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ABSTRACT
We consider the issue of representing coalitional games in multi-
agent systems that exhibit externalities from coalition formation,
i.e., systems in which the gain from forming a coalition may be af-
fected by the formation of other co-existing coalitions. Although
externalities play a key role in many real-life situations, very little
attention has been given to this issue in the multi-agent system liter-
ature, especially with regard to the computational aspects involved.
To this end, we propose a new representation which, in the spirit
of Ieong and Shoham [9], is based on Boolean expressions. The
idea behind our representation is to construct much richer expres-
sions that allow for capturing externalities induced upon coalitions.
We show that the new representation is fully expressive, at least as
concise as the conventional partition function game representation
and, for many games, exponentially more concise. We evaluate the
efficiency of our new representation by considering the problem of
computing the Extended and Generalized Shapley value, a pow-
erful extension of the conventional Shapley value to games with
externalities. We show that by using our new representation, the
Extended and Generalized Shapley value, which has not been stud-
ied in the computer science literature to date, can be computed in
time linear in the size of the input.
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1. INTRODUCTION
Coalitional games have proved highly influential in multi-agent
systems research as they capture opportunities for cooperation by
explicitly modelling the ability of the agents to take joint actions
as primitives [19]. Sandholm et al. distinguish three main research
issues in the use of coalitional games in multi-agent systems [24]:

• Coalition structure generation: Finding a coalition struc-
ture, i.e., an exhaustive set of mutually disjoint coalitions, so
that the performance of the entire system is optimized; and

• Teamwork: Optimizing the performance of each individual
coalition;

• Payoff division: Dividing the gains from cooperation among
agents so as to meet certain positive/normative criteria.

With respect to the last issue, a number of solutions have been
proposed in the literature. Two of the best-known ones are the
Shapley value and the core [19]. Both concepts concern the prob-
lem of dividing the gain from forming the grand coalition, i.e., the
coalition containing all the agents in the system. Specifically, a di-
vision of payoffs to individual agents is in the core if, with this di-
vision, no coalition could be better off by deviating from the grand
coalition. However, there are no guarantees that such a division ex-
ists and, even if it does, there are no guarantees that it will be “fair”,
where by fairness we mean, among others, that identical agents ob-
tain the same payoff, the agents that do not make any contributions
obtain zero payoff, and that entire wealth is distributed. On the
other hand, Shapley showed that there exists a unique division of
the grand coalition’s payoff that meets these important “fairness”
conditions [25]. This division is called the Shapley value.

Most research effort in the multi-agent systems literature con-
cerning the Shapley value focused on games with no externali-
ties, i.e., games where the performance of a coalition remains un-
changed, regardless of how the other agents in the system are par-
titioned. However, this assumption does not always hold. In many
situations, a newly created coalition can have a significant effect
(either positive or negative) on the performance of other coalitions.
These effects are called externalities from coalition formation.1

Externalities from coalition formation play an important role in
many real life problems, and have been extensively studied in eco-
1See [15] for a discussion of alternative concepts of externalities in
multi-agent systems.
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nomics and marketing [2]. This issue has also been recently con-
sidered in the multi-agent context [15, 22, 14]. Intuitively, exter-
nalities are evident in any situation, where the utility of an agent
or a coalition of agents depends on choices made by other agents
in the system. For example, if a coalition of agents in a market
with automated trading mechanisms decides to adopt a new trading
strategy, it may increase its competitive edge against other traders.

From a computational point of view, one of the key issues in de-
veloping efficient solutions to coalitional games is the way a game
is represented [29]. A straightforward listing of the values for all
possible coalitions requires a space of exponential size. In contrast,
a well-crafted representation may be able to exploit the structure of
the system and, therefore, model it in a much more concise man-
ner. This can also facilitate significantly more efficient solutions
to challenging computational problems [6, 9, 15]. While many al-
ternative representations have been proposed in the computer sci-
ence/AI literature for games with no externalities [6, 3, 4, 9, 18,
1], very little attention has been paid in this regard to games with
externalities.2 A class of representations was recently proposed by
Michalak et al. [15], with the aim of enabling an efficient solution
of the coalition structure generation problem. However, this class is
not scalable for larger systems since they require, in the best case,
defining at least 2n values for n agents.

Against this background, in this paper:

• We develop a logic-based representation for coalitional games
with externalities. This representation builds upon Ieong and
Shoham’s marginal contribution nets (MC-nets) representa-
tion of games with no externalities, which has proven to be
very efficient with respect to a number of important compu-
tational problems [9, 17]. Specifically, in our representation,
we consider a much richer structure of logical rules, that al-
lows to capture externalities;

• We prove that the new representation is fully expressive, i.e.,
it is able to represent any coalitional game with externali-
ties and is not restricted to any particular subclasses of these
games;

• We show that, for many games, our representation is expo-
nentially more concise compared to all available alternatives
for games with externalities, namely the conventional parti-
tion function game representation [11], and the representa-
tions recently introduced by Michalak et al. [15]; and

• We show that it can be used to efficiently compute the Shap-
ley value for games with externalities. This challenging prob-
lem is studied in the computer science literature for the first
time and, building upon our new representation, we present
two approaches to compute it. In both of them, the value is
obtained in time linear in the number of logical rules in our
representation.

The remainder of the paper is organized as follows. Section 2 in-
troduces our basic notation and background. We describe our rep-
resentation and evaluate its expressivity and conciseness in Section
3. In Section 4 we discuss the concept of Shapley value for games
with externalities. In Section 5, we show how to compute this value
in time which is linear in the size of the input. Conclusions follow.

