonic nets, and
demonstrate that hedonic nets are nevertheless as compact as those
representations.

Additively Separable Games: A game G = 〈N ,(1, . . . ,(n〉 is
said to be additively separable if there exists an |N |×|N | matrix of
reals v (the value matrix) such that C1 (i C2 iff

P
j∈C1

v [i , j ] ≥P
j∈C2

v [i , j ]. Thus v [i , j ] represents the value of player j to
player i . If a game is additively separable, then the value matrix
v clearly provides a very succinct representation for the game. Of
course, not all games are additively separable, and so we cannot
use this representation for all games. Additively separable games
are straightforward to represent as hedonic nets. Let v be the value
matrix for an additively separable game: then for each i , j ∈ N ,
we create a single rule for i , as follows: j -→i v [i , j ].

In fact, we can assume that the right-hand sides of all rules are
integers. Indeed, given a game represented by a non-integer ma-
trix, we can find an equivalent integer matrix representation of this
game by solving a system of linear inequalities (one for each pair
of coalitions) with 0-1 coefficients. This will produce a rational
matrix, which can then be scaled up. However, these integers may
have to be quite large, i.e., superpolynomial in n . For example,
consider a player i with lexicographic preferences. More formally,
define (i as Cj ,i Ck iff min(Cj 7 Ck ) ∈ Cj , where 7 de-
notes the symmetric difference of two sets. These preferences are
additively separable: we can set v [i , j ] = 2n−j . However, as for
every pair of coalitions Cj ,Ck ∈ Ni we have either Cj , Ck

or Ck , Cj , the set {
P

j∈S v [i , j ] | S ⊆ Ni} contains at least
2n−1 distinct elements: otherwise, there will be two coalitions that
are assigned the same value by this representation. Hence, at least
some of the RHSs of the rules in Ri are at least 2n−1/n .

B- and W-Preferences: Another class of preferences is based on
ranking individual players, and ordering coalitions according to
the ranks of their worst/best members. In more detail, under W-
preferences introduced in [7], each player i has a (reflexive, transi-
tive and complete) preference relation(′

i over the set of of all play-
ers, and he prefers a coalition C1 to a coalition C2 iff he prefers the
worst member of C1 (according to(′

i ) to the worst member of C2.
Games with W-preferences are not additively separable; nor can
they be compactly represented using individually rational coalition
lists. However, they can be compactly represented using hedonic
coalition nets.

Consider a player i with a preference relation (′
i over all other

players. Order all players in N \ {i} so that i1 (′
i · · · (′

i in−1. As
with the IRCL translation, set xin−1 = 1, and for j = n − 2, . . . , 1
set xij = xij+1 if ij ∼′

i ij+1 and set xij = xij+1 + 1 if ij ,′
i ij+1.

We can now represent player i’s preferences using the following
n − 1 rules:

in−1 -→ xin−1

in−2 ∧ ¬in−1 -→ xin−2

. . .

i1 ∧ ¬i2 ∧ . . . ∧ ¬in−1 -→ xi1 .

B-preferences [5] are defined in a similar manner: again, each
player i has a preference relation (′

i over individual players, but
now we have C1 (i C2 if i prefers the best player in C1 (accord-
ing to (′

i ) to the best player in C2; in addition, the draws are re-
solved in favor of smaller sets (otherwise, the grand coalition is the
best outcome for everybody). They can be represented as hedonic
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coalition nets using the following set of rules:

i1 -→ −δ, . . . , in−1 -→ −δ

i1 -→ xi1

i2 ∧ ¬i1 -→ xi2

. . .

in−1 ∧ ¬in−2 ∧ . . . ∧ ¬i1 -→ xin−1 ,

where δ is sufficiently small (say, δ < 1
n ) and i1, . . . , in−1 and

xi1 , . . . , xin−1 are defined as above.

Anonymous Preferences: Another well-studied class of prefer-
ences in hedonic games is that of anonymous preferences: each
player’s preferences solely depend on the sizes of the coalitions,
but not on individual players that appear in these coalitions. In
other words, each player i is endowed with a preference relation
(′

i over 1, . . . , n and his preference relation over coalitions (i is
given by C1 (i C2 iff |C1| (′

i |C2|. Clearly, this class of prefer-
ences differs from all other classes considered above. However, it,
too, can be compactly represented using hedonic coalition nets. In-
deed, it is known [9] that for each k = 1, . . . , n there is a Boolean
formula ϕk over variable x1, . . . , xn of size poly(n) such that for
all ξ ⊆ {x1, . . . , xn}, we have ξ |= ϕk iff |ξ| = k . Using such for-
mulas, we can express anonymous preferences as hedonic coalition
nets; the construction is similar to the one for W-preferences.

Discussion: We summarise the main points above in the following:

THEOREM 1.

1. Hedonic nets are just as compact as all the representation
formalisms considered above (the IRCL-representation, the
matrix representation for additively separable games, and
the (′

i -representations for B- and W-preferences or anony-
mous preferences).

