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ABSTRACT
We present a logic for reasoning about strategic games. The logic is
a modal formalism, based on the Coalition Logic of Propositional
Control, to which we add the notions of outcomes and preferences
over outcomes. We study the underlying structure of powers of
coalitions as they are expressed in their effectivity function, and
formalise a collection of solution concepts. We provide a sound
and complete axiomatisation for the logic, and we demonstrate its
features by applying it to some problems from social choice theory.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—modal logic; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—multiagent systems

General Terms
Theory
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1. INTRODUCTION
Game theory (GT) [17] and social choice theory (SCT) [7] have

come to be seen as topics of major importance for computer sci-
ence, since they focus on the study of interaction and protocols
from an incentive-based perspective. Social software [18] aims to
give social procedures a theory analogous to the formal theories for
computer algorithms, e.g., program correctness or analysis of pro-
grams. One aspect of game logics [22] is to study those theories
with logical tools.

The aim of this paper is to present and investigate a formal logi-
cal framework for representing multi-agent systems combining ac-
tion and preferences of agents, in a way consistent with game and
social choice theory. In particular, we will focus on models of in-
teraction called strategic games. In order to fix terminology, we
review some relevant concepts from game theory.

D 1 (  ). A strategic game form is
a tuple 〈N, (Ai),K, o〉 where:
Cite as: A Logic of Games and Propositional Control, Nicolas Troquard,
Wiebe van der Hoek and Michael Wooldridge, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

• N is a finite nonempty set of players (or agents);
• Ai is a finite nonempty set of actions for each player i ∈ N;
• K is a finite nonempty set of outcomes;
• o : ×i∈NAi −→ K determines an outcome for every combina-

tion of actions.

A strategic game form is sometimes called a mechanism. It speci-
fies the agents taking part of the game, their available actions and
the protocol. Next, we need preferences which will give the players
the incentives for taking an action.

D 2 ( ). A preference relation (
over K is a total, transitive and reflexive binary relation over K.

We can now see a strategic game as basically the composition of a
strategic game form with a collection of preference relations (one
for every agent) over the set of outcomes.

D 3 ( ). A strategic game is a tuple
〈N, (Ai),K, o, ((i)〉 where 〈N, (Ai),K, o〉 is a strategic game form,
and for each player i ∈ N, (i is a preference relation over K.

We refer to a collection (ai)i∈N , consisting of one action for every
agent in N, as an action profile. Given an action profile a, we denote
by ai the action of the player i, and by a−i the action profile of the
coalition N \ {i}. We write aC for the coalitional actions that are
members of AC = ×j∈CAj for any C ⊆ N. We refer to a collection
((i)i∈N of preferences as a preference profile.

A solution concept defines for every game a set of action pro-
files, intuitively corresponding to action profiles that may be played
through rational action. Exactly which solution concept is used de-
pends on the application at hand.

D 4 ( ). A solution concept is a func-
tion that maps a strategic game form 〈N, (Ai),K, o〉 and a prefer-
ence profile over K to a subset of the action profiles in AN.

Several modal logics have been successfully applied for repre-
senting some aspects of game theory and social choice theory. They
usually propose an isolated study of one aspect of rational action
such as actions, knowledge, preferences, etc.

Modal logics of preference date back to the work of Halldén and
von Wright (see [14]). More recently, the paradigm of game logics
has triggered renewed interest. For instance, the authors of [23]
present several logics of preference whose expressivity is of interest
in social choice theory, e.g., the logic of preferences ceteris paribus
or several interpretations of a binary preference operator. The work
in [3] contains a proposal of a logic for preference aggregation and
is able to formalise in a logical language some important results of
SCT such as Arrow’s theorem.
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A formalisation of actions, on the other hand, makes it possible
to specify several issues of interest in a strategic context: e.g., the
means by which a player interacts in the system, the outcomes of
a combination of actions or the powers of the players. Concerning
game logics of action, Coalition Logic (CL) [19] is conceptually
important, as it characterises the class of powers of coalitions un-
derlying strategic game forms. Moreover, [13] presents an exten-
sion of CL to a particular class of game forms that admit a Nash
equilibrium (the celebrated solution concept) whatever preferences
of players are.

Although CL and related logics (like ATL [5]) study the power of
agents, they do not explain where this power arises from. Coalition
Logic of Propositional Control (CL-PC) [25] makes the origin of
these powers concrete: the idea is that every agent (and, by inheri-
tance, every coalition) controls a number of propositional variables,
in the sense that they can freely choose to make these variables
true or false. So, in CL-PC, doing an action corresponds to choos-
ing a valuation for the propositions under your control, and this is
a very natural setting when one is interested in building software
agents, and likes to think of those agents as setting and unsetting
bits in some digital system. In fact, in implemented verification
systems for agents, individual powers are specified by allocating
agents propositions. (For instance, in the model checker  for
ATL ([4]), the keyword controls indicates precisely for each par-
ticipant which propositional variables it is able to determine the
value of). It is not unnatural to also conceive of actions or moves in
a game (like “player i is going to a Bach concert”) as the toggling
of atomic variables bi.

CL-PC is then a logic that deals with agency and contingent abil-
ity of players in strategic games. Every player controls the truth
values of a particular set of atoms Ati. The set of possible valua-
tions over Ati is easily understood as representing the set of actions
in the repertoire of the player i.

D 5 (). A frame of propositional control is a
tuple 〈N,At, (Ati)〉, such that:

• N = {1, 2, . . . n} is a nonempty finite set of players;
• At is a nonempty finite set of atoms;
• Ati, a subset of At, is the set of atoms controlled by agent i.

We require that At = At1 ∪ . . . ∪ Atn and Ati ∩ Atj = ∅ for i ! j.

Every variable is controlled by one and only one agent: the sets Ati
form a partition of At. We refer to AtC as the union of the controlled
propositions Ati of every agent i in C.

