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ABSTRACT
In most previous models of coalition structure generation, it is as-
sumed that agents may partition themselves into any coalition struc-
ture. In practice, however, there may be physical and organizational
constraints that limit the number of co-existing coalitions. In this
paper, we introduce k-coalitional games: a type of partition func-
tion game especially designed to model such situations. We pro-
pose an extension of the Shapley value for these games, and study
its axiomatic and computational properties. In particular, we show
that, under some conditions, it can be computed in polynomial time
given two existing representations of coalitional games with exter-
nalities. Finally, we use k-coalitional games to analyse the relative
importance of geographical locations in the game of Diplomacy.

1. INTRODUCTION
Coalitional games have been widely studied in both the game the-
ory and computer science literature [2, 15]. One of the most im-
portant problems in coalitional games is that of coalition structure
formation: partitioning a group of agents into disjoint teams, typ-
ically with the goal of maximising some social welfare measure.
In most studies of coalition structure generation, it is assumed that
all cooperative arrangements are feasible, and in particular, that
agents may be partitioned into any coalition structure. In character-
istic function games – the most-studied model of cooperative games
– it is further assumed that no coalition influences the value of any
other co-existing coalition. This latter assumption is dropped in the
more general model of partition function games [32], where the
value of any coalition may be subject to externalities and, there-
fore, depend on co-existing coalitions.

Despite the popularity of the above models, it has long been
recognized that many potential applications of coalitional games
impose restrictions of various kinds on the coalitions and coali-
tion structures that may be formed. This consideration gave rise to
formalisms such as graph-restricted games [20], which have been
studied by various authors in artificial intelligence (Meir et al. [17],
Voice et al. [34], Skibski et al. [28]). Another model was proposed
by Rahwan et al. [23], where restrictions on feasible coalitions are
defined by logical constraints, while Meir et al. [17] consider games
with coalitions of restricted size.

A common feature of all the above models is that they focus on
restricting only feasible coalitions, rather than coalition structures,
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which are restricted only indirectly, (i.e., by the fact that they cannot
contain infeasible coalitions). However, one can see many physi-
cal and organizational restrictions that place constraints on feasible
coalition structures rather than coalitions. For instance, during the
Cold War, any country in Europe belonged either to NATO or the
Warsaw Pact, or else remained neutral. Thus, if we consider all
neutral countries as a coalition, then any feasible coalition struc-
ture would have at most three coalitions. Similar restrictions are
likely to occur in a multi-agent system, where, due to cost consid-
erations, only a few agents may be sophisticated enough to play the
role of coalition coordinators/leaders (see the work by Coviello and
Franceschetti [3] for an analysis of the problem of assigning fol-
lowers to leaders). Thus, any coalition is feasible, but no coalition
structure may contain more coalitions than there are leaders in the
system. The only model that we are aware of in which restrictions
are placed on the number of coalitions in a coalition structure is due
to Sless et al. [31], who consider symmetric, additively separable
hedonic games over a network with the assumption that any coali-
tion structure should contain exactly k coalitions. Furthermore, an
implicit assumption that limits the number of coalitions in a coali-
tion structure can be found in the literature on well-known assign-
ment games [25, 21, 13], where, for instance, m workers are hired
by n companies [9]. All these models, however, focus on some very
specific forms of the characteristic function and no more general
transferable-utility model has been developed so far.

Against this background, we introduce k-coalitional cooperative
games – a subclass of partition function games that are intended to
model environments with the characteristics described above. In
particular, we assume that any coalition may form, but the num-
ber of coalitions in any coalition structure is limited by a constant,
k. For these new games, we develop a dedicated extension of the
Shapley value [24] – a fundamental solution concept for coalitional
games. We present two axiom systems that uniquely define the new
value. Furthermore, we analyse the computational properties of the
new value and show that it can be computed in polynomial time if
a game is represented by Partition Decision Trees [29]. Finally, we
use our approach to analyse the importance of geographical loca-
tions in the well-known board game of Diplomacy.

2. PRELIMINARY DEFINITIONS
Let N = {1, 2, . . . , n} be a finite set of agents with |N | = n. A
coalition, S, is any non-empty subset of N . A game without ex-
ternalities (i.e., in characteristic function form) is given by a func-
tion v̂ that associates a real number with every coalition of agents:
v̂ : 2

N ! R, with the assumption v̂(;) = 0. Formally, a game is a
pair (N, v̂), but we frequently just write v̂. We denote the set of all
games without externalities by CG.
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In a game with externalities, the value of a coalition depends not
just on the members of the coalition, but also on co-existing coali-
tions. A partition of N (also known as a coalition structure) is a
set of disjoint coalitions that collectively cover N . A pair (S, P ),
where P is a partition and S 2 P , is called an embedded coali-
tion. The set of all partitions is denoted by P , and all embedded
coalitions by EC. Now, in a game with externalities (in partition
function form) (N, v), the function v associates a real number with
every embedded coalition in every partition, i.e., v : EC ! R (with
v(;, P ) = 0 for every partition P 2 P). We denote the set of all
games with externalities by PG.