2. NOTATION AND BACKGROUND
Let N = {a1, . . . , an} be a set of agents – the players of the game.
A characteristic function v is a mapping v : 2N → R, i.e., it

2See [29, Section 6] for a brief but informative overview of the
main approaches to games with no externalities.

assigns to every coalition C ⊆ N a real number v(C), representing
the value of C.3

Example 2.1 (Characteristic function)
For N = {a1, a2, a3}, a sample characteristic function is v({a1}) =
0, v({a2}) = 0, v({a3}) = 1, v({a1a2}) = 1, v({a1a3}) = 1,
v({a2a3}) = 1 and v({a1a2a3}) = 2.

A game in a characteristic function form is a tuple (N, v), with
components N and v as defined above. However, for ease of nota-
tion we will denote it by v alone. A coalition structure, denoted π,
is a disjoint and exhaustive partition of the agents in N . We denote
by Π(N) the space of all coalition structures over N .
Example 2.2 (Coalition structures)
For N = {a1, a2, a3}, the set Π(N) contains {{a1}{a2}{a3}},
{{a1a2}{a3}}, {{a1a3}{a2}}, {{a1}{a2a3}}, and {{a1a2a3}}.
Let us denote these coalition structures by π1, . . . ,π5, respectively.

An embedded coalition is a pair (C,π), where π ∈ Π(N) and
C ∈ π. We let M denote the set of all embedded coalitions, that
is, M := {(C,π) : π ∈ Π(N), C ∈ π}. A partition function
is a mapping w : M → R. A game in a partition function form
is a tuple (N,w). Again, for ease of notation we will denote it
by w alone. Our shorthand notation for the partition function is
demonstrated in the following example:
Example 2.3 (Partition function)
A sample partition function for N = {a1, a2, a3} is denoted as
{{a1, 0}{a2, 0}{a3, 1}}, {{a1a2, 1}{a3, 2}}, {{a1a3, 1}{a2, 0}},
{{a1, 0}{a2a3, 1}} and {{a1a2a3, 2}}. In words, this means that
in {{a1}{a2}{a3}} coalitions {a1} and {a2} have value 0, whereas
{a3} has value 1, etc.

The game defined in Example 2.3, as opposed to Example 2.1,
has externalities. In particular, the value of {a3} in π1 is 1 whereas
in π2 it is 2. This means, that the formation of coalition {a1a2}
induced a positive externality of 1 on {a3}.

As a more concrete example, let us consider coalition formation
among four autonomous agent-robots r1, r2, r3 and r4. Each agent
is able to secure the payoff of 1 if acting alone. No pair of cooperat-
ing agents achieves any value added. In fact, due to various incom-
patibilities, agents r1 and r4 do not perform well whenever they
cooperate with each other decreasing their joint value or a value of
any coalition they both belong to by −0.5. Their joint performance
declines even further (by an additional −0.5) whenever they face
cooperation of two other agents r2 and r3. As far as triplets are
concerned, the coalition of the first three agents, i.e. {r1, r2, r3},
is able to achieve an additional payoff of 1. When r4 joins them to
form the grand coalition the payoff increases even further by 0.5.
The partition function for this game is as follows:
Example 2.4 (Partition function for Cournot oligopoly)

{{r1, 1}{r2, 1}{r3, 1}{r4, 1}}
{{r1r2, 2}{r3, 1}{r4, 1}} {{r1r2r4, 2.5}{r3, 1}}
{{r1r3, 2}{r2, 1}{r4, 1}} {{r1r3r4, 2.5}{r2, 1}}
{{r1r4, 1.5}{r2, 1}{r3, 1}} {{r1, 1}{r2r3r4, 3}}
{{r1, 1}{r2r3, 2}{r4, 1}} {{r1r2, 2}{r3r4, 2}}
{{r1, 1}{r2r4, 2}{r3, 1}} {{r1r3, 2}{r2r4, 2}}
{{r1, 1}{r2, 1}{r3r4, 2}} {{r1r4, 1}{r2r3, 2}}
{{r1, r2, r3, 4}{r4, 1}} {{r1r2r3r4, 5}}

Clearly, the above game cannot be represented with a character-
istic function. For instance, the value of coalition {r1r2} is dif-
ferent in {{r1r2}{r3}{r4}} than in {{r1r2}{r3r4}}. Thus, the
3To save space, where there is no risk of confusion, we will omit
commas when listing sets, for example writing {{a1a2}{a3}} as a
shorthand for {{a1, a2}, {a3}}.
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partition function is needed. Generally, the set of all partition func-
tion games is denoted as W . This includes all coalitional games
that can be represented with a characteristic function, known as c-
games [26]. More formally, a game w ∈ W can be classified as
a c-game if there exist a characteristic function game v such that
∀π, C such that C ∈ π, w(C,π) := v(C). In this case, as in [13],
we will call v the corresponding game in characteristic function
form to w. The set of c-games will be denoted as W c.

In the remainder of this section, we will formally introduce the
Shapley value. It was originally proposed as a normative method
for dividing the value of the grand coalition among all of the agents
in c-games [25]. Technically, an agent’s share of a grand coalition’s
payoff is the average marginal contribution of that agent over all
possible permutations of the agents in the system. Formally, using
the notation that |S| is the number of elements in a set S:

Definition 2.5 ((standard) Shapley value)
For all w ∈ W c, the Shapley value Shi(v) for an agent ai ∈ N is
given by:

Shi(v) :=
∑

i∈C⊆N

(|C|− 1)!(|N |− |C|)!
|N |!

