
Automated Synthesis of Normative Systems

Javier Morales1,2 and
Maite Lopez-Sanchez1

1MAiA Department
Universitat de Barcelona

Barcelona, Spain
jmorales@iiia.csic.es
maite@maia.ub.es

Juan A. Rodriguez-Aguilar
2Artificial Intelligence

Research Institute (IIIA)
Spanish Council of

Scientific Research (CSIC)
Campus UAB. Bellaterra, Spain

jar@iiia.csic.es

Michael Wooldridge
Dept. of Computer Science

University of Oxford
Oxford, United Kingdom

mjw@cs.ox.ac.uk

Wamberto Vasconcelos
Dept. of Computing Science

University of Aberdeen
Aberdeen, UK

wvasconcelos@acm.org

ABSTRACT
Normative systems (norms) have been widely proposed as a tech-
nique for coordinating multi-agent systems. The automated synthe-
sis of norms for coordination remains an open and complex prob-
lem, which we tackle in this paper. We propose a novel mechanism
called IRON (Intelligent Robust On-line Norm synthesis mecha-
nism), for the on-line synthesis of norms. IRON aims to synthe-
sise conflict-free norms without lapsing into over-regulation. Thus,
IRON produces norms that characterise necessary conditions for
coordination, without over-regulation. In addition to defining the
norm synthesis problem formally, we empirically show that IRON
is capable of synthesising norms that are effective even in the pres-
ence of non-compliance behaviours in a system.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
—Multiagent Systems

Keywords
Norms - Normative Systems - Norm Synthesis

1. INTRODUCTION
Norms have been widely proposed as a technique for coordinat-
ing multi-agent systems (MAS). A norm can be understood as an
established, expected pattern of behaviour [14]. Typically, these
behavioural patterns impose constraints on the behaviour of indi-
viduals in order to avoid conflicts (e.g., collisions in a traffic sce-
nario).

Since the seminal work of Shoham and Tennenholtz [12], the
problem of norm synthesis (i.e., determining the set of norms that
avoid conflicting states) has attracted considerable attention. We
differentiate two strands of work tackling this problem: the off-line
and on-line norm synthesis approaches. On the one hand, off-line
approaches (such as [12, 4]) aim at synthesising norms for a MAS
that constrain the behaviour of agents while ensuring the achieve-
ment of global system goals. Off-line approaches require detailed
knowledge of a MAS, (e.g., its full state space), at design time.
Some refinements to the basic approach have included the imple-
mentation costs of norms and multiple design goals with different
priorities [1]. Following [12], the complexity of the norm synthesis

problem is high (NP-complete). This has recently spurred research
to better cope with the size of the state space [2].

Nonetheless, off-line design is not appropriate to cope with open
MAS, whose composition and state space change with time. On-
line norm synthesis approaches (such as e.g. [9]) try to overcome
such limitations by synthesising norms that regulate a MAS at run-
time instead of at design time. More recently, norm emergence has
become a popular technique for on-line norm synthesis (e.g., [6,
8, 10, 11, 13]). It does not require any global state representation
or centralized control. Instead, it considers that agents collabora-
tively choose their own norms out of a space of possible norms.
A norm is considered to have emerged when a majority of agents
adopt it and abide by it. Approaches based on norm emergence suf-
fer from several drawbacks. Firstly, convergence is highly sensitive
to the initial conditions in the MAS. Secondly, there is the assump-
tion that agents collaborate during the norm synthesis process and
that agents are endowed with the necessary machinery to partici-
pate in the emergence process. Third, regarding the norm synthe-
sis process, although the utility of norms is eventually considered,
there are further aspects that, to the best of our knowledge, have
not been taken into account yet. On the one hand, it is not consid-
ered whether a synthesised norm is truly necessary or not (because
its regulation is subsumed by another norm). Thus, it might be the
case that a norm within a normative system is not really necessary,
and hence leads to over-regulation: agents must handle more norms
than needed. On the other hand, the generalisation of a set of norms
into a more general one is not considered either as part of the norm
synthesis process.

Against this background, we propose a novel mechanism called
IRON (Intelligent Robust On-line Norm synthesis machine), for the
on-line synthesis of norms. IRON produces norms for the agents
in a MAS that characterise necessary conditions for coordination,
while avoiding over-regulation. IRON synthesises norms that are
both effective and necessary. Furthermore, we endow IRON with
the capability of generalising norms. By generalising norms and
discarding unnecessary norms, we allow IRON to yield concise nor-
mative systems. Finally, we empirically show that IRON success-
fully synthesises norms that are effective and necessary, even in the
presence of non-compliance behaviours in a MAS. IRON is resilient
to a very high percentage of violations (up to 50%).

The paper is organised as follows. Section 2 formally introduces
the norm synthesis problem that we tackle in this paper. Section 3
details IRON and Section 4 offers its empirical evaluation. Section
5 draws some conclusions and sets paths to future research.

2. PROBLEM STATEMENT
Consider a MAS composed of a set of agents Ag , and a finite set of
actions Ac = {ac1, . . . , acn} that these agents can perform. Let

483

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

S be the set of all possible states of the system, and let C ⊆ S be a
set of conflicting states. For instance, consider a traffic scenario in
which the agents are cars. Each state of the traffic network would
correspond to each state of the MAS, and conflicting states would
correspond to those states containing e.g., collisions or traffic jams.

We will use a language L to describe the states of a MAS. This
language, to be more formally defined later, is a logical language
containing the standard classical connectives, and a notion of con-
sequence defined for it via a relation “|=”. Given a state s ∈ S, we
let τ(s) denote an expression in L that describes the state. Using
the mapping τ , we can capture the notion of partial view of some
state s as a sub-expression of τ(s). For instance, if L is a first-order
language and s stands for a state of a traffic network, τ(s) would
be composed of the predicates describing the state. A partial view
of s could be a given junction, and its description a subset of the
predicates in τ(s). Hereafter, νi

s will stand for i-th partial view of
state s. We assume that views are correct, but incomplete.