2. Hedonic nets are strictly more expressive than the represen-
tations based on additively separable preferences, B- and
W-preferences, and anonymous preferences.

3. For some games, hedonic nets are exponentially more com-
pact than the IRCL representation.

The first point follows from the constructions given in the section
above, showing how each representation can be translated to hedo-
nic nets with at most a polynomial blow up in size. The second
point follows from the fact that every hedonic game can be repre-
sented by a hedonic net, i.e., hedonic nets provide a complete de-
scription language for hedonic games, while additively separable
preferences, B- and W-preferences, and anonymous preferences
are not complete. For the third point, it is easy to give examples of
games that may be succinctly represented using hedonic nets, but
which require space exponential in the number of players using the
IRCL representation (e.g., additively separable preferences).

4. EQUIVALENCE PROBLEMS
An obvious first problem is as follows. Suppose we are given he-
donic nets H1,H2 , and asked whether these are equivalent (in this
and other similar problems, we assume that the hedonic nets given
in the problem instance have exactly the same players). In fact,
equivalence can be formulated in several different ways. First, we
will say they are net equivalent if, assuming u1

i (· · · ) and u2
i (· · · )

denote the utility functions for player i ∈ N induced by H1 and
H2 respectively, then for all i ∈ N and for all C ⊆ N we have

u1
i (C ) = u2

i (C ). It is trivial to see that, if we allow arbitrary con-
ditions on the left hand side of rules, then checking net equivalence
is coNP-complete. A natural question is whether, by constraining
the form of conditions in rules, we can obtain tractability. As the
following result shows, we have high complexity even with quite
strong constraints on rules.

THEOREM 2. NET EQUIVALENCE is coNP-complete even for
simple conjunctive or disjunctive unit nets.

PROOF. Membership in coNP is obvious, so consider hardness.
Proving hardness for simple disjunctive nets is straightforward, so
we focus on the conjunctive case. We reduce TAUT, the problem
of checking that a formula ψ of propositional logic is true under
every valuation. Without loss of generality, we assume that ψ is in
3-Conjunctive Normal Form, i.e., of the form

ψ =
m̂

i=1

χi

where each χi is a disjunction of three literals:

χi = )1i ∨ )2i ∨ )3i .

(Recall that a literal is either a Boolean variable or the negation of
a Boolean variable.) Given an input instance ψ with m clauses
χ1, . . . , χm , over the l Boolean variables p1, . . . , pl , we create
hedonic coalition nets H ψ

1 and H ψ
2 as follows. First, we create

l + m players: one player for each clause, and one player for each
Boolean variable. For the construction, we need to choose some
arbitrary member of N (e.g., the player corresponding to the lexi-
cographically first Boolean variable); we denote this player by d .

The rule set for H ψ
1 is then constructed so that every player gets

a utility of 1 for every coalition. More formally, we define the rule
sets in H ψ

1 as follows:

R1 = {d -→1 1,¬d -→1 1}
· · ·

Rl+m = {d -→l+m 1,¬d -→l+m 1}

The rule set for H ψ
2 is constructed as follows. For each player

1 ≤ i ≤ m , corresponding to a clause, we create a rule set Ri with
7 rules, as follows (we assume double negations are eliminated):

(¬)1i ) ∧ (¬)2i ) ∧ )3i -→i 1
(¬)1i ) ∧ )2i ∧ (¬)3i ) -→i 1

(¬)1i ) ∧ )2i ∧ )3i -→i 1
)1i ∧ (¬)2i ) ∧ (¬)3i ) -→i 1

)1i ∧ (¬)2i ) ∧ )3i -→i 1
)1i ∧ )2i ∧ (¬)3i ) -→i 1

)1i ∧ )2i ∧ )3i -→i 1

Finally, for each player m < i ≤ l + m , we create a rule set

Ri = {d -→i 1,¬d -→i 1}.

Let u1
i (· · · ) and u2

i (· · · ) be the utility functions for player i from
the nets H ψ

1 and H ψ
2 respectively. By construction, for every i ∈ N

and C ⊆ N , we have u1
i (C ) = 1, irrespective of the structure of

ψ. Where C ⊆ N , we denote by ξC the valuation for the Boolean
variables p1, . . . , pl defined by eliminating from C all players cor-
responding to clauses, i.e.,

ξC = C ∩ {p1, . . . , pl}.

Now, H ψ
1 and H ψ

2 are net equivalent iff the input instance ψ is a
tautology. Notice that the reduction is polynomial (we use 2(l+m)
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rules in H ψ
1 and 2l+7m rules in H ψ

2 ), and the form of rules created
satisfies the statement of the theorem.

A related question is whether the two nets induce the same game;
we call this GAME EQUIVALENCE. While net equivalence obvi-
ously implies game equivalence, the converse does not, of course,
hold in general.

THEOREM 3. GAME EQUIVALENCE is coNP-complete even for
simple conjunctive or disjunctive unit nets.

PROOF. Membership is obvious; for hardness, we use the same
reduction as Theorem 3, asking whether G

Hψ
1

= G
Hψ

2
.