(
v(C)− v(C\{i})

)
,

where v is the game corresponding to w in characteristic function
form.

Shapley showed that this is a unique value, that satisfies all of
the following ”fairness” axioms [25], where {N} denotes the grand
coalition:

Efficiency
∑

i∈N Shi(v) = v({N});
Symmetry ∀C ⊆ N\{i, j}: v(C ∪ {i}) = v(C ∪ {j}) then

Shi(v) = Shj(v);
Null-Player if j is a null player in v then Shj(v) = 0;
Linearity (i) ∀i∈N Shi(v + v′) = Shi(v) + Shi(v

′),
(ii) ∀i∈N,γ∈R Shi(γv) = γShi(v).

Let us consider the following example:
Example 2.6 (Shapley value for c-games)
For the c-game v defined in Example 2.1, the Shapley values of
every agent are Sh1(v) = 1

2 , Sh2(v) = 1
2 and Sh3(v) = 1.

3. EMBEDDED MC-NETS
In this section we introduce our representation for games with ex-
ternalities and evaluate its properties. We call this representation
embedded MC-nets. A natural starting point for developing our
representation is to consider c-games for which a number of repre-
sentations have already been studied in the literature [6, 3, 4, 9, 18].
In particular, we build upon Ieong and Shoham’s logic-based MC-
nets representation for c-games [9] due to its desirable properties,
i.e., it is fully expressive, concise for many c-games, and facilitates
a very efficient way of computing the Shapley value. In MC-nets a
c-game is represented with a set of rules R, each rule of the form:

Pattern −→ V alue,

where Pattern is a Boolean expression over N . A coalition C is
said to meet a given pattern P if P evaluates to true when the val-
ues of all Boolean variables that correspond to agents in C are set
to true, and the values of all Boolean variables that correspond to
agents not in C are set to false. In this case, we write C |= P . In
MC-nets, the value of a coalition C is the sum of all V alues from
the rules of which the Patterns are met by C. More formally:

v(C) =
∑

R$P→V alue:C|=P

V alue.

Ieong and Shoham showed that from the MC-net representation of a game, which
is limited to rules made only of conjunctions of positive and/or negative literals, the
Shapley value can be computed in time linear in the size of the input [9, Section 4].
Following [7], we will call this class of rules basic rules and the representation based
on them basic MC-nets. Using similar notation to that in formula (4), any basic rule
can be written as:

p ∧ ¬p′ → V alue, (1)

where p and p′ are conjunctions of positive and negative literals, respectively. Now,
due to linearity of the Shapley value, every basic rule can be considered as a separate
game. Assuming that p contains at least one positive literal, the Shapley values for
any agent ai in p and aj in ¬p′ can be computed from the following formulas:

V alue

|p|
(|p|+|¬p′|

|¬p′|
) and

−V alue

|¬p′|
(|p|+|¬p′|

|p|
) (2)

respectively, where |p| (|¬p′|) denotes the number of elements in p (¬p′).

Box 1: Ieong and Shoham’s method for computing Shapley value

If C does not meet any rule then its value is 0. Every rule in the
MC-nets is to be interpreted as a marginal contribution of agents to
any coalition they jointly belong to. Since marginal contributions
constitute the core element of the Shapley value definition, the MC-
nets are particularly efficient in computing this solution concept
(see Box 1 for more details on the work of Ieong and Shoham in
this respect).

Example 3.1 (MC-nets representation)
The c-game in Example 2.1 can be represented with just two rules:
a3 → 1 and a1 ∧ a2 → 1. Coalitions {a1} and {a2} do not meet
any rules. Coalitions {a3}, {a1, a3} and {a2, a3} meet the first
rule, whereas coalition {a1, a2} meets the second rule. The grand
coalition meets both rules.

Coalitional games with externalities are more complex mathe-
matical objects than c-games, since we must represent the value
not just of individual coalitions, but of embedded coalitions. Our
approach is to extend such rules so that the Pattern on the left
hand side of a rule matches against coalition structures and not just
coalitions. Specifically, our rules have the form:

P0|P1, . . . ,Pk → Value, (3)

where each individual pattern Pi : i ∈ {0, . . . , k} is a Boolean
expression over N as defined for MC-nets. It should be noted that
there is no obligation to specify any of the elements of the rule
except for “→” and “Value”. For example, the following rules are
all feasible:4

a1 ∧ a2 ∧ ¬a3|a3 ∧ a4, a5 ∧ ¬a6 → 1;
∅|a1 ∧ ¬a2 → 5;
a1 → −2.

Within any pattern, if an agent is preceded with the sign “¬”, it
will be referred to as a negative literal. Otherwise, it will be called
a positive literal. The rule in (3) will be called an embedded rule
and the entire left hand side of this rule will be called an embedded
pattern, denoted EP . A coalitional game with externalities can
be represented by a tuple (N, ER), where ER is a finite set of
embedded rules. As mentioned at the beginning of this section, we
call this representation embedded MC-nets.

An embedded coalition (C,π) is said to meet an embedded pat-
tern EP defined in (3), which we denote by (C0,π) |= EP , if:

• C meets pattern P0; and

• every pattern Pj , j = 1, . . . , k is met by at least one coalition
in π \ C.

