
Algorithms for the Shapley and Myerson Values

in Graph-restricted Games

Oskar Skibski
University of Warsaw

oskar.skibski@mimuw.edu.pl

Tomasz P. Michalak
University of Oxford

University of Warsaw
tomasz.michalak@cs.ox.co.uk

Talal Rahwan
Masdar Institute

trahwan@gmail.com

Michael Wooldridge
University of Oxford

michael.wooldridge@cs.ox.co.uk

ABSTRACT
Graph-restricted games, first introduced by Myerson [20], model
naturally-occurring scenarios where coordination between any two
agents within a coalition is only possible if there is a communica-
tion channel(a path) between them. Two fundamental solution con-
cepts that were proposed for such a game are the Shapley value and
the Myerson value. While an algorithm has been proposed to com-
pute the Shapley value in arbitrary graph-restricted games, no such
general-purpose algorithm has yet been developed for the Myerson
value.

Our aim in this paper is to develop a more efficient algorithm
for computing the Shapley value, and to develop a general-purpose
algorithm for computing the Myerson value, in graph-restricted
games. Since the computation of either value involves visiting all
connected induced subgraphs of the graph underlying the game,
we start by developing an algorithm dedicated for this purpose, and
show that it is faster that the fastest available one in the literature.
This algorithm is then used as the cornerstone upon which we build
two algorithms. The first is designed to compute the Shapley value,
and is shown to be more efficient than the state of the art. The sec-
ond is the first dedicated algorithm to compute the Myerson value
in arbitrary graphs.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

Keywords
Myerson value, Shapley value, enumerating induced connected sub-
graphs, terrorist networks

1. INTRODUCTION
While the conventional model of a coalitional game assumes that

any coalition can be created and may have an arbitrary value, there
are many realistic settings where this assumption does not hold. Of-
ten, agents can communicate and cooperate only via some limited
number of bilateral channels. If there is no direct channel between
two agents, cooperation can be still possible indirectly, through an

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c� 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

intermediary or a sequence of them. However, when no direct or
indirect connection exists between agents, they cannot coordinate
their activities. Such restrictions emerge in a variety of domains
including: sensor networks, telecommunications, social networks
analysis, trade agreements, political alliances, etc.

An influential approach for representing such scenarios was in-
troduced by Myerson [20], who described a coalitional game over
a graph in which nodes represent agents and edges represent com-
munication channels between them. Such a game is often called a
graph-restricted game. Some of the literature on graph-restricted
games assumes that a coalition is feasible only if there exists a (di-
rect or indirect) communication channel between any two of its
members. Such a coalition is said to be connected, as it induces a
connected subgraph of the underlying graph. Other work allows for
the existence of both connected and disconnected coalitions. Here,
disconnected coalitions are either all assumed to have a value of
0 (as in the model formalized by Amer and Gimenez [3]) or their
values equal to the sum of values of the disjoint components they
are composed of (as formalized by Myerson [20]).

In this paper, we study the computational aspects of the two key
solution concepts proposed for the above graph-restricted games,
namely the Shapley value and the Myerson value. Specifically:

• In his seminal work, Shapley proposed a formula to quan-
tify the contribution of an individual agent to the outcome
achieved by all agent working together in one coalition. While
this formula, known as the Shapley value, satisfies many de-
sirable properties (see Section 2), it is defined only for set-
tings where all (both connected and disconnected coalitions)
are feasible.

• On the other hand, Myerson proposed a solution concept
for the settings in which only connected coalitions are feasi-
ble [20]. This solution concept, known as the Myerson value,
also has a number of attractive properties (again see Sec-
tion 2).

The computation of both of these values is challenging [18, 2]. As
for the Shapley value, Michalak et al. recently proposed an algo-
rithm to compute it for an arbitrary graph-restricted game [18]. As
for the Myerson value, its computational aspects were considered
for certain classes of graphs and/or games (see Section 7 for more
details). However, to date there is no algorithm for computing the
Myerson value in arbitrary graphs.

Our aim in this work is to develop efficient algorithms for com-
puting the Shapley value and the Myerson value. In particular, our
contributions can be summarised as follows:

• In Section 3, we propose a new algorithm for the enumera-
tion of all connected induced subgraphs of the graphs—one

197

of the fundamental operations in graph theory. We show that
our algorithm is faster than the state of the art, due to Mo-
erkotte and Neumann [19]. We also show that, unlike the
state of the art, our algorithm can easily be extended to cap-
ture extra information about each enumerated subgraph.

• Building upon the above enumeration algorithm, in Section 4,
we propose a new algorithm to compute the Shapley value
for graph-restricted games. We show that it is faster than the
state of the art, due to Michalak et al. [18].

• In Section 5, we propose the first dedicated algorithm to com-
pute the Myerson value for an arbitrary graph.

• Finally, in Section 6, we test both algorithms on an inter-
esting application, recently proposed by [15], who used the
Shapley value of graph-restricted games to measure impor-
tance of different members of a terrorist network. Our results
suggest that the Myerson value-based measure is more suit-
able for this application.

2. PRELIMINARIES
A graph G = (V,E) consists of vertices (or nodes) V and

edges E ✓ V ⇥ V . Let V 0 ✓ V be a subset of vertices and
let E(V 0) ✓ E denote the set of all edges between them in G.
Now, the subgraph induced by V 0 is the pair (V 0, E(V 0)). Since
in this paper we do not consider non-induced subgraphs, we will
often omit the word induced when there is no risk of confusion.
A subgraph is connected if its edges form a path between any two
of its nodes. We will denote the set of all connected induced sub-
graphs of G by C(G) (or simply C wherever G is clear from the
context). We say that v 2 V is a cut vertex in connected graph
(V,E) if its removal splits the graph, i.e., if (V \{v}, E(V \{v}))
is not connected. If the subgraph induced by V 0 is not connected,
then it surely consists of several connected components, denoted
K(V 0) = {K1,K2, . . . ,Km}. Finally, for any vertex v 2 V , we
denote by N (v) the set of neighbours of v.