From the agent perspective, each agent has her own local percep-
tion of the state of the MAS she is part of. For instance, an agent at
a junction has her own local view of the state of the MAS. A local
view is an agent’s internal representation of a partial view (i.e., its
belief). Agents express their local views in terms of an agent lan-
guage LAg . Therefore, while L is the MAS language representing
a global, external observer’s perspective, LAg is the agent language
representing a local, individual perspective. Details of LAg are not
significant for now, however, we will assume as above that we have
a notion of consequence defined for the language via a relation |=.
Henceforth, given an agent ag ∈ Ag , we will refer to her local
view as her context, and we denote it by c(ag).

Now we are ready to introduce our notion of norm, which estab-
lishes obligations, permissions and/or prohibitions to an individ-
ual agent whenever some pre-conditions are fulfilled. Such pre-
conditions are expressed by means of language LAg , namely in
terms of an agent’s point of view.

DEFINITION 1. A norm is a pair 〈ϕ, θ(ac)〉 where ϕ ∈ LAg

stands for the precondition of the norm, ac ∈ Ac is an action, and
θ ∈ {obl, perm, prh} is a deontic operator.

An agent ag ∈ Ag evaluates whether a norm n = 〈ϕ, θ(ac)〉
applies as follows. We say that the context of ag, c(ag), satisfies
the pre-condition of norm n iff c(ag) |= ϕ. Then, norm n ap-
plies to agent ag and the deontic expression θ(ac) will hold for
her. For instance, within a traffic scenario, consider a norm that
establishes an obligation to stop for an agent that sees a car to
its left that is heading towards its right. We represent this norm
as 〈left(>), obl(stop)〉 where precondition left(>) is a proposition
that is true if there is a car heading to the right of the agent evaluat-
ing the norm and it is located at its left, stop stands for the action to
consider, and obl is the deontic operator. So, if agent ag’s context
is left(>), then, c(ag) |= ϕ holds and obl(stop) applies to the car.

In this paper, we focus on a particular type of MAS, namely
norm-aware multi-agent system (NA-MAS). A NA-MAS is a MAS
whose agents have their actions regulated by some normative sys-
tem (set of norms) they are aware of. Moreover, the MAS itself can
assess whether and to whom norms in the normative system apply.
Formally:

DEFINITION 2. A Norm-aware Multi-agent System (NA-MAS)
is a tuple 〈Ag ,Ac,Ω,LAg , S〉, where: (i) Ag is a set of agents; (ii)
Ac is a set of agent actions; (iii) Ω is a normative system, whose
norms are expressed in the agent language LAg ; and (iv) S is a set
of states.

Given a NA-MAS, our aim is to generate a normative system that
satisfactorily avoids lapsing into conflicting states while avoiding
over-regulation. With this aim, given a normative system we must
be able to measure: (i) the effectiveness of its norms in preventing
conflicts; and (ii) whether its norms are necessary or whether they
include redundancy. Furthermore, since the state of a NA-MAS
changes as agents interact, our goal is to find a stable normative
system, namely a set of norms that are sufficiently effective and
necessary for a given period of time. We measure this sufficiency
by applying specific thresholds (αeff and αnec) over effectiveness
and necessity measurement functions (µeff and µnec). Finally, we
are ready to define the problem that we address in this paper.

DEFINITION 3. Given a NA-MAS M = 〈Ag ,Ac,Ω,LAg , S〉,
a set of conflicting states C ⊆ S and functions µeff , µnec to assess
the effectiveness and necessity of a normative system, the norm syn-
thesis problem (NSP) is that of finding a normative system Ω̄ such
that µeff (Ω̄,M,C, t) ≥ αeff and µnec(Ω̄,M,C, t) ≥ αnec for
all t ∈ [tbegin , tend], where αeff ,αnec ∈ [0, 1] are thresholds that
establish a satisfaction degree for both effectiveness and necessity,
and [tbegin , tend] is a time interval.

3. IRON: A NORM SYNTHESIS MECHA-
NISM

In this section we introduce the Intelligent Robust On-line Norm
synthesis mechanism (IRON), a norm synthesis approach aimed
at solving the norm synthesis problem formalised by definition 3.
With this aim, given a NA-MAS, IRON operates by continuously it-
erating the following steps: (1) it monitors the NA-MAS operation;
(2) it decides upon the addition of brand new norms to the cur-
rent (initially empty1) normative system; (3) it evaluates whether
the effectiveness and necessity of the normative system are within
expected thresholds; (4) if required, it refines the normative sys-
tem; and (5) it makes the normative system available to the agents.
Notice therefore that IRON continuously searches for a normative
system on-line, while agents in the system are operating.

IRON is based on four components: (i) a grammar to synthesise
new norms; (ii) the normative network (a data structure to repre-
sent normative systems and explored norms); (iii) a set of operators
that make it possible to transform one normative system into an-
other; and (iv) a strategy that specifies when to use such operators.
We describe below each component in detail, and explain IRON’s
architecture and computational model.

3.1 Grammar for norm synthesis
Our approach employs a grammar to synthesise candidate norms

of the form 〈ϕ, θ(ac)〉 (cf. Def 1). We have adapted our gram-
mar from [5], using as building blocks atomic formulae of the form
pn(τ1, . . . , τn), p being an n-ary predicate symbol and τ1, . . . , τn
terms of LAg .

