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ABSTRACT
Weighted voting games are a natural and practically important class
of simple coalitional games, in which each agent is assigned a nu-
meric weight, and a coalition is deemed to be winning if the sum
of weights of agents in that coalition meets some stated threshold.
We study a natural generalisation of weighted voting games called
Boolean Weighted Voting Games (BWVGs). BWVGs are intended
to model decision-making processes in which components of an
overall decision are delegated to committees, with each commit-
tee being an individual weighted voting game. We consider the
perspective of an individual who has some overall goal that they
desire to achieve, represented as a propositional logic formula over
the decisions controlled by the various committees. We begin by
formulating the framework of BWVGs, and show that BWVGs
can provide a succinct representation scheme for simple coalitional
games, compared to other representations based on weighted voting
games. We then consider the computational complexity of prob-
lems such as determining the power of a particular player with re-
spect to some goal, and investigate how the power of a player with
respect to the overall goal is related to the power of that player
in individual games. We show trade-offs between the complexity
of these problems, the nature of underlying Boolean formulas used,
and representations of weights (binary versus unary) in our games.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory
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1. INTRODUCTION
Recent years have seen an explosion of interest in computational
issues surrounding coalitional games (see, e.g., [3, 1, 4, 5]) and
voting systems (see, e.g., [6, 2]). Weighted voting games are an
important class of systems at the intersection of voting and coali-
tional games [18]. In a weighted voting game, each voter is as-
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signed a numeric weight, and a coalition is said to win if the sum of
their weights meets or exceeds a certain stated threshold. Weighted
voting games are widely used in many real-world decision-making
bodies, and have a simple and elegant mathematical formulation.
Many computational questions surrounding weighted voting games
have been considered [3, 4].

In this paper, we are concerned with the following natural gener-
alisation of weighted voting games. We consider decision making
via multiple committees, where each committee has the authority
to decide the outcome (either “yes” or “no”) to a single issue. Each
committee is a weighted voting game, and while the same indi-
viduals may appear in multiple committees, their weights may be
different in different committees; different committees may also
have different threshold values. Now, consider someone who has
an interest in the decisions that are being made by the component
committees. Such an individual will typically have a goal that she
desires to be satisfied, and moreover this goal will often have some
logical structure. For example, a typical goal with respect to po-
litical decision making might be (raise university funding or raise
healthcare funding) and not raise taxes. Many natural questions
arise in such a setting. For example: Which coalitions might be
able to bring the goal about? How important is a particular individ-
ual with respect to the achievement of the goal? Can we derive the
answers regarding the global goal from those for the subgoals?

The same model has applications in the context of multiagent
systems: Consider, for example, a group of agents, each with some
amounts of resources of several types, and a task that requires some
resources to be completed. Since there may be many ways of com-
pleting the task, its resource requirements are best described via a
propositional formula such as (at least T1 units of R1) or ((at least
T2 units of R2) and (at least T3 units of R3)), where the proposi-
tions are weighted voting games describing which coalitions have
enough resources of each given type.

In short, the aims of the present paper are, first, to formulate
Boolean Weighted Voting Games, and second, to investigate their
computational properties. We show that while Boolean weighted
voting games are more expressive than, say, vector weighted voting
games, in many settings (particularly when the underlying goal for-
mulas are monotone) this gain in expressiveness comes without a
price in terms of computational complexity (as compared to vector
weighted voting games). Naturally, unrestricted Boolean weighted
voting games can lead to increased complexity. For several natural
problems, we show trade-offs between computational complexity,
the nature of underlying Boolean formulas used in BWVGs, and
representations of weights (binary versus unary).

2. PRELIMINARY DEFINITIONS
Propositional Logic. Let Φ = {p, q , . . .} be a (fixed, nonempty)
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vocabulary of Boolean variables, and let L denote the set of (well-
formed) formulas of propositional logic over Φ, constructed us-
ing the conventional Boolean operators (“∧”, “∨”, “→”, “↔”, and
“¬”), as well as the truth constants “&” (for truth) and “⊥” (for
falsity). If “∧” and “∨” are the only operators appearing in formula
ϕ then we say that ϕ is monotone. We assume a conventional se-
mantic consequence relation “|=” for propositional logic. A subset
ξ of Φ is a valuation, and we write ξ |= ϕ to mean that ϕ is true
under, or satisfied by valuation ξ. (One may interpret a valuation ξ
for a formula ϕ as setting all ϕ’s variables from ξ to & and all the
remaining ones to ⊥.) The size of a Boolean formula ϕ (denoted
by |ϕ|) is the number of variable and constant occurrences in ϕ.
For example, the size of the formula x ∨ (y ∧ ¬x ) is 3. Note that
under any reasonable representation formalism one can represent a
formula of size s using O(s log |Φ|) bits.

Coalitional Games. A coalitional game G = (N , v) is described
by a set of players N and a characteristic function v : 2N → R that
for each subset, or a coalition, of players C ⊆ N outputs the value
associated with this coalition. Intuitively, v(C ) is the value that the
members of C can achieve by working together [15]. A coalitional
game is called simple if v(C ) ∈ {0, 1} for all C ⊆ N . In such
games, we say that C wins if v(C ) = 1 and C loses otherwise. A
simple game G is monotone if v(C ) = 1 implies v(C ′) = 1 for
any C ′ ⊇ C . (Some authors use the term “simple game” to refer
to monotone games only; in this paper we consider both mono-
tone and nonmonotone simple games and explicitly discuss how
restricting attention to monotone games would affect our results.)
In the context of monotone games, a useful notion is that of a max-
imal losing coalition: C is said to be a maximal losing coalition if
v(C ) = 0 but v(C ′) = 1 for any C ′ ⊃ C . Clearly, a monotone
game can be completely described by listing its maximal losing
coalitions. We consider games with finite numbers of players only:
we assume |N | = n and write N = {1, . . . , n}.

One can represent a coalitional game G = (N , v) by listing the
values v(C ) for all C ⊆ N . However, the size of this representa-
tion will be exponential in the number of players n . It is therefore
important to identify and study compact representations of practi-
cally important coalitional games. One such class of games is that
of weighted voting games (WVGs)—see, e.g., [18]. A weighted
voting game is given by a set N = {1, . . . , n} of players, a list
of n weights w = (w1, . . . , wn) ∈ Rn , and a threshold T ∈ R.
When the set of players N is clear from the context, we use the
notation g = (T ;w1, . . . , wn) to denote a WVG g with the set of
players N , threshold T , and weights w. We write w(C ) to de-
note the total weight of coalition C under the weight vector w,
i.e., w(C ) =

P
i∈C wi . The characteristic function v of a game

(T ;w) is given by v(C ) = 1 if w(C ) ≥ T and v(C ) = 0 other-
wise. Thus, any WVG is a simple game. Note that if all weights are
nonnegative, the game is monotone (but the converse is not neces-
sarily true).