Having discussed some fundamental notions of graph theory, let
us turn now to cooperative game theory. The players in our paper
are represented by nodes in graph G. In other words, V is inter-
preted as the set of players (or agents). Consequently, we will use
the terms coalition and subgraph interchangeably. A coalition S is
said to be connected if and only if the subgraph of G induced by S
is connected. Otherwise, the coalition is said to be disconnected.

Let ⌫ denote the characteristic function that assigns to every
coalition of agents, S ✓ V , a real number representing its pay-
off (or value). Formally, ⌫ : 2V ! R. A cooperative game in
characteristic function form is then given by a pair hV, ⌫i. As-
suming that the coalition of all agents, V , forms, a solution of a
coalitional game is a method of dividing ⌫(V)—the payoff from
cooperation—among the agents. One of the most important such
solution concepts is the Shapley value [23], which is basically a
weighted average marginal contribution of an agent to every coali-
tion this agent could possibly belong to:

SVi(⌫) =
X

S✓V,vi2S

⇠S
�
⌫(S)� ⌫(S \ {vi})

�
, (1)

where

⇠S =
(|S|� 1)!(|V |� |S|)!

|V |!
An alternative equivalent formula for the Shapley value of agent vi
is:

�i =
1

|V |!
X

⇡2⇧

�
⌫(S⇡

i)� ⌫(S⇡
i \ {vi})

�
, (2)

where ⇧ is the set of all permutations of V , and S⇡
i is the coalition

consisting of vi and the agents that precede vi in permutation ⇡.
As such, according to the Shapley value, the payoff of an agent,
vi 2 V , equals its average marginal contribution to the agents that
precede it in an arbitrary permutation. This payoff is referred to
as the Shapley value of vi. The importance of the Shapley value
stems from the fact that it is the unique solution concept that has
the following four desirable properties: (1) it is efficient (i.e., the
sum of agents’ shares equals ⌫(V)), (2) symmetric agents obtain
symmetric payoffs, (3) agents who do not contribute to the game
obtain no payoff, and (4) the division scheme is additive.

In graph-restricted games, which were first studied by Myer-
son [20], only connected coalitions could be assigned an arbitrary
value (as the agents within are able to communicate and create
value added). To formalise this class of games, let us first consider
a new value function which corresponds to ⌫ but is only defined
over connected coalitions:

⌫G : C(G)! R and 8S2C(G)⌫G(S) = ⌫(S)

This definition can be extended to incorporate disconnected coali-
tions; this has been done in two ways:

• Myerson argued that it is natural to consider a disconnected
coalition as a set of disjoint, connected components. Each
such component S0 is, by definition, a coalition in C(G) whose
members are able to attain a payoff of ⌫G(S0) = ⌫(S0). This
leads to the following characteristic function, defined over
both connected and disconnected coalitions [20]:

⌫M
G (S) =

(
⌫(S) if S 2 C(G)P

Ki2K(S) ⌫(Ki) otherwise,
(3)

where M stands for Myerson. In other words, the payoff
available to a disconnected coalition is the sum of payoffs
of its connected components.

• More recently, Amer and Gimenez [3] formalised an alter-
native approach to evaluate disconnected coalitions, where
they assumed that all such coalitions have a value of 0. Un-
der this assumption, they defined the following characteristic
function of a simple game:1

⌫A
G (S) =

(
1 if S 2 C(G)

0 otherwise,
(4)

where A stands for Amer and Gimenez. The game with the
above function will be called a 0-1-connectivity game. This
function was later on extended by Lindelauf et al. [15] to:

⌫f
G(S) =

(
f(S,G) if S 2 C(G)

0 otherwise,
(5)

where f is an arbitrary function.
Since ⌫M

G and ⌫A
G are defined over all 2|V | coalitions, the Shapley

value can be applied as a solution concept to both of these func-
tions. However, this is not the case with ⌫G. Now, a celebrated re-
sult of Myerson [20] is the solution concept he proposed for ⌫G. In
particular, Myerson showed that by allocating to agent vi 2 V the
payoff MVi(⌫G), which is defined as follows:

MVi(⌫G) = SVi(⌫
M
G), (6)

we obtain the unique payoff division scheme that is efficient and
rewards any two connected agents equally from the bilateral con-
nection between them. This payoff division scheme is known as the
Myerson value.
1Simple coalitional games are a popular class of games, where ev-
ery coalition has a value of either 1 or 0.

198

3. DFS ENUMERATION OF INDUCED CON-
NECTED SUBGRAPHS

In this section, we present our algorithm for enumerating all in-
duced connected subgraphs, and then benchmark its performance
against the state of the art. As mentioned earlier in the introduction,
this enumeration algorithm will be used in subsequent sections as
the cornerstone upon which we build our algorithms for computing
the Shapley value for connectivity games and the Myerson value
for arbitrary graph-restricted games.

Broadly speaking, our enumeration algorithm traverses the graph
in a depth-first manner, and uses a divide-and-conquer technique.
We start with a single node and try to expand it to a bigger con-
nected subgraph. Whenever a new node is analyzed, we explore all
its edges one by one, and when we find a new—not yet discovered—
node, we split the calculations into two parts: in the first one, we
add a new node to our subgraph; in the second one, we mark this
node as forbidden and never enter it again. Thus, the first part enu-
merates subgraphs with, and the second one without, the new node.