D 6 (). Given a coalition C, a
C-valuation θC is a function θC : AtC −→ {tt, ff}. The function
π allows us to reify these valuations in the object language.

π(θC) !
∧

p∈AtC ,θC (p)=tt

p ∧
∧

q∈AtC ,θC (q)=ff

¬q.

Game theoretically, a C-valuation (viz. a valuation of all the vari-
ables in AtC) can be identified with a coalitional action. Like an
action profile, an N-valuation specifies the choice of every player.

We denote Θ the set of N-valuations. When it is clear from the
context, we shall write θ instead of θN . Hence, θC can indeed be
conceived of the restriction of θ to AtC. In our models, valuations θN
will play the same role as states in Kripke models. Given θ and θ′ in
Θ, we write θ ≡C θ′ to mean θC = θ′C. We shall sometimes slightly
abuse notation and decompose a valuation θ. Let {C1, . . .Ck} a par-
tition of N; we denote by θN the tuple (θC1 , . . . , θCk ).

CL-PC allows one to reason about strategic game forms when
the set of outcomes is the set of N-valuations. Thus, there are two

features of the games defined in Definition 3 that are missing: (i)
we need to model the set K of outcomes; (ii) we need to model the
preferences of players.

In this paper we propose to combine CL-PC with a modality of
preferences. Combining modal logics is, of course, a non trivial
task. For instance, CL-PC is in fact close to a product of modal
S5 logics, and in a technical sense it is quite surprising that the
logic is decidable (see a discussion in [10]). In our logic, as in
GT, preferences are not directly over the N-valuations of CL-PC
models, i.e., over action profiles, but rather over outcomes, a notion
that we will add to those models. This has the advantage that we
can model that agents have preferences over certain ‘by-products’
(outcomes) of their combined actions, and not directly about how
these outcomes are being brought about.

The remainder is as follows. We present the games of proposi-
tional control with consequences (GPCC) in Section 2. We give an
axiomatisation and prove that it determines the class of GPCC. In
Section 3 we study some game and social choice theoretical aspects
of the logic. We first study the structure of powers of coalitions,
then we give a general formalisation of several solution concepts.
We discuss two applications in Section 4. We briefly present model
checking of game equilibria and we demonstrate how the logic can
be employed in problems of game form solvability. We conclude
in Section 5.

2. A LOGICAL CONCEPTUALISATION OF
STRATEGIC GAMES

2.1 Language and semantics
The languageL(N,At,K) is inductively defined by the following

grammar:

ϕ" 0 | a | ¬ϕ |ϕ ∨ ϕ |#Cϕ | 〈2i〉ϕ
where a is an atom of At ∪ K, C is a coalition and i is a member of
N.
#Cϕ reads that providing that the players outside C hold on with

their current choice, the coalition C can ensure ϕ. 〈2i〉ϕ reads that
the player i prefers ϕ (or is indifferent) to the current state of affairs.

We have seen in the previous section how CL-PC can be seen
as capturing a version of strategic forms. Now, an immediate way
to model the set K of outcomes is to associate every element of K
to a new atom. These features have to be fused with the frames of
propositional control in order to obtain the models of our logic.

D 7. A game of propositional control with consequences
(notation: GPCC) is a tuple 〈N,At, (Ati),K, o, (2i)〉, such that:

• 〈N,At, (Ati)〉 is a frame of propositional control;
• K is a nonempty finite set of atoms such that At ∩ K = ∅;
• o maps a θN valuation to an element of K;
• 2i is a preference relation over K for every agent i.

We illustrate the integration of the set of outcomes by an exam-
ple.

E 1. Consider a model 〈N,At,At1,At2,K, o, (2i)〉 with
N = {1, 2}, At1 = {p1, p2}, At2 = {q1, q2}, K = {x, y, z}, and 2i
are arbitrary. The outcome function is represented by the following
matrix.

¬q1 ∧ ¬q2 q1 ∧ ¬q2 ¬q1 ∧ q2 q1 ∧ q2
¬p1 ∧ ¬p2 x x z z
p1 ∧ ¬p2 z x z y
¬p1 ∧ p2 z z y y
p1 ∧ p2 z z x z
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We can in fact define the atoms in K in terms of propositional
formulae made of atoms in At. For instance x ↔ (¬q1∧¬q2∧¬p1∧
¬p2)∨(q1∧¬q2∧¬p1∧¬p2)∨(q1∧¬q2∧p1∧¬p2)∨(¬q1∧q2∧p1∧p2).

We could have used a preference relation over the set of valu-
ations Θ, rather than over the set of outcomes K. However, this
would not sit compatibly with the notion of a strategic game. Such
a semantical choice commits the designer to take into account, not
only the outcomes of a game, but also the means of bringing about
a result. This could be achieved in our models by imposing that the
outcome function o is a bijection, but this is not the case in gen-
eral. Note that, in terms of compactness, making use of a set of
consequences is interesting when its size is very small wrt. the set
of valuations. This is however a tangential issue and in this article
we aim for generality and ease of modelling.

D 8 (   L(N,At,K)). The truth value of
a formula of L(N,At,K) is wrt. a GPCC G and an N-valuation θ.
It is inductively given by:

G, θ |= 0
G, θ |= x iff o(θ) = x , x ∈ K
G, θ |= p iff θ(p) = tt , p ∈ At
G, θ |= ¬ϕ iff G, θ 4|= ϕ
G, θ |= ϕ ∨ ψ iff G, θ |= ϕ or G, θ |= ψ
G, θ |= #Cϕ iff there is a θ′ ∈ Θ such that

θ′ ≡N\C θ and G, θ′ |= ϕ
G, θ |= 〈2i〉ϕ iff there is a θ′ ∈ Θ such that

o(θ) 2i o(θ′) and G, θ′ |= ϕ

The truth of ϕ in all models is denoted by |= ϕ. The classi-
cal operators ∧, →, ↔ can be defined as usual. We also define
"Cϕ ! ¬#C¬ϕ and [2i]ϕ ! ¬〈2i〉¬ϕ. Observe that "N plays the
role of a universal modality, that is, it allows to quantify over all
the N-valuations. We will elaborate on the modal operators in our
language below.