Norm ::= 〈LHS, RHS〉
LHS ::= LHS & LHS | α
RHS ::= θ(Ac)
θ ::= obl | perm | prh
Ac ::= ac1 | ac2 | . . . | acn
α ::= pn(τ1, . . . , τn)

If we consider further our traffic scenario, we can employ the gram-
mar above to synthesise:

1The approach would also work if the normative system is ini-
tialised with a set of norms provided at design time.

484

Figure 1: Evolution of a normative network along time.

n1 : 〈left(>)&front(>)&right(>), obl(stop)〉
n2 : 〈left(>)&front(>)&right(-), obl(stop)〉

Norm n1 enforces a car to stop (hence giving way) if there is a car
heading towards its right to its left, front and right positions. Norm
n2 enforces a car to stop if there is a car heading towards its right to
its left and front, but there is nothing (indicated by “-”) to its right.
Notice that norms n1, n2 only differ in their right position.

3.2 A representation of normative systems
Since IRON will continuously synthesise norms in search for a

satisfactory normative system, it must be able to differentiate be-
tween the norms that are currently part of the normative system and
those that are not (i.e., they have been explored but they are not cur-
rently active). For this purpose, IRON employs a graph-based data
structure, which we call a normative network, to represent norma-
tive systems. A normative network is a graph whose nodes stand
for norms and whose edges stand for relationships (generalisations
in this paper) between norms. Norms in a network may be either
active or inactive. We consider that a normative network represents
a normative system as its active norms.

Figure 1 illustrates the evolution of a normative network (and its
corresponding normative system) over time points t0, t1, t2. At in-
stant t0 the normative network NN 0 has a single active norm n1

(represented as a white circle) and Ω0 = {n1}. At instant t1 a new
norm, n2, is added to NN 0, yielding NN 1 and Ω1 = {n1, n2}.
Finally, at instant t2, norms n1 and n2 are generalised as norm
n3 and deactivated (represented as grey circles) giving rise to NN 2

and Ω2 = {n3}. In fact, Figure 1 illustrates the way IRON performs
the norm synthesis process. In general the process will consist of
continuously operating over (applying changes to) the normative
network according to some strategy until it finds a normative sys-
tem that solves the norm synthesis problem (NSP).

Now we are ready to offer a formal definition of the normative
network employed by IRON.

DEFINITION 4. A Normative Network (NN) is a tuple 〈N , RG,
∆, δ〉where: (i) N is a set of norms; (ii) RG ⊆ N×N is a general-
isation relationship between norms; (iii) ∆ = {active, inactive}
is the set of possible states of a norm; (iv) δ : N → ∆ is a function
that returns the state of a norm n ∈ N .

Since IRON considers that the current normative system is com-
posed of the norms that are currently active in the normative net-
work, we define Ω = {n |n ∈ N ∧ δ(n) = active}.

The Normative Network definition above considers generalisa-
tion as the only relationship between the norms in N . Given two
norms n, n′ we say that n′ is generalised by n if the applicability
conditions of n′ are more restrictive than the applicability condi-
tions of n and if both modalities and actions are equal. Formally:

DEFINITION 5. Given norms n = 〈ϕ, θ(a)〉, n′ = 〈ϕ′, θ(a)〉,
n′ is generalised by n, denoted by n′ ⊂ n, iff ϕ′ *= ϕ and ϕ′ |= ϕ.

Consider again a traffic scenario and the following norm:

n3 : 〈left(>)&front(>) , obl(stop)〉

Notice that the applicability condition of n3 is more general than
those of n1 and n2 above because a car is obliged to stop if it finds a
car heading towards its right to its left and to the front, but no matter
what it perceives to its right position. Therefore, n3 generalises
both n1 and n2.

In general, if nj is generalised by ni, then we also say that ni is
specialised by nj . If there exists at least some nk ∈ N such that
nj ⊂ nk ⊂ ni we say that ni is an ancestor of nj , otherwise ni

is a father of nj . If nj is not generalised by ni, we denote it by
nj ! ni.

3.3 Operators for normative networks
IRON will search for a normative system that solves the NSP by

transforming an initial normative network over time, hence moving
from one normative system to another. With this aim, our norm
synthesis mechanism implements a collection of normative net-
work operators. Each operator transforms IRON’s normative net-
work 〈N ,R,∆, δ〉 into another one 〈N ′,R′,∆′, δ′〉. More pre-
cisely, IRON implements operators to perform:

• The creation of a new norm using a grammar (as described
in Section 3.1) to add it to the normative system.

• The deactivation of a norm in the normative system.

• The generalisation of a set of norms in the normative sys-
tem into a more general norm (e.g., considering the example
above, generalising n1, n2 into n3).

• The specialisation of a norm in the normative system into
more specific norms. This operation reverses the result of a
generalisation (e.g., n3 can be specialised into n1 and n2).

Table 1 formally specifies each of these operators.

Operator Specification
create(NN ,G, n← synthesiseNorm(G, 〈νi

st−1
, νi

st
〉)

〈νi
st−1

, νi
st
〉) N ′ ← N ∪ {n}

δ′(n)← active
NN ′ ← 〈N ′, RG,∆, δ′〉

deactivate(NN , n) δ′(n)← inactive
NN ′ ← 〈N , RG,∆, δ′〉

generalise(NN, N ′ ← N ∪ {parent}
parent, children) R′

G ← RG ∪ {(ch, parent)|ch ∈ children}
δ′(parent)← active
δ′(ch)← inactive for all ch ∈ children
NN ′ ← 〈N ′, R′

G,∆, δ′〉
specialise(NN , δ′(parent)← inactive
parent, children) for all child ∈ children

if (child, parent) ∈ RG

δ′(child)← active
NN ′ ← 〈N , RG,∆, δ′〉

Table 1: IRON operators.