4For simplicity of notation, we assume that the empty set is met by
any coalition.
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In the special case of (3) being of the form P0 = ∅, the embed-
ded rule is met by all the embedded coalitions (C,π) for which
π\C meets the requirement of P1, . . . ,Pk. Similarly, if (3) is of
the form P0 → Value then the embedded rule is met by all the
embedded coalitions (C,π) for which C meets P0.

Embedded MC-nets, as defined in (3), allow for arbitrary Boolean
expressions within the embedded pattern. However, similarly to
the original MC-nets, our computational results will be derived for
a special case of this representation, where the patterns in all rules
are required to be conjunctions of literals (see Box 1 for more de-
tails on the work of Ieong and Shoham in this respect). Thus, when
convenient, we will denote each pattern Pi (i = 0, . . . , k) from
(3) as a conjunction of positive and negative literals pi ∧ ¬p′i, re-
spectively. The embedded pattern (3) in the general form can be
denoted as:

p0 ∧ ¬p′0|p1 ∧ ¬p′1, . . . , pk ∧ ¬p′k → Value (4)

For example, in the rule a1 ∧ a2 ∧ ¬a3|a3 ∧ a4, a5 ∧ ¬a6 → 1,
we have p0 = a1 ∧ a2, ¬p′0 = ¬a3, p1 = a3 ∧ a4, p2 = a5 and
¬p′2 = ¬a6.

Furthermore, we will denote by Pi, P ′
i the sets containing agents

in pi, ¬p′i, respectively. For example, in the above rule we have
P0 = {a1a2}, P ′

0 = {a3}, P1 = {a3a4}, P2 = {a5} and P ′
2 =

{a6}. Additionally, the following assumption is imposed on any
embedded rule:

|P0|+
k∑

i=1

|P ′
i | ≥ 1, (5)

which follows an implicit assumption in [9] that any rule has at
least one positive literal.

The value w(C,π) of an embedded coalition (C,π) is defined
as the sum of all Values from the embedded rules that are met by
(C,π). More formally:

w(C,π) =
∑

ER$EP→Value:(C,π)|=EP

Value.

Example 3.2 (Embedded MC-nets)
The coalitional game with externalities from Example 2.3 can be
described with the following set of rules: a3 → 1, a3|a1 ∧ a2 → 1
and a1 ∧ a2 → 1.

The first two rules in the above example highlight the difference
between games with and without externalities. According to the
first rule, agent a3 contributes to any embedded coalition it belongs
with value 1. However, additionally, the second rule says that the
value of this agent increases by 1 if there co-exists another embed-
ded coalition in which agents a1 and a2 cooperate. This happens
in π2 = {{a1a2}{a3}}. In this way, embedded MC-nets allow us
to capture externalities in coalitional games.

Now, when we have formally defined our representation, we will
evaluate its properties. We start with expressiveness:

Proposition 3.3 (Expressiveness)
Every coalitional game with externalities that is represented with a
partition function can be expressed as embedded MC-nets.

PROOF. To prove this, we will demonstrate that, for any arbi-
trary partition function w, there exists a set of rules ER such that
for all (C,π) ∈ M there exist a unique embedded rule EP →
Value ∈ ER such that (C,π) |= EP and Value = w(C,π).
Thus, for any (C,π):

∑

ER$EP→Value:(C,π)|=EP

Value = w(C,π).

This means that (N, ER) represents the game w.
Let (C0,π) be an embedded coalition with π = {C0, C1, . . . , Cm}.

Let us consider the following embedded pattern:

p0∧¬
⋃

i &=0

pi|p1∧¬
⋃

i &=1

pi, p2∧¬
⋃

i &=2

pi, · · · , pm∧¬
⋃

i &=m

pi, (6)

where pi is a conjunction of the agents in Ci. Every pattern pj ∧
¬
⋃

i &=j pi, j = 0, . . . ,m is met only by the embedded coalition
(Cj ,π) and, therefore, the embedded pattern (6) is met only by the
embedded coalition (C0,π).

Corollary 3.4 (Conciseness)
Embedded MC-nets are at least as concise as the partition function
game representation.

Proposition 3.5 (Conciseness w.r.t. certain games)
Embedded MC-nets are exponentially more concise than the parti-
tion function game representation for certain games.

PROOF. The above proposition follows easily from well-known
results in Boolean function theory: essentially, a set of Boolean
formulas provides a representation that in many cases is exponen-
tially more succinct than the extensive representation (as the parti-
tion function game representation considered here), but in the worst
case we need an exponential number of such formulas [28].

Example 3.6
Let us consider an embedded MC-net representation of the game
defined in Example 2.4. Specifically, only eight rules are needed
to represent this game as embedded MC-nets, namely: r1 → 1,
r2 → 1, r3 → 1, r4 → 1, r1∧r4 → −0.5, r1∧r4|r2∧r3 → −0.5
and r1 ∧ r2 ∧ r3 → 1.

It should be noted that the above proposition hold also when we
compare the embedded MC-nets to the representations introduced
in Michalak et al. [15]. Specifically, embedded MC-nets are expo-
nentially more concise than these representations for certain games.

Finally, it is easy to see that:

Observation 3.7 (Generalization of MC-nets)
Embedded MC-nets are the generalization of MC-nets to games
with externalities.

With the above propositions and the corollary we have demon-
strated the power of the embedded MC-net representation with re-
spect to expressivity and conciseness. In the next two sections we
will discuss its computational properties with respect to calculating
the Shapley value in games with externalities.

