
A Logic of Revelation and Concealment

Wiebe van der Hoek Petar Iliev Michael Wooldridge
Department of Computer Science

University of Liverpool, UK
{wiebe, pvi, mjw}@liverpool.ac.uk

ABSTRACT
The last decade has been witness to a rapid growth of interest in
logics intended to support reasoning about the interactions between
knowledge and action. Typically, logics combining dynamic and
epistemic components contain ontic actions (which change the state
of the world, e.g., switching a light on) or epistemic actions (which
affect the information possessed by agents, e.g., making an an-
nouncement). We introduce a new logic for reasoning about the
interaction between knowledge and action, in which each agent in
a system is assumed to perceive some subset of the overall set of
Boolean variables in the system; these variables give rise to epis-
temic indistinguishability relations, in that two states are consid-
ered indistinguishable to an agent if all the variables visible to that
agent have the same value in both states. In the dynamic compo-
nent of the logic, we introduce actions r(p, i) and c(p, i): the effect
of r(p, i) is to reveal variable p to agent i; the effect of c(p, i) is to
conceal p from i. By using these dynamic operators, we can repre-
sent and reason about how the knowledge of agents changes when
parts of their environment are concealed from them, or by revealing
parts of their environment to them. Our main technical result is a
sound and complete axiomatisation for our logic.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—Modal Logic; I.2.11 [Distributed Artificial Intel-
ligence]: Multiagent Systems

General Terms
Theory

Keywords
Modal logic, epistemic logic, dynamic epistemic logic, interpreted
systems, knowledge and change

1. INTRODUCTION
Over the past decade, there has been a rapid growth of interest in
logics intended for reasoning about the interaction between knowl-
edge and action (see, e.g., [3] for extensive references). Such Dy-
namic Epistemic Logics make it possible to investigate many dif-
ferent dimensions along which action can interact with knowledge.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

For example, one recent and very active area of research at the in-
terface of knowledge and action is the study of how communicative
utterances such as public announcements change the knowledge of
those that witness the utterance [3, 9].

Our aim in the present paper is to introduce a logic that is in-
tended for representing an aspect of the relationship between know-
ledge and action that has not hitherto been considered: how the
knowledge of agents is changed by concealing parts of their en-
vironment from them, and revealing parts of their environment to
them. In more detail, we are concerned with scenarios in which we
have a set of agents, where each agent i is associated with a set of
Boolean variables Vi, the idea being that agent i can completely and
correctly perceive the value of the variables in Vi. We refer to Vi

as the visibility set of agent i. To represent what an agent knows in
such a scenario, our logic uses conventional S5 epistemic modali-
ties Ki, where Kiϕ means that agent i knows ϕ [4]. The semantics
of epistemic modalities is defined via possible worlds, with the in-
terpretation that two states s and s′ are indistinguishable to agent i
if the variables Vi have the same value in s and s′. To model rev-
elation and concealment, our logic has dynamic modalites [7], in
which we have atomic actions of the form r(p, i) and c(p, i), mean-
ing reveal p to i and conceal p from i, respectively. The effect of
performing the action r(p, i) is that the variable p is added to i’s
visibility set; and the effect of performing the action c(p, i) is that
the variable p is removed from i’s visibility set. For example, the
following formula of our logic asserts that i doesn’t know p∧q, but
after revealing p to i, it does:

¬Ki(p ∧ q) ∧ [r(p, i)]Ki(p ∧ q).

The remainder of the paper is structured as follows. We intro-
duce the logic in the following section, beginning with an informal
overview of the language, and some example formulae and their
intended meaning. We then go on to present the formal syntax and
semantics of the logic, and consider a detailed example, showing
how the logic can be used to axiomatise properties of a multi-agent
voting scenario. We then present the main technical result of the
paper: an axiomatisation of the logic, for which we prove com-
pleteness using a type of canonical model construction. We con-
clude with some comments and issue for future work. Throughout
the paper we assume some familiarity with modal, dynamic, and
epistemic logics (see, e.g., [4, 6, 7, 2]).

2. THE LOGIC
We will begin with an informal overview of the logic, before pre-
senting the formal syntax and semantics.

2.1 Overview
The Logic of Revelation and Concealment (LRC) is a combination

of the well-known multi-agent epistemic logic S5n [4] with a spe-
cialised dynamic logic component [7], which is intended to allow
us to reason about the effects of revealing variables to agents, and
concealing variables from them. The language of LRC is parame-
terised by the following basic sets:

• A setN = {1, . . . , n} of agents;

• A set Φ = {p, q, . . .} of Boolean variables;

• A finite set of Vis = {v1, . . . , vm} of visibility variables;

• A set A = {α, α′, . . .} of state changing actions;

• A set RC = {r(v, i), c(v, i)}, where i ∈ N , v ∈ Vis, of
revelation and concealment actions; and

• a set of variables SEES = {seesi(v) | i ∈ N , v ∈ Vis}.

The language contains the usual Boolean operators of classical logic
(∧, ∨, ¬, →, ↔). When we refer to propositional atoms or vari-
ables we mean Φ ∪ Vis ∪ SEES. Formulae over those variables
using only Boolean operators are called objective. To represent
the knowledge possessed by agents in the system, we use indexed
unary modalities Ki, where i ∈ N , so that Kiϕ is intended to mean
“agent i knows ϕ”. The semantics of epistemic modalities is based
on the interpreted systems model of knowledge [4]. Each agent
i ∈ N is associated with a subset Vi of the variables Vis, with the
idea being that the agent i is able to completely and correctly per-
ceive the values of the variables Vi, but is not able to perceive the
values of any other variables. We call Vi the visibility set of agent i.
Thus, in the terminology of interpreted systems, Vi represents the
local state of i. So, more precisely:

Kiϕ means that, given the background knowledge of
the agent and the variables Vi that he currently sees,
the agent i can infer ϕ.