A more general class of simple games, also studied in the lit-
erature, is that of k -vector weighted voting games (k -VWVG) [17].
Intuitively, these games are intersections of k distinct weighted vot-
ing games: to win in such game, a coalition has to win in all of
the underlying games. More formally, a k -vector weighted vot-
ing game is given by a set of players N , a list of k weight vectors
w1, . . . ,wk , where wi = (w i

1, . . . , w
i
n) for each i ∈ {1, . . . , k},

and a list of k thresholds T 1, . . . , T k . A coalition C ⊆ N wins
(v(C ) = 1) if w i(C ) ≥ T i for each i ∈ {1, . . . , k} and loses
(v(C ) = 0) otherwise. It is well-known that any simple game G
can be represented as a k -VWVG for a sufficiently large k and an
appropriate set of weights, but k may need to be exponential in n .
Given a simple game G , the smallest k such that G can be repre-

sented as a k -VWVG is called the dimension of G , and is denoted
by dim(G).

Computational Complexity. We assume that the reader is fa-
miliar with basic notions of computational complexity, such as
classes NP and coNP, levels of the polynomial hierarchy such
as Σp

2 and Πp
2 , nondeterministic polynomial-time Turing machines

(NP-machines), and many-one polynomial-time reductions (see,
e.g., [16]). In addition to these well-known concepts, we also make
use of some less well-known ones, as follows. A language L is in
Dp if L = L1∩L2, for some languages L1 ∈ NP and L2 ∈ coNP.
Similarly, a language L is in Dp

2 if L = L1∩L2 for some languages
L1 ∈ Σp

2 and L2 ∈ Πp
2 . We say that a function f belongs to #P if

there exists an NP-machine M such that for each input x it holds
that M on x has exactly f (x ) accepting computation paths. A lan-
guage L belongs to class UP if its characteristic function is in #P,
i.e., if there exists an NP-machine that on each member of L has
exactly one accepting path and that on each nonmember of L has
no accepting paths. Clearly, UP ⊆ NP and it is believed that the
subset relation is strict.

3. BOOLEAN WEIGHTED VOTING
GAMES

The basic idea behind Boolean weighted voting games (BWVGs)
is that we have a collection of weighted voting games G =
{g1, . . . , gm}, with each game g i over the same set of players
N . (Note that players’ weights and thresholds may differ between
g is.) Each individual weighted voting game g i decides on a par-
ticular issue, or proposition, pi . Informally, think of each weighted
voting game g i as being a committee that decides on whether a
particular proposal pi is implemented (pi = &) or not (pi = ⊥).
That is, a coalition C that wins in g i is able to choose the value
for pi . We let Φ = {p1, . . . , pm} be the set of propositions
corresponding to weighted voting games. A coalition C controls
a variable pi if it wins the corresponding weighted voting game
g i . Let ΦC denote the set of propositions controlled by C , i.e.,
ΦC = {pi | C wins in g i}. A goal is a propositional formula ϕ
over the variables Φ corresponding to games G.

Collecting these components together, a Boolean weighted vot-
ing game (BWVG) is a tuple G = 〈N ,G,Φ, ϕ〉, where:

1. N = {1, . . . , n} is a set of players;
2. G = {g1, . . . , gm} is a set of weighted voting games over

N , where the j th game, g j , is given by a vector of weights
wj = (w j

1 , . . . , w j
n) and a threshold T j ; we will refer to the

games in G as the component games of G ;
3. Φ = {p1, . . . , pm} is a set of propositional variables, with

each variable pj corresponding to the weighted voting game
g j ; and

4. ϕ is a propositional formula over Φ.

We will sometimes abuse notation and use the identifiers of the
component games instead of variables in ϕ. For example, we may
write g1 ∧ g2 instead of 〈N , {g1, g2}, {p1, p2}, p1 ∧ p2〉.

When does a coalition win in a Boolean weighted voting game?
Informally, we think of a coalition as winning if it is able to fix the
variables under its control in such a way that the goal formula ϕ is
guaranteed to be true. More formally, we say that C wins in G if

∃ξ1 ⊆ ΦC : ∀ξ2 ⊆ (Φ \ ΦC ) : ξ1 ∪ ξ2 |= ϕ.

The definition of Boolean weighted voting games requires some
discussion. First, note that, following the standard definition
of weighted voting games [18], we allow component games of
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BWVGs to contain negative weights. In consequence, BWVGs
constitute quite a powerful formalism to express nonmonotone
games (see, e.g., Theorem 4). Yet, in many settings, it is natural
to restrict attention to monotone BWVGs whose component games
contain nonnegative weights only. One might then wonder if some
of the complexity of BWVGs does not stem from the expressive
power of negative weights. However, all our hardness results for
BWVGs are proved using BWVGs with nonnegative weights only.
On the other hand, our positive results often apply to games with
negative weights. Throughout this paper we always clearly indicate
settings where negative weights are relevant.

It is also interesting to consider BWVGs with respect to the log-
ical structure of the goal formula. For example, it is easy to see
that k -vector weighted voting games are simply BWVGs in which
the goal formula is a conjunction of component game variables.
In the next section we will show that general BWVGs can repre-
sent natural simple games in a considerably more compact fashion
that VWVGs, even when restricted to monotone formulas. In fur-
ther sections we will explore computational-complexity trade-offs
related to the complexity of underlying formulas, as well as to rep-
resentations of the weights of component games. In effect, we will
see that, at least when limited to, e.g., monotone formulas, BWVGs
offer a more expressive formalism (compared to VWVGs) without
necessarily paying the price of higher computational complexity.

Representational Complexity. We mentioned above that any sim-
ple game with n players can be represented as a k -vector weighted
voting game for k = O(2n), and hence as a BWVG with O(2n)
component games. We will now present a simple counting argu-
ment showing that we cannot improve this worst-case behavior via
using BWVGs. However, later in this section we show that for cer-
tain natural games BWVGs do offer a more compact representation
than VWVGs (sometimes exponentially more compact).

PROPOSITION 1. The total number of Boolean weighted voting
games with |N | = n and |ϕ| = s is at most 2O(sn2 log(sn)).