4. SHAPLEY VALUE FOR GAMES WITH
EXTERNALITIES

Since Shapley’s original work, many refinements and modifications
to his value have been proposed (see, e.g., [23]). Two of these
extensions are directly related to games with externalities:

• One research direction focused on the problem of generaliza-
tion, i.e., defining a value which can be computed for any a
priori known coalition structure and not just the grand coali-
tion. However, this so called Generalised Shapley value is
still confined to the c-games domain;

• In another direction, authors tried to extend the Shapley value
to games with externalities. Several solutions to this prob-
lem of extension have been proposed, each based on different
assumptions. These solutions are called Extended Shapley
values.
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Now, whereas the generalization of the Shapley value is widely
accepted, this is not yet the case for the Extended Shapley val-
ues. In this context, McQuillin has recently proposed a Shapley
value for games with externalities that encompasses characteristics
of both Generalized and Extended Shapley values [13]. In particu-
lar, he showed that the widely accepted solution to the problem of
generalization forces a unique solution to the problem of extension,
which he calls the Extended, Generalized Shapley value (EGSV).
This value is not only unique but has a powerful property: namely,
that all the other extended values considered in the literature asymp-
totically converge to it.

Before we formalize this concept, for any set T ⊆ π, let us
define +T , :=

⋃
A∈T A. For instance, if T = {{a1}{a2}} ⊆ π1

then +T , = {a1a2}. Now, EGSV is defined as follows [13]:

Definition 4.1 (Extended, Generalised Shapley value)
Given w ∈ W and (C,π) ∈ M , the EGSV of w, denoted by, χ(w)
is a game in partition function form defined as:

χ(w)(C,π) :=
∑

C∈T⊆π

(|T |− 1)!(|π|− |T |)!
|π|!

(
v
(
"T #

)
−v

(
"T\{C}#

))

, where v(S) := w(S, {S,N\S}).

In words, to compute the EGSV of an embedded coalition (C,π),
one should construct a game wπ in a characteristic function form,
of which the players are the coalitions from the a priori coalition
structure π and the payoffs are given by: wπ(T ) := w

(
+T ,,

{
+T ,,

+π\T ,
})

for all T ⊆ π. Now, by computing in the game wπ the
conventional Shapley value for player C, we obtain χ(w)(C,π).
Figure 1 depicts the process of computing the EGSVs for a coali-
tional game w represented with a partition function. There are four
agents in this game, N = {a1, a2, a3, a4}, and the a priori coali-
tion structure is π = {{a1}{a2}{a3a4}}.

It should be underlined that EGSVs can be computed for all
(C,π) in game w. These values create themselves a game in par-
tition function form, which we will denote χ(w). The following
example demonstrates how to compute χ(w) for the game consid-
ered in Example 2.3:

Example 4.2 (EGSVs computed from the partition function)
Let us compute EGSVs for a priori coalition structure π2 in the
game with externalities from Example 2.3. We construct a c-game
wπ2 with two players {a1a2} and {a3}. The characteristic func-
tion for this game is obtained from w in the following way:

wπ2({{a1a2}}) = w({{a1a2}},π2) = 1;
wπ2({{a3}}) = w({{a3}},π2) = 2;
wπ2({{a1a2}, {a3}}) = w({{a1a2a3}},π5) = 2.

The EGSVs for coalitions in π2 in game w are conventional
Shapley values computed from game wπ2 . These are:

χ(w)({a1a2},π2) = Sh{a1a2}(wπ2) =
1
2 ;

χ(w)({a3},π2) = Sha3(wπ2) =
3
2 .

Similar computations for the remaining coalition structures, i.e.,
π1, π3, π4 and π5, yield:

χ(w)({a1},π1) = 1
3 , χ(w)({a2},π3) = 1

2 ;
χ(w)({a2},π1) = 1

3 χ(w)({a2, a3},π4) = 3
2 ;

χ(w)({a3},π1) = 4
3 χ(w)({a1},π4) = 1

2 ;
χ(w)({a1, a3},π3) = 3

2 χ(w)({a1, a2, a3},π5) = 2.
It is easy to see that χ(w) is a game in partition function form

and it can be presented using the notion from Example 2.3 as:
{{a1, 1

3}{a2, 1
3}{a3, 4

3}} {{a1, 1
2}{a2a3, 3

2}}
{{a1a2, 1

2}{a3, 3
2}} {{a1a2a3, 2}}

{{a1a3, 3
2}{a2, 1

2}}

Figure 1: An example of computing the EGSV

McQuillin [13] shows that, in addition to efficiency, symme-
try, null-player, linearity, the EGSV meets the following set of
additional axioms: weak monotonicity, the rule of generalisation,
strong linearity, cohesion, generalised null-player and recursion.
We will take a closer look at two of them.5 Specifically, strong
form of linearity is enforced by the rule of generalisation and the
linearity axiom and is defined as:

χ(γw + γ′w′)(C,π) = γχ(w) + γ′χ(w′), γ, γ′ ∈ R (7)

This follows from the simple observation that the operation w →
λw for a given λ ∈ Λπ is linear.

The recursion axiom is fundamental to McQuillin’s extension:
χ(χ(w)) = χ(w).

The basic meaning of this axiom is that the solution should be sta-
ble, i.e., the EGSVs of any game should be the EGSVs of them-
selves. The intuition behind this requirement is as follows. If the
χ(w) is to be considered as a solution, then applying solution to
the solution, i.e., χ(χ(w)) should not alter it.