In order to properly link this to a modal logic approach (which
we will exploit in our completeness proof), we need one more def-
inition.

D 9 (K     ).
A Kripke model with propositional control and consequences (no-
tation: MPCC) is a tuple M = 〈Θ,N,K, o,At,Ati∈N ,Ri∈N ,Pi∈N〉
where Θ,N,K, o,At and Ati∈N are as in GPCC’s, and Ri and Pi are
defined as follows. Riθ1θ2 iff θ1 ≡N\{i} θ2. For coalitions C, we de-
fine RC = ◦i∈CRi (where Ri◦Rj = {(s, t) | ∃u : Risu & Rjut}). Finally,
Pi is a preference relation over K, for every i ∈ N. We lift this to
a preference relation 7i as follows: θ1 7i θ2 iff o(θ1) 2i o(θ2). The
truth definition of formulae is in line with that of Definition 8, but
now #C is a diamond operator wrt. to RC, and 〈2i〉ϕ is a diamond
operator with respect to 7i. For technical reasons (i.e., for our com-
pleteness proof), it is sometimes convenient to represent an MPCC
as a model with an abstract set of states S, rather than directly
valuations. We say that MS = 〈S,N,K, o′,At,Ati∈N ,R′

i∈N ,Pi∈N ,V〉,
where V is a valuation V : S −→ (At −→ {tt, ff}), simulates
M = 〈Θ,N,K, o,At,Ati∈N ,Ri∈N ,Pi∈N〉, if there is a bijection F :
S −→ Θ such that for all s, s1, s2 ∈ S and all p ∈ At, we have
F(s)(p) = V(s)(p), o(F(s)) = o′(s) and RiF(s1)F(s2) iff R′

i s1s2.

Rather than having outcome functions in M we might as well
have used valuations over At ∪ K, with some additional constraints
on them. Note that θ ∈ Θ in G is conceived as an action profile,
whereas in a model M it is a state which is completely determined
by its valuation to At. The following is easily verified.

O 1. With every GPCC G we can identify a MPCC
MG such that for all θ and ϕ, we have G, θ |= ϕ iff MG, θ |= ϕ, and,
conversely, for every MPCC M there is a GPCC GM such that for
all θ and ϕ, we have M, θ |= ϕ iff GM , θ |= ϕ. Moreover, if MS
simulates M, then for all s and ϕ: M,F(s) |= ϕ iff MS, s |= ϕ.

If one accepts a treatment of social choice in modal logic, our
language is simple and natural. It only requires extending classical
logic with a basic action (local ability) operator for every coali-
tion and a standard modal preference operator for every individual
agent. Now we might want a more elaborate vocabulary that could
be needed to talk about game properties.

Local effectivity, represented by #Cϕ, holds in a strategy profile
θ if the agents in C could deviate from their current action such that
ϕ holds in the resulting profile. For instance, if pi ∈ Ati and in the
current situation θ all atoms are false, then #{1,2}(p1 ∧ ¬(p2 ∨ p3))
holds (i.e., 1 can decide to toggle p1 to make it true, 2 may decide
not to make p2 true and since 3 $ C, it is assumed he does not touch
his variables. #Cϕ is the actional primitive of our logic. Note that
"Cϕ in θ then means that given θ, no matter how the agents in C
would change their choice, ϕ holds. The notion of brute choice,
or actual agency, is strongly related to the one of local effectivity.
Chellas’ stit operator [15] is the archetype of operator of choice:
[C]ϕ reads “the coalition C choose such that ϕ”, or “the current
choice of players in C being equal, ϕ holds whatever other agents
do”. We can define it as follows:

[C]ϕ ! "N\Cϕ.

Then, [C]ϕ in θ expresses that the complement of C cannot locally
bring about ¬ϕ. Its dual 〈C〉ϕ ! ¬[C]¬ϕ reads “coalition C allow
ϕ”, or “the current choice of players in C does not rule out that ϕ”.

We can also define a useful vocabulary for preferences. The for-
mula 〈2i〉ϕ holds in θ if there is a profile θ′ for which ϕ is true,
and of which the outcome is preferred over the current one. We can
start by defining the strict preference counterpart of 〈2i〉 as follows:

〈≺i〉ϕ !
∨

θ∈Θ
(π(θ) ∧ 〈2i〉(ϕ ∧ ¬〈2i〉π(θ).

Note that for every θN , π(θN) is true at one and only one state. The
reification π(θN) somewhat plays the role of a nominal in Hybrid
Logic [6]. This is the reason why we are able to give such a defini-
tion, while asymmetry is undefinable in modal logic.

Another operator of interest is ψ ≤i
∀∀ ϕ, corresponding to a weak

preference between propositions. It reads “all ϕ are better than all
ψ”.

ψ ≤i
∀∀ ϕ ! "N

∨

θ∈Θ
(π(θ) ∧ (ϕ→ "N(ψ→ 〈2i〉π(θ)))).

Some variants are also easy to define. For instance, von Wright’s
definition of ceteris paribus preferences corresponds to the strict
counterpart of ≤i

∀∀, and can simply be simulated by substituting
the preference modality of the definition by the strict one defined
above. Moreover, substituting the "N modalities for #N allows to
capture related yet different notions of preferences. For instance,
we can grasp a preference operator that reads “there is a ϕ that is
better than all ψ” by substituting the first operator "N of the def-
inition with #N . See [23, 12] for the details on the logic of these
operators.