PROOF. Any individual weighted voting game can be repre-
sented using integer weights whose absolute values do not exceed
2O(n log n) [14]. We can assume without loss of generality that
|G| = |Φ| and |Φ| ≤| ϕ| = s . Hence, given a BWVG G with n
players and |ϕ| = s , we can find an equivalent representation of
the same game that uses at most O(sn2 log n) bits to represent all
weights in all component games of G , and another O(s log s) bits
to represent G, Φ, and ϕ. Thus the total number of distinct games
that can be represented as BWVGs with |N | = n and |ϕ| = s is
2O(sn2 log(sn)).

COROLLARY 2. For large enough n , there exist simple games
with n players that cannot be represented by BWVGs with |ϕ| <
2n/n5.

PROOF. There is a one-to-one correspondence between simple
games with n players and binary vectors of length 2n . Hence, there
are exactly 22n

simple games. On the other hand, by Proposition 1,
there are at most 22n/n distinct BWVGs with |ϕ| < 2n/n5.

However, there are natural simple games capturing realistic vot-
ing scenarios that can be represented much more compactly with
BWVGs instead of VWVGs. Our first example considers a game
with n players that can be represented as a disjunction of just two
WVGs, but needs Ω(n) component games to be represented as a
VWVG.

THEOREM 3. Consider a BWVG G = 〈N ,G,Φ, ϕ〉, where
G = {g1, g2}, g1 = (k ; 1, 0, . . . , 1, 0), g2 = (k ; 0, 1, . . . , 0, 1),

|N | = 2k , and ϕ = p1 ∨ p2. To represent G as a conjunction of
m weighted voting games requires m ≥ k/2 component games.

PROOF. Observe that for a coalition C to win in G , it has to
contain either all even-numbered players or all odd-numbered play-
ers. Hence, any maximal losing coalition (MLC) in G is of the
form (N \ {2i , 2j − 1}), where i , j ∈ {1, . . . , k}. Denote such
a coalition by Ci,j . Observe that there are exactly k2 MLCs. We
say that two MLCs Ci,j and Ci′,j ′ clash if i = i ′ or j = j ′,
i.e., if Ci,j ∪ Ci′,j ′ 5= N . Now, suppose that G can be repre-
sented as 〈N , {h1, . . . , hm}, {q1, . . . , qm}, q1 ∧ . . . ∧ qm〉 with
m < k/2. Each MLC has to lose in at least one of the compo-
nent games h1, . . . , hm . Hence, by the pigeonhole principle, there
must be at least one component game (without loss of generality,
h1) that is lost by at least 2k distinct MLCs. Now, fix an arbitrary
MLC Ci,j that loses in h1. Among the 2k MLCs that lose in h1,
there can be at most k − 1 other MLCs of the form Ci,j ′ , j ′ 5= j ,
and at most k − 1 other MLCs of the form Ci′,j , i ′ 5= i . Hence,
there must be an MLC Cx ,y that loses in h1 and does not clash with
Ci,j . Let h1 = (T ;w1, . . . , wn). We have

w(N ) − w2i − w2j−1 < T ;w(N ) − w2x − w2y−1 < T . (1)

On the other hand, both Ci,j \ {2y − 1}∪{ 2i} and Cx ,y \ {2i}∪
{2y − 1} are winning coalitions in G and hence in h1 (the former
contains all even-numbered players and the latter contains all odd-
numbered players). Hence we have

w(N ) − w2j−1 − w2y−1 ≥ T ;w(N ) − w2i − w2x ≥ T . (2)

Equations (1) and (2) give a contradiction, and so m ≥ k/2.

The game considered in Theorem 3 shows that BWVGs can be
considerably more succinct than VWVGs. However, the savings
achieved by moving from VWVGs to BWVGs in this case are only
polynomial: indeed, this game has n2/4 MLCs, so by a simple
argument, presented, e.g., in [18], we can represent it as an n2/4-
vector weighted voting game. Our next example illustrates that
sometimes BWVGs can provide a representation that is exponen-
tially more succinct than VWVGs. The game considered in the next
theorem is nonmonotone, and we thus use negative weights in its
BWVG representation.

THEOREM 4. For any n0 > 0, there is an n ≥ n0 and a game
G = 〈N ,G,Φ, ϕ〉 with |N | = n , such that |G| = O(n), but
dim(G) = Ω(2n−1).

PROOF. Fix n0 > 0, and set n = n0 if n0 is even and n = n0 +
1 if n is odd. Let G be a game with n players in which a coalition
C is winning iff its size |C | is odd. The dimension of this game
is Ω(2n−1) [18]. To obtain a compact representation of G as a
Boolean weighted voting game, set Φ = {p1, p2, . . . , pn−1, pn},
ϕ = (p1 ∧ p2) ∨ · · · ∨ (pn−1 ∧ pn), and G = {g1, . . . , gn},
where for all k = 1, . . . , n/2 we have g2k−1 = (2k−1; 1, . . . , 1),
g2k = (−(2k − 1);−1, . . . ,−1).

Indeed, each subformula of the form p2k−1 ∧ p2k expresses that
a coalition of size 2k − 1 wins in G ; by taking the disjunction of
all such expressions, we accommodate all winning coalitions.

Basic Decision Problems in BWVGs. An important criterion
in evaluating a representation formalism for coalitional games is
the difficulty of answering natural questions relating to the en-
tire game or specific players in this game, such as, e.g., deciding
whether a given coalition is winning, or deciding whether a par-
ticular player is a dummy (see definitions below). To formally
address the computational complexity of these decision problems
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in this context, we assume that all players’ weights in each of the
component games are integers given in binary, so a polynomial-
time algorithm is one whose running time is polynomial in the
number of players n , the size of the formula s and log W , where
W = max{|w j

i | | i = 1, . . . , n, j = 1, . . . , m}. However, we
will also study the complexity of our problems in the important
special case where the weights can be assumed to be small. In this
setting, we will be interested in pseudopolynomial-time algorithms,
i.e., algorithms whose running time is polynomial in n , s , and W ;
observe that such algorithms run in time polynomial in the size
of the input if the weights are given in unary, or it is known that
W is polynomially bounded in n and s . We will also discuss the
complexity of our problems in settings where one of the natural pa-
rameters of the BWVG in question, e.g., the number of component
games involved, can be assumed to be constant, or the formula ϕ is
monotone.

Winning Coalitions. Given a BWVG, one of the most important
questions to ask is whether a given coalition is winning. Given
a coalition C , it is easy to decide which variables it controls and
thus the real difficulty lies in choosing the values for those vari-
ables. If the underlying formula is of a particularly convenient form
(e.g., is monotone or the number of its variables is bounded by a
constant) then testing whether a coalition is winning is easy (for
monotone formulas we can assume that all variables controlled by
C are set to & while all other variables are set to ⊥ and for formu-
las with few variables we can afford to enumerate all possible truth
assignments). On the other hand, for the case of unrestricted for-
mulas readers familiar with the theory of computational complexity
will immediately see an easy reduction from the decision problem
QSAT2,∃ [16, p. 428] directly implying the following result.