3.3.1 Creating norms
The create operator synthesises a new norm, using grammar G,

aimed at preventing a conflicting state. The new norm is added to
IRON’s normative network, and it is also activated. Observe that
a pair 〈νi

st−1
, νi

st〉 stands for a transition between two views of a
state at consecutive times. The differences between these views
captures the local changes that occurred when a NA-MAS evolved

485

from t − 1 to t. Consider views 〈νi
st−1

, νi
st〉 such that st is a con-

flicting state and νi
st contains some conflict (e.g., the collision of

two cars at a particular junction). The create operator uses the func-
tion synthesiseNorm to synthesise a new norm aimed at prevent-
ing the conflict at νi

st . The implementation of this function is based
on a Case-Based Reasoning (CBR) unsupervised approach along
the lines of the one used in [7]. Thus, this approach is based on the
following principle: if we can prevent a conflict at a given situation
by enacting a norm, it is likely that we can prevent a conflict at a
similar situation by means of a similar norm. Once this new norm is
synthesised, it is added to the normative network (N ′ = N ∪{n}),
and its state is set to active (δ′(n) = active).

3.3.2 Deactivating norms
The implementation of the deactivate operator sets the state of

a given norm to inactive. Hence, although the norm remains in the
normative network, it is no longer part of the normative system.

3.3.3 Generalising norms
The generalise operator generalises a set of norms (children) into

a more general norm (parent) by: (i) adding the parent norm to
the network; (ii) establishing new generalisation relations (RG) be-
tween each generalised (child) norm and the parent norm in the
normative network; (iii) setting the state of the parent to active and
the children’s to inactive. As a result, the child norms will no longer
belong to the normative system, but the parent norm will do.

3.3.4 Specialising norms
The specialise operator undoes the result of a generalisation by

setting to inactive the state of the parent (more general) norm and
setting to active the state of its children. Thus, thereafter all the
child norms become candidates to belong to the normative system,
while the parent norm does not any longer.

3.4 A strategy to synthesise normative systems
Operators are invoked by following a specific strategy. Our pro-

posal is to monitor the evolution of the system at regular time in-
tervals (i.e., ticks) and apply operators under certain conditions. At
every tick, IRON runs its strategy to perform three tasks: (i) synthe-
sis of new norms; (ii) evaluation of the current normative system;
and (iii) refinement of the normative system by means of specialisa-
tions, generalisations and deactivation of norms. Once the strategy
finishes, it outputs the normative system represented by the norma-
tive network.

Algorithm 1 specifies IRON’s strategy (Π), which requires as in-
put: (i) a list of views [〈ν0

st−1
, ν0

st〉, . . . , 〈ν
m
st−1

, νm
st 〉] where νi

st−1

and νi
st stand for the i-th view of the state of a NA-MAS at time

t− 1 and at time t respectively; (ii) a normative network NN ; (iii)
a grammar G; (iv) a function fapply to check norm applicability (v)
a function fconflict to detect conflicts; (vi) two evaluation func-
tions µeff , µnec to assess the effectiveness and necessity of norms;
and (vii) Θ, a set of satisfaction degree thresholds described below
(Θ = {αeff ,αnec ,α

deact
eff ,αdeact

nec ,αgen
eff ,αgen

nec}).

3.4.1 Synthesis of new norms
The norm synthesis process starts searching for conflicts in all the
received views. Thereafter, for each pair 〈νi

st−1
, νi

st〉, the strategy
detects whether there is a conflict in view νi

st . Finally, for each
detected conflict, the strategy synthesises a new norm in order to
avoid it in the future. Function conflictDetection (line 2) uses
function fconflict to identify the pairs 〈νi

st−1
, νi

st〉 in views that

Algorithm 1 IRON functions
1: function Π(views,NN ,G, fapply , fconflict , µeff , µnec ,Θ, T)
2: conflicts ← conflictDetection(views, fconflict)
3: for all 〈νi

st−1
, νi

st〉 ∈ conflicts do
4: NN ← create(NN ,G, 〈νi

st−1
, νi

st〉)
5: appNorms ← normApplicability(NN , views, fapply)
6: (A, V)← normCompliance(appNorms, fconflict)
7: U ← updateUtilities(A, V, µeff , µnec)
8: P ← updatePerformances(U, T)
9: for all n ∈ norms(A, V) do

10: if isUnderperforming(n, P,Θ) then
11: specialiseDown(NN , n, P,Θ)
12: else
13: L← validGeneralisations(NN ,G, n, P)
14: for all generalisation ∈ L do
15: parent ← getParent(generalisation)
16: children ← getChildren(generalisation)
17: NN ← generalise(NN , parent , children)

18: Ω← {n ∈ NN |δ(n) = active}
19: return Ω
20:
21: function SPECIALISEDOWN(NN , n, P,Θ)
22: if isLeaf (n) then
23: NN ← deactivate(NN , n)
24: else
25: children ← getChildren(n)
26: NN ← specialise(NN , n, children)

27: for all child ∈ children do
28: if isUnderPerforming(child , P,Θ) then
29: specialiseDown(NN , child , P,Θ)

30: return L

contain conflicts. New norms to avoid conflicts are created by the
create operator (line 4), which uses grammar G to synthesise new
norms and add them to the normative network.

3.4.2 Norm evaluation
The strategy updates the effectiveness and necessity of norms by

evaluating them individually. Given a particular view and an agent
that is part of it, the agent may decide whether to follow the norm
or violate it. In general, we will evaluate a norm depending on the
outcome (e.g., a conflict) that either its application or violation lead
to. Therefore, norm evaluation will solely consider the applicable
norms that have been either applied or violated in the transition
from two consecutive states in time.