We use a shorthand notation for set subtraction and set union
operations: N�S

= N \ S and S+{i} = S [ {i}. Often, we omit
brackets and write S+i

. We denote the partition obtained by the
transfer of agent i to coalition T in partition P as:

⌧

T

i

(P ) = P \ {P (i), T} [ {P (i)�i

, T+i

},

where P (i) denotes i’s coalition in P . For function f : N ! X

and subset S ✓ N we define f(S) = {f(i) | i 2 S}, and, in
the same manner, for a set of sets P = {S1, . . . , Sm

}, we have
f({S1, . . . , Sm

}) = {f(S1), . . . , f(Sm

)}. Also, f�1
: X ! 2

N

is an inverse function, i.e., f�1
(x) = {i 2 N | f(i) = x} for

x 2 X . In particular, combining the above definitions, f�1
(X)

forms a partition of N .

The Shapley value: A value of a game is a vector that divides
among agents the payoff of the grand coalition, N . The value of
agent i in game v will be denoted '

i

(v). In his seminal work, Shap-
ley [24] proved that there exists a unique division scheme in games
without externalities that satisfies the following four axioms:

• Efficiency (the entire payoff of the grand coalition is dis-
tributed):

P
i2N

'

i

(v̂) = v̂(N) for every v̂ 2 CG;

• Symmetry (payoffs do not depend on the agents’ names):
'

i

(f(v̂)) = '

f(i)(v̂) for every v̂ 2 CG and f : N ! N ;

• Additivity (the sum of payoffs in two separate games equals
the payoff in the combined game): '(v̂1 + v̂2) = '(v̂1) +

'(v̂2) for all v̂1, v̂2 2 CG;

• Null-player Axiom (agents that make no contribution to any
coalition receive nothing): if v̂(S)� v̂(S\{i}) = 0 for every
S ✓ N, i 2 S, then '

i

(v̂) = 0, for every v̂ 2 CG;

Here, games f(v̂) (for bijection f ) and v̂1 + v̂2 are defined as fol-
lows: f(v̂)(S) = v̂(f(S)), and (v̂1 + v̂2)(S) = v̂1(S) + v̂2(S).
This unique solution is known as the Shapley value:

SV

i

(v̂) =

X

S✓N,i 62S

�(S,N) · (v̂(S [ {i})� v̂(S)). (1)

where �(S,N) = (|S|!(|N |� |S|� 1)!)/(|N |!). As an intuition,
Shapley provided the following process that leads to his value. As-
sume that the agents enter the game in a random order with an aim
to form the grand coalition. As agent i enters, he receives a payoff
that equals his marginal contribution to the group of agents that she
joins: [mc

i

(v)](S) = v̂(S)� v̂(S \ {i}). The Shapley value is the
expected value of agents’ contributions over all possible orders.

To formalize this description, we need additional notation. A set
of all permutations (orders) of N is denoted by ⇧. For a given per-
mutation ⇡, the set of agents that appear in ⇡ before i is denoted
A

⇡

i

, and after Z⇡

i

. If we include i in these sets, we write A

⇡

i+ and
Z

⇡

i+. Now, the Shapley value is given by the following formula:

SV

i

(v̂) =

1

|N |!
X

⇡2⇧

v̂(A

⇡

i+)� v̂(A

⇡

i

).

Extended Shapley values: Translating Shapley’s axioms to games
with externalities is problematic. While Efficiency, Symmetry, and
Additivity can be easily adapted, the Null-player Axiom poses a
problem – how should the contribution of an agent to an embedded
coalition be defined? In games without externalities, this is the dif-
ference between the value of a coalition with and without an agent.
But in games with externalities, when agent leaves coalition S[{i}
in partition {S [ {i}, T1, . . . , Tk

}, the effect of his move depends
on what other coalition he joins, as the value of S when i joins T1

may differ than the one when i joins T2. A change associated with
the transfer of agent i from coalition S[{i} that results in partition
P is denoted by

[emc

i

(v)](S, P ) = v(S+i

, ⌧

S

i

(P ))� v(S, P ),

and called the elementary marginal contribution.
In the standard, most strict definition of a null-player, we assume

that every transfer does not change the value of a coalition, i.e.,
every elementary marginal contributions has value zero:

• Null-player Axiom (for PG): if [emc

i

(v)](S, P ) = 0 for ev-
ery (S, P ) 2 EC, i 62 S, then '

i

(v) = 0, for every v 2 PG;