THEOREM 5. Given a game G = 〈N ,G,Φ, ϕ〉 and coalition
C ⊆ N , deciding whether C wins in G is Σp

2-complete. This result
holds even if there are only 2 players and the weights of all players
in all component games are in {0, 1}. However, the problem is in
P if the underlying formula is monotone.

Swing Players. Our next question concerns pairs of the form
(C , i), where C ⊆ N and i ∈ N \ C . A standard notion in
simple games is that of a swing player: i is a swing player for C in
game G if C loses in G but C ∪ {i} wins in G . In the SWING-
PLAYER problem we are given a game G = 〈N ,G,Φ, ϕ〉, a coali-
tion C ⊆ N , and a player i ∈ N , and we ask whether i is a swing
player for C in G . Again, we can easily compute which variables
are controlled by C and C ∪ {i}, so the problem is easy if ϕ is
monotone or its size is bounded a constant. However, in general
the problem is computationally hard.

THEOREM 6. SWINGPLAYER is Dp
2 -complete. The hardness

result holds even if there are only 3 players and the weights of all
players in all component games are in {0, 1}. However, the prob-
lem is in P if the underlying formula is monotone.

PROOF. The case of monotone formulas follows directly from
Theorem 5. Let us now consider the general case. To establish
membership in Dp

2 , we must exhibit two languages, L1 and L2,
such that: (i) L1 ∈ Σp

2 ; (ii) L2 ∈ Πp
2 ; and (iii) SWINGPLAYER

= L1 ∩ L2. For membership in Dp
2 , define:

L1 = {〈G,C , i〉 : C ∪ {i} wins in G}
L2 = {〈G,C , i〉 : C does not win in G},

where in each 〈G,C , i〉, G is a BWVG, C is a coalition of players
from G , and i is a player in G . Clearly, L1 ∈ Σp

2 and L2 ∈ Πp
2 . By

definition, L1 ∩ L2 is the language of SWING PLAYER. To show
Dp

2 -hardness, we provide a reduction from the Dp
2 -complete prob-

lem SATΣ
2 -UNSATΣ

2 , an obvious generalisation of the Dp-complete
SAT-UNSAT problem [16, p. 415]. Without loss of generality, we
can assume that an instance I of this problem is given by a pair of
quantified Boolean formulas

I = 〈∃ū∀v̄ : χ(ū, v̄), ∀x̄∃ȳ : ¬ψ(x̄ , ȳ)〉,

in which the variable sets (x̄ , ȳ , ū , and v̄ ) are mutually disjoint. I
is a “yes”-instance if both formulas are true and a “no”-instance
otherwise. Given an instance I as above, we set N = {1, 2, 3},
create |ū ∪ v̄ ∪ x̄ ∪ ȳ | games corresponding to the variables in
the problem instance, and one additional game corresponding to a
variable w . We fix the games so that the coalition {1} controls
variables x̄ and the coalition {1, 2} controls x̄ ∪ ū ∪ {w} (e.g., we
can set gxk = (1; 1, 0, 0) for all xk ∈ x̄ , guk = gw = (2; 1, 1, 0)
for all uk ∈ ū , and gyk = gvk = (1; 0, 0, 1) for all yk ∈ ȳ ,
vk ∈ v̄ ). We define the goal formula ϕ to be:

ϕ = ψ(x̄ , ȳ) ∨ (χ(ū, v̄) ∧ w).

Now, I is a “yes”-instance iff 2 is a swing player for coalition {1}
in the BWVG we constructed.

Dummy Players. We now move on from studying the impact of a
player with respect to a given coalition to analysing his contribu-
tion to all coalitions in the game. A useful concept here is that of a
dummy player: given a game G , a player i is said to be a dummy in
G if v(C ) = v(C ∪ {i}) for all C ⊆ N \ {i}. In other words, i
is a dummy if she is not a swing player for any coalition. Formally,
an instance of DUMMY is a pair 〈G, i〉, where G is a BWVG and
i is a player in G . It is a “yes”-instance if i is a dummy in G and
a “no”-instance otherwise. When the game in question is restricted
to be a WVG, the complexity of DUMMY is well understood: this
problem is coNP-complete for weights given in binary and polyno-
mially solvable for weights given in unary. In contrast to WVGs,
for general BWVGs DUMMY is coNP-hard even for small weights.
The result holds even if the underlying formula is a conjunction,
i.e., for VWVGs. However, as the results in Section 4 will imply,
the size of the formula must be nonconstant.

THEOREM 7. The problem DUMMY is coNP-hard even if all
weights in all component games are in {0, 1}, and G is an m-
vector weighted voting game.

PROOF. The reduction is from the classic NP-complete problem
X3C (Exact Cover by 3-Sets) [8]. An instance of X3C is given by
a ground set E = {e1, . . . , e3K}, and a system of subsets F =
{S1, . . . , S!}, where |Si | = 3, Si ⊆ E for i = 1, . . . , %. It is
a “yes”-instance if E can be covered by K sets from F , i.e. there
exists a set system F ′ ⊆ F , |F| = K , such that for any e ∈ E there
exists an Si ∈ F ′ such that e ∈ Si , and a “no”-instance otherwise.
Given an instance of X3C (E ,F), we construct a BWVG G with
the set of players N = {1, . . . , %, %+1}, 3K +1 component games
g1, . . . , g3K+1, and ϕ = p1 ∧ . . . ∧ p3K+1. In the j th game,
j = 1, . . . , 3K , we set w j

i = 1 if ej ∈ Si and w j
i = 0 otherwise,

and T j = 1. In the last game g3K+1, we set w3K+1
i = 1 for

i = 1, . . . , %+1 and T 3K+1 = K +1. Finally, we set the player q
to be tested for dummy status to be q = % + 1. Observe that to win
the j th game, j = 1, . . . , 3K , a coalition must contain a player
i such that the corresponding set Si covers ej . Consequently, a
coalition can win the first 3K games if and only if it corresponds
to a valid cover of E .