2.2 Principles
In this section, we give the principles that axiomatise the class

of models defined before. We establish that the resulting logical
system determines the class of GPCC.
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CL-PC
(Prop) ϕ , where ϕ is a propositional tautology
(K(i)) "i(ϕ→ ψ) → ("iϕ→ "iψ)
(T(i)) "iϕ→ ϕ
(B(i)) ϕ→ "i#iϕ
(comp∪) "C1"C2ϕ↔ "C1∪C2ϕ
(empty) "∅ϕ↔ ϕ
(exclu) (#ip ∧ #i¬p) → ("jp ∨ "j¬p) , where j ! i
(actual)

∨
i∈N #ip ∧ #i¬p

(full) (
∧

p∈X #ip ∧ #i¬p) → #iϕv , where ϕv is the
conjunction of literals true in one valuation v of X ⊆ At

Outcomes and preferences
(func1)

∨
x∈K (x ∧∧y∈K\{x} ¬y)

(func2) (π(θ) ∧ x) → "N (π(θ) → x)
(incl) "Nϕ→ [2i]ϕ
(K(2i)) [2i](ϕ→ ψ) → ([2i]ϕ→ [2i]ψ)
(4(2i)) 〈2i〉〈2i〉ϕ→ 〈2i〉ϕ
(connect) (ϕ ∧ #Nψ) → 〈2i〉ψ ∨ #N (ψ ∧ 〈2i〉ϕ)
(unifPref ) (x ∧ 〈2i〉y) → x ≤i

∀∀ y
Rules
(MP) from ;Λ ϕ→ ψ and ;Λ ϕ infer ;Λ ψ
(Nec("i)) from ;Λ ϕ infer ;Λ "iϕ

Figure 1: Axiomatics of Λ(N,At,K). i is over N, C1 and C2 over
2N , ϕ represents an arbitrary formula of L(N,At,K), p is over
At, x and y are over K, θ is over Θ (the set of valuations of At).

The system Λ(N,At,K) is presented in Figure 1. The upper part
corresponds to the fragment of CL-PC. (We essentially used the
axiomatics from [10].) (comp∪) defines the ability of coalitions in
terms of abilities of sub-coalitions. (empty) means that the empty
coalition has no power. (exclu) means that an atom of At is con-
trolled by at most one agent. (actual) means that an atom is con-
trolled by at least one agent. (full) means that an agent i is able
to play every possible valuation of a set of atoms controlled by i.
The second part gives the principles associated to the outcomes and
preferences. (incl) ensures that if something is settled, a player can-
not prefer its negation. Reflexivity of preferences is a consequence
of totality, ensured by (connect). (4(2i)) characterises transitivity.
(func1) forces the fact that for every action profile there is one and
only one outcome. (func2) ensures that outcomes are only deter-
mined by the valuations. (unifPref ) specifies a fundamental inter-
action between preferences and the outcomes. If the action profile
at hand leads to x and agent i prefers an action profile leading to
y, then at every action profile leading to x, agent i will prefer ev-
ery action profile leading to y, that is, all y are better than all x.
The presence of (K(i)) with (Nec("i)) gives to the operator "i the
property of normality. The normality of the modality [2i] follows
because of (K(2i)) and (incl).

The following lemma is given without proof . It is instrumental
in the proof of Theorem 1.

L 1. The following are derivable.

1. (#ip ∧ #i¬p) → "N(#ip ∧ #i¬p);

2. #N(π(θ) ∧ ψ) → "N(π(θ) → ψ);

3. #N(ψ ∧ y) → ("N(x → 〈2i〉y) → "N(x → 〈2i〉ψ)).

The next result states that Λ(N,At,K) is determined by the class
of games of propositional control with consequences.

T 1. The system Λ(N,At,K) is sound and complete with
respect to the class GPCC of games of propositional control with
consequences.

P. Soundness is routine. In order to prove completeness, as-
sume that ϕ is consistent in Λ(N,At,K). We will show that there is
a MS with a state s for which MS, s |= ϕ, and moreover, MS simu-
lates an MPCC M. The claim then follows from Observation 1. We
adapt a standard modal logic technique ([8]).

LetΞ be the set of all maximal consistent (mc.) sets inΛ(N,At,K).
For Γ,∆ ∈ Ξ, define RΞi ⊆ Ξ × Ξ by RΞi Γ∆ iff for all δ ∈ ∆,#iδ ∈ Γ.
Let RΞ be the transitive closure of ∪i∈NRΞi . Starting with a con-
sistent formula ϕ, we know there is an mc. Γϕ with ϕ ∈ Γϕ. We
now define the model Mϕ = 〈S,N,K, o′,At,Ati∈N ,R′

i∈N ,Pi∈N ,V〉 as
follows. The sets N,At and K are parameters of the language, and
given. Take for S the set {∆ ∈ Ξ | RΞΓϕ∆}. Define o′(∆) = x iff
x ∈ ∆. Let Ati = {p ∈ At | #ip ∧ #i¬p ∈ Γϕ}. The relations R′

i are
the restrictions of RΞi to S, and P′

i xy holds iff #N(x ∧ 〈2i〉y) ∈ Γϕ.
Finally, put V(∆)(p) = p ∈ ∆.

C 1. For all ∆ ∈ S, δ ∈ L(N,At,K): Mϕ,∆ |= δ iff δ ∈ ∆.