Unfortunately, the (Strict) Null-player Axiom combined with the
three other axioms (the so called standard translation) is too weak
to imply uniqueness. To overcome this problem, a number of sin-
gular extensions and two more general approaches were proposed.
In the first, (proposed by Macho-Stadler et al. [14] and called the
average approach), the unique value of each coalition is calculated
as a weighted average of its values in various partitions. Then, the
Shapley value is applied to the resulting game without externalities:

'

i

(v) = SV

i

(v̂), where v̂(S) =

P
(S,P ) a(S, P )v(S, P ), (2)

for some weights a.
In the marginality approach, used by a number of researchers the

marginal contribution of an agent i is defined as a weighted average
over elementary marginal contributions associated with leaving a
given embedded coalition (S, P ). Specifically, [mc

i

(v)](S, P ) is
defined as

X

T2P\S[{;}

↵

i

(S�i

, ⌧

T

i

(P )) · [emc

i

(v)](S�i

, ⌧

T

i

(P )), (3)

for some weights ↵. Here, the empty set in the sum corresponds to
the creation of a new coalition. Now, agent i is an ↵-null-player if
all his marginal contributions equal zero:

• ↵-Null-player Axiom (for PG): if [mc

i

(v)](S, P ) = 0 for
every (S, P ) 2 EC, i2S, then '

i

(v) = 0, for every v2PG;

Skibski et al. [30] proved that for every ↵, Efficiency, Symmetry,
Additivity, and the ↵-Null-player Axiom implies a unique value.

3. K-COALITIONAL GAMES
In this section, we formally define k-coalitional games. Let K =

{1, 2, . . . , k}, where k  |N |. The size, |P |, of a partition P is
simply the number of coalitions it contains. We denote the set of
all partitions of size at most k by P

k

, and the set of all coalitions
embedded in them by EC

k

. Now, a k-coalitional game is a pair
(N, v), where v is a value function v : EC

k

! R that associates
a real number with every element of EC

k

. We denote the set of all
k-coalitional games by PG

k

.
Let us now consider whether the existing extensions of the Shap-

ley value to games with externalities could be applied to
k-coalitional games.1 Of course, as long as the domains are differ-
1Note also that there exist extensions of the Shapley value to games
with restricted space of coalitions (see, e.g., [4]) but not restricted
space of coalition structures.
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ent (i.e., EC
k

vs. EC) the answer is no. Next, consider the follow-
ing procedure. Let v? be a partition-function form game created
from v 2 PG

k

by assigning zero values to all coalitions embed-
ded in partitions with more than k coalitions: v?(S, P ) = v(S, P )

if |P |  k and v

?

(S, P ) = 0, otherwise. Now, mathematically,
every value for partition-function form games can be computed.
While at first such an indirect procedure seems appealing, it does
not satisfy the Null-player Axiom translated (in a standard way) to
k-coalitional games:

• EC
k

-restricted Null-player Axiom (agents with no effect on
the value of any coalition should get nothing): if
[emc

i

(v)](S, P ) = 0 for every embedded coalition (S, P ) 2
EC

k

such that i 62 S, then '

i

(v) = 0, for every v 2 PG
k

.
In particular, an agent who in game v 2 PG

k

does not affect any
coalition value (with all elementary marginal contributions zero)
may affect it in v

? by forming a k + 1’th coalition. Hence, exist-
ing solutions for games with externalities – even those satisfying
the standard Null-player Axiom – would assign non-zero payoff to
such an agent and violate the EC

k

-restricted Null-player Axiom:2

PROPOSITION 1. Values proposed by Bolger [1], Pham Do and
Norde [22], Hu and Yang [6], Macho-Stadler et al. [14] and Myer-
son [19] violate the EC

k

-restricted Null-player Axiom.

PROOF. Let (S, P ) 2 EC
k

be an embedded coalition such
that i 2 S and |P | = k. We define v 2 PG

k

as follows:
v(S, P ) = 1 = v(S�i

, ⌧

T

i

(P )) for every T 2 P , and v(S

0
, P

0
) =

0, otherwise. Thus, agent i is a null-player in v. Consider an ex-
tension v

? of game v to general games with externalities. Now,
[emc

i

(v)](S�i

, ⌧

;
i

(P )) = 1. As the Hu and Yang, Macho-Stadler
et al. and the Myerson value take [emc

i

(v)](S�i

, ⌧

;
i

(P )) into ac-
count, player i will have non-zero payoff. Regarding Pham Do and
Norde, the same argument applies if and only if P \ S is the set of
singletons.

Given this result, in the next section, we propose a dedicated exten-
sion of the Shapley value to k-coalitional games.