Note that the fact that v ∈ Vi does not imply that i “controls” or has
“write access” to i (cf. [11, 5, 10]): it simply means that i is able
to see the value of v. Thus it could be that two different agents are
able to see some of the same variables (i.e., we might have v ∈ Vi

and v ∈ Vj for i 6= j). We require Vis to be finite for two reasons.
The first is technical and it is reflected in the use of a particular ax-
iom, (Ax37), in our axiomatic system, described later in the paper.
This axiom helps us to enforce a certain property of the canonical
model for our logic. The second reason is purely philosophical. If
the agents we are interested in modelling have bounded observa-
tional and reasoning capabilities, then they can surely observe only
finitely many features of their environment.

Within the object language, we can refer to the variables that
an agent sees by using the primitive operators seesi(v), with the
obvious meaning.

To represent actions and the effect that actions have on the sys-
tem, we use a dynamic logic component, with program modalities
[π] (“after all executions of program π. . . ”) and 〈π〉 (“after some
execution of program π. . . ”). Programs π within dynamic modal-
ities are constructed from atomic actions. Atomic actions in our
language are of two types. First, we have a setA of state changing
actions, typically denoted α, α′, . . ., which are essentially the same
as atomic actions in conventional propositional dynamic logic [7].
The effect of performing such an action is to change the state of
the system; we allow for the possibility that state changing actions
have multiple possible outcomes.

In addition to the conventional PDL-style state-changing actions
A, in LRC we have a set RC of two additional types of atomic ac-
tions, r(v, i) and c(v, i), where i ∈ N and v ∈ Vis. The action

r(v, i) is read “reveal v to i”, while c(v, i) is read “conceal v from
i”. The effect of performing r(v, i) is to add the variable v to agent
i’s visibility set, while the effect of c(v, i) is to remove v from i’s
visibility set. These two atomic programs thus directly manipulate
an agent’s local state, and since what an agent knows is determined
solely by its local state, they can also change what an agent knows.
Notice, however, that actions r(v, i) and c(v, i) do not change the
actual state of the system. In this sense, state changing actions A
and visibility actions r(v, i), c(v, i) can be understood as causing
changes to an agent’s knowledge along two different dimensions:
visibility actions r(v, i) and c(v, i) change an agent’s visibility set
but do not change the state of the system, while actions A change
the state of the system but do not change an agent’s visibility set.

Atomic actions are combined into complex programs using the
usual program constructs of dynamic logic [7]: π1;π2 means “ex-
ecute program π1 and then execute program π2” (sequence); and
π1 ∪π2 means “either execute program π1 or execute program π2”
(non-deterministic choice). LRC allows only a limited form of iter-
ation, as follows. If π is a program that does not contain an element
ofA (i.e., all sub-programs of π are built from the basic reveal and
conceal actions in RC), then π∗ means “repeatedly execute π an un-
determined number of times”. For technical reasons, (discussed in
more detail below), we choose to omit the standard dynamic logic
“test” operator, ϕ?, from the logic LRC.

Finally, and again for somewhat technical reasons, we include
within LRC a universal modality ϕ. The expression ϕ means
“in all states of the model, fixing the current visibility descriptions,
ϕ holds”.

2.2 Some Example Formulae
Let us see some examples of formulae of our logic.

p→ [r(p, i)]Kip

This formula says that, if p is true, then after revealing the variable
p to i, agent i will know that p is true. This is in fact a valid formula
of LRC: the effect of revealing a Boolean variable to an agent will
be that the agent knows the value of that Boolean variable.

[α]p→ [r(p, i);α]Kip

This formula says that if after doing α, the variable p is true, then if
we reveal p to i and then do α, then i will know that p is true. This
is in fact also a valid valid formula of LRC, for all α ∈ A.

Kir ∧ [c(p, i) ∪ c(q, i)]¬Kir

This formula says that i knows r, but if we choose to conceal either
p or q, then i will not know r.

〈r(v, i)∗〉ϕ↔ ϕ ∨ 〈r(v, i)〉ϕ

This (valid) formula says that ϕ is true after some undetermined
number of executions of the r(v, i) action if, and only if, ϕ is true
now or after at most one repetition of the action r(v, i).

Note that the following is not a well-formed formula of LRC.

[(r(v, i) ∪ (α1;α2))∗]ϕ

This is because the iteration operator “ ∗ ” is here applied to a pro-
gram that contains state changing actions, i.e., elements of A. We
impose this restriction on iteration mainly for technical reasons.
Having such formulae would greatly complicate any completness
proof for an axiomatic system for LRC, while hiding the main idea
behind some difficult technical details; moreover, as is well known,
a strong completeness proof is out of reach in this situation. Note
also that we do not have programs of the form ϕ?. This is justi-
fied by the following reasoning. We want to formulate a logic that

π ::= α atomic state changing action
| r(v, i) reveal v to i
| c(v, i) conceal v from i
| π;π sequence
| π ∪ π non-deterministic choice
| π∗ repeat π some finite number of times

(π must contain no actions A)
| skip do nothing

ϕ ::= > truth constant
| p propositional atoms
| seesi(v) agent i sees variable v
| ¬ϕ negation
| ϕ ∨ ϕ disjunction
| Kiϕ epistemic box modality
| [π]ϕ dynamic box modality
| ϕ universal modality for fixed visibility structure

Figure 1: Syntax of programs (π) and formulae (ϕ). Terminal
symbols are interpreted as follows: α ∈ A is an atomic state
changing action, p ∈ Φ ∪ Vis is an arbitrary Boolean variable,
v ∈ Vis is a visibility variable, and i ∈ N is an agent.

can be used for reasoning about the knowledge that can be obtained
only from directly revealing features of the environment. Since the
agents “know" the program that is being executed, performing a
test on the value of a variable that is not visible to a certain agent
can increase the agent’s knowledge. This increase, however, is not
because of a direct observation of the variable.

We define the syntax of programs π and formulae ϕ of the logic
LRC by mutual induction through the grammar in Figure 1.