We only prove the 〈2i〉 case. So suppose 〈2i〉ψ ∈ ∆. Then, by
(Prop) and (func1), there must be some θ ∈ Θ and y ∈ K for which
〈2i〉(ψ ∧ π(θ) ∧ y) ∈ ∆. By (func1), we know there is a unique
outcome x ∈ ∆. So, we have x ∧ 〈2i〉(ψ ∧ π(θ) ∧ y) ∈ ∆ and
hence (x ∧ 〈2i〉y) ∈ Γϕ. This means there is some Ψ ∈ S for which
y,ψ ∈ Ψ. By induction, we have Mϕ,Ψ |= ψ, and by definition of Pi
we then have Mϕ,∆ |= 〈2i〉ψ. Conversely, suppose Mϕ,∆ |= 〈2i〉ψ.
Assuming the outcome for ∆ to be x, there is some Ψ ∈ S and a
y ∈ K and θ ∈ Θ such Mϕ,Ψ |= (ψ ∧ y ∧ π(θ)) and Pixy. By
induction and the construction of S, we have #N(ψ∧ y∧ π(θ)) ∈ Γϕ
and also we have "N(x → 〈2i〉y) ∈ Γϕ. By Lemma 1, item 3, we
then have "N(x → 〈2i〉ψ) ∈ Γϕ, and hence 〈2i〉ψ ∈ ∆.

C 2. The model Mϕ simulates an MPCC M.

To prove this claim, we first argue that for for every θ ∈ Θ, there
is exactly one ∆ ∈ S such that π(θ) ∈ ∆. So let θ ∈ Θ. Consider Γϕ.
By (actual), for every atom p, there is some agent i ∈ N for which
(#ip∧#i¬p) ∈ Γϕ. By (full) and (comp∪), we find that#Nπ(θ) ∈ Γϕ,
and hence there must be some mc. set ∆ with π(θ) ∈ ∆ and ∆ ∈ S.
Now suppose ∆′ ∈ S also contains π(θ). By Lemma 1 item 2, we
conclude that ∆ and ∆′ must contain the same formulae, and hence
they are equal.

Then, we take F : S −→ Θ as follows: F(∆) = θ iff π(θ) ∈ ∆. It
is easy to see that F(∆)(p) = V(s)(p) and we can define o(F(∆)) =
o′(∆). Let F(∆1) = θ1 and F(∆2) = θ2. The proof that Riθ1θ2 iff
R′

i∆1∆2 is omitted. #

3. SOCIAL CHOICE AND SOLUTION CON-
CEPTS

In this section, we show how the logic can be applied to some
questions in social choice theory. We first study the powers of
coalitions in game of propositional control with consequences in
K. Then we formalise various notions of game equilibria.

3.1 Effectivity of coalitions
A game form is said to be rectangular if the inverse image of any

outcome is a Cartesian product. More formally, for every x ∈ K,
there is a subset Vi of the set of i-valuations for every player i, such
that we have:

o−1(x) =
∏

i∈N

Vi.

It is easy to see that CL-PC represents special rectangular game
forms such that the inverse of an outcome is the Cartesian product
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of singletons. This implies that it models a particular type of game
forms where the outcome function is a bijection between the set of
action profiles and the set of consequences.

Rectangular games have interesting properties, but there is no a
priori reason to exclude non-rectangular games. Problems in SCT
are usually about whether coalitions are effective for some subset
of outcomes X ⊆ K, and identifying the outcomes of a game with
its set of action profiles is a limitation. In this section, we propose
to show how much different the models of CL-PC are from their
new extension GPCC in terms of effectivity modelling.

E 2. Consider the following game form:

p2 ¬p2
p1 x x
¬p1 y y

Clearly, it is rectangular, however, there is no bijection between Θ
and K: o−1(x) = {p1} ×{ p2,¬p2} and o−1(y) = {p2} ×{ p2,¬p2}.

But more interestingly, models of our logic do not necessarily
represent rectangular games at all.

E 3. Consider the following game form where player 1
chooses rows, player 2 chooses columns and player 3 chooses ma-
trices: for every player i we define Ati = {pi}.

p3.
p2 ¬p2

p1 x x
¬p1 y z

¬p3.
p2 ¬p2

p1 x z
¬p1 y z

Clearly o−1(y) = {¬p1} ×{ p2} ×{ p3,¬p3}, but neither o−1(x) nor
o−1(z) is a Cartesian product.

If GPCC does not represent rectangular games, it is then inter-
esting to investigate what are actually the powers of the coalitions
underlying GPCC, and see what differs with CL-PC. We use ef-
fectivity functions (EF) which are a general tool for this purpose
[2].

Some definitions are in order. An effectivity function is a map-
ping E that associates a collection of subsets of K to every coalition
C. E(C) represents the sets of outcomes for which the coalition C
is ‘effective’. The notion of effectivity is a very abstract one and
really depends on the application that one has in mind. Some min-
imal requirements are nevertheless acknowledged:

D 10. An effectivity function is a function E : 2N −→
22K such that (i) ∅ $ E(C); (ii) K ∈ E(C); (iii) E(∅) = {K}; (iv)
E(N) = 2K \ {∅}.

We now define significant properties of EF. For clarity, we define
them in two bundles.

D 11 ( EF). An effectivity function E is said
to be standard if we have the following properties:

• outcome monotony: ∀C ∈ 2N ,∀A,A′ ∈ 2K if A ∈ E(C) and
A ⊆ A′ then A′ ∈ E(C);
• agent monotony: ∀C,C′ ∈ 2N ,∀A ∈ 2K, if A ∈ E(C) and

C ⊆ C′ then A ∈ E(C′);
• superadditivity: ∀C,C′ ∈ 2N ,∀B,B′ ∈ 2K, if C ∩ C′ = ∅,

B ∈ E(C) and B′ ∈ E(C′) then B ∩ B′ ∈ E(C ∪ C′).

As we shall see later, standard effectivity functions naturally rise
in game theory. There are at least two other properties that are
relevant in this quick study. First, we recall that the nonmonotonic
core of an effectivity function E is defined as µ(E,C) = {B ∈ E(C) |
∀B′ ⊂ B,B′ $ E(C)}. The nonmonotonic core of an effectivity
function E for a coalition C is the collection of minimal sets for
inclusion in E(C).