Suppose that we are given a “no”-instance of X3C. Then any set
system that covers E contains at least K +1 sets. Now, consider any
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winning coalition C that includes player % + 1. To win in the first
3K games, it has to correspond to a cover of E , so |C \ {%+1}| ≥
K + 1. Hence, C \ {% + 1} is a winning coalition in the last game,
too. As this is true for any C such that % + 1 ∈ C , it follows that
%+1 is a dummy. Conversely, if (E ,F) is a “yes”-instance of X3C,
consider a coalition C that corresponds to a cover of size K , and
set C ′ = C ∪ {% + 1}. Clearly, C ′ is a winning coalition: the
members of C ensure that the first 3K games are won, and player
% + 1 is needed to win the last game. On the other hand, C is too
small to win the last game, so % + 1 is a swing player for C and
hence not a dummy. We conclude that a “yes”-instance of X3C
corresponds to a “no”-instance of our problem and vice versa, and
thus our problem is coNP-hard.

Observe that for VWVGs (and, in fact, for BWVGs whose under-
lying formulas are monotone) this hardness result is tight: decid-
ing whether a player is a dummy is in coNP. Indeed, to show that
a player i is not a dummy, it suffices to guess a coalition C and
check that (i) setting the variables controlled by C to & and all
other variables to ⊥ does not make ϕ true, but (ii) setting the vari-
ables controlled by C ∪ {i} to & and all other variables to ⊥ does
make ϕ true. By a similar argument, this problem is in coNP when
the size of the formula can be assumed to be constant. On the other
hand, for BWVGs with arbitrary formulas, the problem becomes
much harder: one can modify the proof of Theorem 6 to show that
checking whether a player is not a dummy is Dp

2 -hard. In fact,
checking if a player i is not a dummy appears to be harder than
checking if she is a swing player for a given coalition, as we first
have to guess a coalition, and then decide if i is a swing player for
that coalition.

4. THE SHAPLEY VALUE
The Shapley value is an important solution concept for coalitional
games [15], which in the context of weighted voting games pro-
vides a measure of voting power called the Shapley–Shubik power
index. Intuitively, a player’s Shapley value measures his marginal
contribution to a randomly selected coalition, where the underlying
probability model assigns equal probability to all orders in which
players join the coalition.

Fix a game G = (N , v), |N | = n , and let Πn be the set of
all possible permutations (orderings) of n agents. Each π ∈ Πn is
a one-to-one mapping from {1, . . . , n} to {1, . . . , n}. Denote by
Sπ(i) the predecessors of agent i in π, i.e., Sπ(i) = {j | π(j ) <
π(i)}. Shapley value of the i th agent in a game G = (N , v) is
denoted by shG

i (we omit the superscript G when the underlying
game is clear from the context) and is defined as

shG
i =

1
n!

X

π∈Πn

[v(Sπ(i) ∪ {i}) − v(Sπ(i))]. (3)

For simple games, shG
i counts the number of permutations π such

that i is a swing player for the coalition Sπ(i).
Another popular measure of power is the Banzhaf power index.

We omit the formal definition here due to space constraints, but
remark that all our subsequent results on Shapley value also apply
to the Banzhaf power index. Observe that the Shapley value of a
player, as well as his Banzhaf power index, is 0 if and only if he is
a dummy.

To use the Shapley value, one needs to understand the complex-
ity of computing it. In WVGs, this problem is known to be hard
(#P-complete) as long as the weights are given in binary [3]. This
immediately implies that this problem is at least as hard in our set-
ting. However, there is a polynomial-time algorithm for comput-
ing the Shapley value in WVGs with unary-encoded weights (see,

e.g., [13]). It is thus interesting to ask whether this is also true of
BWVGs. It turns out that this is unlikely. Indeed, we can use the
argument from the proof of Theorem 7 to obtain the following:

COROLLARY 8. Computing a player’s Shapley value in a
BWVG is #P-hard even if the game in question is a VWVG and
all weights in all component games are in {0, 1}.

PROOF. Observe that in the construction used in the proof of
Theorem 7, q is a swing player for exactly NK coalitions, where
NK is the number of exact covers of E , and the size of each such
coalition is exactly K . Hence, the Shapley value of player q is ex-
actly NK

K !(!+1−K)!
(!+1)! , i.e., one can easily compute NK given shG

q ,
%, and K . As computing NK is #P-complete [10], the statement
follows.

It seems that #P-hardness in the above corollary cannot be im-
proved to #P-completeness, at least not in the case of unrestricted
BWVGs. Intuitively, the reason for this is that computing Shap-
ley value requires the ability to decide whether a given player is a
swing for a given coalition, and this problem is Dp

2 -complete for
unrestricted BWVGs (Theorem 6). This intuition is captured more
formally in the following theorem, which shows that computing
the number of coalitions for which a player is a swing is not in
#P unless an unlikely complexity class collapse occurs. Typically,
the complexity of computing this number is closely related to the
complexity of computing the Shapley value (see, e.g., [7]) so we
interpret the following theorem as suggesting that computing the
Shapley value in unrestricted BWVGs is not in #P.

THEOREM 9. Let G = 〈N ,G,Φ, ϕ〉 be a BWVG and let i be
a player in N . By f (G, i) we mean the number of coalitions in G
for which i is a swing player. If f is in #P then NP = UP.

PROOF. The idea of our proof is to show that if f is in #P then
a function h that given an X3C instance x returns 1 if x is a “yes”-
instance and returns 0 otherwise is in #P. Since X3C is an NP-
complete problem, existence of such a #P function immediately
implies NP = UP.

We give a reduction from h to f . Let x be a fixed input to f ,
i.e., let x be a fixed instance of X3C. Building on the techniques
of Deng and Papadimitriou [3] and of Faliszewski and Hemaspaan-
dra [7], it is easy to compute in polynomial time two nonnegative
integers, k and n where k < n , and a WVG g with a player set
N = {1, . . . , n,n + 1}, weights (w1, . . . , wn , 1) and threshold T
such that (a) each coalition C such that |C \ {n + 1}| > k is win-
ning, (b) each coalition C such that |C \{n+1}| < k is losing, (c)
each coalition C such that n + 1 is a swing for C contains exactly
k players, and (d) player n +1 is a swing player for some coalition
C if and only if x is a “yes”-instance of X3C and the set of coali-
tions for which n + 1 is a swing player is in an easily-computable
one-to-one correspondence with the set of solutions for x . We say
that a binary string b1b2 . . . bn spells a solution y for instance x if
it holds that b1b2 . . . bn = χC (1)χC (2) . . . χ(n), where C is the
coalition to which y uniquely corresponds and χC is the charac-
teristic function of C . We say that a solution y for instance x is
lexicographically maximal if the string that spells y is lexicograph-
ically maximal among all strings that spell solutions for x .

For each i in {1, . . . , n}, we set g i to be a WVG that is won
exactly by coalitions that include player i . For each i in {1, . . . , n}
we define h i to be a WVG such that the only coalitions that win h i

are {1, . . . , n} and the grand coalition N = {1, . . . , n,n + 1}.
It is easy to see that there are g1, h1, . . . , gn , hn that satisfy the
above description and that can be computed in time poly(n).