Norm evaluation is performed by steps 5 to 7 in algorithm 1.
Function normApplicability (line 5) uses function fapply to as-
sess the norms in the normative network (NN) that were applica-
ble at tick t − 1. Thus, for each view 〈νi

st−1
, νi

st〉, this function
assesses the norms that are applicable at view νi

st−1
. Next, func-

tion normCompliance (line 6) partitions the selected applicable
norms into applied or violated norms. Moreover, it uses a conflict-
detection function (fconflict) to determine which norms led to con-
flicts during the last time step. As a result we obtain a partition of
applicable norms into four multi-sets (sets that allow duplicate val-
ues): (i) applied norms that led to conflicts (AC); (ii) applied norms
that did not lead to conflict (AC̄); (iii) violated norms that led to
conflicts (VC); and (iv) violated norms that did not lead to conflict
(VC̄). In the algorithm A = (AC , AC̄) and V = (VC , VC̄).

At this point we can evaluate norms. The strategy uses function
updateUtilities (line 7) to compute the effectiveness and necessity

486

of each norm at time t. On the one hand, we measure the effective-
ness of applied norms based on their outcomes. In fact, we evaluate
the cumulative effectiveness of a norm according to the following
principle: the higher the ratio of successful applications (applica-
tions not leading to conflicts) of a norm, the higher the effectiveness
increase. We compute the effectiveness of norm n up to time t as:

µeff (n, t) = (1− α)× µeff (n, t− 1) + α× reff (n, t) (1)

where: µeff (n, t−1) stands for the effectiveness of n at time t−1;
0 ≤ α ≤ 1 is a parameter to trade off exploitation (of the ef-
fectiveness obtained so far until t − 1) with exploration (of the
effectiveness reward obtained from t− 1 to t) in the cumulative ef-
fectiveness; and reff (n, t) is a reward value based on the successful
applications of norm n. We assess a norm’s effectiveness reward as
follows:

reff (n, t) =
wAC̄

×mAC̄
(n)

wAC̄
×mAC̄

(n) + wAC ×mAC (n)
(2)

where mAC̄
(n) stands for the number of applications of norm n

that did not end up with conflicts, mAC (n) stands for the num-
ber of applications of norm n that led to conflicts, and wAC̄

> 0,
wAC > 0 are weights that measure the importance of successful
applications and unsuccessful applications of n respectively. No-
tice therefore that our approach is akin to reinforcement learning.

On the other hand, we measure the necessity of violated norms
based also on their outcomes. Analogously to the above-described
approach, we assess the cumulative necessity of a norm according
to the following principle: the higher the ratio of harmful violations
(violations leading to conflicts), the more necessary the norm. We
compute the necessity of norm n up to time t as:

µnec(n, t) = (1− β)× µnec(n, t− 1) + β × rnec(n, t) (3)

where: µnec(n, t−1) stands for the necessity of n at time t−1; 0 ≤
β ≤ 1 is a parameter to to trade off exploitation (of the necessity
obtained so far until t−1) with exploration (of the necessity reward
obtained from t−1 to t) in the cumulative necessity; and rnec(n, t)
is a reward value based on the harmful violations of norm n. We
assess a norm’s necessity reward as follows:

rnec(n, t) =
wVC ×mVC (n)

wVC ×mVC (n) + wVC̄
×mVC̄

(n)
(4)

where mVC (n) stands for the number of violations of norm n that
led to conflicts, mVC̄

(n) stands for the number of violations of
norm n that did not lead to conflicts, and wVC > 0, wVC̄

> 0 are
weights that measure the importance of harmful applications and
harmless applications of n respectively.

3.4.3 Normative system refinement
The last task of our strategy is the normative system refinement,

which yields a new normative system by transforming the norma-
tive network via specialisations and generalisations. With this aim,
the strategy keeps track of the effectiveness and necessity of the
norms in the normative network during a period of time T . Then,
the refinement task amounts to implementing the following rules:

• A norm is specialised (or deactivated if it has no children in
the normative network) provided that either its effectiveness
or necessity have not been good enough during T . This oc-
curs when the effectiveness or necessity of some of its chil-
dren have not been good enough either.

• A set of norms are generalised provided that: (i) they all
relate to the very same norm (parent) in the normative net-
work; (ii) they are all the possible child norms of the parent
norm; (iii) their effectiveness and necessities have all been
good enough during T .

On the one hand, we say that a norm n has not been good enough
within period of time T , and hence can be specialised if any of the
following conditions hold:

µ̄eff (n, T) + µ̂eff (n, T) < αdeact
eff (5)

µ̄nec(n, T) + µ̂nec(n, T) < αdeact
nec (6)

where: µ̄eff (n, T) and µ̂eff (n, T) stand for the average and devia-
tion of the effectiveness of n within T ; µ̄nec(n, T) and µ̂nec(n, T)
stand for the average and deviation of the necessity of n within
T ; αdeact

eff ∈ [0, 1] and αdeact
nec ∈ [0, 1] stand for the deactivation

thresholds for effectiveness and necessity and both αdeact
eff , αdeact

nec ∈
Θ.

On the other hand, we say that a norm n has been good enough
within T , and hence might be generalised to its parent if the fol-
lowing conditions hold:

µ̄eff (n, T)− µ̂eff (n, T) ≥ αgen
eff (7)