Example 4.3 (Recursion of χ(w))
It is easy to check that computing the EGSVs for the χ(w) from
Example 4.2 results in χ(w).

McQuillin proves very interesting result concerning recursion
axiom. This result relates other concepts of Shapley value for games
with externalities to his approach:

Theorem 4.4 (McQuillin [13, Theorem 4])
Let χ be a solution which satisfies: efficiency, symmetry, linearity,
cohesion, and generalised null–player or equivalently: efficiency,
symmetry, null–player, linearity, and the rule of generalisation and
if the following condition is fulfilled:

∀(C,π)∈M,|π|>2 χ(wβ
(C,π))(C,π) > − |π|− 1

|π|
5For more details on all the axioms see [13].
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then the sequence {χt}∞t=1, where χ1 = χ,χ2 = χ ◦ χ,χ3 =
χ ◦ χ ◦ χ, . . . converges to the EGSV.

The extended values proposed by [5, 12, 16, 20, 21] satisfy the
requirements of Theorem 4.4 and, thus, after the iteration proce-
dure, converge to the EGSV. Finally, McQuillin shows that his
value is the only possible value that meets all the axioms consid-
ered:
Theorem 4.5 (McQuillin [13, Theorem 2])
Axioms efficiency, symmetry, linearity, weak monotonicity, cohe-
sion, generalised null-player and recursion or equivalently: ef-
ficiency, symmetry, null–player, linearity, weak monotonicity, the
rule of generalisation and recursion are satisfied by χ if and only if
χ is the EGSV.

In the next section we will evaluate the efficiency of embedded
MC-nets with respect to computing EGSVs.

5. COMPUTING EGSV WITH EMBEDDED
MC-NETS

As mentioned in Section 3, our computational results are derived
for a special case of the embedded MC-net representation that has
only positive and/or negative literals in the embedded rules. Specif-
ically, we will present two algorithms for computing EGSVs for an
a priori coalition structure π in a game with externalities w that
is represented with embedded MC-nets. Both algorithms are illus-
trated in Figure 2 and briefly described below:

(a) As we know from Section 4, EGSVs are computed by con-
structing a c-game wπ with players being the coalitions in
π and computing the (conventional) Shapley values for this
game. These values are equal to the EGSVs for π in game
w (i.e. χ(w)(C,π)). Having this in mind, we develop a
linear-time procedure for transforming the embedded MC-
net representation of w to the basic MC-net representation
of wπ using the same number of rules. This will allow us
to take advantage of the fact that the Shapley value can be
computed using the basic MC-nets in time linear in the num-
ber of rules. Now, since the transformation procedure and
the Shapley value calculation both require a linear number of
operations, it follows that our proposed algorithm of calculat-
ing χ(w)(C,π) is also linear. The scheme of this algorithm
is illustrated in Figure 2(a) and described in more detail in
Section 5.1;

(b) In the second algorithm, depicted in Figure 2(b) and described
in Section 5.2, we transform w into χ(w). This transforma-
tion also takes time linear in the number of embedded rules
and χ(w) is made of twice as much embedded rules as w.
The game χ(w) can then be used to compute EGSVs for any
particular π. In contrast to algorithm (a), the transforma-
tion in algorithm (b) is done only once. After that, for any
a priori coalition structure, the EGSVs can be be obtained
straight away from χ(w). On the other hand, algorithm (b)
requires storing twice as many embedded rules compared to
algorithm (a).

Before we introduce both algorithms we need the following lemma
and definition. The lemma directly follows from the strong linear-
ity axiom (7) that is met by the EGSV:
Lemma 5.1
Let w be a game represented with embedded MC-nets (N, ER).
Furthermore, let wri be the game represented with only one embed-
ded rule rulei ∈ ER. The EGSVs for w, i.e. χ(w), are equal to the
sum of the EGSVs computed for every wrulei , where rulei ∈ ER.

Figure 2: Algorithms of computing EGSVs from our embedded
MC-net representation. TR1 and TR2 denote the first and the
second transformation procedures, respectively.

The above lemma means, in particular, that, in what follows, we
can focus on a single, representative embedded rule instead of a set
of such rules. All results concerning derivation of the EGSVs for a
game described by a single rule extend to any game described by a
set of rules.

Definition 5.2 (Division by a coalition structure)
Let π be a coalition structure made of agents in N . We will say that
π divides two subsets A and B of N if there exists T ⊂ π such that
A ⊆ +T , and B ⊆ N\+T ,.

For instance, π = {{a1a2a3}{a4a5}} divides A = {a1a3} and
B = {a4}. Clearly, for two subsets A and B to be divided by a
partition π it is necessary to be disjoint.

5.1 Algorithm computing EGSV for an a priori
coalition structure

Let w be a game with externalities given by a single embedded rule
as defined in (4). Furthermore, let π = {C0, . . . , Cm} be the a
priori coalition structure and let us denote by Nπ = {aC1 , . . . ,
aCm} a set of players in game wπ . Now, we propose the following
procedure to transform the embedded rule (4) that describes the
game w into a basic rule that describes the game wπ:

Step 1 (a) if the embedded rule is of the form p0 → V alue, i.e. it is
a basic rule with only positive literals, then the transformed
rule is:

p0 → V alue, (8)
where p0 denotes a conjunction of all aC ∈ Nπ :C∩P0 0= ∅.

(b) Otherwise go to Step 2.

