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ABSTRACT
Boolean games are a compact and expressive class of games,
based on propositional logic. However, Boolean games are
computationally complex: checking for the existence of pure
Nash equilibria in Boolean games is Σp

2-complete, and it
is co-NP-complete to check whether a given outcome for a
Boolean game is a pure Nash equilibrium. In this paper,
we consider two possible avenues to tractability in Boolean
games. First, we consider the development of alternative so-
lution concepts for Boolean games. We introduce the notion
of k -bounded Nash equilibrium, meaning that no agent can
benefit from deviation by altering fewer than k variables. Af-
ter motivating and discussing this notion of equilibrium, we
give a logical characterisation of a class of Boolean games for
which k -bounded equilibria correspond to Nash equilibria.
That is, we precisely characterise a class of Boolean games
for which all Nash equilibria are in fact k -bounded Nash
equilibria. Second, we consider classes of Boolean games for
which computational problems related to Nash equilibria are
easier than in the general setting. We first identify some re-
strictions on games that make checking for beneficial devi-
ations by individual players computationally tractable, and
then show that certain types of socially desirable equilibria
can be hard to compute even when the standard decision
problems for Boolean games are easy. We conclude with a
discussion of related work and possible future work.
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1. INTRODUCTION
Game-theoretic solution concepts such as Nash equilibria
were originally formulated independently of considerations
of whether or how they might be practically computed. Since
solution concepts typically attempt to capture a notion of
optimal choice in strategic settings, it is therefore not at
all surprising that solution concepts are hard to compute in
practice for many natural and important classes of games
(see, e.g., [3, 12, 4, 15, 8]). The problem of classifying ex-
actly the complexity of solution concepts in various settings
has been an area of significant research activity over the past
two decades. Most notably, the problem of classifying the
complexity of computing mixed strategy Nash equilibria in
2-person strategic form games turned out to be one of the
major challenges in complexity theory in the first decade of
the 21st century [4].

Given that solution concepts are very often computation-
ally complex, at least two possible routes to tractability sug-
gest themselves:

• First, we can try to identify useful classes of games or
representations of games for which solution concepts
can be easily computed. In cooperative game theory,
for example, the marginal contribution net representa-
tion allows for the efficient computation of the Shapley
value solution concept [10].

• Second, we can develop alternative solution concepts,
which lend themselves to efficient computation. For
example, the notion of ε-Nash equilibrium has been
developed, which relaxes the strict notion of Nash equi-
librium by requiring that no player can gain more than
ε in a deviation from a given strategy profile [13, p.83].

Our aim in the present paper is to consider these possibil-
ities in the context of Boolean games [9, 2, 6, 7]. Boolean
games are a simple, compact, and expressive class of games
based on propositional logic. In a Boolean game, each player
i has under its unique control a set of Boolean variables Φi ,
drawn from an overall set of Boolean variables Φ. Player i
is at liberty to assign values to these variables as it chooses.
The strategies or choices available to i correspond to all pos-
sible Boolean assignments that can be made to these vari-
ables. The outcome of a Boolean game is a valuation for
the variables Φ, which will be composed from the individ-
ual assignments made by the players in the game to their
variables. In addition, each player i has a goal that it de-
sires to be achieved: the goal is represented as a Boolean
formula γi , and this goal formula may contain variables
under the control of other players. A player is satisfied



with an overall outcome if that outcome satisfies its goal
γi , and is unsatisfied otherwise. The fact that the achieve-
ment of one agent’s goal may depend on the choices of other
agents is what gives Boolean games their strategic character.
Now, Boolean games are computationally complex: checking
whether a Boolean game has a pure strategy Nash equilib-
rium is Σp

2-complete, while checking whether a particular
outcome is a pure Nash equilibrium is co-NP-complete. If
Boolean games are to find applications, then the issue of
intractability must surely be addressed.

Our contribution in the present paper is twofold. Follow-
ing the discussion above, we first formally define and inves-
tigate the notion of k-bounded Nash equilibrium for Boolean
games. An outcome is a k -bounded Nash equilibrium if no
agent has any incentive to deviate by flipping the value of at
most k variables. We consider the computational aspects of
k -bounded equilibria, and then prove a logical characterisa-
tion of those classes of Boolean games for which k -bounded
Nash equilibria and standard pure strategy Nash equilibria
coincide. We then move on to consider classes of Boolean
games for which the computation of pure strategy Nash equi-
libria is easier than the general case. Again, we give a logical
characterisation of such cases. We conclude with discussion
and some issues for future research.

2. GAMES AND SOLUTION CONCEPTS
Let G be a class of games, and let Ω be the set of outcomes
for these games; for the purposes of this discussion, it does
not matter exactly what the games and outcomes are. A
solution concept for G can be understood as a function:

σ : G → 2Ω.

That is, a solution concept identifies with every game a sub-
set of outcomes; intuitively, those that are “rational” accord-
ing to the solution concept in question.

The obvious computational problems associated with such
a solution concept σ for a class of games G are as follows:

• Non-Emptiness:
Given some G ∈ G, is it the case that σ(G) 6= ∅?

• Membership:
Given G ∈ G and ω ∈ Ω, is it the case that ω ∈ σ(G)?

• Computation:
Given G ∈ G, exhibit some ω such that ω ∈ σ(G).