5. SOLUTION CONCEPTS
We now turn to the various solution concepts discussed above. Given
a solution concept S , there are several obvious associated decision
problems:

• S -MEMBERSHIP: Given a hedonic net H and partition π, is
π an instance of the solution S?

• S -NON-EMPTINESS: Given a hedonic net H and partition
π, is the set {π : π is an S solution for H } non-empty?

For the solution concepts that deal with individual deviations, i.e.,
individual rationality, Nash stability, individual stability, and con-
tractual individual stability, the MEMBERSHIP problems are triv-
ially decidable in polynomial time. Also, every hedonic game has
an individually rational and a contractually individually stable so-
lution [1, p.8], so the NON-EMPTINESS problems for these solu-
tion concepts are trivially polynomially solvable. Furthermore, it
is known that for the IRCL-representation, checking whether there
exists a Nash stable partition or an individually stable partition is
NP-hard [1]. This immediately implies that NON-EMPTINESS is
NP-hard for these solution concepts under the hedonic net represen-
tation. Moreover, since, as argued above, under this representation
one can check if a given partition is Nash stable or individually sta-
ble in polynomial time, checking NON-EMPTINESS for Nash sta-
ble or individually rational solutions are NP-complete for hedonic
nets. Thus, we have a complete characterisation of the complexity
of MEMBERSHIP and NON-EMPTINESS for solution concepts re-
lated to individual deviations. We now turn to the solution concept
that captures stability under group deviations, i.e., the core.

5.1 The Core
The CORE MEMBERSHIP problem is known to be decidable in
polynomial time for the IRCL representation [1, p.10], and is coNP-
complete for the additive representation [15, p.157]. While the for-
mer result seems attractive, given the fact that the IRCL representa-
tion is often not succinct, this result is perhaps not very significant.
Moreover, since we can directly encode additive games using he-
donic nets, it follows from [15, p.157] that CORE MEMBERSHIP
for hedonic nets is coNP-hard, and it is therefore easy to see that
CORE MEMBERSHIP is coNP-complete for hedonic nets.

Now consider the CORE NON-EMPTINESS problem. This prob-
lem involves checking that

∃π ∈ Π : (∀C ⊆ N : [∀i ∈ C : πi (i C ]).

Clearly, the problem is in Σp
2 for hedonic nets, since the inner con-

dition can be checked in polynomial time. Moreover, [13, Theorem
6.3], a general complexity result on non-emptiness of the core for
NTU games represented by marginal contribution nets, tells us that
the problem is also Σp

2-hard, thus giving us a complete picture of
the complexity of core-related problems for hedonic coalition nets.

Games with bounded treewidth: An obvious next question is
whether restrictions on the form of hedonic nets lead to polynomial
time decidability for problems relating to the core. Indeed, Ieong
and Shoham [12] give a polynomial-time algorithm for deciding
core membership for TU games in the special case where the un-
derlying network has bounded treewidth. The notion of treewidth is
applicable in the context of hedonic nets as well. Given a game GH

with a set of players N , and a list of rule sets (R1, . . . , Rn) (here
H can be either a transferable utility game or a hedonic game), con-
sider the agent graph GH whose vertices are players, and there is
an edge between i and j if there is a rule (ϕ, β) ∈ Ri such that j
appears in ϕ, or there is a rule (ϕ′, β′) ∈ Rj such that i appears in
ϕ′, or for some k = 1, . . . , n there is a rule (ϕ′′, β′′) ∈ Rk such
that both i and j appear in ϕ′′. Paper [12] then showed that one
can decide core membership for TU games in time that is exponen-
tial only in the treewidth of GH , and therefore is polynomial if the
treewidth of GH is bounded by a constant. It is therefore natural to
ask if this result can be extended to hedonic coalition nets. Before
we proceed, we provide a review of the basic ideas of tree decom-
position and treewidth (this material is based on [3] and [12]).

DEFINITION 1. A tree decomposition of a graph G = (V ,E)
is a pair (S,T ), where S = {S1, . . . , SK} is a collection of sub-
sets of V and T = (V, E) is a tree whose vertices are labeled by
the elements of S so that a vertex v ∈ V is labeled by Sv ∈ S and

• each vertex of G is covered by some Sv :
S

v∈V Sv = V ;

• each edge of G is covered by some Sv : for any (i , j ) ∈ E
there exists a v ∈ V such that i ∈ Sv and j ∈ Sv .

• if i ∈ Sv and i ∈ Sv′ for some i ∈ V and some v , v ′ ∈ V ,
then i ∈ Sv′′ for all v ′′ that appear on the (unique) path
from v to v ′ in T .

The treewidth of a tree decomposition (S,T ) is maxv∈V |Sv |− 1;
the treewidth of a graph G , denoted by Tr(G), is the minimum
treewidth over all tree decompositions of G .

Abusing notation, we will refer to the treewidth of GH as the treewidth
of H . Furthermore, in what follows we refer to the vertices of the
agent graph GH as agents and the vertices of the tree T as nodes.