µ̄nec(n, T)− µ̂nec(n, T) ≥ αgen
nec (8)

where αgen
eff ∈ [0, 1] and αgen

nec ∈ [0, 1] stand for the generalisation
thresholds for effectiveness and necessity and both αgen

eff , αgen
nec ∈

Θ.
Next, we detail how algorithm 1 implements specialisations and

generalisations respectively. We start considering the specialisation
of a norm that is not performing well enough. This amounts to: (i)
deactivating the norm along with its child norms that are not per-
forming good enough either; and (ii) activating the child norms that
are performing good enough. First, function updatePerformances
(line 8) computes the upper and lower effectiveness and neces-
sity performances for each norm in the normative network, namely
µ̄eff (n, T) + µ̂eff (n, T), µ̄eff (n, T) − µ̂eff (n, T), µ̄nec(n, T) +
µ̂nec(n, T), and µ̄nec(n, T) − µ̂nec(n, T). Next, for each norm n
that was either applied or violated during the last state transition,
function isUnderperforming (line 10) checks whether it satisfies
the deactivation conditions (equations 5 and 6) or not. If so, the
strategy calls function specialiseDown (line 11) to specialise norm
n in the normative network. If the norm is a leaf in the normative
network (line 22), it is simply deactivated (line 23) using the de-
activate operator. Otherwise, if the norm has children, the func-
tion triggers the specialisation down the normative network: first,
it specialises the norm to its children using the specialise operator
(line 26); second, the function calls itself recursively to specialise
the children. Notice that lines 27-29 guarantee that those children
whose effectiveness or necessity have not been good enough are
deactivated.

Finally we consider the generalisation of a set of norms. In case
a norm n must not be specialised (because it is good enough), the
strategy considers whether the norm can be generalised (lines 12-
17). Function validGeneralisations (line 13) searches in the
normative network for valid generalisations involving norm n. A
valid generalisation is composed of a parent norm n′ such that
(n, n′) ∈ RG and all possible siblings of n (obtained from the
grammar G) whose parent is also n′ . Furthermore, each of the
child norms in a valid generalisation must be active and satisfy the

487

generalisation conditions of equations 7 and 8. For each valid gen-
eralisation, the strategy applies the generalise operator (line 17) to
the parent and child norms.

3.5 Evaluating normative systems
We assess the effectiveness and necessity of a normative system

Ω as a whole over a period of time T = [tω, t] based on the aver-
age effectiveness and average necessity of each of its norms over a
period T . Then:

µeff (Ω, T) =

∑

n∈Ω

µ̄eff (n, T)

|Ω| µnec(Ω, T) =

∑

n∈Ω

µ̄nec(n, T)

|Ω|
(9)

These measures are employed by IRON to determine whether a nor-
mative system Ω is good enough as a solution to the NSP in defini-
tion 3. This occurs whenever µeff (Ω, T) ≥ αeff and µnec(Ω, T) ≥
αnec .

3.6 Architecture and computational model
We now have all components for the architecture and compu-

tational model of our norm synthesis system. Figure 2 illustrates
the architecture of IRON. As we mentioned, IRON continuously
searches on-line for a solution to the NSP, namely during the op-
eration of a NA-MAS. We regard IRON as an external observer of
agents’ interactions. Moreover, we consider that such perceptions
are limited to partial views of the global state of the NA-MAS.

IRON receives as an input (i) a function (fconflict) to detect con-
flicts in the partial views it perceives; (ii) a grammar G to define
norms; (iii) a function to determine whether a norm applies to the
agents in a given view (fapply); (iv) evaluation functions to compute
the effectiveness (µeff) and necessity (µnec) of norms and norma-
tive systems; (v) the satisfaction degrees and thresholds(Θ); as well
as (vi) the time interval (T) considered when solving the NSP.

Our norm synthesis mechanism is composed of: (i) a normative
network (NN) to compactly represent the current normative system
and to store the norms synthesised (explored) so far; (ii) a control
unit in charge of directing the NSP solving. The control unit con-
tinuously perceives the NA-MAS to regulate by collecting partial
views. After collecting views, the control unit calls the strategy Π
described in Section 3.4 to apply a collection of operators and to
eventually produce a new normative system that prevents the con-
flicts observed in the views. The normative system (Ω) is broadcast
to the agents in the NA-MAS. Once the new normative system is
deployed, the control unit collects new partial views of the NA-
MAS to be analysed by the strategy. This cyclic process continues
until the control unit receives from the strategy a normative system
that is evaluated effective and necessary enough, according to the
evaluation functions and satisfaction degrees set as input, during a
period of time T . Such normative system will represent a solution
to the NSP.

Finally, we notice that, in general, the size of the search space to
explore is at most 2m, where m is the number of norms defined by
grammar G.

4. EMPIRICAL EVALUATION
In this section we empirically demonstrate that IRON successfully
manages to solve the NSP. Moreover, we also show that IRON can
solve the NSP despite a high non-compliant behaviour in the agent
population.

Figure 2: IRON’s architecture.

Figure 3: Left: Junction. Right: Agent context.

4.1 Empirical settings
Our experiments simulate a traffic junction composed of two or-

thogonal roads represented by a 19 × 19 grid. Each road has two
19-cell lanes (one per direction). Figure 3 shows the centre of the
junction. Each agent is a car that travels along the grid at one cell
per tick by following a random trajectory (i.e., random entry and
exit points). In order to favour a high frequency of collisions, we
cause a high traffic density (from 41% to 48% of occupied cells)
by having three cars entering the scenario every tick. At each tick,
each car decides whether to apply or violate norms. The probability
of violating norms is fixed at the beginning of each simulation and
is the same for all cars.

Each experiment consists of a set of simulations until either IRON
converges to a stable normative system, solving the NSP, or the
simulation reaches 50,000 ticks. IRON starts each simulation with
an empty normative system. As the simulation goes on, collisions
among cars occur, and IRON synthesises a new normative system
to avoid future collisions. We consider that IRON has converged to
a normative system if during a 10,000-tick period: (i) no collisions
occur; and (ii) the normative system remains unchanged.