In the present paper, we will be concerned largely with the
first two of these problems. Now, for many important classes
of games, these problems are computationally hard [3, 12, 4,
15, 8]. As mentioned in the introduction, there are at least
two ways to approach this problem:

1. Develop alternative solution concepts, which lend them-
selves to being computed efficiently. For example, the
notion of ε-Nash equilibrium has been developed, which
relaxes the strict notion of Nash equilibrium by requir-
ing that no player can gain more than ε in a deviation
from a strategy profile [13, p.83].

2. Try to identify useful classes of games or representa-
tions of games for which solution concepts can be eas-
ily computed. In cooperative game theory, for example,
the marginal contribution net representation allows for
the efficient computation of the Shapley value solution
concept [10].

With respect to the first proposal, let us make the discussion
a little more formal. Suppose we have a solution concept σ
for a class of games G such that the associated computational
problems (Non-Emptiness, Membership, Computation)
are intractable (NP-hard or worse). Then we might try to
develop an alternative solution concept σ̂, which “approxi-
mates” σ, but which is tractable. Note that here we mean
“approximate” in the informal everyday sense, rather than
the formal sense of approximation algorithms and FPTAS [1]
(although of course looking for FPTAS would be a very nat-
ural approach). Now, how might σ and its “approximation”,
σ̂, be related? We can consider two natural properties, as
follows.

• We say σ̂ is a sound approximation of a solution con-
cept σ for a class of games C ⊆ G if

∀G ∈ C : σ̂(G) ⊆ σ(G)

i.e., the solutions proposed by σ̂ are a subset of those
proposed by σ.

• We say σ̂ is a complete approximation of a solution
concept σ for a class of games C ⊆ G if

∀G ∈ C : σ̂(G) ⊇ σ(G)

i.e., the solutions proposed by σ̂ are a superset of those
proposed by σ.

In the limit, where σ̂ is a sound and complete approximation
of σ w.r.t. the class C = G of all games, then σ and σ̂ would
be identical, and it would then be no easier to compute σ̂
than σ. A typical situation, with respect to the class G of
all games, is that we will have approximate solution con-
cepts σ̂ that are complete (all solutions according to σ are
solutions according to σ̂) but not sound (not all solutions
according to σ̂ are solutions according to σ). This is exactly
the situation with ε-Nash equilibrium, for example: all “ex-
act” Nash equilibria are ε-Nash equilibria, but in general,
(i.e., where ε > 0), not all ε-Nash equilibria will be “ex-
act” Nash equilibria. The fact that an approximate solution
concept is complete but not sound captures our intuitions
about relaxing the requirements for optimality inherent in
exact solution concepts: an approximate solution concept
will often admit more solutions than its exact counterpart,
thus (we hope) making approximate solutions easier to find.

If we have an approximate solution concept σ̂, then one
interesting and important question is the following: can we
identify a class of games C ⊂ G such that σ̂ is a sound and
complete approximation to σ with respect to C, even though
σ̂ is not sound and complete with respect to the class of all
games G? If we can do this, and the class C corresponds to
games that are of practical value, then this means that the
approximate solution concept is in fact all we need: we do
not need to look for exact solutions σ, since these will in any
case be given by σ̂.

In the present paper, we will focus on bounded approx-
imations to Nash equilibria for Boolean games, which will
be complete but not sound with respect to the class of all
games, and we will identify classes of games for which the
bounded solution concept is both sound and complete.



3. BOOLEAN GAMES
We now present the formal framework of propositional logic
and Boolean games that we use throughout the remainder
of this paper. Our presentation is fairly standard [9, 2, 6,
7].

Propositional Logic: Let B = {>,⊥} be the set of Boolean
truth values, with “>” being truth and “⊥” being falsity. We
will abuse notation a little by using > and ⊥ to denote both
the syntactic constants for truth and falsity respectively, as
well as their semantic counterparts. Let Φ = {p, q , . . .}
be a (finite, fixed, non-empty) vocabulary of Boolean vari-
ables, and let L denote the set of (well-formed) formulae
of propositional logic over Φ, constructed using the conven-
tional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as
well as the truth constants “>” and “⊥”. Where ϕ ∈ L, we
let vars(ϕ) denote the (possibly empty) set of Boolean vari-
ables occurring in ϕ (e.g., vars(p∧q) = {p, q}). A valuation
is a total function v : Φ → B, assigning truth or falsity to
every Boolean variable. We write v |= ϕ to mean that the
propositional formula ϕ is true under, or satisfied by, valua-
tion v , where the satisfaction relation “|=” is defined in the
standard way. Let V denote the set of all valuations over
Φ. We write |= ϕ to mean that ϕ is a tautology. We denote
the fact that |= ϕ ↔ ψ by ϕ ≡ ψ. We use some additional
definitions, as follows:

• A literal, `, is either (i) a Boolean variable or the nega-
tion of a Boolean variable, or (ii) a Boolean constant
(i.e., a member of B) or the negation of a Boolean con-
stant.

• A clause, C , is a disjunction of literals, i.e., a formula
of the form C = `1 ∨ · · · ∨ `m .

• A Horn clause is a clause in which at most one literal
is not negated.

• A formula is in Conjunctive Normal Form (CNF) if
it is a conjunction of clauses, i.e., is of the form ϕ =
C1 ∧ · · · ∧ Cl , where each Ci , (1 ≤ i ≤ l) is a clause.