A tree decomposition (S,T ) is called nice if T is rooted, and
each of its nodes is of one of the following four types:

• Leaf node: v is a leaf of T and |Sv | = 1;

• Introduce node: v has one child x and there exists an i ∈ N
such that Sv = Sx ∪ {i};

• Forget node: v has one child x and there exists an i ∈ N
such that Sv = Sx \ {i}.

• Merge node: v has two children x and y and Sv = Sx = Sy ;

It is known that any tree decomposition (S,T ) can be efficiently
transformed into a nice tree decomposition (S ′,T ′) of the same
treewidth and such that |V ′| = O(|V|). Furthermore, if Tr(G) is
bounded by a constant, one can find a tree decomposition (S,T )
with treewidth Tr(G) in time polynomial in the size of G ; observe
that this implies that |W | = poly(n).

Our first result is that, unlike for marginal contribution nets, for
hedonic coalition nets deciding CORE MEMBERSHIP remains hard
even if the underlying graph has bounded treewidth.

THEOREM 4. Checking CORE MEMBERSHIP for hedonic coali-
tion nets is coNP-complete, even if the treewidth of the agent graph
is at most 2.
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PROOF. We will show that the complementary problem of de-
ciding whether a partition is not in the core is NP-complete.

It is easy to see that this problem is in NP: one can check that a
partition π is not in the core by guessing a coalition C and verify-
ing, for each i ∈ π, that i prefers C to πi .

To show NP-hardness, we reduce from PARTITION, a classic NP-
complete problem [11]. An instance of PARTITION is given by
a list of n integer numbers a1, . . . , an given in binary such that
a1 + · · · + an = 2B . It is a “yes”-instance if there exists a subset
of indices C ⊆ {1, . . . , n} such that

P
i∈C ai = B .

Given an instance I of PARTITION, we construct a hedonic coali-
tion net H as follows. We set N = {1, . . . , n,n +1,n +2,n +3}.
For i = 1, . . . , n , we set Ri = {n+1 -→ 1}. Also, we set Rn+1 =
{n +3 -→ B−1, 1∧n +2 -→ a1, . . . , n ∧n +2 -→ an}, Rn+2 =
{n + 1 -→ B + 1, 1 -→ −a1, . . . , n -→ −an}, Rn+3 = ∅. Finally,
we set π = {{1}, . . . , {n}, {n+1,n+3}, {n+2}}. Observe that
we have Tr(GH ) ≤ 2; e.g., we can set V = {v1, . . . , vn+1}, E =
{(vi , vi+1)}i=1,...,n and Svi = {i ,n +1,n +2} for i = 1, . . . , n ,
Svn+1 = {n + 1,n + 2,n + 3}.

Now, n + 3 has no incentive to deviate from π. Players 1, . . . , n
would like to join a coalition that contains n +1. However, n +1 is
only interested in a coalition with a subset C of {1, . . . , n} if n+2
joins this coalition as well. Moreover, n + 1 would prefer such a
coalition to its current situation iff

P
i∈C ai ≥ B . Now, n + 2 is

happy to form a coalition with n + 1 and some C ⊆ {1, . . . , n}
as long as

P
i∈C ai ≤ B . Together, these observations imply that

there is a successful deviation from π if and only if there exists a
subset of indices C ⊆ {1, . . . , n} such that

P
i∈C ai = B , i.e., if

I is a “yes”-instance of PARTITION.

A slight modification of the proof shows that CORE NON-EMPTINESS
is also hard for hedonic nets with small treewidth.

THEOREM 5. CORE NON-EMPTINESS for hedonic coalition
nets is NP-hard, even if the treewidth of the agent graph is at most
4.

PROOF. Modify the construction in the proof of Theorem 4 by
introducing a player n + 4 with

Rn+4 = { n + 1 ∧ ¬(n + 3) ∧ ¬(n + 2) -→ 2,

n + 3 ∧ ¬(n + 1) ∧ ¬(n + 2) -→ 1 }

and modifying the rule sets Rn+1, Rn+2 and Rn+3 by setting

Rn+1 = { n + 3 ∧ ¬(n + 4) ∧ ¬(n + 2) -→ B − 1/2,

n + 4 ∧ ¬(n + 3) ∧ ¬(n + 2) -→ B − 2/3,

1 ∧ n + 2 -→ a1, . . . , n ∧ n + 2 -→ an },

Rn+2 = {n + 1 -→ B + 1/2, 1 -→ −a1, . . . , n -→ −an},

and

Rn+3 = { n + 4 ∧ ¬(n + 3) ∧ ¬(n + 2) -→ 2,

n + 1 ∧ ¬(n + 4) ∧ ¬(n + 2) -→ 1 },

(clearly, all values can be scaled up by 6 to preserve integrality). It
is not hard to check that the treewidth of this net is at most 3.