The pseudocode is presented in Algorithm 1. First, let us de-
scribe the recursive function DFSEnumerateRec. Whenever this
function is called, nodes in the graph can be divided into three
groups: S—elements of the subgraph; X—forbidden nodes (that
we cannot include in the subgraph); and others—not yet discov-
ered nodes. Moreover, nodes in S are either partially-processed or
fully-processed. A node is fully-processed when all its edges have
been explored. What is crucial, as in the classic DFS algorithm, is
that all partially-processed nodes form a path to the root of the sub-
graph tree (parameter path), i.e., we do not process another edge
until the node from the previous one is fully-processed. The last
parameter of DFSEnumerateRec is startIt, which—to avoid
redundancy—indicates how many edges of the last node on path
have already been processed. This parameter is set to 1 as we enter
a new node (lines 4 and 10) and can be deduced from the neighbour
list whenever we backtrack from another node (line 14).2

Now, the goal of the function is to find all connected subgraphs
that contain subgraph S and contain no forbidden nodes X . To
this end, we start processing from the last node on the path (line
6), denoted v, and explore sequentially all its edges (lines 7-11).
Whenever we find a new node u (that is neither forbidden nor in-
cluded in S) we first enumerate all subgraphs with u: here, we
call DFSEnumerateRec with u added at the end of the path
of partially-processed nodes (line 10). Then, to enumerate all sub-
graphs without u, we add it to the set of forbidden nodes (line 11)
and proceed with a new edge. Finally, when all edges have already
been explored, we remove v from the path and backtrack to the
previous node (lines 12-15). When we have finished processing the
last node on the path (root), the set S constitutes a final connected
subgraph (line 16).

In the main function DFSEnumerate (lines 1-4), the i-th step
of the loop enumerates all subgraphs in which the node with the
smallest index is vi (line 4). To this end, we simply mark previous
nodes as forbidden and call the function DFSEnumerateRec
with the node vi as the initial subgraph.

The time complexity of our algorithm is linear in the number of
connected subgraphs: O(|C||E|). This follows from the fact that
the number of steps performed for a given connected subgraph is
O(|E|). To see how this is the case, consider a sequence of calls of
DFSEnumerateRec that results in printing subgraph S in line

2As function find(v) in line 14 is called multiple times,
the proper values can be pre-calculated in the main function
DFSEnumerate and stored in the associative array to facilitate
constant access time.

Algorithm 1: DFS Enumeration of Induced Connected Sub-
graphs
Input: Graph G=(V,E)
Output: List of all induced connected subgraphs of G

1 DFSEnumerate begin
2 sort nodes and list of neighbours by degree desc.;
3 for i 1 to |V | do
4 DFSEnumerateRec(G, (vi), {vi}, {v1, . . . , vi�1}, 1);
5 DFSEnumerateRec(G, path, S,X, startIt) begin
6 v path.last();
7 for it startIt to |N (v)| do
8 u N (v).get(it); // it’s neighbour of v

9 if u 62 S ^ u 62 X then
10 DFSEnumerateRec(G, (path, u),

{u}, X, 1);
11 X X [{u};

12 path.removeLast();
13 if path.length() > 0 then
14 startIt N (path.last()).find(v) + 1;
15 DFSEnumerateRec(G, path, S,X, startIt);
16 else print S;

16. We consider a subgraph to be final if path is empty; thus, all
nodes from S must be fully-processed. Moreover, all other nodes
are either forbidden or not-discovered; thus, they are not added
to path in this sequence (the recursive call in which we consider
adding a forbidden node to the subgraph is calculated in our anal-
ysis for other connected subgraph). Therefore, the lines 9-11 from
the single loop are entered once for every edge adjacent to a node in
S, thus no more than 2|̇E| times. Moreover, every call of the func-
tion decreases the number of edges to discover, or decreases the
number of nodes on the path; thus, other lines are called no more
than 2|̇E|+ |S| times. As |S| is connected, |S| |E|+ 1 and the
number of steps is O(|E|).

The running time of the algorithm depends on the order in which
we process nodes (line 3) and nodes’ neighbours (line 10). The
optimal order of nodes is an open problem. In our experimental
analysis we found that the order descending by the degree of the
node can lead to a smaller number of steps. Therefore in line 2 we
sort the nodes accordingly.

3.1 DFS vs. BFS enumeration of induced con-
nected subgraphs

To date, the state-of-the-art algorithm for enumerating connected
induced subgraphs was proposed by Moerkotte and Neumann [19].
As opposed to our algorithm, which traverses the graph in a depth-
first manner, their algorithm uses breadth-first search. The pseu-
docode is presented in Algorithm 2. Specifically, in the i-th step
of the main function, EnumerateCsg, the algorithm enumerates
subgraphs with vi and without previous nodes. The recursive func-
tion EnumerateCsgRec is called with four parameters: graph G,
an Old part of the subgraph, a New part of the subgraph, and the
set of all nodes that we already considered, denoted X (the nodes
from the subgraph and nodes we have considered but have not in-
cluded). Now, EnumerateCsgRec outputs the current subgraph
(Old [New) and tries to enlarge it. In order to do that, it lists all
not-yet considered neighbours (set N) and for every subset S ✓
N analyzes an adequate extension—it calls EnumerateCsgRec
with the subgraph enlarged by S and set of considered nodes ex-
panded by all neighbours N .3

199

Algorithm 2: BFS Enumeration of Induced Connected Sub-
graphs

Input: Graph G=(V,E)
Output: List of all Induced Connected Subgraphs of G

1 EnumerateCSG begin
2 for i 1 to |V | do
3 EnumerateCSGRec(G, ;, {vi}, {v1, . . . , vi});

4 EnumerateCSGRec(G,Old,New,X) begin
5 print{Old [New};
6 N ;; // not yet discovered neighbours of New

7 foreach v 2 New do
8 foreach u 2 N (v) do
9 if u 62 X [N then N N [{u};

10 foreach S ✓ N do
11 EnumerateCSGRec(G,Old [New, S,X [N);

Our experiments show that the new algorithm outperforms BFS
enumeration two or even three times. In particular, Figure 1 de-
picts the running time for scale-free graphs, typically used to model
contact networks. Graphs were generated using the preferential at-
tachment generation model [1] with parameter k = 4 (we ob-
tained analogous results for different values of k). For every n =
20, . . . , 30, the run time and confidence intervals are calculated
based on 500 random graphs (same for both algorithms). As can be
seen, as n increases, the ratio of both algorithms does not change
and oscillates at around 2.4. For instance, for n = 30, our algo-
rithm takes on average 67 seconds, while it takes 161 seconds for
BFS enumeration to finish.