• A CNF formula ϕ = C1 ∧ · · · ∧Cl is in u-CNF, if each
clause Ci (1 ≤ i ≤ l) contains at most u literals.

• A CNF formula ϕ = C1 ∧ · · · ∧ Cl is in u-clause CNF
if it contains no more than u clauses (i.e., l ≤ u).

Notice that there is an important difference between
u-CNF and u-clause CNF: the former constrains the
number of literals permitted in a clause, but does not
constrain the number of clauses permitted in a for-
mula; while the latter constrains the number of clauses
permitted in a formula, but does not constrain the
number of literals that appear in clauses.

• A CNF formula ϕ = C1 ∧ · · · ∧Cl is said to be in Horn
clause form if for all 1 ≤ i ≤ l , the clause Ci is a Horn
clause.

The satisfiability problem for formulae ϕ is the problem of
determining whether there exists a valuation v such that v |=
ϕ. For arbitrary CNF formulae, this problem is of course
NP-complete; for 2-CNF formulae, and for Horn clause for-
mulae, the satisfiability problem is decidable in polynomial
time (see, e.g., [11]).

Agents and Variables: The games we consider are popu-
lated by a set N = {1, . . . ,n} of agents – the players of the

game. Each agent is assumed to have a goal, characterised
by an L-formula: we write γi to denote the goal of agent
i ∈ N . Agents i ∈ N each control a (possibly empty) subset
Φi of the overall set of Boolean variables. By “control”, we
mean that i has the unique ability within the game to set
the value (either > or ⊥) of each variable p ∈ Φi . We will
require that Φi∩Φj = ∅ for i 6= j , and that Φ1∪· · ·∪Φn = Φ
(i.e., Φ1, . . . ,Φn partition Φ).

When playing a Boolean game, the primary aim of an
agent i will be to choose an assignment of values for the
variables Φi under its control so as to satisfy its goal γi .
The difficulty is that γi may contain variables controlled by
other agents j 6= i , who will also be trying to choose values
for their variables Φj so as to get their goals satisfied; and
their goals in turn may be dependent on the variables Φi .
A choice for agent i ∈ N is a function vi : Φi → B, i.e.,
an allocation of truth or falsity to all the variables under i ’s
control. Let Vi denote the set of choices for agent i .

Outcomes: An outcome is a collection of choices, one for
each agent. Formally, an outcome is a tuple (v1, . . . , vn) ∈
V1×· · ·×Vn . Notice that an outcome defines a value for all
variables, and we will often think of outcomes as valuations,
for example writing (v1, . . . , vn) |= ϕ to mean that the val-
uation defined by the outcome (v1, . . . , vn) satisfies formula
ϕ ∈ L.

Boolean Games: A Boolean game, G, is a (2n + 2)-tuple:

G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉

where N = {1, . . . ,n} is a set of agents, Φ = {p, q , . . .} is a
finite set of Boolean variables, Φi ⊆ Φ is the set of Boolean
variables under the unique control of i ∈ N , and γi ∈ L is
the goal of agent i ∈ N .

Utility: We now introduce a model of utility for our games.
The basic idea is that an agent will strictly prefer all out-
comes in which it gets its goal achieved over all outcomes
where it does not. We capture this in utility functions
ui(· · · ) defined over outcomes (v1, . . . , vn):

ui(v1, . . . , vn) =

{
1 if (v1, . . . , vn) |= γi
0 otherwise.

Nash Equilibrium: Let (v1, . . . , vi , . . . , vn) be an outcome.
We say that a player i has a beneficial deviation if there
exists a choice v ′i ∈ Vi for i such that ui(v1, . . . , v

′
i , . . . , vn) >

ui(v1, . . . , vi , . . . , vn). In this case, v ′i serves as a witness to
the beneficial deviation. It will be useful to refer to the
following fact later.

Observation 1. Suppose (v1, . . . , vi , . . . , vn) ∈ V1×· · ·×
Vi × · · · × Vn and v ′i ∈ Vi . Then v ′i is a beneficial deviation
for i from (v1, . . . , vi , . . . , vn) iff:

1. (v1, . . . , vi , . . . , vn) 6|= γi and

2. (v1, . . . , v
′
i , . . . , vn) |= γi .

We then say an outcome (v1, . . . , vn) is a Nash equilibrium
if no player has a beneficial deviation. We denote the Nash
equilibrium outcomes of a game G by NE(G). It may of
course be that NE(G) = ∅.

Referring back to our discussion in the preceding section,
there are two obvious decision problems relating to Nash
equilibria in Boolean games: Non-Emptiness (given a game
G, is it the case that NE(G) 6= ∅?) and Membership (given



a game G and an outcome (v1, . . . , vn) for G, is it the case
that (v1, . . . , vn) ∈ NE(G)?). Unfortunately, it is known
that both of these problems are computationally complex [2]:

Proposition 1. The Non-Emptiness problem for Boolean
games is Σp

2-complete; the Membership problem for Boolean
games is co-NP-complete.

4. K-BOUNDED EQUILIBRIA
We will now define a new class of equilibria for Boolean
games, which we will call k-bounded equilibria. To moti-
vate this new class, take an agent i who is trying to decide
whether he has any beneficial deviation from an outcome
(v1, . . . , vi , . . . , vn). From Proposition 1, this problem is in
general NP-complete. Intuitively, player i is trying to decide
whether he can get his goal achieved by flipping the value of
some subset of his variables. The complexity in this problem
arises because i must consider 2|Φi | sets of variables in this
evaluation. It follows that our agent’s task will be simpler if
we can eliminate some of these sets of variables from player
i ’s consideration.