Now, suppose that I is a “yes”-instance of PARTITION and let
C be such that

P
i∈C ai = B . Then the coalition partition π =

{{n + 3,n + 4},C ∪ {n + 1,n + 2}, {i}i∈{1,...,n}\C} is stable.
Indeed, n + 1 does not want to deviate from π: as argued above,
n +1 cannot obtain more than B in any coalition containing n +2,
and obtains at most B − 1/2 in any coalition not containing n + 2,
while it gets B in π. The only profitable deviation for n+4 involves
n +1, so n +4 does not want to deviate either; the same is true for

n + 2 and for all i ∈ {1, . . . , n} \ C . Finally, the players in C as
well as n + 3 are getting their maximal utility.

Conversely, suppose that I is a “no”-instance of PARTITION and
consider an arbitrary partition π. Suppose for contradiction that π
is in the core. If πn+1 does not contain n + 2, n + 3 or n + 4,
player n + 1 gets 0, so he prefers to form {n + 1,n + 4}, which
n + 4 also prefers to its current situation.

If πn+1 = πn+2, then, since for any C ⊆ {1, . . . , n} we haveP
ai %= B , πn+1 either has value at most B − 1 for n + 1, or has

a negative value for n + 2. As the latter is impossible, it follows
that n + 1 would prefer {n + 1,n + 4} to πn+1, and n + 4 also
prefers {n + 1,n + 4} to πn+4 (as either n + 1 is not in πn+4, or
both n + 1 and n + 2 are in πn+4). Hence, any such coalition is
unstable. So, from now on we can assume that n + 2 %∈ πn+1.

If πn+1 contains n + 3 but not n + 4, n + 4 has value 0, so
he prefers to form a coalition with n + 3, which is also the most
preferred outcome for n + 3. Similarly, if πn+1 contains n + 4 but
not n + 3, n + 3 has value 0, so he prefers to form {n + 1,n + 3},
which n + 1 also prefers to his current situation (in which he gets
B − 2/3). Finally, if n + 1, n + 3 and n + 4 appear in the same
coalition then n + 3 and n + 4 have value 0, and would prefer to
deviate by forming {n + 3,n + 4}.

Observe that Theorems 4 and 5 are based on a reduction from
PARTITION and therefore rely on the RHSs of the rules being given
in binary. We will now show that if we stipulate that all RHSs
are given in unary (or, alternatively, are known to be at most poly-
nomial in n) and the agent graph has bounded treewidth, CORE
MEMBERSHIP can be solved in polynomial time.

THEOREM 6. There is an algorithm that, given a hedonic net
H = 〈N ,R1, . . . , Rn〉, and a partition π, correctly decides whether
π is in the core of GH and runs in time poly(n)2s(2mM + 1)2s ,
where M = max{|β| | (ϕ, β) ∈ Ri , i = 1, . . . , n}, m =
|R1| + · · · + |Rn |, and s = Tr(GH ).

PROOF. We will work with a nice tree decomposition (S,T )
of GH such that |V| = poly(n). For every node v ∈ V , let Tv

be the subtree of T that is rooted at v , and let Iv be the set of
inactive agents at v , i.e., set Iv = (∪v′∈Tv Sv′) \ Sv . Observe that
by definition the agents in Iv do not appear in any nodes outside
of Tv . Recall that ui(C ) denotes the utility that agent i assigns
to a coalition C . We will say that a vector z = (z1, . . . , zn) is
acceptable for C and write z ∈ a(C ) if zj ∈ {−mM , . . . , mM }
for j ∈ C and zj = 0 for j %∈ C .

Now, for any v ∈ V , any C ′ ⊆ Sv , and any z ∈ a(C ′), let
X (v ,C ′, z) = 1 if there is a C ′′ ⊆ Iv such that for C = C ′ ∪C ′′

we have (a) for all j ∈ C ′ it holds that uj (C ) = zj and (b) for all
j ∈ C ′′ it holds that uj (C ) > uj (πj ), and let X (v ,C ′, z) = 0
otherwise. In what follows, we will show how to compute all val-
ues of X (v ,C ′, z) inductively. Note that for any v ∈ V and any
C ′ ⊆ Sv , the vectors in a(C ′) have at most s non-zero coordi-
nates. Hence, the values X (v ,C ′, z) are only defined for at most
poly(n)2s(2mM + 1)s triples of the form (v ,C ′, z).