2.3 Models
(The reader may benefit from reading this section together with
Example 1, below.) In what follows, we will assume the setsN , Φ,
and Vis are fixed, with each respective set playing the role described
above.

Now, as we explained earlier, every agent i ∈ N is assumed to
be able to completely and correctly see a subset Vi ⊆ Vis. That is,
agent i will know the value of the variables in Vi; if p 6∈ Vi , then
i does not necessarily know the value of p. We refer to Vi as the
visibility set for agent i, and we refer to a tuple V = (V1, . . . ,Vn),
in which we have one visibility set for each agent, as a visibility
structure. Notice that we place no requirements on visibility sets
Vi or visibility structures (V1, . . . ,Vn). It could be that Vi = Vj, for
example, or even that V1 = · · · = Vn = ∅ (although this latter case
would not be very interesting). Let V denote the set of visibility
structures.

Next, we assume a set S = {s1, . . . , sm} of states, and a standard
Kripke valuation function θ : S → 2Φ∪Vis, which gives the set of
variables θ(s) true in each state s ∈ S. Notice that θ gives a value
both for variables in Φ and variables in Vis.

For each state changing action α ∈ A, we are assumed to have
a binary relation Rα ⊆ S × S, capturing the effects of α. The
interpretation of this relation is more or less standard for dynamic
logic [7]: if (s, s′) ∈ Rα, then this means that state s′ could result
as a possible effect of performing action α in state s.

Putting these components together, a model, m, (over the sets
fixed above) is a structure

m = 〈S,V, {Rα},R3, θ〉,

where S is a state set, V ∈ V is a visibility structure, {Rα} is a
collection of accessibility relations for the state changing actions in
A, R3 is the universal relation on S, and θ is a Kripke valuation

function. LetM denote the set of models.
A pointed model is a pair (m, s), where m ∈ M is a model

and s is a state in m. Below, we will define the satisfaction of
formulae with respect to pointed models. Let P(M) be the set
of all pointed models over the set of modelsM. A configuration
f = 〈S, {Rα},R3, θ〉 abstracts away from the specific visibility
structure V . The set Mf is the set of all models over the configura-
tion f .

Where s and s′ are two states in S, we write s ∼i s′ to mean that
the states s and s′ agree on the values of variables Vi, i.e.,

s ∼i s′ iff θ(s) ∩ Vi = θ(s′) ∩ Vi.

The reader will note that the relations ∼i defined in this way are
equivalence relations, and we will later use these relations to define
a conventional (S5) interpretation for knowledge modalities, cf. [4].

2.4 Dynamic Accessibility Relations
We must now define the accessibility relations Rπ , used to give a se-
mantics to dynamic modalities [π] (cf. [6, p.87]). In Propositional
Dynamic Logic (PDL), program accessibility relations Rπ are bi-
nary relations over the set S of system states. In our logic, they are
slightly more complex: they are binary relations over the set P of
pointed models (m, s). No actions in our framework will change a
configuration: state changing actions (as the name suggests) change
a state, while revealing and concealing actions RC change the visi-
bility structure, and hence the model. We will define these relations
in three stages: first we define the relations for atomic revelation
and concealment programs r(p, i) and c(p, i), then we define the
form of accessibility relations for state changing actions, and then
finally, we define the accessibility relations for complex programs
with respect to these.

Assume m = (S,V, {Rα},R3, θ) and m′ = (S ′,V ′, {R′α},
R′3, θ′) are models and s, s′ are states such that s ∈ S and s′ ∈ S ′.
Then

((m, s), (m′, s′)) ∈ Rr(v,i) iff:

1. s′ = s,S ′ = S,R′ = R,R′3 = R3 and θ′ = θ
Revealing v to i does not change the current point, the state
set, any of the accessibility relations, or the truth of atomic
propositions.

2. V ′i = Vi ∪ {v} and for all j 6= i, V ′j = Vj

Atom v becomes visible for i after r(v, i) has been executed,
but otherwise, i’s visibility set is unchanged and the visibility
set of every other agent remains unchanged.

We define the relationsRc(v,i) in a similar way:

((m, s), (m′, s′)) ∈ Rc(v,i) iff:

1. s′ = s,S ′ = S,R′ = R,R′3 = R3 and θ′ = θ
Concealing v from i does not change the current point, the
state set, any of the accessibility relations, or the truth of
atomic propositions.

2. V ′i = Vi \ {v} and for all j 6= i, V ′j = Vj

Atom v becomes invisible for i after c(v, i) has been exe-
cuted, but otherwise, i’s visibility set is unchanged and the
visibility set of every other agent remains unchanged.

The relationRskip is the identity, i.e.,:

Rskip = {((m, s), (m, s))}.

Let Rr(p,i)∗ = (Rr(p,i))
∗ and Rc(p,i)∗ = (Rc(p,i))

∗, i.e., Rr(p,i)∗ is
the reflexive and transitive closure of the relation Rr(p,i); similarly
forRc(p,i)∗ .

p, q

p, q

¬p, q

β

β

¬p, ¬q

s

p, q

p, q

¬p, q

β

β

¬p, ¬q

p, q

p, q

¬p, q

β

β

¬p, ¬q

s�

s��

c(q, i)

r(p, i)

m

m�

m��

¬seesip ∧ seesiq

seesip ∧ seesiq

seesip ∧ ¬seesiq

α

α

α

Figure 2: Three models.

EXAMPLE 1. Consider the models m,m′ and m′′ from Figure 2,
whereN = {i} and Vis = {p, q}. The three models are connected
by a r(p, i) and a c(q, i) transition, respectively. Note they are all
models over the same configuration (i.e., the only difference be-
tween the models is the visibility structure). Points in a model in
the same ∼i-equivalence class have the same ‘colour’ (in m′, the
state s′ induces the equivalence class {s′}). Since the visibility de-
scriptions are global, they are given at the top of each model. We
have the following (for all ϕ), where the reader may like to take a
peek at the definition of entailment at the end of this section:

1. (m, s) |= Kiq ∧ ¬Kip ∧ (ϕ↔ [α]Kiϕ)
The agent knows q but not p, and the action α does not
change his knowledge.