D 12 ( EF ). An effectivity function E
is said to be:

• converse superadditive iff ∀C,C′ ∈ 2N ,∀B ∈ 2K if C∩C′ = ∅
and B ∈ E(C ∪ C′) then ∃A ∈ E(C) and ∃A′ ∈ E(C′) such
that B = A ∩ A′;
• decisive iff for any (B1, . . . ,Bn) ∈ µ(E, {1}) × . . . × µ(E, {n})

we have Card(B1 ∩ . . . ∩ Bn) = 1.

Effectivity functions are simple tools for describing the space of
strategies in some interaction scenari. They are particularly useful
for encoding the powers in a game. We can come with several no-
tions of effectivity in a game. Perhaps the most useful is the alpha
effectivity which corresponds to a ‘pessimistic’ type of behaviour
of the coalitions: a coalition is said to be alpha effective for X ⊆ K
if it can force the solution to be in X whatever other agents do.1

R 1. #C[C]ϕ is true for every property ϕ for which a
coalition C is effective. It does not depend on a particular N-
valuation of evaluation and is globally true (or false) in a GPCC:
;Λ #C[C]ϕ↔ "N#C[C]ϕ.

We define formally the alpha effectivity EG
α of a GPCC G as

follows:

EG
α (C) =


X ⊆ K | G |= #C[C]

∨

x∈X

x


 .

Note that alpha effectivity does not depend on preferences. The
alpha effectivity of a game is the effectivity of its underlying mech-
anism, whatever the preferences are.

We can now formulate a theorem proved in [1] that can help us at
understanding the structure of powers in the games of propositional
control.

T 2 ([1]). An effectivity function E is the alpha effec-
tivity function of some rectangular game form iff E is standard,
decisive and conversely superadditive.

Since we have shown that some games represented by a GPCC are
not rectangular, at least one of the properties of effectivity func-
tion that we defined above must not hold. Again, it demonstrates
that GPCC generalises the notion of effectivity of CL-PC. The next
proposition states that the alpha effectivity function of a GPCC ver-
ifies the properties of standard effectivity functions.

P 1. For every game of propositional control with
consequences in K, its alpha effectivity function is standard.

P. It is easy to check that EG
α (∅) = {K} and EG

α (N) = 2K \
{∅}. Outcome monotony is a consequence of modal logic, agent
monotony follows from (comp∪).

The case of superadditivity is slightly more involved. In [25], the
schema (S′) is proved: ;Λ #Cϕ∧#C′ψ→ #C∪C′ (ϕ∧ψ) (where ϕ and
ψ do not contain any common atom of At). Suppose C ∩ C′ = ∅,
X ∈ EG

α (C) and X′ ∈ EG
α (C′). Then G |= #C[C]

∨
x∈X x and G |=

#C′ [C′]
∨

y∈X′ y. Since these formulae do not contain any atom of
At, (S′) implies that G |= #C∪C′ ([C]

∨
x∈X x ∧ [C′]

∨
y∈X′ y). Equiv-

alently, G |= #C∪C′ ("N\C
∨

x∈X x ∧ "N\C′
∨

y∈X′ y). Observe that be-
cause by hypothesis C∩C′ = ∅, we have N\C = C′∪(N\(C∪C′). It
means that "N\Cϕ ↔ "C′"N\{C∪C′}ϕ. Thus "N\Cϕ ↔ "C′ [C ∪ C′]ϕ
and symmetrically "N\C′ϕ ↔ "C[C ∪ C′]ϕ. Using standard modal
logic we conclude that G |= #C∪C′ [C ∪ C′]

∨
z∈X∩X′ z. #

1On the ‘optimistic’ side is also the beta effectivity: a coalition C
is said beta effective for X ⊆ K if for every combined action of the
other players, C can contingently ensure the solution to be in X.
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This is not at all surprising. Standard effectivity functions form
an important class: an effectivity function E is standard iff it is the
alpha effectivity function of some strategic game form.

The next two propositions state that the alpha effectivity func-
tion of a GPCC is not conversely superadditive and not decisive in
general.

P 2. For some GPCC, the alpha effectivity function
is not conversely superadditive.

P. Consider the game form in Example 3. We have EM
α ({1}) =

{{x, y}, {y, z}, {x, y, z}}, EM
α ({2}) = {{x, y}, {x, z}, {x, y, z}}, EM

α ({3}) =
{{x, y, z}}, EM

α ({1, 2}) = 2K \ {∅}, EM
α ({1, 3}) = {{x}, {y, z}, {x, z}, {y, z},

{x, y, z}}, EM
α ({2, 3}) = {{z}, {x, y}, {x, z}, {x, y, z}}.

We have {1} ∩{ 3} = ∅, {x} ∈ EM
α ({1, 3}) but there are no X ∈

EM
α ({1}) and X′ ∈ EM

α ({3}) such that X ∩ X′ = {x}. #

It is also very easy to see that decisiveness will not hold in gen-
eral, and the game of Example 3 is a counterexample.

P 3. For some games of propositional control with
consequences in K, the alpha effectivity function is not decisive.

In summary, the addition of a set of consequences K leads to
a weaker notion of effectivity than CL-PC. In general, the logic
models standard effectivity functions. We thus have a logic capable
of the main features of Coalition Logic. However, it is not weaker
than Coalition Logic in this respect. Note that we did not wholly
prove the characterisations of the effectivities underlying CL-PC or
GPCC. Such results can be adapted from [9] and [19] respectively.

What is remarkable is that it also combines well with preferences
and allows us to encode a wide range of solution concepts. This is
the aim of the next section.

3.2 Solution concepts
We define some important solution concepts in pure strategies.

Those are definitions of very standard notions of game theory, viz.
weak Pareto optimality, very weak dominance, Nash equilibrium,
strong Nash equilibrium and the concept of weak core.

We recall for convenience the interpretations of the operators
that we consider as central in the formalisation of most solution
concepts. "Cϕ reads “for every deviation of the players in C, ϕ is
true”, and [C]ϕ reads “the current action of C ensures ϕ whatever
other agents do”. They are inter-definable: "Cϕ↔ [N \ C]ϕ.