Observe that if X (v ,C ′, z) = 1 for some z such that zj >
uj (πj ) for all j ∈ C ′, then the corresponding coalition C can
successfully deviate from π. Conversely, suppose that there is a
coalition C that can successfully deviate from π, i.e., C ,j πj for
all j ∈ C . We can assume that the set V ′ = {v | Sv ∩ C %= ∅}
is connected in T . Indeed, if it is not, we can take a connected
component V ′′ of V ′ and replace C with C̄ = C ∩ (∪v∈V′′Sv )
in our reasoning: as the agents in C̄ are indifferent to being in the
same coalition with agents in C \ C̄ (there is no rule that involves
both an agent in C̄ and an agent in C \ C̄ ), we have C̄ ,j πj
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for all j ∈ C̄ . Now, let v be the least common ancestor of all
nodes in V ′; as V ′ is connected, v ∈ V ′. Let C ′ = C ∩ Sv , and
let C ′′ = C \ C ′. By construction, we have C ′′ ⊆ Iv . Let z
be given by zj = uj (C ) for j ∈ C ′, zj = 0 for j ∈ N \ C ′.
We have X (v ,C ′, z) = 1 and zj > uj (πj ) for all j ∈ C ′. We
conclude that to check whether π is stable it suffices to compute
X (v ,C ′, z) for all v ∈ V , C ′ ⊆ Sv , and all z ∈ a(C ′), and check
if there exists a triple (v ,C ′, z) such that X (v ,C ′, z) = 1 and
zj > uj (πj ) for all j ∈ C ′. Moreover, the successful deviation
itself (i.e., the coalition C ) can then be computed in polynomial
time using standard dynamic programming techniques. We will
now show how to compute X (v ,C ′, z) for a given vertex v ∈ V ,
all C ′ ⊆ Sv and all z ∈ a(C ′), given the values of X for the
children of v . We have to consider 4 cases:

• v is a leaf node: Suppose Sv = {i}. Then X (v , {i}, z) = 1
if z ∈ a({i}) and zi = ui({i}), and X (v , {i}, z) = 0 for
all z ∈ a({i}) such that zi %= ui({i}).

• v is an introduce node: Suppose that v has one child x and
Sv = Sx ∪ {i}. Observe that Iv = Ix . Consider some
C ′ ⊆ Sv . If i %∈ C ′, we obviously have X (v ,C ′, z) =
X (x ,C ′, z). Now, suppose that i ∈ C ′. Set Ĉ ′ = C ′ \ {i}.
Consider a vector ẑ ∈ a(Ĉ ′) such that X (x , Ĉ ′, ẑ) = 1.
This means that there exists a C ′′ ⊆ Ix such that uj (Ĉ

′ ∪
C ′′) = zj for all j ∈ Ĉ ′ and uj (Ĉ

′ ∪ C ′′) > uj (πj )
for any j ∈ C ′′. Since i is indifferent about being in the
same coalition with players from C ′′ and vice versa, we have
ui(C

′ ∪ C ′′) = ui(C
′) and uj (C

′ ∪ C ′′) > uj (πj ) for
any j ∈ C ′′. Finally, consider a j ∈ Ĉ ′. For any rule
(ϕ, β) ∈ Rj affected by i , i,e., such that Ĉ ′ ∪ C ′′ |= ϕ
and C ′ ∪ C ′′ %|= ϕ or, alternatively, Ĉ ′ ∪ C ′′ %|= ϕ and
C ′ ∪ C ′′ |= ϕ, it has to be the case that i appears in ϕ and
hence the agents from C ′′ do not. Hence, the change in j ’s
utility from adding i , i.e., uj (C

′ ∪ C ′′) − uj (Ĉ
′ ∪ C ′′)

is equal to uj (C
′) − uj (Ĉ

′), i.e., is independent of C ′′.
We conclude that we have X (v ,C ′, z) = 1 for z given by
zi = ui(C

′), zj = ẑj + (uj (C
′)− uj (Ĉ

′)) for j ∈ Ĉ ′.

By a similar argument, if X (v ,C ′, z) = 1 for some z ∈
a(C ′) and i ∈ C ′, it has to be the case that zi = ui(C

′)
and X (x , Ĉ ′, ẑ) = 1, where Ĉ ′ = C ′ \ {i} and ẑ ∈ a(Ĉ ′)
is given by ẑi = ui(C

′), ẑj = zj − (uj (C
′) − uj (Ĉ

′)) for
j ∈ Ĉ ′. Hence, given an introduce node v , we can com-
pute all X (v ,C ′, z), C ′ ⊆ Sv , z ∈ a(C ′) given the values
X (x ,C ′, z) for its child x in time 2s(2mM + 1)s .

• v is a forget node: Suppose that v has one child x and Sv =
Sx \ {i}. Observe that Iv = Ix ∪ {i}. Now, it is easy to
see that X (v ,C ′, z) = 1 iff X (x ,C ′, z) = 1 or X (x ,C ′ ∪
{i}, ẑ) = 1 for some ẑ ∈ a(C ′ ∪ {i}) such that ẑj =
zj for j ∈ C ′ and ẑi > ui(πi). Hence, we can evaluate
X (v ,C ′, z) for all C ′ ⊆ Sv and all z ∈ a(C ′) in time
O(2s(2mM + 1)s).

• v is a merge node: Suppose that v has two children x and
y , and Sv = Sx = Sy . Observe that Iv = Ix ∪ Iy .