2. (m, s) |= 〈r(p, i)〉(Ki¬p ∧ [α]Kip)
After revealing p to i, the agent knows p is false, but also that
p would become true after α.

3. (m, s) |= 〈r(p, i);α; c(q, i)〉Ki[β]Ki(p↔ q)
It is possible to reveal p to i, then do α and then conceal q
from i so that afterwards, the agent knows that all executions
of β lead to states where the agent is sure that p and q are
equivalent.

Note that the and 3 operators enable us to quantify over states
that are present in a model m. We have for instance in (m, s) that

(¬seesi(p) ∧♦[α ∪ β]⊥): what an agent sees is the same in
each snapshot, and in m, there is a state where neither α nor β can
be performed.

We will now prove that the iteration operator, ∗, can in fact be
eliminated from programs in LRC. This simplifies the semantics
of the language, and greatly simplifies the completeness proof we
give later. First, we prove a proposition which shows how reveal
or conceal actions γ(v, i) can be eliminated, or moved “along” a
sequence RC-actions.

PROPOSITION 1. The following are true. Let γ(v, i), γ̂(v, i) be
either r(v, i) or c(v, i), such that γ(v, i) = r(v, i) iff γ̂(v, i) =
c(v, i).

1. Rγ(v,i)∗ = Rskip ∪Rγ(v,i);

2. Rγ(v,i) ◦ Rγ(v,i) = Rγ(v,i);

3. Rγ(v,i) ◦ Rγ̂(v,i) = Rγ̂(v,i);

4. Rr(v,i) ◦ Rr(w,k) = Rr(w,k) ◦ Rr(v,i);

5. Rc(v,i) ◦ Rc(w,k) = Rc(w,k) ◦ Rc(v,i);

6. Rr(v,i) ◦ Rc(w,k) = Rc(w,k) ◦ Rr(v,i), where i 6= k or v 6= w.

7. Rγ(v,i) ◦ Rα = Rα ◦ Rγ(v,i), where α ∈ A.

PROOF. Follows immediately from the definition of the rela-
tions Rr(v,i),Rc(v,i),Rskip.

Using the above properties, we prove that for any program built
from atomic programs in RC only, the following is true.

COROLLARY 1. Let ~αi denote a sequence of RC-programs αi1 ;
αi2 ; . . . ;αik . Let n sequences of RC-programs ~α1, ~α2, . . . , ~αn be
given, and define Σ as the set of sequences σ of RC-programs
that are made by choosing an arbitrary number of sequences from
~α1, ~α2, . . . , ~αn (each ~αi occurring at most once), and combining
them in an arbitrary order using only the operator “;”. So Σ =
{skip, ~α1, . . . , ~αn, (~α1; ~α2), . . . , (~αn; ~αn−1), (~α1; ~α2; ~α3), . . . , (~αn;
~αn−1; ~αn−2), (~α1; ~α2; . . . ; ~αn), . . . , (~αn; ~α2; . . . ; ~αn−1)}. Then

(~α1 ∪ . . . ∪ ~αn)
∗ = ∪σ∈Σσ

PROOF. The statement is best understood via an example. We
claim that if α, β ∈ RC then

(α ∪ β)∗ = skip ∪ α ∪ β ∪ (α;β) ∪ (β;α)

This follows from the fact that

(α ∪ β)∗ = skip ∪ (α ∪ β) ∪ (α ∪ β); (α ∪ β)
∪(α ∪ β); (α ∪ β); (α ∪ β)

Consider (α ∪ β); (α ∪ β); (α ∪ β). It is equivalent to

α;α;α ∪ α;α;β ∪ . . . ∪ α;β;β . . . ∪ β;β;β

Using the equivalences from Proposition 1, we see that this is actu-
ally equivalent to

α ∪ (α;β) ∪ (β;α) ∪ β.

The proof of the general statement is similar.

COROLLARY 2. Every program is equivalent to a program with-
out the operator ∗.

PROOF. This follows from Proposition 1, together with the fact
that we do not allow the star operator to be applied to programs
containing elements from A and Corollary 1.

Given the atomic relations Rα for state changing actions andRr(p,i),
Rc(p,i) for visibility actions, we obtain the accessibility relations
Rπ for arbitrary programs π as follows. Let the composition of
arbitrary relations R1 and R2 be denoted by R1 ◦ R2. Then the ac-
cessibility relations for complex programs are defined [7]:

Rα = {((m, s), (m, s′)) | (s, s′) ∈ Rα & m ∈M}
Rπ1;π2 = Rπ1 ◦ Rπ2

Rπ1∪π2 = Rπ1 ∪Rπ2

At last we are ready to give the formal semantics for our logic.
Assume that ϕ is a formula of our logic and that (m, s) ∈ P is
a pointed structure. Let M be the class of all models. Then we
write M, (m, s) |= ϕ to mean that ϕ is true at (satisfied in) state
s of m. SinceM is fixed, we also write (m, s) |= ϕ for this. The
satisfaction relation “|=” is inductively defined by the following
rules:

(m, s) |= >

(m, s) |= p iff p ∈ θ(s) (where p ∈ Φ);

(m, s) |= seesi(v) iff v ∈ Vi (where v ∈ Vis);

(m, s) |= ¬ϕ iff not (m, s) |= ϕ

(m, s) |= ϕ ∨ ψ iff (m, s) |= ϕ or (m, s) |= ψ

(m, s) |= Kiϕ iff ∀s′ with s ∼i s′, we have (m, s′) |= ϕ

(m, s) |= ϕ iff ∀s′ we have (m, s′) |= ϕ

(m, s) |= [π]ϕ iff ∀(m′, s′) such that ((m, s), (m′, s′)) ∈ Rπ
we have (m′, s′) |= ϕ.