Where {vi , v ′i } ⊆ Vi are choices for player i ∈ N , let us
define the distance between them as being the number of
variables that have different values in the two valuations;
we denote this value by δ(vi , v

′
i ):

δ(vi , v
′
i ) = |{x ∈ Φi | vi(x ) 6= v ′i (x )}|.

We sometimes refer to δ(vi , v
′
i ) as the size of the deviation

v ′i . Now, given an outcome (v1, . . . , vi , . . . , vn) and a value
k ∈ N, k > 1 we will say a player i has a k-bounded beneficial
deviation if there is some v ′i ∈ Vi such that:

1. δ(vi , v
′
i ) ≤ k ; and

2. ui(v1, . . . , v
′
i , . . . , vn) > ui(v1, . . . , vi , . . . , vn).

We will say an outcome (v1, . . . , v
′
i , . . . , vn) is a k-bounded

Nash equilibrium if no player has a k -bounded beneficial
deviation. Let the set of k -bounded Nash equilibria of game
G be denoted by NEk (G).

Example 1. Consider the Boolean game,

G(t) = 〈{a1, a2},Φ,Φ1,Φ2, γ1, γ2〉

in which Φ1 = {x1, . . . , xt}, Φ2 = {y1, . . . , yt} (t ≥ 1) and

γ1 =

(
t∨

i=1

yi

)
∧

(
t∧

j=1

xj

)

γ2 =

(
t∨

i=1

xi

)
∧

(
t∧

j=1

yj

)
The outcome v in which x1 = y1 = >, and xi = ⊥, yi = ⊥
for all i 6= 1, is a k-bounded equilibrium for all k < t − 1. It
is not, however, a Nash equilibrium: neither goal is satisfied
but by changing the t − 1 variables under its control to >
both agents can realise their goals.

How does the notion of k -bounded equilibrium relate to the
general concept of Nash equilibrium? We have:

Proposition 2. The solution concept of k-bounded Nash
equilibrium is a complete but unsound approximation for
pure strategy Nash equilibria in Boolean games. Formally:

1. There exist Boolean games G and bounds k ∈ N, k ≥ 1
such that NEk (G) 6⊆ NE(G).

2. For all Boolean games G and bounds k ∈ N, k ≥ 1, we
have NE(G) ⊆ NEk (G).

Proof. Example 1 illustrates point (1) (in fact, it is eas-
ily seen that the construction of Example 1 shows that for all
k ≥ 2 there are games in which NEk−1(G) ⊂ NEk (G), i.e. k -
bounded equilibria are more general than (k − 1)-bounded).
For point (2), observe that if an outcome is stable in the
general sense, then no player has any beneficial deviation;
and in particular, no player has any beneficial deviation of
size ≤ k .

Now, for the notion of k -bounded equilibrium to be of any-
thing other than purely theoretical interest, it must reduce
the complexity of the reasoning task faced by agents. Of
course, it is easy to see that, with respect to worst case
asymptotic analysis, k -bounded Nash equilibria present no
advantages over Nash equilibria, since if we set the bound k
to

k = max{|Φi | | i ∈ N }

then k -bounded Nash equilibrium collapses to the standard
notion of Nash equilibrium for Boolean games. However, we
will now show that nevertheless, by constraining possible
deviations v ′i such that δ(vi , v

′
i ) ≤ k , we can dramatically

reduce the search space of possible deviations. Formally,
where G is a game containing a player i , let vi ∈ Vi be a
choice for i , and let k ∈ N, k ≥ 1 be a bound, then we have:

|{v ′i ∈ Vi | δ(vi , v
′
i ) ≤ k}| =

k∑
j=1

(
|Φi |

j

)
.

From standard combinatorics, it follows that if we set the
deviation bound k so that k < |Φi |/2 (for example), then
the search space will for a beneficial deviation will be less
than half the search space for general deviations. We thus
have an exponential reduction in the size of the search space
when looking for k -bounded beneficial deviations, compared
to the case for pure Nash equilibria in general.

In fact, from recent results of Szeider [14] it turns out that
this upper bound can often be signifcantly improved.

Proposition 3. Let G be a Boolean game in which every
goal formula, γi , is expressed as a CNF formula containing
at most t clauses, where t is a arbitrary but fixed natural
number, and v be an outcome. Deciding if v is a k-bounded
equilibrium is fixed-parameter tractable (with respect to the
parameter k), i.e., there is a decision algorithm whose run-
ning time is bounded above by f (k) poly(|G|), where |G| is
the number of bits needs to encode the game G, and f (· · · )
is a function whose value depends only on k.

Proof. Szeider [14] shows that instances of the so-called
“k -Flip Sat” problem, whereby given a CNF formula, F ,
and assignment, α to its variables, it is required to decide if
there is some assignment β satisfying F and having δ(β, α) ≤
k , may be decided in (f (k) + t3)poly(|F |) steps. The “k -
Flip Sat” problem, however, is exactly that of deciding if
γi , after simplification to γΦi

i , i.e., the CNF formula arising
by applying the variable settings to Φ \ Φi , is satisfiable
by changing the values of (exactly) k variables. We can
thus decide if i has a k -bounded beneficial deviation just



by considering each 1 ≤ l ≤ k , deciding if γΦi
i is a positive

instance of l-flip sat with respect to the assignment vi of
values currently set in Φi . In total, v will be accepted as a
k -bounded equilibrium if no agent suceeds in identifying a
beneficial deviation via this process.