Each norm is represented as 3 cells (see Figure 3), which repre-
sent the context of a reference car. Cells may have 6 values each: ei-
ther a car with its heading (>, <, ∨, ∧); a "-", representing the value
of "nothing"; or the empty value (standing for a generalisation).
Therefore, the grammar that we employ can synthesise 63(216)
different norms and the number of normative systems to consider
amounts to 2216 (larger than 1065). We set IRON’s parameters as
follows: (i) low deactivation thresholds (αdeact

eff = αdeact
nec = 0.2)

to only deactivate norms performing very poorly; (ii) high general-
isation thresholds (αgen

eff = αgen
nec = 0.6) to only generalise norms

when performing very well; (iii) wAC = 5 and wAC̄
= 1 to en-

sure that norm applications leading to collisions (ineffective norms)

488

0

2

4

6

8

10

12

14

16

13 41 3215
3349

13349

Tick

Avg. collisions/tick
Num. explored norms

Ω cardinality

Figure 4: Norm synthesis along time.

are much more penalised than those avoiding collisions (effective
norm); (iv) wVC = 2 and wVC̄

= 1 to ensure that violations lead-
ing to collisions (necessary norm) obtain a much higher reward than
those leading to no collisions (unnecessary norm).

4.2 Experiment 1: Norm Synthesis
Next, we show that IRON manages to successfully synthesise

norms which are effective and necessary within an acceptable range
of values. First, we performed 100 simulations with a 30% norm
violation rate, namely 30% of agent’s decisions do not comply with
the norms output by IRON. As Figure 5 shows, IRON successfully
converged for all simulations to a normative system that avoids col-
lisions as long as cars comply with norms. Regarding the quality of
the resulting normative systems, the average effectiveness was high
(89.73%), and the necessity as well (73.15%). One may think that,
once IRON converges, the effectiveness should be 100%. This is
not the case because of the way we evaluate norms when collisions
occur. Notice that when several norms are involved in a collision
(because of their application or violation), we consider that all of
them led to the collision because we cannot distinguish which ones
actually did. Therefore, we take a very conservative evaluation ap-
proach in this case.

Figure 4 shows a prototypical simulation (out of the 100 per-
formed), with 30% violations, to analyse IRON’s synthesis process.
At tick 13, the first collision arises and IRON synthesises the first
norm. From that tick onwards, IRON keeps generating norms when
needed. At tick 41, IRON performs the first norm generalisation, re-
ducing the cardinality of the normative system from 9 to 8 norms.
At tick 3215, IRON synthesises the last norm. By using the resulting
normative system, cars do not collide any longer provided that cars
comply with norms. IRON performs the last generalisation at tick
3349, reducing the cardinality of the normative system to 4 norms.
From tick 3349 onwards, the normative system remains stable. Af-
ter 10000 further ticks, IRON reaches convergence (tick 13349). At
the end of the simulation, IRON explored 16 different norms (out
of 125 possible ones), which were generalised into 4 norms, and
20 different normative systems (out of 2125 possible ones) to find
a 4-norm normative system that successfully prevents collisions as
long as cars comply with norms.

The 4-norm normative system that IRON converged to is depicted
in table 2. Norm n1 is a left-hand side priority specifying that a car
must stop when it perceives a car to its left heading to its right, and
no matter what it perceives in front or to its right. It has very high
values of effectiveness (0.86) and necessity (0.90), what makes the
norm to be essential.

Norm n4 forces a car to stop when it perceives a car in front

Norm Pre-condition (θ) Modality µ̄eff µ̄nec

n1 left(>) obl(stop) 0.86 0.90
n2 left(<)&front(<) obl(stop) 0.87 0.73
n3 front(>)&right(>) obl(stop) 0.86 0.81
n4 front(∧) obl(stop) 0.83 0.33

Table 2: A normative system upon convergence.

heading forward, which is a situation that exceptionally leads to
collisions. Therefore, when violated, this norm is exceptionally
evaluated as necessary, whereas most times it is evaluated as un-
necessary. As a result, its necessity continuously oscillates, with
a low average value (µ̄nec). We say this norm is preventive, since
agents should comply with it "just in case" if we want to totally
remove collisions.

To conclude, we showed that IRON can successfully synthesise a
normative system with high effectiveness and reduced cardinality.
Moreover, we observe that the synthesised norms in the resulting
normative systems are either essential (high effectiveness, high ne-
cessity) or preventive (high effectiveness, low necessity).

4.2.1 IRON’s regulation versus traffic lights
Now we compare IRON with an alternative way of regulating

traffic (traffic lights) as done in [3]. We simulated a traffic junction
regulated by 4 traffic lights, one per lane coming from the 4 cardi-
nal points. There are 4 green light turns. When a light changes to
green, allowing cars to pass, the other three lights turn red, forcing
cars to stop. Thus, traffic lights avoid collisions by giving pass to
the cars of one unique lane at the same time. Since we observed
that both IRON and traffic lights are 100% effective to prevent col-
lisions, we compare them in terms of traffic fluidity. Table 3 com-
pares traffic fluidity between traffic lights and the normative system
found by IRON in the previous example.

Expected time Average time Delay
IRON 19 27.073 42.48%
Traffic lights 19 46.094 142.6%

Table 3: IRON’s synthesised norms versus traffic lights.

Cars are expected to reach their destinations in 19 ticks average.
However, both IRON and traffic lights eventually require stops to
avoid collisions. Thus, cars following IRON norms invest 27.073
ticks on average to reach their destinations, while cars regulated by
traffic lights invest 46.094 ticks on average. Therefore, cars follow-
ing IRON’s norms are delayed three times less than they do when
following the traffic lights (42.48% average vs. 142.6% average).
Thus, IRON’s synthesised norms are as effective as traffic lights, but
outperform them in terms of traffic fluidity.

4.3 Experiment 2: Robustness analysis
Next we explore the limits of IRON by testing its synthesis ca-

pabilities under different cars’ violation rates. Violation rates (i.e.,
the probability of each car violating a norm) ranged from 10% to
90%. We performed 100 simulations per violation rate. Fig. 5
shows averaged results for the effectiveness and necessity of the
synthesised normative systems2. Moreover, the convergence series

2For the sake of clarity, we do not plot standard deviations.
However, it is worth mentioning that the standard deviations for
the effectiveness and necessity for each violation rate are within
[0.006, 0.011] and [0.080, 0.0137] respectively.