Step 2 (a) if π divides P0 ∪
⋃

i>0 P
′
i and P ′

0 ∪
⋃

i>1 Pi then we
transform (4) into the following basic rule:

p ∧ ¬p′ → V alue, (9)
where p and ¬p′ are conjunctions of agents from Nπ with
only positive and only negative literals, respectively, and p
contains agents aC ∈ Nπ : C ∩ (P0 ∪

⋃
i≥1 P

′
i ) 0= ∅ and

¬p′ contains agents aC ∈ Nπ : C ∩ (P ′
0 ∪

⋃
i≥1 Pi) 0= ∅.

(b) otherwise the transformed rule is ∅ → 0.

Theorem 5.3 (Computing wπ from embedded MC-nets)
Given game w described by a single embedded rule (4) and an a
priori coalition structure π, the transformed rule produced by the
above procedure describes the c-game wπ .

PROOF. The values of the c-game wπ are assigned from the
coalition structures in game w that contain no more than two coali-
tions (see Section 4 for more details). Based on this, our procedure
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involves identifying, and then transforming, the rules that are met
by the coalitions embedded in these coalition structures. Now:

Step 1. If the rule describing game w is a basic rule with only posi-
tive literals then it will always be met by at least the grand coalition.
Thus, it should be transformed and included in the basic MC-nets
representation of wπ . This transformation goes as follows. Since
players in wπ are coalitions from π, we replace every agent ai in
expression p0 with the player aC ∈ Nπ such that ai ∈ C∩P0 0= ∅.
Intuitively, since every coalition (C,π) is always considered in wπ

as a single player aC , then even if a single agent ai from C appears
in p0, the contribution of aC is the same as the contribution of ai.
Hence, aC appears in p0.

Step 2. Recall that we are interested in embedded rules met by
(C,π) : π ≤ 2, i.e. π is either of the form {C,C′} or it is the
grand coalition. If π divides sets P0 ∪

⋃
i>0 P

′
i and P ′

0 ∪
⋃

i>1 Pi

then, following the definition of the embedded MC-nets, agents in
these sets will belong to two disjoint coalitions. This means that
the embedded rule (4) will apply to coalition structures of the form
{C,C′}. Similarly to Step 1, we replace agents from N that are in
either P0 ∪

⋃
i>0 P

′
i and P ′

0 ∪
⋃

i>1 Pi with agents from Nπ . The
division requirement ensures that this replacement can always be
done. Furthermore, the form of the basic rule p ∧ ¬p′ → V alue
guarantees that V alue will be assigned to only those coalitions that
contain all the agents in p and non of the agents in p′. In other
words, the meaning of the basic rule (9) corresponds to the meaning
of the embedded rule (4).

Example 5.4 (Computing wπ from embedded MC-nets)
Let us consider game w described with the three embedded rules
in Example 3.2 and let π2 be an a priori coalition structure. The
first and the third rule are basic rules. Following Definition 5.2, π2

divides the second rule which is an embedded rule. Having in mind
that Nπ = {aC1aC2}, where aC1 = {a1a2} and aC2 = {a3},
these three rules, due to Theorem 5.3, should be transformed into
basic rules describing wπ2 as follows:

a3 → 1 ⇒ aC2 → 1;
a3|a1 ∧ a2 → 1 ⇒ aC2 ∧ ¬aC1 → 1;
a1 ∧ a2 → 1 ⇒ aC1 → 1.

Now, we can compute χ(w)({a1a2},π2) and χ(w)({a3},π2)
from the basic rules describing wπ2 . This is done by applying the
linear method proposed by Ieong and Shoham (see Box 1) which
yields the following values: ShaC1

(wπ2) =
1
2 and ShaC2

(wπ2) =
3
2 . These Shapley values are the EGSVs for (C1,π2) and (C2,π2);
thus χ(w)({a1a2},π2) = 1

2 and χ(w)({a3},π2) = 3
2 . See how

these values match those computed from the partition function game
representation in Example 4.2. This completes our first algorithm.

5.2 Algorithm computing the game of EGSVs
To compute χ(w) from game w that is represented with embed-

ded MC-nets, we will need a new type of patterns which has the
following form:

ai1 ∨ · · · ∨ aik |π divides A and B, (10)

where A and B are disjoint sets of agents. An embedded coalition
(C,π) meets the requirement of a rule with this pattern if π divides
A and B and at least one of the agents ai1 , . . . , aik belongs to C. If
C1 = {aj1 , . . . , ajl} is a coalition of agents then C∨

1 will denote
the pattern aj1 ∨ · · · ∨ ajl , if C2 = {ah1 , . . . , ahm} is another
coalition of agents then C∨

1 ∨C∨
2 := {aj1 ∨ · · ·∨ajl ∨ah1 ∨ · · ·∨

ahm}. We use the convention that the pattern ∅∨ is not met by any
coalition.