We define the remaining connectives of classical logic (“⊥” –
falsum, “∧” – and, “→” – implies, “↔” – if, and only if), the dia-
mond dual Mi (“maybe”) of the epistemic modality Ki, the diamond
dual 〈π〉 of the dynamic box modality, and the diamond dual 3 of
the universal modality can be defined as abbreviations in the
expected way:

⊥ =̂ ¬>
ϕ ∧ ψ =̂ ¬(¬ϕ ∨ ¬ψ)
ϕ→ ψ =̂ (¬ϕ) ∨ ψ
ϕ↔ ψ =̂ (ϕ→ ψ) ∧ (ψ → ϕ)

Miϕ =̂ ¬Ki¬ϕ
〈π〉ϕ =̂ ¬[π]¬ϕ.
3ϕ =̂ ¬ ¬ϕ.

2.5 A Detailed Example

EXAMPLE 2. Suppose we have three members of a committee,
a, b, and c who are going to vote to elect a new committee chair.
The standing chair is c and the new chair will be chosen from the
three of them, by the three of them. Let pi

j ∈ Φ denote that agent i’s
vote is for agent j (pi

j is read as “i prefers j”’, or “i votes for j”).
We assume that votes are fair, in the sense that every agent votes
exactly for one agent:

µ :
∧

i∈N

∧
k 6=j 6=m 6=k

pi
j ↔ ¬pi

k ∧ ¬pi
m

The rule used for electing a winner is as follows: any agent will be
elected if it has a majority of the votes; if there is no majority (ev-
erybody gets one vote each), then the standing chair, c, is elected.

Given this rule, let us define abbreviations wi, denoting that i is the
winner:

wa =̂ (
∨

i,j∈N :i 6=j(pi
a ∧ pj

a))

wb =̂ (
∨

i,j∈N :i 6=j(pi
b ∧ pj

b))

wc =̂ (¬wa ∧ ¬wb)

Let ω collect these three definitions as a conjunction. Finally, we
specify who initially sees what: agents initially see only their own
vote.

σ :
∧

i,j∈N

sees(pi
j, i) ∧

∧
k 6=i,i,j,k∈N

¬sees(pk
j , i)

To express the background information in this scenario, we find
it convenient to define a common knowledge operator, C. This
is a standard construction, and we refer the reader to, e.g., [4]
for details. Formally, given the individual knowledge operators
Ki, we first define an “everyone knows” operator, E, as follows:
Eϕ=̂

∧
i∈N Kiϕ. We then define the common knowledge operator

Cϕ as the maximal fixed point solution to the expression E(ϕ ∧
Cϕ).1

Now, let the background information χ be µ ∧ ω ∧ σ. We will
assume that χ is common knowledge among {a, b, c}: all agents
know (and they know that they know, etc) that they vote for only one
candidate, what the definition of winning is, and which variables
are initially seen.

Let us consider the vote ν = pa
b ∧ pb

c ∧ pc
b, which of course is not

commonly known. We then have

(Cχ ∧ ν)→ [r(pa
b, c)]Kcwb (1)

If a’s vote is revealed to c, then c knows who the winner is (it is b).
Agents a and b do not know that c in this case knows who the

winner is, even if they know that c learns b’s vote:

(Cχ ∧ ν) 6→ (Ka[r(pa
b, c)]KaKcwb ∨ Kb[r(pa

b, c)]KbKcwb) (2)

Likewise, we have

(Cχ ∧ ν)→ [r(pb
c , a) ∪ r(pc

b, a)]Ka¬wa (3)

If a learns the vote of one of the other committee members, he
knows that he has not won the election.

Let now α be (r(pb
c , a)∪r(pc

b, a)); (c(pb
c , a)∪c(pc

b, a)) (randomly
reveal one of the variables pb

c and pc
b to a, and then conceal ran-

domly one of them). Then

(Cχ ∧ ν)→ (〈α;α〉Kapb
c ∧ 〈α;α〉¬Kapb

c) (4)

That is, there is a choice of revealing and concealing the variables
so that a finds out he is winning, and there is a choice that he is not.
This should be contrasted with the programα′ = (r(pb

c , a); c(pb
c , a))∪

(r(pc
b, a); c(pc

b, a)), for which we obtain

(Cχ ∧ ν)→ [α′;α′]¬Kapb
c (5)

(If the agent gets a random variable revealed and then concealed,
he does not learn anything).

Our example easily illustrates how agents can know atoms with-
out seeing them:

(Cχ ∧ ν)→ ¬Kc¬pa
c ∧ [r(pa

b, c)](¬sees(pa
c , c) ∧ Kc¬pa

c) (6)

In words, given the initial constraints (Cχ ∧ ν), agent c does not
know that pa

c is false. However, after pa
b is revealed to c, although he

1In the following, the C-operator does not appear in the conse-
quent of any of the example formula, and hence can be omitted: for
this example it suffices to think of it as an abbreviation of mutual
knowledge of depth three.

still does not see pa
c , he now knows its true value! This is because

c knows that a only votes for one agent, i.e., he knows that certain
constraints between variables exist.

When building or verifying intelligent agents, one might wonder
what the benefit is of having conceal-actions, in which agents just
‘forget’ the truth value of certain atomic propositions. This makes
sense in many scenario’s where agents need at some time sufficient,
maybe sensitive information to take an appropriate decision, where
they should not ‘accumulate’ too much of this information. An
example of this might be an agent who grants users access to a
sensitive website, and the users posess an n-character password,
where for each login session, they only are required to reveal k
positions of this password (k < n). The agent deciding whether the
user is allowed access should in such cases at every login attempt
know whether the user has provided the right k characters, but when
the login session ends, it should be ensured that this information
is not remembered, since otherwise he in the end would learn the
complete password. Instead of formalising this additional scenario,
let us now show how, even in the voting setting, the possibility of
concealing can be useful.