489

0%

20%

40%

60%

80%

100%

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9

Violation rate

Convergence degree
Effectiveness degree

Necessity degree
Variability degree

Figure 5: Robustness analysis depending on violations.

shows the number of runs that converged to a stable normative sys-
tem. With violation rates up to 50% IRON successfully converged
100% of the times to highly effective and necessary normative sys-
tems. Between 50% and 80% of violation rate, the convergence
decreases (due to oscillations in the normative systems) until IRON
cannot find a normative system beyond 80%.

Figure 5 shows the variability of IRON’s synthesis, namely whether
it yields different normative systems. Below the 50% violation rate,
the variability remains near 20 (i.e., 100 executions converged to 20
different normative systems). Since preventive norms become un-
stable (activated and deactivated back and forth) with high violation
rates, IRON takes longer to synthesise stable norms. This leads to
new, different normative systems, which were not required to be
explored with lower violation rates.

Overall, IRON proved to be highly resilient to non-compliant be-
haviours during the synthesis process. IRON managed to success-
fully synthesise norms despite up to a 50% violation rate of agents.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have described progress towards the automated
synthesis of normative systems. Firstly, we formally introduced
the norm synthesis problem. Secondly, we described IRON, a novel
mechanism for the on-line synthesis of norms. IRON produces
norms that guarantee conflict-free coordination, while avoiding over-
regulation. For this purpose, IRON employs norm effectiveness and
necessity as the measures that characterise the quality of a nor-
mative system. Furthermore, we endow IRON with the capability
of generalising norms. By keeping effective norms, generalising
norms, and discarding unnecessary norms, we allow IRON to yield
effective and concise normative systems.

The machinery of IRON has been designed to operate: on-line
(while observing the NA-MAS to regulate); conflict-driven (con-
flicts trigger the evolution of the normative system); and without
requiring any prior normative knowledge. Moreover, IRON uses a
data structure (the normative network) that represents the gener-
ated norms and their relationships. Finally, we empirically show
that IRON successfully synthesises norms even in the presence of
non-compliance behaviours in a MAS, being resilient to a very high
percentage of violations (up to 50%).

As future work, we plan to: (i) empirically study the sensitivity
of IRON to its parameters; (ii) investigate further relationships be-
tween norms in the normative network; and (iii) extend the norm
synthesis process to detect the cause of conflicts within a sequence
of previous states instead of a single state as we do now.

6. ACKNOWLEDGEMENTS
This work was funded by AT (CONSOLIDER CSD2007-0022),

EVE (TIN2009-14702-C02-01,TIN2009-14702-C02-02), COR
(TIN2012-38876-C02-01, TIN2012-38876-C02-02), MECER
(201250E053) and the Generalitat of Catalunya (2009-SGR-1434).
Michael Wooldridge was supported by the ERC under Advanced
Grant 291528 (“RACE").

7. REFERENCES
[1] T. Agotnes and M. Wooldridge. Optimal Social Laws. In

Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 667–674,
2010.

[2] G. Christelis and M. Rovatsos. Automated norm synthesis in
an agent-based planning enviroment. In Proceedings of the
8th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 161–168, 2009.

[3] K. Dresner and P. Stone. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research (JAIR), 31:591–656, March 2008.

[4] D. Fitoussi and M. Tennenholtz. Minimal social laws. In
Proceedings of the National Conference on Artificial
Intelligence, pages 26–31. John Wiley & Sons LTD, 1998.

[5] A. García-Camino, J. A. Rodríguez-Aguilar, C. Sierra, and
W. Vasconcelos. Constraint rule-based programming of
norms for electronic institutions. JAAMAS, 18(1):186–217,
2009.

[6] N. Griffiths and M. Luck. Norm Emergence in Tag-Based
Cooperation. In 9th International Workshop on
Coordination, Organization, Institutions and Norms in
Multi-Agent Systems. 79-86, 2010.

[7] J. Morales, M. López-Sánchez, and M. Esteva. Using
Experience to Generate New Regulations. In International
Joint Conference in Artificial Intelligence, pages 307–312.
AAAI Press, USA, 2011.

[8] N. Salazar, J. A. Rodriguez-Aguilar, and J. L. Arcos. Robust
coordination in large convention spaces. AI Commun.,
23(4):357–372, Dec. 2010.

[9] B. Savarimuthu, S. Cranefield, M. Purvis, and M. Purvis.
Role model based mechanism for norm emergence in
artificial agent societies. Lecture Notes in Computer Science,
4870:203–217, 2008.

[10] O. Sen and S. Sen. Effects of social network topology and
options on norm emergence. In Proceedings of the 5th
international conference on Coordination, organizations,
institutions, and norms in agent systems, COIN’09, pages
211–222, Berlin, Heidelberg, 2010. Springer-Verlag.

[11] S. Sen and S. Airiau. Emergence of norms through social
learning. In Proceedings of the 20th international joint
conference on Artifical intelligence, IJCAI’07, pages
1507–1512, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc.

[12] Y. Shoham and M. Tennenholtz. On social laws for artificial
agent societies: off-line design. Journal of Artificial
Intelligence, 73(1-2):231–252, February 1995.

[13] D. Villatoro, J. Sabater-Mir, and S. Sen. Social instruments
for robust convention emergence. In T. Walsh, editor,
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, pages 420–425. IJCAI/AAAI, 2011.

[14] M. Wooldridge. An Introduction to MultiAgent Systems. John
Wiley & Sons, 1st edition, June 2002.

490