In the following definitions, we assume 〈N,At, (Ati),K, o,
(2i)〉, a GPCC as defined in Definition 7.

D 13 (P ). An N-valuation θ∗ is a weak
Pareto optimum iff there is no N-valuation θ such that o(θ) is strictly
preferred over o(θ∗) by every agent.

WPO !
∨

x∈K


x ∧ "N

∨

i∈N

〈2i〉x

 .

The action profile at hand is weakly Pareto optimal iff, x is the
outcome and at every action profile there is an agent that would
prefer x. The definition of Pareto optimality does not rely on the
space of strategies of the players, but essentially on the outcomes.
It is straightforward that if a valuation (or action profile in GT)
is weakly Pareto optimal then every valuation whose outcome is
x is a weak Pareto optimum: ;Λ (x ∧ WPO) → "N(x → WPO).
Clearly we do not need the full expressivity of our language since
a universal modality suffices. The remaining solution concepts of
this section will have a more contingent flavour.

D 14 ( ). θ∗ is a very weakly dom-
inant N-valuation iff for every player i and N \ {i}-valuation θ−i, i
considers o(θ∗i , θ−i) at least as good as o(θ′i , θ−i) for every i-valuation
θ′i .

It is handy to introduce the notion of weak best response by an
agent i.

WBRi !
∨

x∈K

(x ∧ "i〈2i〉x).

A player i plays a weak best response in an N-valuation if, x being
the outcome, for every deviation of i, i prefers x.

We can now define very weak strategy dominance in terms of
weak best response:

VWSD !
∧

i∈N

[i]WBRi.

We have a very weak strategy dominant valuation if the current
choice of every player ensures her a weak best response whatever
other agents do.

D 15 (N ). An N-valuation θ∗ is a Nash
equilibrium iff for every player i ∈ N and for all i-valuations θi, i
considers o(θ∗i , θ

∗
−i) at least as good as o(θi, θ∗−i).

NE !
∧

i∈N

WBRi.

A valuation is a Nash equilibrium if every player plays a weak best
response. Interestingly, [24] proposed a similar definition along the
pattern

∧
i∈N[N \ {i}]〈2i〉x within an epistemic language and where

[N \ {i}] is intended to represent the distributed knowledge in N\{i}.
To complete this collection of solution concepts, we can also

show relevance of GPCC for cooperative games via the study of
strong Nash equilibrium and the core of strategic games.

D 16 ( N ). An N-valuation θ∗ is
a strong Nash equilibrium iff there is no coalition C ⊂ N and no C-
valuation θC such that o(θC, θ∗−C) is considered strictly better than
o(θ∗) by every players of C.

SNE !
∨

x∈K


x ∧

∧

C⊂N

"C

∨

i∈C

〈2i〉x

 .

A players’ valuation is a strong Nash equilibrium if, the outcome
being x, for every deviation of C one of its member prefers x.

D 17 (() ). An N-valuation θ∗ is dominated
iff there is a coalition C ⊂ N and a C-valuation θC such that for
all N \ C-valuation θ−C, every i ∈ C strictly prefers o(θC, θ−C) over
o(θ∗). θ∗ is in the (weak) core iff it is not dominated.

This last definition holds for a coalitional game without transfer-
able utilities. That is, players can form coalitions, but cannot redis-
tribute the sum of the payoffs among the individuals of the coali-
tion.

INCR !
∨

x∈K


x ∧

∧

C⊂N

"C〈C〉
∨

i∈C

〈2i〉x

 .

An N-valuation is in the weak core if, the outcome being x, for
every deviation of C, C allows that one of its member prefers x.

We state the following without proof.

P 4. Assume a GPCC G = 〈N,At, (Ati),K, o, (2i)〉
and an N-valuation θ∗. We have that θ∗ is:
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• weak Pareto optimal iff G, θ∗ |= WPO;
• very weak strategy dominant iff G, θ∗ |= VWSD;
• Nash equilibrium iff G, θ∗ |= NE;
• strict Nash equilibrium iff G, θ∗ |= SNE;
• in the (weak) core iff G, θ∗ |= INCR.

4. EXAMPLE APPLICATIONS
We present two applications of our logic, one being an instance

of model checking and the other an application of theorem deduc-
tion.

4.1 Finding equilibria
Typically in game logics, the characterisation of solution con-

cepts is achieved by defining predicates of the form SC((ai)i∈N),
stating that the particular action profile (ai)i∈N is an equilibrium
with respect to the solution concept SC.

For model checking solution concepts we would like to give as
input (i) a game, and (ii) a general formulation of a solution con-
cept, and obtain as output the set of action profiles that verify it. A
general problem of model checking can be formally stated as fol-
lows: given a logical formula ϕ and a modelM, return the set of
states S such that s ∈ S iffM, s |= ϕ. Model checking approaches to
verifying solution concepts are somewhat limited in existing logics
because the modeller first has to choose an action profile (ai)i∈N and
then check whether the game satisfies SC((ai)i∈N).

In Section 3.2, we have been able to give a general logical formu-
lation SC for some important solution concepts in strategic games.
As a consequence, we can check in a very natural manner where
are the equilibria of a game.

Given G = 〈N,At, (Ati),K, o, (2i)〉 a GPCC, and a solution con-
cept SC, model checking SC against G amounts at determining the
set {θ ∈ Θ | G, θ |= SC}.

As we suggested before, an N-valuation in GPCC can be seen
as a nominal in Hybrid Logic. In [21], we develop this idea in the
framework of Hybrid Logic which appears particularly convenient
for model checking this problem.

4.2 Game form solvability
Powers of coalitions and solution concepts meet naturally in the

literature on game form solvability. The problem of game form
solvability in terms of GPCC is defined as follows:

D 18. Let a solution concept SC be given. A game
form M = 〈N,At, (Ati),K, o〉 is said to be SC-solvable iff for ev-
ery preference profile (2i) over K the GPCC 〈M, (2i)〉 admits an
SC equilibrium.