We form a BWVG G = 〈N ,G,Φ, ϕ〉 where G =
{g , g1, . . . , gn , h1, . . . , hn}, Φ = {u, u1, . . . , un , v1, . . . , vn},



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

190

(variable u is associated with game g , variables u1, . . . , un are as-
sociated with games g1, . . . , gn , and variables v1, . . . , vn are as-
sociated with games h1, . . . , hn ), and ϕ = u ∧ F (u1, . . . , un) ∧
F ′(u1, . . . , un , v1, . . . , vn). Predicates F and F ′ are defined as
follows.

1. F (u1, . . . , un) is true if and only if at least k of u1, . . . , un

are true.
2. F ′(u1, . . . , un , v1, . . . , vn) is false if and only if v1v2 . . . vn

spells a solution for x and v1v2 . . . vn lexicographically pre-
cedes u1u2 . . . un .

Note that it is not completely trivial (if at all possible, in the case
of F ′) to express predicates F and F ′ as propositional formulas
of polynomial size. We first describe our proof treating both F
and F ′ as valid formulas and then show how to replace them with
essentially equivalent formulas.

We claim that if x is a “yes”-instance then f (G,n + 1) = 1
and otherwise f (G,n + 1) = 0. First, by definition of G , it is
easy to see that if x is a “no”-instance then for each coalition C it
holds that C and C ∪ {n + 1} control exactly the same variables
and so n + 1 is not a swing player for any coalition. Similarly,
if x is a “yes”-instance then for each coalition C ⊆ {1, . . . , n}
such that |C | 5= k it holds that C and C ∪ {n + 1} control the
same variables. Indeed, the only variable that could potentially be
controlled by C ∪ {n + 1}, but not by C , is u . On the other
hand, for each coalition C ⊆ {1, . . . , n} it holds that if |C | > k
then C already controls u , whereas if |C | < k then neither C nor
C ∪ {n + 1} controls u .

Thus, assume that x is a “yes”-instance and consider a coalition
C ⊆ {1, . . . , n} such that |C | = k . Additionally, let us assume
that n + 1 is a swing player for game g (otherwise it is, again, easy
to see that n + 1 is not a swing player for C in G) and so (a) C
is a losing coalition in G as C does not control variable u , and (b)
χC (1)χC (2) . . . χC (n) spells a solution for x .

We now claim that C ∪ {n + 1} is winning if and only if
χC (1)χC (2) . . . χC (n) spells a lexicographically maximum solu-
tion for x ; we omit the proof of this claim due to space restric-
tions. Together with the preceding discussion this establishes that
if x is a “yes”-instance then f (G,n + 1) = 1 and otherwise
f (G,n + 1) = 0. Since G can be computed in polynomial time,
the assumption that f is in #P implies that h(x ) is in #P because
to compute h(x ) it suffices to compute the game G and run the #P
computation for f (G,n + 1).

To complete the proof it remains to show that we can in fact
express predicates F and F ′ in G . The idea is that, via the
standard proof that SAT is NP-complete (Cook’s Theorem), for
each polynomial-time computable predicate P(y1, . . . , ym), where
y1, . . . , ym are Boolean variables, there is a polynomial-time com-
putable Boolean formula Q(x1, . . . , xn , y1, . . . , ym) such that for
each truth assignment to y1, . . . , ym , Q(x1, . . . , xn , y1, . . . , ym) is
satisfiable if and only if P(y1, . . . , ym) is true. Using this approach
we can replace predicates F and F ′ with formulas H and H ′ that,
given the same input as the respective predicates, are satisfiable
if and only if the respective predicates hold. From inspection of
the proof of Cook’s Theorem’s, it is easy to see that the proof of
the current theorem, using predicates F and F ′, can be adapted to
using formulas H and H ′ in a straightforward way. The only non-
trivial part is deciding which coalitions control the “existentially
quantified variables” of H and H ′. In essence, we can set that any
coalition controls the existentially quantified variables of H and
that only the grand coalition controls the existentially quantified
variables of H ′. The details are technical but straightforward.

On the other hand, we can still compute Shapley value in poly-

nomial time if both the weights are given in unary and the number
of component games is bounded by a constant.

THEOREM 10. Given a BWVG G = 〈N ,G,Φ, ϕ〉 and a player
p ∈ N , one can compute Shapley value of a player p in time
O((n2 + s)(4nW )m), where |G| = m , |ϕ| = s , and W =
maxi,j |w j

i |.
PROOF. Our proof is based on dynamic programming. Without

loss of generality, we can assume p = n . For any integer vector
z = (z 1, . . . , zm) ∈ [−nW ,nW ]m , any k = 1, . . . , n − 1 and
any t = 1, . . . , k , let N (z, t , k) be the number of coalitions C ⊆
N such that w j (C ) = z j for j = 1, . . . , m , |C | = t , and C ⊆
{1, . . . , k}. These values can be easily computed by induction on
k . Indeed, for k = 1 we have N (z, t , 1) = 1 if t = 1 and w j

1 = z j

for j = 1, . . . , m and N (z, t , 1) = 0 otherwise. Now, suppose
that we have computed N (z, t , k) for all z ∈ [−nW ,nW ]m and
t = 1, . . . , k . Set zk+1 = (z 1 −w1

k+1, . . . , z
m −wm

k+1). We have

N (z, t , k + 1) = N (z, t , k) + N (zk+1, t − 1, k),

where the first summand counts coalitions that do not involve
player k + 1, and the second summand counts coalitions that do
involve her. It is easy to see that we can compute all N (z, t , k) in
time O(n2(2nW )m).

Now, consider a coalition C , |C | = t , that satisfies w j (C ) =
z j for j = 1, . . . , m . By checking whether z j ≥ T j for j =
1, . . . , m , we can identify the set ΦC of variables controlled by C .
By considering all possible truth assignments to variables in ΦC

and Φ \ ΦC , we can decide whether C is a winning coalition. In
a similar manner, we can decide whether C ∪ {n} is a winning
coalition. We then set I (z, t) = v(C ∪ {n}) − v(C ); note that
this value does not depend on the choice of C as long as |C | = t
and w j (C ) = z j for j = 1, . . . , m . Computing the value of ϕ
under a given truth assignment can be done in time O(s), so for a
fixed vector z, I (z, t) can be computed in time O(s2m). Hence, all
I (z, t), z ∈ [−nW ,nW ]m , s = 1, . . . , n − 1, can be computed
in time O(s2m(2nW )m).