EXAMPLE 3. Continuing with the voting example, let us intro-
duce new atoms δi (i ∈ N) meaning that i is the declared winner
of the vote. Initially, we have

δ :
∧

i,j∈N

¬δi ∧ sees(δi, j) (7)

That is, initially nobody is the declared winner, and the fact who
is a declared winner is visible for each agent. We also assume an
action βi, which models that the chair c can declare that i is the
winner. In order for i being enabled to be declared the winner, the
pre-condition is Kcwi and the post-condition is δi.

(¬Kcwi → ¬〈βi〉>) ∧ (Kcwi → 〈βi〉δi) (8)

Before defining our procedure for declaring the winner, let rc (re-
veal to c) be short for

rc : r(pa
a, c); r(pa

b, c); r(pa
c , c); r(pb

a, c); r(pb
b, c); r(pb

c , c)

Similarly, cc is like rc, but rather than revealing a’s and b’s votes to
c, they are concealed from them. Define

γ = rc; (βa ∪ βb ∪ βc); cc

Then γ has the following properties:

1. C(χ ∧ δ)→ [γ](wi ↔ Kaδi ∧ Kbδi ∧ Kcδi)
After γ, any winner is known to be a declared winner

2. C(χ ∧ δ)→ [γ]¬(Kcpa
a ∨ Kcpa

b ∨ Kcpa
c)

That is, after every execution of γ, agent c does not know
(does not remember) a’s vote (the same is of course true for
b’s vote). It is in fact easy to see that after execution of γ, we
have ¬Kjpi

k, for any i 6= j.

3. AXIOMS
We now present an axiomatization for LRC: the main technical re-
sult of our paper is that this axiomatization is sound and complete.
We first present the axiomatization and discuss the properties the
various axioms are capturing, before describing the completeness
proof in the following subsection. The axiomatization is presented
in Tables 1 and 2. Table 1 deals with the knowledge axioms, the
axioms for and the inference rules of the logic. This is all fairly
standard: the axioms say that both Ki and are S5-operators,

Propositional Logic:
(Ax1) propositional tautologies

S5 Axioms for Knowledge:
(Ax2) Ki(ϕ→ ψ) → (Kiϕ→ Kiψ)
(Ax3) Kiϕ→ ϕ
(Ax4) ¬Kiϕ→ Ki¬Kiϕ

S5 Axioms for State of Revelation:
(Ax5) (ϕ→ ψ) → (ϕ→ ψ)
(Ax6) ϕ→ ϕ
(Ax7) ¬ ϕ→ ¬ ϕ

Inference Rules:
(IR1) From ` ϕ→ ψ and ` ϕ infer ` ψ
(IR2) From ` ϕ infer ` Kiϕ
(IR3) From ` ϕ infer ` [π]ϕ

Table 1: Inference rules for LRC and some aixoms.

which is standard for knowledge (see e.g., [4]) and for the univer-
sal modality (see, e.g., [2]). Notice that the positive introspection
axiom, (Ki → KiKiϕ), follows from the other axioms, and similarly
for the modality.

The axioms of Table 2 relate to the dynamic component and the
interaction between our modalities. Of the dynamic logic axioms:

(Ax8) and (Ax9) say that actions conceal and reveal are determin-
istic: they lead to a unique outcome.

(Ax10) and (Ax11) say that reveal and conceal are idempotent:
repeating them has no effect.

(Ax12) and (Ax13) explain that when doing a reveal and a con-
ceal action in sequence, it is the last performed action that
determines the result.

(Ax14), (Ax15) and (Ax18) say that two actions from RC com-
mute with each other, as long as they concern different agents
or different variables.

According to (Ax16) and (Ax17), atomic actions from RC and
from A commute. Semantically, this is illustrated by Fig-
ure 2: “horizontal” and “vertical” steps can be taken in arbi-
trary order.

(Ax19)–(Ax21) are a standard set of axioms for the dynamic logic
constructs of our logic, with a direct correspondence to PDL [7,
p.173].

Finally, we have 16 interaction axioms in LRC:

(Ax22) and (Ax23) ‘generalise’ axioms (Ax16) and (Ax17), and
are again illustrated by Figure 2.

Axioms (Ax24)–(Ax27) are persistence properties of sees and
¬sees. (Ax24) and (Ax25) for instance say that the fact that
agent i sees variable v is not undone by concealing either an-
other variable from i, or concealing a variable from another
agent (Ax24), and persists through any reveal action.

(Ax28) and (Ax29) say that who sees what is a global property
in a model m (the only way to change this is to perform an
RC-action, which leads to a model m′).

(Ax30) and (Ax31) give the non-persistence of sees (it can be-
come false through an apropriate conceal action) and ¬sees
(which can become false through an appropriate reveal ac-
tion).

Dynamic Logic Axioms:
(Ax8) 〈c(v, i)〉ϕ↔ [c(v, i)]ϕ
(Ax9) 〈r(v, i)〉ϕ↔ [r(v, i)]ϕ
(Ax10) 〈r(v, i); r(v, i)〉ϕ↔ 〈r(v, i)〉ϕ
(Ax11) 〈c(v, i); c(v, i)〉ϕ↔ 〈c(v, i)〉ϕ
(Ax12) 〈r(v, i); c(v, i)〉ϕ↔ 〈c(v, i)〉ϕ
(Ax13) 〈c(v, i); r(v, i)〉ϕ↔ 〈r(v, i)〉ϕ
(Ax14) 〈c(v, i); c(w, k)〉ϕ↔ 〈c(w, k); c(v, i)〉ϕ if C1

(Ax15) 〈r(v, i); r(w, k)〉ϕ↔ 〈r(w, k); r(v, i)〉ϕ if C1

(Ax16) 〈c(v, i)〉〈α〉ϕ↔ 〈α〉〈c(v, i)〉ϕ if C2

(Ax17) 〈r(v, i)〉〈α〉ϕ↔ 〈α〉〈r(v, i)〉ϕ if C2

(Ax18) 〈r(v, i); c(w, k)〉ϕ↔ 〈c(w, k); r(v, i)〉ϕ if C1

(Ax19) [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)
(Ax20) [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ
(Ax21) [π1;π2]ϕ↔ [π1][π2]ϕ