Now, it might seem that k -bounded equilibria are much
weaker than general Nash equilibria, in the sense that a
player may well have a beneficial deviation from an out-
come in the general case, but not if we restrict ourselves to
k -bounded Nash equilibria. But in fact, in some classes of
games, this is not an issue: the following proposition shows
that, in certain useful and important classes of games, gen-
eral Nash equilibria and k-bounded Nash equilibria coincide.

Proposition 4. The solution concept of k-bounded Nash
equilibrium is a sound and complete approximation of pure
strategy Nash equilibria for the class of Boolean games in
which every agent has a goal formula that is logically equiv-
alent to a propositional formula in k-clause CNF. In other
words, for all Boolean games

G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉,

if there exists some k ∈ N, k ≥ 1 such that for every agent
i ∈ N there exists a k-clause CNF formula γ′i such that
γi ≡ γ′i , then we have NE(G) = NEk (G).

Proof. Consider an arbitrary outcome (v1, . . . , vi , . . . , vn)
and a player i ∈ N . We claim that player i has a k -bounded
beneficial deviation iff the player has a general beneficial
deviation. The left-to-right implication is obvious. For the
right-to-left implication, suppose the player has a beneficial
deviation, call it v ′i . Then from Observation 1, we know
that:

• (v1, . . . , vi , . . . , vn) 6|= γi

• (v1, . . . , v
′
i , . . . , vn) |= γi

From the conditions of the Proposition, we can infer:

• (v1, . . . , vi , . . . , vn) 6|= γ′i

• (v1, . . . , v
′
i , . . . , vn) |= γ′i .

The existence of a k -bounded beneficial deviation may then
be seen as follows. Since γ′i is in k -clause CNF, it is the
conjunction of no more than k clauses: γ′i = C1 ∧ · · · ∧ Ck ,
where each Ci is a disjunction of literals. The assignment
v ′i need only satisfy at most one literal from each clause Ci ,
and so to satisfy γ′i , (and hence γi), we only need to flip at
most k variables compared to vi .

Now, the implication of this result is that if agents have
goals that are logically equivalent to k -clause CNF formu-
lae, then we don’t need to consider arbitrary deviations: k-
bounded deviations are all we need. It follows that in such
games, the search space for possible deviations can be dra-
matically reduced, compared to general Nash equilibria.

As an aside, observe that every propositional logic for-
mula can be converted into CNF. So, if we start with a
Boolean game in which goals are arbitrary propositional
formulae, we can translate each formula into an equivalent
CNF form, and take k to be the largest number of clauses
of any CNF formula in the resulting game. If we end up
with k < max{|Φi | | i ∈ N }, then this tells us that we

can rule out a potentially large fraction of the search space
when looking for beneficial deviations, as we only have to
consider k -bounded Nash equilibria. However, in the worst
case, translation to CNF can result in an exponential blow-
up in the number of clauses in the formula: k = O(2|Φ|).
In such cases, we would clearly obtain no benefit from k -
bounded equilibria.

5. TRACTABLE BOOLEAN GAMES
An alternative to developing solution concepts that are easy
(or at least, easier) to compute than exact solutions is to
consider classes of games for which exact solution concepts
are easy to compute. In our case, consider the problem of de-
termining whether a player i ∈ N has a beneficial deviation
in a Boolean game. This involves the player considering 2|Φi |

choices, to see whether it can get its goal achieved through
making one of these. So, to what extent can we identify
classes of games for which checking for beneficial deviations
is computationally easy? Well, as a starting point, the fol-
lowing is very easy to see:

Observation 2. Let C ⊆ L be a class of propositional
logic formulae with a polynomial time satisfiability problem.
The Membership problem for G = 〈N ,Φ,Φ1, . . . ,Φnγ1, . . . , γn〉
with {γ1, . . . , γn} ⊆ C is decidable in polynomial time, and
the Non-Emptiness problem is in NP.

So, for example, if the goal formulae of all players are ex-
pressed in, e.g., Horn clause form, or 2-CNF, then checking
whether an outcome is a Nash equilibrium or not is poly-
nomial time decidable, and checking whether there exists a
stable outcome is in NP. However, as we will now see, we
can in fact significantly strengthen this result; to do this,
however, we need some further notation and terminology.

First, where S = {1, . . . , k} is a subset of players and
{v1, . . . , vk} is a collection of choices, one for each player
i ∈ S , define a function w by:

w{v1,...,vk}(x ) =


v1(x ) if x ∈ dom v1

v2(x ) if x ∈ dom v2

· · · · · ·
vk (x ) if x ∈ dom vk

Where ϕ is a propositional logic formula, and {v1, . . . , vk} is
a collection of choices, one for each player in S = {1, . . . , k},
then we will denote by ϕ[v1, . . . , vk ] the formula obtained
from ϕ by systematically replacing each variable x such that

x ∈ dom v1 ∪ · · · ∪ dom vk

by the Boolean value w{v1,...,vk}(x ). Finally, the reduction
of ϕ[v1, . . . , vk ] will be denoted by ϕ∗[v1, . . . , vk ], and is de-
fined to be the propositional logic formula obtained from
ϕ[v1, . . . , vk ] by carrying out the following two steps:

1. deleting any clause containing > or ¬⊥;

2. deleting ⊥ or ¬> from any clause in which they occur.