Nash equilibrium is much celebrated in game theory, and it is
also a widely studied notion of game form solvability. Some suf-
ficient conditions have been given in literature. The most salient
result is the one of [20] where the authors give a sufficient and nec-
essary condition on the structure of an effectivity function E for a
game representing E to admit a Nash equilibrium. [13] capitalises
on this result in order to build an extension of Coalition Logic that
conceptualises the class of Nash solvable representations of effec-
tivity functions. To achieve this, it is sufficient to add a single infer-
ence rule and does not require a more expressive object language
than in basic CL.

In social choice theory, it is certainly elegant to force Nash solv-
ability only by constraining further the powers of coalitions. How-
ever, we take here a different and more practical stance. We use
the fact that there is a formula in our language that is true iff it is
evaluated against an N-valuation that is a Nash equilibrium (Propo-
sition 4). It appears that our logic makes the task of reasoning about

Nash solvable mechanisms particularly flexible. This will be true in
fact for every solution concept that we are able to define in GPCC.
Here, we focus on Nash solvability.

As an illustration we can study two examples of [11]: a version
of the so-called Gibbard’s paradox, and the wedding scenario.

E 4. Two individuals a and e both have a blue and a
white shirt. Each agent has the right to choose the colour of its
own shirt. In formula, if pi means that player i wears its white
shirt, the rights of the systems are simply given as follows:

ρ ! #apa ∧ #a¬pa ∧ #epe ∧ #e¬pe.

The ‘paradox’ tells us that there is no Nash solvable implementa-
tion of this scenario. In other words ρ → #NNE is not a valid
sentence of the logic Λ({a, e}, {pa, pe}, {x1, x2, x3, x4}).2 For exam-
ple, we can build a counter model if the agents’ preferences are
such that: the outcome function is bijective, a prefers white over
blue and prefers to wear the same colour as b; and b also prefers
white over blue but prefers wearing a different colour than the one
worn by a.

The second example is, on the other hand, a case where the sce-
nario does have a Nash solvable representation.

E 5. There are three players: Angelina (a), Edwin (e)
and the male Judge (j). Angelina can choose to marry Edwin or the
Judge or stay single. Edwin and the Judge can choose to stay single
or to marry Angelina. The consequences are that Angelina marries
Edwin (me) (resp. the Judge (mj)) when both of them choose so, or
she stays single (s).

We can model this scenario using a model such that N = {a, e, j},
K = {s,me,mj} Ata = {pa, p′a}, Atj = {pj} and Ate = {pe}. The
controls of the scenario are determined by the formula:

ρ ! #apa ∧#a¬pa ∧#ap′a ∧#a¬p′a ∧#epe ∧#e¬pe ∧#jpj ∧#j¬pj.

p′a means that Angelina decides not to stay single. When p′a is true,
pa means that she chooses to marry Edwin and ¬pa means that she
chooses to marry the Judge. pe (resp. pj) means that Edwin (resp.
the Judge) decides to marry Angelina. Obviously, we have:

ωme ! me ↔ (pa ∧ p′a ∧ pe).

and

ωmj ! mj ↔ (¬pa ∧ p′a ∧ pj).

We can verify that this scenario has a Nash solvable representa-
tion, stated by the validity of ρ ∧ ωme ∧ ωmj → #NNE in the logic
Λ({a, e, j}, {pa, p′a, pe, pj}, {s,me,mj}). This is semantically clear con-
sidering that it leads to the following GPCC:

pj.

pe ¬pe
pa ∧ p′a me s
¬pa ∧ p′a mj mj
pa ∧ ¬p′a s s
¬pa ∧ ¬p′a s s

¬pj.

pe ¬pe
pa ∧ p′a me s
¬pa ∧ p′a s s
pa ∧ ¬p′a s s
¬pa ∧ ¬p′a s s

It is routine to check that for every preference profile over K, there
is a Nash equilibrium.

2Since there are two controlled atoms in the logic, a game will
have four valuations. If we take a smaller set of consequences, we
restrict the problem; a bigger set would have no bite.
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5. CONCLUSIONS AND PERSPECTIVES
Our primary aim in this paper is to set out a tentative proposal

for a formal, logical language for talking about social choice pro-
cedures.

We have seen that propositional control is a very natural way of
characterising the rights and powers of players. We have seen that
the operators of contingent ability form a vocabulary for expressing
players’ strategic deviations. This is greatly desirable for charac-
terising many solution concepts. The basic operator of preferences
is standard in modal logic, but embedded in the context of games
of propositional control with consequences, it appears to be very
expressive. They allow us to represent some problems of GT and
SCT, namely equilibria finding and game form solvability, in terms
of model checking and theorem proving respectively.

In order to pursue the agenda of developing a language for so-
cial choice procedures, we certainly need more vocabulary. There
are problems of SCT that our logic is not at first sight tailored for.
The models that it determines are merely strategic games, that is, a
structure composed of a strategic game form with consequence in
K and a preference profile over K. Most of the important proper-
ties of SCT that we would like to talk about involve a quantifica-
tion over a space of game forms and preference profiles. Remark-
ably we applied the logic to the problem of game form solvabil-
ity whose definition (Definition 18) involves such quantifications.
What we did is to encode the problem of quantifying over prefer-
ences in the meta-logical problem of theorem deduction. On the
side of problems with game form quantifications, in implementa-
tion theory [16], problems are about whether there exists a game
form satisfying some desirable properties.

So, our logic is able to capture some of these features. But, it
would be interesting to study other problems of social choice and
pinpoint what can and cannot be formalised. A natural path of
research is to investigate how to extend the framework in order to
push the expressivity further without altering the essential qualities
of the logic too much.
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