Suppose that we have X (x ,C ′, ẑ) = 1 and X (y ,C ′, ž) = 1
for some C ′ ⊆ Sx = Sy = Sv and ẑ, ž ∈ a(C ′). Let Ĉ ′′ ⊆
Ix and Č ′′ ⊆ Iy be the corresponding sets of inactive agents,
i.e., for Ĉ = C ′ ∪ Ĉ ′′ and Č = C ′ ∪ Č ′′ we have uj (Ĉ ) =
ẑj and uj (Č ) = žj for j ∈ C ′, uj (Ĉ ) > uj (πj ) for j ∈
Ĉ ′′, uj (Č ) > uj (πj ) for j ∈ Č ′′. Consider the coalition

C = C ′ ∪ Ĉ ′′ ∪ Č ′′. For any player j ∈ Ĉ ′′ ∪ Č ′′ we
have uj (C ) > uj (πj ), because players in Ĉ ′′ are indifferent
about the presence of agents in Č ′′ and vice versa. Now
consider a player j ∈ C ′. Our goal is to evaluate uj (C ).
Fix a rule (ϕ, β) ∈ Rj ; we will compute its contribution to
uj (C ). There are four cases to be considered.

First, suppose that Ĉ |= ϕ, Č |= ϕ. As elements of Ĉ ′′

and Č ′′ cannot both appear in ϕ, it has to be the case that
C ′ |= ϕ and also C |= ϕ: indeed, if, for example, ϕ does
not contain elements of Ĉ ′′, then Ĉ |= ϕ implies C ′ |= ϕ,
and Č |= ϕ implies C |= ϕ. Second, suppose that Ĉ |= ϕ,
Č %|= ϕ. If ϕ contains elements of Ĉ ′′, but not Č ′′, it holds
that C |= ϕ, C ′ %|= ϕ. Otherwise, ϕ contains elements of
Č ′′, but not Ĉ ′′. Then C ′ |= ϕ, C %|= ϕ. The third case,
namely, Ĉ %|= ϕ, Č |= ϕ is similar to the previous one.
Finally, suppose Ĉ %|= ϕ, Č %|= ϕ. Similarly to the first case,
we can conclude that C ′ %|= ϕ, C %|= ϕ.
Summing over all rules in Rj , we obtain

uj (Ĉ ) + uj (Č ) = uj (C
′) + uj (C ).

We conclude that we have X (v ,C ′, z) = 1 for z ∈ a(C ′)
given by zj = ẑj + žj − uj (C

′) for all j ∈ C ′

Conversely, suppose that X (v ,C ′, z) = 1 for some z ∈
a(C ′). Let C ′′ ⊆ Iv be a corresponding set of inactive play-
ers, i.e., for C = C ′ ∪ C ′′ it holds that uj (C ) = zj for
j ∈ C ′, uj (C ) > uj (πj ) for j ∈ C ′′. Set Ĉ ′′ = C ′′ ∩ Ix ,
Č ′′ = C ′′ ∩ Iy . For Ĉ = C ′ ∪ Ĉ ′′ and Č = C ′ ∪ Č ′′

we have uj (Ĉ ) > uj (πj ) for j ∈ Ĉ ′′ and uj (Č ) > uj (πj )
for j ∈ Č ′′. Also, by the argument above we have uj (Ĉ ) +
uj (Č ) = uj (C

′) + uj (C ). Hence, it must be the case that
X (x ,C ′, ẑ) = 1, X (y ,C ′, ž) for some ẑ, ž ∈ a(C ′) that
satisfy ẑj + žj = zj + uj (C

′) for all j ∈ C ′.
We conclude that we can compute X (v ,C ′, z) for a merge
node v ∈ V , C ′ ∈ Sv and all z ∈ a(C ′) by consider-
ing all pairs of vectors ẑ, ž such that X (x ,C ′, ẑ) = 1,
X (y ,C ′, ž) = 1 and setting X (v ,C ′, z) = 1 if zj =
ẑj + žj − uj (C

′) for some such ẑ, ž. This can be done in
time O((2mM + 1)2s); therefore, computing X (v ,C ′, z)
for a fixed merge node v and all C ′ ⊆ Sv , z ∈ a(C ′) takes
O(2s(2mM + 1)2s) steps.

We have argued that for each v ∈ V the quantities X (v ,C , z) can
be computed in time O(2s(2mM +1)2s). Hence, the running time
of our algorithm meets the stated bound.

The algorithm presented above can be adapted to check if a given
outcome is in the core of a TU game with bounded treewidth in
polynomial time (the resulting algorithm will be similar, though not
identical to that of [12]). Intuitively, the reason why in the bounded
treewidth setting there exists a polynomial-time algorithm for TU
games, but for hedonic games the best we can do is pseudopolyno-
mial time is as follows: In TU games, the members of each coali-
tion can distribute the payoff between themselves in an arbitrary
way, so we only have to keep track of one number: the largest
amount the players C ′ can obtain by forming a coalition with in-
active players in their subtree and keeping those players happy. In
hedonic games, there are no transfers between the players in C ′, so
we have to keep track of the entire Pareto frontier, which is poten-
tially linear in the maximal individual payoff.