If the resulting formula contains any empty clause (i.e., all
literals have been deleted from the original clause), then we
replace the whole formula by ⊥.

The soundness of these simplification steps is clear from
basic propositional reasoning.

Now, given a player i ’s goal γi , we will denote the range
of γi by rng(γi), and define this to be the following set of
formulae:



rng(γi) =
{γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ] |

(v1, . . . , vi−1, vi+1, . . . , vn) ∈
∏

i∈N\{i} Vi}.

Thus, intuitively, rng(γi) is the set of formulae that could
be obtained from γi by simplifying it under all possible com-
binations of choices made by other players. Notice that if
ψ ∈ rng(γi), then the only variables occurring in ψ will be
controlled by i , i.e., for each ψ ∈ rng(γi), we have vars(ψ) ⊆
Φi .

Now, let C ⊆ L be a class of propositional logic formu-
lae, and let G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉 be a Boolean
game. Then we say the range of G is in C if:

rng(γi) ⊆ C for all i ∈ N .

Given this, we can strengthen Observation 2 as follows.

Proposition 5. Let C ⊆ L be a class of propositional
logic formulae with a polynomial time satisfiability problem,
and let G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉 be a game such
that the range of G is in C. Then the Membership prob-
lem for G is decidable in polynomial time and the Non-
Emptiness problem is in NP.

Notice Proposition 5 is not the same as Observation 2,
above (although it is related). It is a much stronger result:
it does not require that the goal formulae γi are in a tractable
form; only that the range of the goal formulae are tractable,
(i.e., the formulae obtained by simplifying the goal formulae
under the possible choices for all other players). This is a
very different, and much more powerful result than that of
Observation 2. In particular, for every player i ∈ N , the only
constraints it imposes on the goal formulae of player i relate
to the variables actually controlled by player i ; essentially
no constraints are placed on the variables of players j 6= i .
Thus we obtain:

Proposition 6. For the following classes of games, the
Membership problem is decidable in polynomial time, while
the Non-Emptiness problem is NP-complete:

1. Games in which for all players i ∈ N , if γi = C1∧· · ·∧
Cl , then we have |vars(Cj )∩Φi | ≤ 2 for all 1 ≤ j ≤ l .

2. Games in which for all players i ∈ N , if γi = C1 ∧
· · · ∧ Cl , then for all 1 ≤ j ≤ l , the clause Cj contains
at most one unnegated element of Φi .

Proof. We will do the proof for point (1); the second
point is similar. So consider Membership. Take an arbi-
trary outcome (v1, . . . , vi−1, vi , vi+1, . . . , vn).

Since for all players i ∈ N , if γi = C1 ∧ · · · ∧ Cl , then we
have |vars(Cj ) ∩ Φi | ≤ 2 for all 1 ≤ j ≤ l , then it follows
that γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ] is in 2-CNF, and contains
only variables in Φi . From Proposition 1 we can see that i
has a beneficial deviation from

(v1, . . . , vi−1, vi , vi+1, . . . , vn)

if there exists a choice v ′i ∈ Vi such that

v ′i |= γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ].

Since γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ] is in 2-CNF, this check
can be done in polynomial time. We now prove NP-completeness

of the Non-Emptiness problem. Membership is obvious by
“guess and check”. For hardness, we reduce SAT. Let ϕ be
a SAT instance. We construct a game Gϕ, satisfying the
conditions of the proposition, such that NE(Gϕ) 6= ∅ iff ϕ
is satisfiable. Assume ϕ has l clauses, ϕ = C1 ∧ · · · ∧ Cl ,
and vars(ϕ) = {x1, . . . , xk}. We introduce one additional
variable, z . We define k + 1 agents, with:

• player 1 ≤ i ≤ k controlling variable xi and having
goal y ; and

• player k + 1 controlling variable y and having goal

γk+1 = (ϕ ∧ z ) ∨ ¬(y ↔ z ).

• player k + 2 controls variable z and has goal

γk+2 = (¬ϕ) ∧ (y ↔ z )

(Notice that γk+1 and γk+2 can trivially be translated into
the form required by the Proposition.) We claim that ϕ
is satisfiable iff N (Gϕ) 6= ∅. If ϕ is satisfiable, then take
any satisfying assignment for ϕ and set y = z = >. We
claim that this outcome is stable: for observe that in this
case, players 1 ≤ i ≤ k + 1 have their goal achieved, and so
cannot benefit by deviating; and player k +2 does not get his
goal achieved, but has no beneficial deviation. Now we claim
that if ϕ is unsatisfiable then NE(Gϕ) = ∅. For consider any
outcome. First observe that since ϕ is unsatisfiable, any
outcome will falsify ϕ. Thus, player k + 2 will have his goal
achieved if the outcome assigns y and z the same value; if
the outcome does not give them the same value then player
k + 2 has a beneficial deviation. However, if player k + 2
deviates to give y and z the same value, then player k + 1
would have a beneficial deviation. Hence no outcome can be
a Nash equilibrium.