Interaction Axioms:
(Ax22) 3〈r(v, i)〉ϕ↔ 〈r(v, i)〉3ϕ
(Ax23) 3〈c(v, i)〉ϕ↔ 〈c(v, i)〉3ϕ
(Ax24) seesi(v)→ [c(w, k)]seesi(v) if C1

(Ax25) seesi(v)→ [r(w, j)]seesi(v)
(Ax26) ¬seesi(v)→ [c(w, j)]¬seesi(v)
(Ax27) ¬seesi(v)→ [r(w, k)]¬seesi(v) if C1

(Ax28) seesi(v)→ seesi(v)
(Ax29) ¬seesi(v)→ ¬seesi(v)
(Ax30) seesi(v)→ 〈c(v, i)〉¬seesi(v)
(Ax31) ¬seesi(v)→ 〈r(v, i)〉seesi(v)
(Ax32) ϕ0 → [π]ϕ if C3

(Ax33) ϕ→ [α]ϕ if C2

(Ax34) ϕ→ Kiϕ
(Ax35) seesi(v) ∧ v→ Kiv
(Ax36) seesi(v) ∧ ¬v→ Ki¬v
(Ax37)

(∧
u∈U(u ∧ seesi(u)) ∧

∧
v∈V(¬v ∧ seesi(v))

∧
∧

w∈W ¬seesi(w)
)
→

(Kiϕ→ ((
∧

u∈U u ∧
∧

v∈V ¬v)→ ϕ)) if C4

Table 2: An axiomatization. The condition C1 reads i 6= k or
v 6= w, condition C2 is that α ∈ A, condition C3 is ϕ0 is objec-
tive and π contains no actions from A, and, finally, C4 is that
Vis = U ∪ V ∪W.

(Ax32) says that actions from RC do not change the value of atoms
in a sate.

(Ax33) and (Ax34) explain that any action from A keeps us in m
and an agent only considers states in m possible.

(Ax35) and (Ax36) capture the basic interaction between visibil-
ity sets and knowledge: it an agent i sees a variable v, then i
correctly knows the value of v Notice that the converse impli-
cation does not hold: to see this, suppose the state set S was
a singleton; then every agent would know the value of every
variable, irrespective of whether they could see it or not.

Finally, (Ax37) splits up the visibility atoms in three sets U,V and
W. The atoms in U are all true and seen by i. The atoms in V
are false and seen by i. None of the atoms in W are seen by
i. Then, if i knows that ϕ, then ϕ must be true in every state
that agrees on the atoms in U and V . In other words, every
state (in the same m) that agrees on the atoms that i sees is
considered possible by him.

3.1 Completeness
The technical details of our completeness proof are rather involved,
and so here we will simply describe the key steps on which these
details are based. By Corollary 2, we can restrict ourselves to the
language without the operator ∗. We work with the canonical model
for our logic, which is built from maximal consistent sets (see [2]
for the relevant notions): completeness of our logic follows from
Lemma 2, below. In a nutshell, we take a consistent formula, in-
clude it in a maximal consistent set s, and in the canonical model,
where states are consistent sets, truth in the model at state s and
membership of a formula in s coincide, demonstrating that consis-
tent formulas. The fact that we have eliminated the star operator
from our language means that we do not have to introduce the ma-
chinery of the Fisher-Ladner closure that is used to deal with the
non-compactness of the full Propositional Dynamic Logic. This,
however does not mean that a completeness proof will be straight-
forward, because we have a technical problem of a different nature.
In particular, the canonical model for our logic consists of maximal
consistent sets of formulae (MCS) that are related via the canonical
relations Rc

α,R
c
3,R

c
i in the usual way. Of course, we can prove a

truth lemma with respect to this model but the model itself does not
consist of pointed models of the form (m, s) that are related in the
desired way. Therefore, this canonical model must be transformed
so that it has the desired properties.

DEFINITION 1. The canonical model for our logic is

M = 〈W,Rc
3,Rc

α,Rc
i , θ

c〉, where:

• W is the set of all maximal consistent sets of formulae;

• ΓRc
α∆ iff for all formulae ϕ: if ϕ ∈ ∆, then 〈α〉ϕ ∈ Γ;

• ΓRc
3∆ iff for all formulae ϕ: if ϕ ∈ ∆, then 3ϕ ∈ Γ;

• ΓRc
i ∆ iff for all formulae ϕ: if ϕ ∈ ∆, then Miϕ ∈ Γ;

• θc(p) = {Γ ∈ W | p ∈ Γ}.

It is a standard result in modal logic that the relations Rc
3 and Rc

i
are reflexive symmetric and transitive. In addition, the axioms gov-
erning composition and union of programs are Sahlqvist formulae
and, therefore, canonical. It is a standard exercise in modal logic to
prove that Rc

α satisfies the regularity conditions:

• Rc
α;β = Rc

α ◦ Rc
β

• Rc
α∪β = Rc

α ∪ Rc
β .

We begin the transformation of this canonical model by defining
pointed models of the form (m, s).

DEFINITION 2. For every MCS s ∈ W and allα ∈ A, mod(s) =
(m, s) = 〈S,V,Rα,R3, θ〉, where

1. S = {t ∈ W | sRc
3t};

2. Rα = Rc
α ∩ (S× S);

3. R3 = Rc
3 ∩ (S× S);

4. V = 〈V1, . . . ,Vn〉 is such that v ∈ Vi iff seesi(v) ∈ s;

5. θ(p) = θc(p) ∩ (S× S).

It follows from 1 that R3 is the universal relation on S. We
could also add an epistemic relation Ri = Rc

i ∩ (S × S) to in-
terpret knowledge: (Ax33) and (Ax34) ensure that Ri ⊆ R3 and
Rα ⊆ R3. Of course, we have that Ri and R3 are equivalence re-
lations because reflexivity, transitivity and symmetry are modally

definable universal properties that are preserved under taking gen-
erated sub-models. We need to show that in fact this Ri relation
captures exactly the truth-definition of knowledge in models based
on the relation ∼i: in fact, (Ax37), together with the axioms that
relate knowledge with sees and are crucial here. In particu-
lar, Ax37 guarantees that within a fixed visibility structure, given a
state s, there are no states s′ for which s ∼i s′ yet agent i would not
consider them the same.