Core Characterisation: We know that the core can be empty in
hedonic games, and moreover that it can contain multiple coalition
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structures; in fact, it is easy to see that it in the worst case, the
core contains every possible coalition structure. It is thus interest-
ing to ask whether there is a compact way of classifying the core,
or at least the coalitions in the core of which a particular player
is a member [10]. One approach is to classify these coalitions as
a formula ϕ ∈ LN of propositional logic over the set of players
N . Formally, given a hedonic net H , a player i ∈ N , and a for-
mula ϕ ∈ LN , the decision problem CORE CONTAINMENT is the
problem of deciding whether ∀π ∈ core(GH ) : πi |= ϕ.

THEOREM 7. CORE CONTAINMENT is Πp
2-complete.

PROOF. Expanding out, our aim is to check whether

∀π ∈ Π : (∀C ⊆ N : [∀i ∈ C : πi (i C ])→ πi |= ϕ.

We work with the complement problem, i.e., the problem of check-
ing whether ∃π ∈ Π : (∀C ⊆ N : [∀i ∈ C : πi (i C ])∧πi %|= ϕ.
Clearly the problem is in Σp

2 . For hardness, we reduce the problem
of checking core non-emptiness for hedonic nets, which from [13,
Theorem 6.3] is Σp

2-complete. Given a hedonic net H over play-
ers N , let i be any arbitrary player and set ϕ = ⊥. Then we will
be checking whether ∃π ∈ Π :( ∀C ⊆ N : [∀i ∈ C : πi (i

C ]) ∧ πi |= 2, which reduces to ∃π ∈ Π(∀C ⊆ N : [∀i ∈ C :
πi (i C ]), which is exactly the question of whether the core is
non-empty.

The converse of this problem is rather more delicate: we are given
hedonic net H , player j ∈ N , and formula ϕ ∈ LN , and asked
whether ∀C ⊆ N : C |= ϕ → ∃π ∈ core(GH ) : C = πi .
However, the final equality makes this version of the problem rather
strong, and so we consider the following, weaker version of the
problem: we are given H , i , ϕ and asked whether ∀C ⊆ N : C |=
ϕ → ∃π ∈ core(GH ) : C ⊆ πi . Referring to this problem as
CORE CHARACTERISATION, we have:

THEOREM 8. CORE CHARACTERISATION is Σp
2-hard.

PROOF. We again reduce CORE NON-EMPTINESS for hedo-
nic nets. Given a hedonic net H , pick an arbitrary i , and de-
fine ϕ = (i ∧j∈N ,j %=i ¬j ). Notice that ϕ has exactly one satis-
fying assignment, viz {i}. Now, CORE CHARACTERISATION is
∀C ⊆ N : C |= ϕ → ∃π ∈ core(GH ) : C ⊆ πi , or, equiva-
lently, if ∃π ∈ core(GH ) : {i} ⊆ πi ; this is true iff the core is
non-empty.

6. CONCLUSIONS AND FUTURE WORK
We have introduced hedonic coalition nets, a complete, rule-based
representation scheme for hedonic games. We have compared he-
donic nets to other representation formalisms for hedonic games,
and showed that they provide a good tradeoff between expressivity
and succinctness. We then characterised the computational com-
plexity of classic solution concepts, such as the core or the Nash
stable set, under this representation, and identified a natural spe-
cial class of games that admits a polynomial-time algorithm for
CORE MEMBERSHIP. Our results show that TU games and he-
donic games can be very different from computational perspec-
tive: while in the former, bounded treewidth implies existence of
a polynomial-time algorithm for CORE MEMBERSHIP, in hedonic
games one needs both bounded treewidth and a polynomial bound
on coalitional values to solve CORE MEMBERSHIP in polynomial
time.

Given our results on the complexity of CORE MEMBERSHIP for
hedonic nets with bounded treewidth, it is natural to ask if our ap-
proach can be extended to decide CORE NON-EMPTINESS in this

setting in polynomial time. Indeed, Ieong and Shoham [12] de-
velop a polynomial-time algorithm for CORE NON-EMPTINESS in
TU games of bounded treewidth, using their algorithm for CORE
MEMBERSHIP as a separation oracle for the corresponding linear
program. In our setting this approach does not seem to work, as
now the outcomes are partitions rather than vectors, and it is not
clear if one can reduce CORE NON-EMPTINESS to solving a linear
program. The complexity of CORE NON-EMPTINESS for hedonic
games with bounded treewidth remains an interesting open prob-
lem.

Complexity results for various solution concepts in hedonic games
have been obtained for a number of representations, such as the
IRCL representation [1], anonymous preferences [1], B- and W-
preferences [5, 6], additively separable preferences [15, 14], as
well as some special classes of additively separable preferences [8].
These results indicate that many of the problems considered in
the paper become easier if the players’ preferences have a special
structure: for instance, checking non-emptiness of the core is NP-
complete for anonymous preferences, whereas we have seen that
for hedonic nets the problem is Σp

2-complete. Therefore, it would
be interesting to investigate the complexity of checking that a given
player’s preferences, represented as a hedonic net, fit into one of the
preference classes described in Section 3.1.
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