5.1 Equilibria that Maximise Social Welfare
The results above indicate that, in the event that rng(γi)
falls within a class of formulae that have a polynomial time
satisfiability problem, then determining whether a given out-
come is an equilibrium for the instance is tractable. It
may, however, often be the case that we do not merely
wish to accept any equilibrium, but would, if possible, pre-
fer to identify one which satisfies some notion of “optimal-
ity”. In the case of Boolean games a natural way of dis-
tinguishing between equilibria is to associate each with its
social welfare, which we define as the total number of agents
whose goal is satisfied. As a very simple example of a
Boolean game in which there are equilibria in which this
measure varies significantly, consider n = 2m agents, N =
〈a1, . . . , am , b1, . . . , bm〉 each of which has control over ex-
actly one propositional variable from

Φ = 〈x1, . . . , xm , y1, . . . , ym〉

so that i determines the value of xi and bi that of yi . Suppose
the goal formula for i is xi ∧yi , and that for bi is xi ∨¬yi . It
is easily checked that the outcome in which all variables are
assigned ⊥ is a Nash equilibrium for this game that satisfies
only the goals of the bi agents. On the other hand, the
assignment in which all variables are assigned > is also a
Nash equilibrium, but one which that satisfies the goals of
all agents. Intuitively, the latter seems preferable to the



former as a solution.1 This motivates the following decision
question, which we present, at first, in its most general form:

Goal Maximization (gm):
Given a Boolean game, G involving n agents and
t ∈ N such that 1 ≤ t ≤ n, is there an outcome
v for which v ∈ N (G) and |{γi : v |= γi}| ≥ t?

It is not hard to show that, even if G admits a polynomial
time process for deciding membership, this is not sufficient
to ensure gm is tractable.

Proposition 7. gm is NP-complete even if instances are
restricted to those in which every goal formula is in 2-CNF,
which we will denote gm2.

Proof. That gm is in NP follows by simply guessing an
outcome, v , and checking that v satisfies at least t goals.
For NP-hardness, we recall that the so-called Max-2-Sat
problem – deciding if a given 2-cnf, F , has an assignment
that satisfies at least K of its clauses – is NP–complete. We
show that max-2-sat is polynomially reducible to gm2.

Given 〈F ,K 〉 an instance of max-2-sat in which F uses n
variables, {x1, . . . , xn} and has r clauses, form an instance,
〈G〈F ,K〉, t〉 of gm2 as follows: G〈F ,K〉 has r + 1 agents, with
γi = Ci the i ’th clause of F for 1 ≤ i ≤ r , and γr+1 ≡
>. Set Φ = {x1, . . . , xn}, Φi = ∅ when 1 ≤ i ≤ r and
Φr+1 = Φ. To complete the instance t is fixed to K + 1.
We claim that 〈G〈F ,K〉, t〉 is a positive instance of gm2 iff
〈F ,K 〉 is a positive instance of max-2-sat. Trivially, any
assigment α to 〈x1, . . . , xn〉 that satisfies at least K clauses of
F , immediately yields an outcome that achieves the goals of
the corresponding K agents and since γr+1 is always satisfied
this outcome satisfies t = K + 1 goals. Furthermore the
outcome is in N (G〈F ,K〉): i (1 ≤ i ≤ r) cannot deviate
(no variables are under its control) and ar+1 has no reason
to deviate (its goal is already satisfied). Conversely, should
there be an outcome v ∈ N (G〈F ,K〉) satisfying at least t =
K + 1 goals then, since this outcome must satisfy γr+1 it
follows that at least K goals from {γ1, . . . , γr} are satisfied
so that the corresponding assignment witnesses 〈F ,K 〉 as a
positive instance of max-2-sat.

5.2 Utility as Reachability
The forms taken by utility functions as described are some-
what restrictive in that these fail to model the possibility
that (assuming, say, negotiation with other agents can take
place) despite not having its goal satisfied with a particu-
lar outcome, an agent may, in fact be “close to” realising its
intended goal. To make this idea more precise, suppose we
define the t-reachable utility of an outcome to i (denoted w t

i

to distinguish from our standard notion of utility ui) by

w t
i (v) ={
1 − min{ r : r ≤ t and ∃v ′ with δ(v , v ′) = r and v ′ |= γi}/|Φ|
0 if no suitable v ′ exists

Notice that for any outcome, v , w t
i (v) ≥ w0

i (v) = ui(v) and
captures the behaviour that there is a possibility of γi being
achieved (even though this may not be completely within i ’s
control).

It turns out, although this new form appears superficially
computationally more demanding, if we limit attention to k -
bounded deviations then we can still identify tractable ver-
sions of the membership problem.
1Endriss et al. discuss taxation-based mechanisms that in-
centivise players to socially desirable Nash equilibria [7].

Proposition 8. Let C be any class of propositional for-
mulae for which k-flip sat is fixed-parameter tractable wrt
to parameter k. Let t ∈ N be fixed, G be a Boolean game
with agent utilities captured through w t

i . If all goal formu-
lae are in the class C then for any outcome, v ∈ NEt(G) is
polynomial time decidable.