To support our empirical results, we provide two lemmas, which
show that for cliques our algorithm performs approximately two
times fewer steps (examining edges is the key component of main
loops in both algorithms).

LEMMA 1. EnumerateCSG examines edges 2n�1(n2�3n+
2) + (n� 1) times for an n-clique.

LEMMA 2. DFSEnumeration examines edges 2n�2(n2 �
n+ 4)� (n+ 1) times for an n-clique.

4. SHAPLEY VALUE FOR THE CONNEC-
TIVITY GAMES

In this section, we present a new algorithm for calculating the Shap-
ley value of connectivity games proposed by Amer and Gimenez
[3]. As mentioned earlier in the introduction, there already exists
an algorithm designed for this purpose, due to [18], and we aim to
develop a more efficient algorithm.

As noted by Michalak et al. [18], to calculate the Shapley value
it suffices to traverse only the connected coalitions, because every
non-zero marginal contribution involves the addition, or removal,
of a player from a connected coalition. In more detail, let S be an

3Our pseudocode is more detailed than the original. If we merge
both parts of the subgraph (Old and New) in the declaration (and
calls) of EnumerateCSGRec, then to find neighbours in lines
7� 11 we have to consider also nodes from the old part of the sub-
graph. This is clearly redundant, as all their neighbours are already
in the set X .

Figure 1: Comparison between algorithms for enumerating in-
duced connected subgraphs: our new DFS-based algorithm and
the state-of-the-art, BFS-based algorithm by Moerkotte and
Neumann.

arbitrary connected coalition. Now, players’ contributions can be
divided into three groups:

• a cut vertex (i.e., a node whose removal disconnects the sub-
graph S) contributes the entire value of the coalition, i.e.,
⌫f
G(S);

• any other member of S (whose removal does not disconnect
S) contribute the following change in the value: ⌫f

G(S) �
⌫f
G(S \ {v}) for node v;

• finally, we have the nodes that are not members nor neigh-
bours of S. The addition of any such node disconnects S, im-
plying that it makes a negative contribution equal to�⌫f

G(S).

Note that we did not consider the contribution of neighbours of S.
This is because, for every such neighbour, v, its contribution will
be taken into account when dealing with S [{v} instead of S.

Based on the above observations it is crucial to not only enumer-
ate all connected subgraphs, but also identify the cut vertices, and
the neighbours, of each enumerated subgraph. As for the identifi-
cation of neighbours, it can easily be done. The harder part is the
to identify the cut vertices. To this end, in [18], the authors com-
bined Moerkotte and Neumann’s enumeration algorithm with the
state-of-the-art algorithm for finding cut vertices, due to Hopcroft
and Tarjan [13]. The way in Michalak et al. combined the two al-
gorithms involved some additional improvements, see their paper
for more details.

Against this background, we present the first dedicated algorithm
that not only enumerates all connected subgraphs, but at the same
time identifies cut vertices in each subgraph. To make this possible,
our algorithm traverses all connected subgraphs in a depth-first-
search (DFS) manner (as discussed in the previous section). Con-
sequently, unlike the case with Moerkotte and Neumann’s breadth-
first-search (BFS) technique, our DFS techniques ensures that the
edges which are used to enlarge the subgraph always form what
is known as a Tremaux tree [13]—an important structure in graph
theory. More specifically, a Tremaux tree of graph G is a rooted
spanning tree—a subgraph consisting of all nodes and a subset of
edges, which forms a tree, with one node selected as a the root.
Importantly, for any Tremaux tree, T , and any two nodes that have
an edge between them in G, it is guaranteed that one of those two
nodes is an ancestor of the other in T . Now, let us show how this
property of Tremaux trees helps identify cut vertices in a subgraph.
To this end, let v be an arbitrary node in G. Consider a subtree S
rooted at a child of v. The removal of v from graph G disconnects
nodes from S if and only if there is no edge in G that connects S

200

Algorithm 3: DFS-based algorithm for calculating Shapley
value for the connectivity games

Input: Graph G=(V,E), function ⌫ : C ! R
Output: Shapley value for game ⌫A

G

1 DFSConnSV (G) begin
2 sort nodes and list of neighbours by degree desc.;
3 for i 1 to |V | do SVi(⌫

A
G) = 0;

4 for i 1 to |V | do
5 DFSConnSV Rec(G, (vi), (1), {vi}, {v1, . . . , vi�1}, ;, ;, 1);
6 DFSConnSV Rec(G, path, low, S,X, SC,XN, startIt)

begin
7 v path.last(); l low.last();
8 for it startIt to |N (v)| do
9 u N (v).get(it); // it’s neighbour of v

10 if u 62 S ^ u 62 X then
11 DFSConnSV Rec(G, (path, u), (low,1),

S [{u}, X, SC,XN, 1);
12 X X [{u}; XN XN [{u};
13 else if u 2 X then XN XN [{u};
14 else if (path.find(u) < low.last()) then
15 l path.find(u);
16 low.updateLast(l);

17 path.removeLast(); low.removeLast();
18 if path.length() > 0 then
19 if l � path.length() then SC.add(path.last());
20 else if l < low.last() then low.updateLast(l);
21 startIt N (path.last()).find(v) + 1;
22 DFSConnSV Rec(G, path, low, S,X, SC,XN, startIt);
23 else
24 if v was added only once SC then
25 SC.remove(v);
26 foreach vi 2 SC do
27 SVi(⌫