Now, we propose our second transformation procedure that trans-
forms embedded rules describing w into rules of the type (10) de-
scribing χ(w). Let w be game with externalities described with a
single embedded rule (4). Game χ(w) is given by the following
two exclusive rules:
P∨

0 ∨
∨
i≥1

P ′∨
i | π divides P0 ∪

⋃
i≥1

P ′
i and P ′

0 ∪
⋃
i≥1

Pi → V · D(C,π),
(11)

P ′∨
0 ∨

∨
i≥1

P∨
i | π divides P0 ∪

⋃
i≥1

C′
i and P ′

0 ∪
⋃
i≥1

Pi → V · D(C,π)′,

where V denotes V alue and coefficients D and D′ are defined as
follows:
D(C,π) := 1

r(r+s
r )

, r := |{C ∈ π : C ∩ (P0 ∪
⋃
i≥1

P ′
i ) 0= ∅}|

(12)
D(C,π)′ := −1

s(r+s
s )

, s := |{C ∈ π : C ∩ (P ′
0 ∪

⋃
i≥1

Pi ) 0= ∅}|

if both r and s are non zero. However, if r = 0 then D(C,π) = 0
and if s = 0 then we put D(C,π)′ = 0. if both r and s are non
zero. However, if r = 0 then D(C,π) = 0 and if s = 0 then we
put D(C,π)′ = 0.

Theorem 5.5 (Computing χ(w) from embedded MC-nets)
If w is given by a rule of the form (4) then χ(w) is given by two
embedded rules of the form (11).

PROOF. Let (C,π) be an embedded coalition. From definition
we know that the value game χ(w)(C,π) is the Shapley value
of aC in the game wπ . If w is given by the embedded rule (4)
and π divides P0 ∪

⋃
i≥1 P

′
i and P ′

0 ∪
⋃

i≥1 Pi then wπ is given
by the rule (9), otherwise wπ is given by ∅ → 0. Let us now
assume that π divides P0 ∪

⋃
i≥1 P

′
i and P ′

0 ∪
⋃

i≥1 Pi. Then
χ(w)(C,π) = ShaC (wπ) and, according to Ieong and Shoham
(see Box 1), it is equal to ValueD(C,π) if C∩(P0∪

⋃
i≥1 P

′
i ) 0= ∅

or ValueD(C,π)′ if C ∩ (P ′
0 ∪

⋃
i≥1 Pi) 0= ∅ or 0 otherwise.

The embedded coalition (C,π) can match at least one of the
rules (11). Then its value, according to (11) is equal to ValueD(C,π)
or ValueD′(C,π) depending which of the exclusive rules (11) ap-
plies. Thus, it follows that χ(w) is given by the rule (11).

Let w be a game represented by an embedded MC-net (N, ER).
Then the EGSVs of w is equal to the sum of the EGSVs over the
embedded rules (Lemma 5.1), and thus the game χ(w) can be rep-
resented by aggregating all the rules (11) transformed from all the
rules in ER.

Example 5.6 (Computing χ(w) from embedded MC-nets)
Let us consider the same game and the a priori coalition structure
as in the previous example. According to the Theorem 5.5 χ(w)
can be represented by the following set of rules:

{a3} → D1(C,π);

{a3} | π divides {a1, a2} and {a3} → D2(C,π);

{a1 ∨ a2} | π divides {a1, a2} and {a3} → D′
2(C,π);

{a1 ∨ a2} → D3(C,π).

Now, using the transformed rules from Example 5.6, we will com-
pute EGSVs for π2. Coalition structure π2 divides {a1, a2} and
{a3} thus all three rules will apply. We obtain:

χ(w)({a1, a2},π2) =

=0
︷ ︸︸ ︷
D1({a1, a2},π2)+

=0
︷ ︸︸ ︷
D2({a1, a2},π2)

+D3({a1, a2},π2)︸ ︷︷ ︸
=1

2

=
1

2
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χ(w)({a3},π2) =

=1
︷ ︸︸ ︷
D1({a3},π2)+

=1
︷ ︸︸ ︷
D2({a3},π2)

D′
2({a3},π2)︸ ︷︷ ︸

=− 1
2

+D3({a3},π2)︸ ︷︷ ︸
=0

=
3

2

6. CONCLUSIONS
In this paper we propose a logic-based representation for coalitional
games with externalities, called embedded MC-nets. We demon-
strate that it is fully expressive and at least as concise as the con-
ventional partition function game representation. We also show that
it can be exponentially more concise. This result also extends to the
recently proposed representations of Michalak et al. [15]. We test
the efficiency of the embedded MC-nets by considering the prob-
lem of computing the Extended, Generalized Shapley value, which
adapts the Shapley notion to games with externalities. While the
computation of this value always requires an exponential number
of operations when the conventional partition function game repre-
sentation is used, and this is due to the size of this representation;
we demonstrate that it can be computed with our representation in
time linear in the number of embedded rules. We propose two al-
ternative algorithms to perform these computations.

There are two obvious extensions of our work. Firstly, in the
spirit of Elkind at al. [7], the embedded rules with more complex
Boolean expressions can be considered. Secondly, we are keen on
testing the properties of the embedded MC-net representation with
respect to another solution concepts of cooperative games (see [27]
for an overview). The main of them include the core, already men-
tioned in the introduction, as well as the stable sets, the bargaining
set, the kernel and the nucleolus. The computational properties of
the bargaining set and the kernel for games represented in a con-
cise manner have been recently studied in [8]. In general, similarly
to the Shapley value and the nucleolus, the solution to this two
concepts always exists. However, their specific feature is that a
solution may contain multiple different divisions of payoff among
agents [19]. Nevertheless, it should be underlined that the Shapley
value is a normative solution concept, whereas all the other listed
above are positive ones (as they refer to various notions of stability
based on interests of individual agents). The first step of a poten-
tial analyse should be to extend notions of these positive solution
concepts to coalitional games with externalities. In fact, as the ex-
ample of the Shapley value shows, it may be a challenging task by
itself. As far as the core is concerned, such extensions have been
already considered in the literature (see [10] for a short but infor-
mative overview).
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