Now, we can compute the Shapley value of player n as follows:

shn =
1
n!

X

z∈[−nW ,nW ]m

n−1X

t=1

N (z, t ,n − 1)I (z, t)t !(n − 1 − t)!

Indeed, I (z, t)t !(n − t − 1)! counts the contribution to Shapley
value by a coalition of size t that satisfies w j (C ) = z j for j =
1, . . . , m , and N (z, t ,n−1) counts the number of such coalitions.
The overall running time of this procedure is O(n2(2nW )m +
s2m(2nW )m) = O((n2 + s)(4nW )m), as stated.

4.1 Combining Shapley Values of Component
Games

Our consideration of the Shapley value in BWVGs thus far has ig-
nored the fact that BWVGs have some structure, as defined by the
goal formula. It is therefore interesting to ask whether, if we know a
player’s Shapley value in the component WVGs, we might be able
to compute her Shapley value in the overall game by exploiting this
structure somehow. In fact, we now show that Shapley value of a
player in a BWVG may differ considerably from this player’s Shap-
ley values within component games. To simplify the exposition, in
what follows, we consider games with nonnegative weights only;
in such games, knowing the number of coalitions for which a given
player is pivotal is sufficient for computing the values of his power
indices.

First, let us introduce some useful notation. Fix a BWVG
G = 〈N ,G,Φ, ϕ〉, where G = {g1, . . . , gm} is the set of com-
ponent games, a player i ∈ N , and a component game gk in G. We
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write PG
i to denote the set of permutations in which i is a swing

player in G and we write PG,k
i to denote the set of permutations for

which i is a swing player in gk . Accordingly, by shG
i we mean the

Shapley value of player i within game G , and by shG,k
i we mean

his Shapley value in gk . The goal of this section is to explore the
relationship between shG

i and (shG,1
i , . . . , shG,m

i ). We start with
the following simple, yet very useful, observation.

THEOREM 11. Let G = 〈N ,G,Φ, ϕ〉 be a BWVG with |G| =
m , where ϕ is satisfiable but is not a tautology. For each i ∈ N it
holds that

m\

k=1

PG,k
i ⊆ PG

i ⊆
m[

k=1

PG,k
i .

PROOF. To prove this theorem it is enough to show that each
permutation in

Tm
k=1 PG,k

i also belongs to PG
i , and that no per-

mutation outside of
Sm

k=1 PG,k
i is in PG

i . Let us first handle the
former issue.

Let π ∈
Tm

k=1 PG,k
i be a permutation of players. This means

that coalition Sπ(i) loses each game gk , 1 ≤ k ≤ m , but that
coalition Sπ(i) ∪ {i} wins each of them. That is, Sπ(i) does not
control any of the propositions in Φ but Sπ(i) ∪ {i} controls them
all. Since ϕ is satisfiable but is not a tautology, this means that
while Sπ(i) loses in G , Sπ(i) ∪ {i} wins. That is, i is a swing
player for permutation π in G . Thus, π ∈ Pi .

For the second part, let us assume that a permutation π of players
from N does not belong to

Sm
k=1 PG,k

i . This means that coalition
Sπ(i)∪ {i} wins exactly the same component games as Sπ(i) and
so Sπ(i)∪{i} is winning in G if and only if Sπ(i) is as well. Thus,
by definition, i is not a swing player for π in G . This completes
the proof of the theorem.

Naturally, the above theorem applies to BWVGs whose under-
lying formulas are nonempty and monotone. So, in particular,
it applies to VWVGs. Theorem 11 leads to the following tight
bounds relating the Shapley values for BWVGs and their compo-
nent games.

THEOREM 12. Let G = 〈N ,G,Φ, ϕ〉 be a BWVG where G =
(g1, . . . , gm) and where ϕ is satisfiable but is not a tautology. For
each player i ∈ N it holds that 0 ≤ shG

i ≤
Pm

k=1 shG,k
i . These

bounds are tight, even if ϕ is monotone (and, in fact, even if ϕ is
either a conjunction or a disjunction of the propositions from Φ).

PROOF. Fix a player i in N . Since all weights are assumed
to be nonnegative, we have 0 ≤ shG

i . The inequalities shG
i ≤Pm

k=1 shG,k
i follow directly from Theorem 11 Thus, it remains to

show that the bounds are tight.
To this end, we provide four BWVGs, G∧,n , G∨,n , G∧,n+1

and G∨,n+1, that exemplify the interesting cases. These games
are very similar; indeed, they differ only in the underlying formu-
las (conjunction or disjunction) and the thresholds of component
games.

Let us fix a positive integer n , n ≥ 2, and a set of players N =
{1, . . . , n,n + 1}. For each k , 1 ≤ k ≤ n , and T = n,n + 1,
we define WVG gk

T to be (T ; 1, . . . , 1| {z }
k−1

,n, 1, . . . 1| {z }
n−(k−1)

) and set GT =

{g1
T , . . . , gn

T}. Finally, we set Φ = {p1, . . . , pn}. Now G∧,n ,
G∨,n , G∧,n+1 and G∨,n+1 can be defined as follows:

1. G∧,n = 〈N ,Gn ,Φ,
Vn

k=1 pi〉,
2. G∨,n = 〈N ,Gn ,Φ,

Wn
k=1 pi〉.

3. G∧,n+1 = 〈N ,Gn+1,Φ,
Vn

k=1 pi〉,

4. G∨,n+1 = 〈N ,Gn+1,Φ,
Wn

k=1 pi〉.

We are interested in Shapley values for player i = n + 1, i.e., the
only player whose weight is 1 in each component game gk

T .
We first consider game G∧,n . To simplify notation, set G =

G∧,n and let gk be an arbitrary component game of G∧,n . Let π
be a permutation in PG,k

i and set C = Sπ(i). Since i’s weight in
gk is 1, the threshold is n , and i is a swing player for C in gk , it
must be the case that C consists of the remaining n − 1 players,
i.e., C = {1, . . . , n} \ {k}. It is easy to see that C wins all the
games gk′

, k ′ 5= k , 1 ≤ k ′ ≤ n . This means that π ∈ PG
i , and,

moreover, the sets PG,!, 1 ≤ % ≤ n , are disjoint. Together with
Theorem 11 this yields that shG

i =
Pn

!=1 shG,!
i .