A
G) SVi(⌫

A
G) + ⇠S(⌫(S));

28 foreach vi 2 S \ SC do
29 SVi(⌫

A
G) SVi(⌫

A
G)+ ⇠S(⌫(S)� ⌫(S \ {vi}));

30 foreach vi 2 V \ (S [XN) do
31 SVi(⌫

A
G) SVi(⌫

A
G)� ⇠S[{vi}(⌫(S));

to other parts of the graph. From the property of Tremaux tree, all
such potential edges would go to the ancestors of v (we will call
them backedges). Thus, to identify cut vertices, it suffices to know
the node nearest to the root that can be reached from the children’s
subtrees. This information can be easily updated recursively when
we backtrack in a depth-first search—for the subtree rooted at v, it
is one of the nodes connected to v or one of the nearest nodes that
can be reached from its subtrees.

The pseudocode is presented in Algorithm 3. To gather extra in-
formation, we expand the recursive function from Algorithm 1 by
a few new parameters. Assume that a root is on level 1, and its chil-
dren are on level 2, and so on. Now, for each node v from the path,
list low stores the lowest level that can be reached from v (using
already discovered edges) or its fully-processed children. The set
SC contains identified cut vertices. Now, whenever we add a node
v to a path (lines 5 and 11) we initialize its low to infinity. Then,
we update this value in two situations. The first is when we find
a backedge from v to the lower level (lines 14-16). The second is

Figure 2: Comparison between algorithms for the Shapley
value for connectivity games: our new DFS-based algorithm vs.
the state-of-the-art BFS-based algorithm proposed by Micha-
lak et al.

when we backtrack from a child with a lower value (line 20, low
for child equals l, parent is the last node on the path). When we
backtrack and child’s value is not lower that the level of the par-
ent (thus, subtree of a son does not have a backedge to any node
closer to the root) we add the parent node to the set of cut vertices
SC (line 19). Finally, in lines 24-25, we remove root from the set
of cut vertices if it has only one child in a tree, i.e., was added to
this set just one time. The set of neighbours XN of the nodes in
S can be easily updated as we consider all edges of nodes in the
main loop (lines 8-16). Now, based on both sets, we calculate the
Shapley value in lines 26-31 for every found connected coalition.
The asymptotic time of the algorithm has not changed with respect
to enumeration of connected subgraphs and equals O(|C||E|).4

In Figure 2 we compare the performance of our new algorithm
with the FasterSVCG proposed by Michalak et al. [18]. As in the
comparison of DFS and BFS enumeration in Section 3.1, here we
generated 500 random scale-free graphs for every size of graph n
from 20 to 30 and computed average running time for both algo-
rithms. As we can see, our DFS-based algorithm is more than 5
times faster for every size n. Importantly, only part of the advan-
tage comes from the faster enumeration algorithm, which is 2-3
times faster than the alternative used in FasterSVCG. Moreover,
the advantage increases very slightly with the number of nodes. We
justify this as follows: although the pessimistic number of steps for
every found connected subgraph in both enumeration algorithms
equals O(E), for sparse graphs it does not exceed a small constant.
Thus, separate searching for the cut vertices, which is a part of the
FasterSVCG, is an additional action which takes linear time in re-
spect to the number of edges—O(E)—while our new algorithm
performs only O(V) steps updating Shapley value for all nodes.

5. THE MYERSON VALUE OF ARBITRARY
GRAPH-RESTRICTED GAMES

In this section we present the first dedicated algorithm for com-
puting the Myerson value for arbitrary graph-restricted games. De-
pending on the definition of function ⌫, the complexity of calculat-
ing the Myerson value may vary. In our paper we do not make any
assumption for the form of function ⌫: in our algorithm we treat ⌫
as an oracle which gives the values, and for the complexity analysis
we assume it does that in a constant time.

As in the previous section, we can argue that only traversing

4Note, that to obtain a constant time of path.find(u) operation
in line 14 list path should be enriched with a associative array or
alternatively additional array of nodes’ levels can be passed along.

201

connected coalitions is necessary. Moreover, based on the oracle-
assumption, we have to go through all of them (the size of the input
is the number of values of ⌫). Thus, what is crucial is to minimize
the number of steps performed for every connected coalition. In this
section we prove that in the context of the Myerson value, identify-
ing of cut vertices is not needed, and the number of steps is linear
in the size of graph nodes.

To this end, we will use the permutation interpretation of the
Shapley value (see formula (2)) and analyze the marginal contri-
bution of a node, but this time more thoroughly. Let ⇡ be a per-
mutation and assume players that precede vi form the components
K1,K2, . . . ,Km, the first j of which are connected to vi. Now,
as in Myerson’s characteristic function value of a coalition equals
sum of values of it’s components, we can simplify marginal contri-
bution to ⌫(K1 [. . . [Kj [{vi}) � ⌫(K1) � . . . � ⌫(Kj): all
components not connected with vi contributes their values to the
value of a coalition with and without vi. Now, instead of consid-
ering marginal contribution as a whole, as in the previous section,
we will decompose it into two parts: a positive and a negative one.
Thus, we will calculate separately how many times (i.e., for which
of the permutations) the value of a coalition ⌫(K1[. . .[Kj[{vi})
with vi is added, and how many times a value of a given coalition
Kl without vi is subtracted from his payoff.

Consider a connected coalition S and the Myerson value of vi:

• if vi is in S then the value of S is taken into account with a
positive sign whenever two conditions are met: (1) all nodes
from S appear in the permutation before vi, and (2) all neigh-
bours of S appear in the permutation after vi. This happens
with a probability of (|S|�1)!·|N (S)|!

(|S|+|N (S)|)! , where N (S) is the set
of neighbours of S.