LEMMA 1 (EXISTENCE LEMMA FOR POINTED MODELS). For
all pointed models (m, s) as defined above and all t ∈ S,

3ϕ ∈ t iff there is a t1 ∈ S such that tR3t1 and ϕ ∈ t1;

Miϕ ∈ t iff ∃t1 ∈ S such that tRit1 and ϕ ∈ t1;

Rαϕ ∈ t iff ∃t1 ∈ S such that tRαt1 and ϕ ∈ t1.

PROOF. By induction on the structure of ϕ.

Having defined our pointed models. We move to defining our trans-
formed canonical model. We start with defining the following op-
eration:

DEFINITION 3. If (m, s) = 〈S,V,Rα,R3, θ〉, then

r(v, i)(m, s) = mod(s′) as defined in Definition 2, where
s′ = s \ {¬seesi(v)} ∪ {seesi(v)}

c(v, i)(m, s) = mod(s′) as defined in Definition 2, where
s′ = s \ {seesi(v)} ∪ {¬seesi(v)}

Intuitively, we form the set r(v, i)(m, s) by collecting all maximal
consistent sets that are related via the canonical relation Rc

r(v,i) to
the maximal consistent sets in S.

PROPOSITION 2. For all pointed models (m, s), r(v, i)(m, s) and
c(v, i)(m, s) are pointed models.

We now define a structure that collects all pointed models.

DEFINITION 4. M = {W,Rπ}, where

• W = {(m, s) | s ∈ W}, i.e., W consists of all pointed mod-
els for every MCS in the canonical model M as defined in
Definition 1.

• Rπ is defined inductively as follows.

1. If π is an atomic state changing action α ∈ A, then
(m, s)Rπ(m1, s1) iff m = m1 and sRπs1 in the sense of
item 2 from Definition 2.

2. If π is r(v, i), then

(m, s)Rπ(m1, s1) iff (m1, s1) = r(v, i)(m, s);

3. If π is c(v, i), then

(m, s)Rπ(m1, s1) iff (m1, s1) = c(v, i)(m, s);

4. Rα1;α2 = Rα1 ◦ Rα1 ;

5. Rα1∪α2 = Rα1 ∪ Rα1 .

Now we can prove the desired Truth lemma

LEMMA 2 (TRUTH LEMMA FOR.). For all LRC formulae ϕ:

M, (m, s) |= ϕ iff ϕ ∈ s.

Completeness then follows via a standard argument. Note that the
semantic structure M, (m, s) ‘corresponds’ to the set of all possible
pointed models.

4. CONCLUSIONS
We developed a logic LRC, that allows us to reason about the effects
of epistemic actions that reveal and conceal parts of an environment
to an agent. In that sense, our logic is a direct ‘dynamisation’ of the
interpreted systems approach to epistemic logic. Such epistemic
actions seem very natural, and we believe that several applications
of our logic are possible, for example in the area of security (LRC
might for instance model situations where a user can access a se-
cure website by only revealing part of his password). For future
work, it will be interesting to consider the possibility of revealing
and concealing actions, rather than variables, although this is likely
to require a more elaborate semantic framework than that presented
in this paper. Another natural extension would be to weaken the as-
sumption that it is publicly known who sees which variables.

One of the few papers we are aware of that deal with ontic and
epistemic actions is [12]. There, the state changing actions are as-
signments, and the epistemic actions are public announcements.
In our framework, we can model public announcements of atoms
(just reveal the value to all agents), but not directly disjunctions
of them for instance, or epistemic formulas. On the other hand,
[12] does not offer a logic for their framework: perhaps a syn-
ergy between their and our framework would lead to an interesting
and well-understood framework that mixes ontic and epistemic ac-
tions. One might also expect that our approach is related to work
on awareness, especially dynamic versions of it (cf. [1]). Although
this warrants further investigation, a main difference is that if an
agent i does not see p, we still have Ki(p ∨ ¬p) (the agent knows
that p has some truth value), whereas, if i is not aware of p, the
negation of this holds.

Interesting venues for further research are the connection with
Dynamic (Epistemic) Logic, and decidability. As shown in [8],
having a ‘universal modality’ may jeopardise decidability of a logic,
but since our universal modality is ‘restricted’ to visibility struc-
tures, the logic might well be decidable.

5. REFERENCES
[1] J. van Benthem and F. R. Velázquez-Quesada. The Dynamics

of Awareness. Synthese, 177:1, pp. 5–27, 2010.
[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.

Cambridge UP, 2001.
[3] H. Ditmarsch, W. Hoek, and B. Kooi. Dynamic Epistemic

Logic. Springer, 2007.
[4] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.

Reasoning About Knowledge. MIT Press, 1995.
[5] J. Gerbrandy. Logics of propositional control. In Proc.

AAMAS-2006, Hakodate, Japan, 2006.
[6] R. Goldblatt. Logics of Time and Computation. CSLI, 1987.
[7] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT

Press, 2000.
[8] E. Hemaspaandra. The Price of Universality. Notre Dame

J. Formal Logic 37:2, pp. 174–203, 1996.
[9] C. Lutz. Complexity and succinctness of public

announcement logic. In Proc. AAMAS-2006, Hakodate,
Japan, 2006.

[10] W. van der Hoek, D. Walther, and M. Wooldridge. Reasoning
about the transfer of control. JAIR, 37:437–477, 2010.

[11] W. van der Hoek and M. Wooldridge. On the logic of
cooperation and propositional control. Artificial Intelligence,
64:81–119, 2005.

[12] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic
epistemic logic with assignment. Proc. AAMAS-2005, pages
141–148, New York, USA, 2005. ACM Inc.