On the other hand, the above analysis also shows that shG∨,n

i =
0. Indeed, G∨,n contains the same component games as G∧,n , but
in G∨,n our goal function is a disjunction rather than a conjunction.
Thus, a coalition wins G∨,n even if it controls just a single variable.
By Theorem 11, each permutation π such that i is a swing player
for π in G∨,n has to belong to

Sn
!=1 PG∨,n ,!. However, by the

above reasoning, if π ∈ PG∨,n ,k
i for some k , 1 ≤ k ≤ n , then

coalition Sπ(i) already wins all the component games except gk
n

(note that, naturally, PG∨,n ,k
i = PG∧,n ,k

i ). Thus, i is not a swing
player for any permutation in G∨,n .

The reasoning for G∧,n+1 and G∨,n+1 is similar. Let gk
n+1

be an arbitrary component game of G∧,n+1 and let π be a per-
mutation in PG∧,n+1,k

i . Set C = Sπ(i). In gk
n+1, there are n

players, including i , with weight 1 and a single player, k , with
weight n . Since the threshold in gk

n+1 is n + 1, it is easy to see
that C = {k}. However, both coalition C and coalition C ∪ {i}
lose all other games gk′

n+1, k ′ 5= k , 1 ≤ k ′ ≤ n , as players i
and k both have weight 1 in these games and the quota is n + 1
(recall that n ≥ 2). To win G∧,n+1, a coalition needs to con-
trol all variables, i.e., win all component games, so neither C nor
C ∪ {i} wins in G∧,n+1. Thus, π 5∈ PG∧,n+1

i . Since π was cho-
sen as an arbitrary member of

Sn
!=1 PG∧,n+1,!

i and by Theorem 11
PG∧,n+1

i ⊆
Sn

!=1 PG∧,n+1,!
i , it holds that PG∧,n+1

i = ∅ and so
shG∧,n+1

i = 0.
On the other hand, it is easy to see that for each permutation

π in
Sm

!=1 PG∨,n+1,! it holds that C = Sπ(i) loses all compo-
nent games of G∨,n+1, but C ∪ {i} wins exactly one of them.
(This follows from the discussion above and the fact that compo-
nent games in G∧,n+1 and G∨,n+1 are identical.) A coalition wins
G∨,n+1 if it controls at least one proposition in Φ, i.e., wins at
least one component game, and so PG∨,n+1

i =
Sm

!=1 PG∨,n+1,!.
Since PG∨,n+1,1, . . . , PG∨,n+1,n are all disjoint, this means that
shG∨,n+1

i =
Pn

!=1 shG∨,n+1,!
i . Shapley values of player i in

games G∧,n , G∨,n , G∧,n+1 and G∨,n+1 jointly show tightness
of our bounds.

Observe that the proof of Theorem 12 shows that a player can be
a dummy in a BWVG even if he is not a dummy in either of the
component games. In fact, his or her Shapley value can be smaller
or greater than his Shapley values in each of the component games.
This demonstrates that knowing a player’s Shapley values in the
component games does not immediately provide us with a way to
compute his Shapley value in the overall game.

5. THE CORE
Another important consideration in cooperative game theory is that
of the stability of a coalition. This is formally captured by the no-
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tion of the core [15, pp. 258–261], defined as follows. Given a
game G = (N , v), and a coalition C ⊆ N , we say that a vec-
tor x = (x1, . . . , x|C |) ∈ R|C | is a C -feasible payoff vector ifP

i∈C xi = v(C ), where the values in x are assumed to be in-
dexed by the elements of C . The core of a game G is the set of
N -feasible payoff vectors x such that there is no coalition C ⊆ N
such that v(C ) >

P
i∈C xi . The natural computational problems

related to the core are checking whether a given payoff vector is in
the core and verifying whether the core is nonempty.

Recall that games that can be represented by BWVGs are sim-
ple games, i.e., v(C ) ∈ {0, 1} for every C ⊆ N . Now, a well-
known folk theorem tells us that a simple game has a nonempty
core iff the game has a veto player: a player present in every win-
ning coalition [15, p. 261]. Formally, a player i is a veto player if
for any C ⊆ N , v(C ) = 1 implies i ∈ C . Moreover, it is known
that a payoff vector is in the core iff it distributes the value of the
grand coalition N among the veto players. Hence, the decision
problems mentioned above essentially reduce to checking whether
a given player is a veto player. Now, if all weights are nonnegative,
checking whether player i is a veto player is equivalent to check-
ing whether N \ {i} is a winning coalition. As argued earlier, this
problem is easy for games where the goal formula ϕ is monotone
or has constant size. However, if there are no restrictions on ϕ, our
core-related problems become computationally hard.

Formally, in problem INCORE we are given a BWVG G and
a payoff vector x and we ask if x belongs to G’s core, in
CORENONEMPTY we are given a BWVG G and we ask if its core
is nonempty, and in VETO we are given a BWVG G and a player i
and we ask if i is a veto player in G .

THEOREM 13. INCORE, CORENONEMPTY and VETO are
Πp

2-complete even if |N | = 2 and all weights in all component
games are either 0 or 1. However, for non-negative weights these
problems are in P if the underlying formulas are monotone.

We omit the proof due to space restrictions. If we allow negative
weights, the problem becomes hard even for vector weighted voting
games: it is easy to see that checking whether there is a winning
coalition in N \{i} in a 2-VWVG is at least as hard as KNAPSACK,
and for VWVGs of nonconstant dimension this problem is NP-hard
even for weights in {0, 1} (reduction from 3-SAT). The problem
can be solved in polynomial time for games of constant dimension
with weights given in unary by dynamic programming.

6. CONCLUSIONS
We have introduced a model of decision making in multiple com-
mittees, in which it is assumed that each committee is a weighted
voting game, and in which each committee is assumed to control a
single issue. We have investigated a number of natural questions re-
lating to this model. The model has some aspects in common with
several other frameworks from the literature. Boolean games are
simple games in which players have goals defined by Boolean for-
mulas, and in which individual players control propositional vari-
ables [9]. The main differences are that in our framework, control
is exercised by WVGs rather than individuals, and we also con-
sider a single external goal. MC-nets, introduced by Ieong and
Shoham [11], combine weights and logical formulas but in a dif-
ferent way than BWVGs. In MC-nets the variables correspond to
agents and the weights correspond to formulas, whereas in BWVGs
the variables correspond to games and the weights correspond to
agents. The area of judgment aggregation considers the logical im-
plications of decisions made by committees [12]. The main dif-
ferences are that we consider decisions over multiple committees,

and are concerned with the perspective of an external entity with a
goal that they desire to see achieved. For future work, it might be
interesting to combine elements of Boolean games with our frame-
work (e.g., assuming that individual players have goals they desire
to achieve). It would also be interesting to look at probabilistic
extensions. Going in a different direction, we would like to com-
pare, in some formal sense, the power of various formalisms used
to represent games.
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