Proof. Suppose that v is an outcome. By definition v ∈
NEt(G) iff no i has a t-bounded beneficial deviation, i.e.
letting v//α denote the outcome obtained from v by the
values currently assigned to Φi in v being replaced by α, it
follows that v ∈ NEt(G) if and only if for each i :

∀ α ∈ 〈>,⊥〉|Φi | δ(v , v//α) ≤ t ⇒ w t
i (v//α) ≤ w t

i (v)

In order to test if i has a beneficial deviation (under the new
notion of utility) it is first necessary to compute w t

i (v), i.e.
to determine if by changing the values of 0, 1, . . . , t variables
in the outcome v it is the case that γi can be achieved. This,
however, is simply the r -flip sat problem and the goal for-
mulae are restricted to those within some fixed-parameter
tractable (with parameter r) class. Thus we can compute
w t

i (v) efficiently and it remains only to test if there is a t-
bounded deviation which improves upon this, i.e whether by
altering at most t variables within the control of i (leaving
the values assigned to other variables unchanged), it is possi-
ble to to construct an outcome v ′ for which w t

i (v ′) > w t
i (v).

this, however, can (at worst) be carried out just by enumer-
ating through the O(|Φi |t) possible deviations.

We note, however, that very simple negotiation protocols,
even when only two agents are involved may lead to prob-
lematic situations. For example consider the following. We
have a Boolean game, G = 〈{a1, a2},Φ,Φ1,Φ2, γ〉 in which
the following protocol, which call the agreed-1-flip protocol
is used: starting from initial assignments a (for Φ1) and b
(for Φ2) a1 proposes a variable of Φ2 to flip at the same
time as a2 proposes a variable of Φ1 for a1 to flip. If γ (the
common goal for both agents) is not satisfied the process
continues. Although this mechnaism is very basic, it turns
out – even for γ being simply a conjunction of literals, that
starting from an ill-chosen initial assignment can lead to ex-
ponentially many negotiation rounds taking place. That is,

Proposition 9. There are 2-player Boolean games, G =
〈{a1, a2},Φ,Φ1,Φ2, γ〉 for which, all of the following hold:

1. There is exactly one outcome, v = (v1, v2) belonging
to NE(G) and such that u1(v) = u2(v) = 1.

2. There are initial valuations v ′1 for Φ1 and v ′2 for Φ2

with which the agreed-1-flip protocol will require Ω(2|Φ|/2)
rounds in order to reach this unique equilibrium state.

Proof. Immediate from Dunne [5]: initial and final val-
uations correspond to points on the |Φ|-dimensional hyper-
cube, with the effect of a single negotiation round being to
move from the current point to one at (Hamming) distance
two from it. The argument in [5] constructs examples where
the minimum numer of hyperedges to be traversed in mov-
ing from initial to final valuation according to this protocol
is bounded below by (77/128)2|Φ|/2.

6. CONCLUSIONS
Boolean games lie at the intersection of logic, game the-
ory, and computer science, and since they were introduced



in 2001, they have attracted steadily increasing attention
within the multi-agent systems community in particular.
However, a standard criticism of Boolean games is that they
are computationally complex, which on reflection is not sur-
prising, given that they are, ultimately, games played on
propositional logic formulae. If Boolean game are to find
wider application, it will surely therefore be necessary to
consider possible routes to tractability in Boolean games.
In this paper, we have explored two such routes. First, we
considered the idea of relaxing the conditions of pure strat-
egy Nash equilibrium so that we only require that no agent
can benefit by flipping no more than k variables. We saw
that this very natural idea was, for a certain class of Boolean
games (where player’s goals are represented as k -clause CNF
formulae) in fact sufficient to capture all Nash equilibria; we
also saw that k -bounded equilibria lead to a smaller search
space than pure Nash equilibria in general. We also saw
fixed parameter tractability results for k -bounded equilib-
ria. Next, we considered possible classes of Boolean games
for which the corresponding game-theoretic questions were
computationally tractable. We identified a condition on goal
formulae that leads to tractability: if the range of all goal
formulae lies within a tractable class of Boolean formula, the
corresponding decision problems are much simpler.

In terms of related work, a great deal of work in the algo-
rithmic game theory community has addressed the issues of:
(i) the complexity of computing equilibria; (ii) approximate
solution concepts such as ε-Nash equilibria; and (iii) consid-
eration of classes of games for which computation of solu-
tion concepts is tractable; see, for example, the references
in [3, 12, 4, 15, 8]. However, this body of work differs from
the work presented here in that Boolean games have a very
distinctive logical form. Moreover, most work on Boolean
games (including the present paper) has considered only
pure Nash equilibria, while mixed equilibria have received
most attention in the algorithmic game theory community.
This is of course not surprising, given that the existence of
mixed Nash equilibria is guaranteed in finite games, while
pure Nash equilibria are not guaranteed to exist in many
classes of games.

For future work, several issues suggest themselves. First,
it would be interesting to consider mixed Nash equilibria in
the context of Boolean games; indeed, it is perhaps surpris-
ing that this issue has not been considered previously. In
particular, it will be interesting to see how the now-famous
PPAD results of [4] manifest themselves in Boolean games.
Second, since there is clearly a very close relationship be-
tween pure Nash equilibria in Boolean games and the SAT
problem for propositional logic, it would be interesting to ex-
plore this further, and investigate the extent to which SAT
solvers (and QBF/QSAT solvers) can be used to find or
verify equilibrium outcomes. Finally, as our results with k -
bounded equilibria have demonstrated, it is sometimes pos-
sible to have approximate solution concepts that correspond
to exact solution concepts on Boolean games in which goal
formulae are in certain logical normal forms. It would be in-
teresting to consider this issue further, to see whether other
approximate solution concepts “correspond” to their exact
counterparts on certain classes of games.
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