• if vi is not in S, then the value of S is taken into account
with a negative sign, but only if all nodes from S appear in
the permutation before v, and all neighbours of S appear af-
ter vi, and vi is a neighbour of S (otherwise, vi contributes
to some other coalition). This happens with a probability of
|S|!·(|N (S)|�1)!
(|S|+|N (S)|)! .

It is worth noting that in the second case we allow neighbours of
v that are not connected to S to appear before vi. Although they
change the coalition resulting from the appearance of vi and also
the subtracted part of the marginal contribution, the value of S is
still a component of this part.

Based on the above observations, we construct our algorithm for
computing the Myerson value based on our fast DFS-based algo-
rithm for enumerating connected subgraphs (Algorithm 4). As in
our previous algorithm for computing the Shapley value, here the
set XN gathers neighbours of the set S, and lines 19-22 update the
Myerson value according to the aforementioned marginal contribu-
tion analysis.

6. APPLICATION
There is currently much interest in the possibility of applying

social network analysis techniques to investigate terrorist organiza-
tions [22]. A particular attention is paid to the problem of identify-
ing key terrorists. This not only helps to understand the hierarchy
within these organizations but also allows for a more efficient de-
ployment of scarce investigation resources [14]. One possible ap-
proach to this problem is to try and infer the importance of different
individuals from the topology of the terrorist network. In graph the-
ory, such an inference can be obtained in various ways, depending
on the adopted centrality measures, i.e., the adopted way to mea-
sure the centrality, i.e., importance, of different nodes in a network,

Algorithm 4: DFS-based algorithm for calculating Myerson
value for graph-restricted games
Input: Graph G=(V,E), function ⌫ : C ! R
Output: Myerson value for game ⌫G

1 DFSMyersonV begin
2 sort nodes and list of neighbours by degree desc.;
3 for i 1 to |V | do MVi(⌫f) = 0;
4 for i 1 to |V | do
5 DFSMyersonV Rec(G, (vi), {vi}, {v1, . . . , vi�1}, ;, 1);
6 DFSMyersonV Rec(G, path, S,X,XN, startIt) begin
7 v path.last();
8 for it startIt to |N (v)| do
9 u N (v).get(it); // it’s neighbour of v

10 if u 62 S ^ u 62 X then
11 DFSMyersonV Rec(G, (path, u), S [

{u}, X,XN, 1);
12 X X [{u}; XN XN [{u};
13 else if u 2 X then XN XN [{u};
14 path.removeLast();
15 if path.length() > 0 then
16 startIt N (path.last()).find(v) + 1);
17 DFSMyersonV Rec(G, path, S,X,XN, startIt);
18 else
19 foreach vi 2 S do
20 MVi(⌫G) MVi(⌫G) +

(|S|�1)!(|XN|)!
(|S|+|XN|)! ⌫(S);

21 foreach vi 2 XN do
22 MVi(⌫G) MVi(⌫G)� (|S|)!(|XN|�1)!

(|S|+|XN|)! ⌫(S);

based on its topology.5 A number of researchers have proposed to
incorporate game-theoretic techniques into existing centrality mea-
sures [12, 9]. The basic idea behind such game-theoretic centrality
measures is to define a coalitional game over the network and then
to construct a ranking of nodes based on a chosen solution concept.
Although such an approach is often computationally challenging, it
has the following two advantages. Firstly, the combinatorial anal-
ysis of the cooperative game, which is embedded in the solution
concept, becomes a combinatorial analysis of the network. Sec-
ondly, this approach is very flexible, as it can be changed along
three dimensions: (i) the coalitional game can be of an arbitrary
form (e.g., partition function form); (ii) the value function can also
be arbitrary; and (iii) there are many available solution concepts,
each based on different prescriptive and normative considerations.6

Lindelauf et al.’s measure: Lindelauf et al. tried to develop a cen-
trality measure that assesses the role played by individual terrorists
in a way that accounts for the following two factors: the terrorists’
role in connecting the network and additional intelligence available
about the terrorists. To this end, Lindelauf et al. proposed to use
the Shapley value for vfG as defined in formula (5). This function
seems to be suitable to achieve Lindelauf et al.’s goal. As discussed
at the beginning of Section 4, it assigns high marginal contributions
to cut vertices. Such vertices, by definition, play an important role
in connecting various parts of the network. As such, any agent who

5We refer the reader to [5, 7] for an overview of most commonly
used centrality metrics.
6We refer the reader to the recent book by Maschler et al. [16] for
an excellent overview of solutions concepts in cooperative game
theory.

is a cut vertex will be called a pivotal agent.

202

Furthermore, one can manipulate f(S,G) in formula (5) to in-
corporate available information and analytical needs. In particular,
to incorporate additional intelligence on individual terrorist, the au-
thors assigned weights to both edges and nodes in G. Let us denote
such weights by !ij and !i, respectively. Based on this, Lindelauf
et al. proposed to use the following alternative functions:

(a) f(S) = |E(S)|/P(vi,vj)2E(S) !ij ,
(b) f(S) =

P
vi2S !i.

In words, in (a) f(S) equals the number of edges in the connected
coalition divided by the sum of their weights and, in (b) by the sum
of its nodes’ weights. As an example, the rationale behind function
(b) is that terrorists (nodes) with high weights “play an important
part in the operation. When such individuals team up, they have a
significant effect on the potential success of the operation.” [15, p.
237].

Summarising, the key idea of Lindelauf et al. was to develop a
measure that evaluates the nodes based on two factors: their role in
connecting the network; and additional intelligence. At first glance,
vfG seems to be a good candidate for this purpose. However, in what
follows we will show the disadvantages of this approach and pro-
pose an alternative.

The disadvantages of Lindelauf et al.’s measure: We argue that,
for sparse networks—and terrorist networks tend to be sparse [14]—
the “connectivity” factor is over-represented in the measure based
on SVi(v

f
G). As a result, we claim that the “additional intelligence”

factor hardly ever affects the ranking. To see how this is the case,
it is sufficient to examine the characteristic function ⌫f

G which (for
reasonable f) results in relatively very high marginal contributions
assigned to pivotal agents, while other agents are assigned incre-
mental values or relatively very big negative values.

To support our claim, let us perform a sensitivity analysis of
Lindelauf et al.’s centrality by (i) evaluating different forms of the
function f(S,G) and (ii) considering different weights of nodes.
Regarding (i), we consider the following general form of f(S,G):

f(S,G)=|S|↵·|E(S)|� ·(
X

vi2S

!i/|S|)� ·(
X

(vi,vj)2E(S)

!ij/|E(S)|)�,

(7)
where ↵,�, �, � 2 R are parameters for exponents. We set ↵ and
� to be integer values between �2 and 2 and we impose the addi-
tional condition that ↵+ � � 0 in order to preserve monotonicity.
We performed our tests on the terrorist network responsible for the
World Trade Center attacks (36 nodes, 64 edges) [14]. This is a
bigger version of the network originally considered by Lindelauf et
al., which only contained 19 nodes.

Table 1 presents the results of this sensitivity check. For each
configuration of parameters we calculated the ranking of nodes and
compared it with the ranking for the 0-1-connectivity game. Here,
we concentrate on the top

p|V | = 6 terrorists, as the main goal of
this application is to identify key players. The top part of Table 1
presents the average size of the intersection of the top 6 terrorists
in both rankings. In the lower part of Table 1, for the top 6 terror-
ists from the 0-1-connectivity game, we calculated the average dis-
tance between their positions in both rankings, i.e. the ranking from
the 0-1-connectivity game and the ranking from f(S,G) (each cell
presents the maximum and minimum value of this average).

We observe that the top 6 members have changed in 15% of
the tests. Furthermore, in only 2% of the tests, more than one new
node has been identified as a key member. Also, within this group,
changes of positions are minor; the average change of position
rarely exceeded 1.3. The dedicated characteristic function proposed

↵\� 2 1 0 -1 -2
�\� 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 6.0 6.0 5.9 5.9 4.9
1 1|0|-1 6.0 6.0 6.0 5.1 —
0 1|0|-1 6.0 6.0 5.7 — —
-1 1|0|-1 6.0 6.0 — — —
-2 1|0|-1 6.0 — — — —

↵\� 2 1 0 -1 -2
�\� 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 1.3-1.3 1.3-1.3 1.3-1.3 0.7-1.3 1.3-2.5
1 1|0|-1 1.3-1.3 1.3-1.3 1.0-1.3 0.8-2.0 —
0 1|0|-1 1.3-1.3 1.0-1.3 0.0-1.0 — —
-1 1|0|-1 1.3-1.3 0.3-1.3 — — —
-2 1|0|-1 0.7-1.3 — — — —

Table 1: Comparison between top nodes based on games with
the parametrized characteristic function from formula (7) and
the 0-1-connectivity game.

↵\� 2 1 0 -1 -2
�\� 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 4.8 4.7 4.3 1.1 0.0
1 1|0|-1 5.0 4.9 1.1 0.0 —
0 1|0|-1 4.4 4.2 0.0 — —
-1 1|0|-1 3.3 0.8 — — —
-2 1|0|-1 1.1 — — — —

↵\� 2 1 0 -1 -2
�\� 1|0|-1 1|0|-1 1|0|-1 1|0|-1 1|0|-1

2 1|0|-1 1.2-2.3 1.0-2.2 0.8-4.2 6.7-24.5 23.8-28.2
1 1|0|-1 1.2-2.8 1.0-2.8 8.8-28.0 21.3-28.3 —
0 1|0|-1 1.7-3.7 2.5-8.2 23.7-30.0 — —
-1 1|0|-1 2.0-7.0 13.0-26.2 — — —
-2 1|0|-1 11.2-21.8 — — — —

Table 2: Comparison between top nodes based on games with
the parametrized characteristic function from formula (7) and
the game with value of �1 for every connected component.

by Lindelauf et al. for the WTC network obtained with parameters
↵ = � = 1 and � = � = 0 yields the same group of 6 terrorists
ranked with only minor rotations.

The above simulations show that, for sparse networks, the choice
of f(S,G) essentially does not matter. The main reason behind this
phenomenon appears to be the fact that ⌫f

G assigns relatively very
high contributions to pivotal agents, and only incremental marginal
contributions to non-pivotal agents. This is magnified by the fact
that we deal here with a sparse network. Specifically in this net-
work, out of all 6 billions induced subgraphs, only 0.6% are con-
nected. Furthermore, the average number of pivotal agents in a con-
nected subgraph was high (8 to be precise). Thus, nodes that are
crucial from the connectivity point of view will have a high rank-
ing because vfG favours pivotal agents.

As already mentioned, we also analysed the sensitivity of the
characteristic function ⌫f

G with respect to the weights !i (these
weights were permuted at random in our experiments). We focused
on the second function proposed by Lindelauf et al., i.e., f(S) =P

vi2S !i. Here, only 3% out of 600 permutations resulted in a
change within the top 6 terrorists in the ranking. Furthermore, all
these changes concerned only one terrorist (who was replaced by
another).

In the next subsection, we argue that the Myerson value is a bet-
ter centrality measure for terrorist networks.

203

The Myerson value for terrorist networks: We observe that the
characteristic function ⌫M

G used to compute MVi(⌫G) does not
favour pivotal agents as much as ⌫f

G. In particular, given an arbi-
trary (non-negative and monotonic) function, f(S,G), the marginal
contribution of a pivotal agent v to a coalition S [{v} in the case
of the connectivity game will be:

f(S [{v}, G)� 0 = f(S [{v}, G).

However, in the case of ⌫M
G , it will be:

f(S [{v}, G)�
X

Ki2K(S)

⌫(Ki) f(S [{v}, G).

This means that the connectivity factor becomes relatively less dom-
inant in the evaluation of the nodes.

In Table 2, we present results of a similar sensitivity check as
before, but now for the Myerson value. As visible, this measure is
more sensitive to changes of f(S,G) than the Shapley value. This
is also confirmed by the sensitivity check with respect to random
permutations of nodes’ weights. Specifically, in more than 80% of
the cases, the top 6 terrorists changed, and, in most of those cases,
the change was substantial. In particular, on average about 2.2 ter-
rorists were repeated among the top 6.

7. RELATED WORK
The enumeration of connected induced subgraphs is one of the

fundamental algorithmic operations in many applications, e.g., cost-
based query optimization [19], computing topological indices for
molecular graphs [21], and searching for an optimal coalition struc-
ture in cooperative games on graphs [25]. A number of algorithms
have been proposed to perform this operation. The early works in-
clude reverse search algorithms [4], and a breadth-first search al-
gorithm [24]. Both of these algorithms, however, performed nu-
merous redundant operations. This issue was later on resolved by
Moerkotte and Neumann.7 The problem of identifying cut vertices
has been studied in various domains, including network reliability
[11], data clustering [8], among others. The computational proper-
ties of the Myerson value for some special classes of games were
considered in [2, 10, 6]. Finally, we point the reader to works from
the computer science literature, where graph-restricted games were
considered [17, 25].

Acknowledgements: Tomasz Michalak and Michael Wooldridge
were supported by the European Research Council under Advanced
Grant 291528 (“RACE”).

8. REFERENCES
[1] R. Albert and A. Barabási. Statistical mechanics of complex

networks. Rev. Mod. Phys., 74:47–97, 2002.
[2] E. Algaba, J. Bilbao, J. Fernández, N. Jiménez, and J. López.

Algorithms for computing the myerson value by dividends.
Discrete Mathematics Research Progress, pages 1–13, 2007.

[3] R. Amer and J. M. Giménez. A connectivity game for
graphs. Math. Methods of OR, 60:453–470, 2004.

[4] D. Avis and K. Fukuda. Reverse search enumeration.
Discrete Applied Mathematics, 65:21–46, 1996.

[5] U. Brandes and E. Thomas. Network Analysis:
Methodological Foundations. LNCS, 2005.

[6] J. Fernández, E. Algaba, J. M. Bilbao, A. Jiménez,
N. Jiménez, and J. López. Generating functions for

7Recently, the same breadth-first search algorithm of Moerkotte
and Neumann was re-discovered by Voice et al.[25].

computing the myerson value. Annals of Operations
Research, 109(1-4):143–158, 2002.

[7] N. Friedkin. Theoretical foundations for centrality measures.
Am. J. of Sociology, 96(6):1478–1504, 1991.

[8] G. Gan, C. Ma, and J. Wu. Data clustering: theory,
algorithms, and applications, volume 20. Siam, 2007.

[9] D. Gómez, E. González, C. Manuel, G. Owen, M. Del Pozo,
and J. Tejada. Centrality and power in social networks: A
game theoretic approach. Math. Soc. Sci., 46:27–54, 2003.

[10] D. Gómez, E. González-Arangüena, C. Manuel, G. Owen,
M. del Pozo, and J. Tejada. Splitting graphs when calculating
myerson value for pure overhead games. Mathematical
Methods of Operations Research, 59(3):479–489, 2004.

[11] D. Goyal and J. Caffery. Partitioning avoidance in mobile ad
hoc networks using network survivability concepts. In
Computers and Communications, pages 553–558, 2002.

[12] B. Grofman and G. Owen. A game theoretic approach to
measuring degree of centrality in social networks. Social
Networks, 4:213–224, 1982.

[13] J. Hopcroft and R. Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378, 1973.

[14] V. Krebs. Mapping networks of terrorist cells. Connections,
24:43–52, 2002.

[15] R. Lindelauf, H. Hamers, and B. Husslage. Cooperative
game theoretic centrality analysis of terrorist networks: The
cases of jemaah islamiyah and al qaeda. European Journal of
Operational Research, 229(1):230 – 238, 2013.

[16] M. Maschler, E. Solan, and S. Zamir. Game Theory. CUP,
2013.

[17] R. Meir, Y. Zick, and J. S. Rosenschein. Optimization and
stability in games with restricted interactions. In
CoopMAS-2012, 2012.

[18] T. P. Michalak, T. Rahwan, P. L. Szczepanski, O. Skibski,
R. Narayanam, M. J. Wooldridge, and N. R. Jennings.
Computational analysis of connectivity games with
applications to the investigation of terrorist networks. IJCAI,
2013.

[19] G. Moerkotte and T. Neumann. Analysis of two existing and
one new dynamic programming algorithm for generation of
optimal bushy join trees without cross products. VLDB, 2006.

[20] R. Myerson. Graphs and cooperation in games. Math.
Methods of OR, 2(3):225–229, 1977.

[21] S. Nikolic, G. Kovacevic, A. Milicevic, and B. Trinajstic.
The zagreb indices 30 years after. Croatia Chemica Acta,
76:113–124, 2003.

[22] S. Ressler. Social network analysis as an approach to combat
terrorism: past, present and future research. Homeland
Security Affairs, 2:1–10, 2006.

[23] L. S. Shapley. A value for n-person games. In In
Contributions to the Theory of Games, pages 307–317. 1953.

[24] A. Sharafat and O. Marouzi. Recursive contraction
algorithm: A novel and efficient graph traversal method for
scanning all minimal cut sets. Iranian Journal Of Science
And Technology Transaction B- Eng., 30:749–761, 2006.

[25] T. Voice, S. D. Ramchurn, and N. R. Jennings. On coalition
formation with sparse synergies. In AAMAS, 2012.

204