4. K-COALITIONAL SHAPLEY VALUE
We begin by formulating a process similar to the one proposed by
Shapley [24], which yields the value in expectation. To this end,
assume that agents leave (rather than enter) the grand coalition in
a random order through one of the k � 1 exits/doors. We assume
that agents that left through the same exit form a coalition; thus, all
agents are partitioned according to their selected exits. As agent i
leaves, he chooses each exit with the same probability (i.e., 1

k�1 )
and receives a payoff that equals his (elementary) marginal contri-
bution to the group of agents that he left. More formally, assuming
the agents in S have not yet left, other agents are partitioned into
P \ S, and that i chose the same exit as coalition T , i’s elementary
marginal contribution equals v(S, P ) � v(S�i

, ⌧

T

i

(P )). Now, the
k-coalitional Shapley value is the expected outcome of the agent’s
elementary marginal contributions over all orders. Formally, this
value is a function '

k

: PG
k

! RN :

'

k

i

(v)=

X

⇡2⇧

X

f :A⇡
i+!K�1

[emc

i

(v)](Z

⇡

i

, Z

⇡

i

[f�1
(K�1))

|N |!(k � 1)

|A⇡
i | (4)

EXAMPLE 1. Let N = {1, 2, 3} be the set of agents and con-
sider the following 2-coalitional game:

v(N, {N}) = 4, v(S, {S,N \ S}) = |S| for every S ( N.

2The only exception is the McQuillin value [16] which is the spe-
cial case (k = 2) of our dedicated extension.

Note that the value v({1}, {{1}, {2}, {3}}) is not specified, as in
a 2-coalitional game 3 coalitions cannot coexist. Consider a per-
mutation (1, 2, 3). Since there is only one exit, as agents leave the
grand coalition, they obtain marginal contributions 2, 1, 1. Now,
2-coalitional Shapley value is an average over all possible permu-
tations.

We now propose two axiomatizations of the k-coalitional Shap-
ley value: one that follows the marginality approach (i.e., with an
↵-Null-player Axiom, see Preliminaries) and one with the standard
translation.

Axiomatization with the ↵-Null-player Axiom: We begin our
analysis by deriving a more concise version of formula (4).

LEMMA 1. The k-coalitional Shapley value satisfies:

'

k

i

(v) =

X

(S,P )2ECk,i 62S

�(S,N)p(P \S)[emc

i

(v)](S, P ), (5)

where p(P \ S) = (k�1)!

(k�|P |)!·(k�1)|N|�|S| .

PROOF. Let us calculate the probability of a given transfer that
corresponds to elementary marginal contribution [emc

i

(v)](S, P ).
Firstly, exactly agents from S must have not left. Thus, in a per-
mutation, i has to be exactly before the agents from S and after
the agents from N \ (S [ {i}). This happens with the probability
(|S|)!(|N|�|S|�1)!

|N|! = �(S,N). Secondly, the exit of agent i should
lead to partition P . Thus, the first agents (in the permutation) from
each coalition in P \ S can choose arbitrary – but different – exits
(they have exactly (k � 1) · · · (k � |P | + 1) such choices). Then,
each of the remaining agents must choose exactly the same exit as
the first one from his coalition.

COROLLARY 1. The k-coalitional Shapley value can be ob-
tained using formula (2) with weights a(S, P ) = p(P \ S) for
|P |  k, and a(S, P ) = 0, otherwise.

Note that for a given S these weights are equal for all partitions P
with the same number of coalitions. This property is violated by the
well-known value proposed by Macho-Stadler et al. [14].

Let us formalize the notion of the marginal contribution in our
value. Assume that i 2 S 2 P . Based on the process described
above, the probability that agent i will join any coalition T 2 P

equals 1/(k � 1). Thus, the chance of creating a new coalition
equals (k� |P |)/(k� 1). This leads to the following theorem and
first axiomatization of our value.

THEOREM 1. The k-coalitional Shapley value can be obtained
using the marginality approach (Formula (3)) with weights

a

k

i

(S, P ) =

(
1/(k � 1) if P (i) 6= {i},
(k � |P |)/(k � 1) otherwise.

Thus, it is the only value that satisfies Efficiency, Symmetry, Addi-
tivity, and the ↵

k-Null-player Axiom.

PROOF. First, we show that the k-coalitional Shapley value sat-
isfies all four axioms. To argue that Efficiency is satisfied, consider
Formula (4). Let us fix permutation ⇡ 2 ⇧ and function f . Consid-
ering the sum of elementary marginal contributions:P

i2N

[emc

i

(v)](Z

⇡

i

, Z

⇡

i

[ f

�1
(K�1)) we see that it sums up to

v(N, {N, ;}) (as the grand coalition, N , dissolves sequentially to
the empty coalition, ;, with zero value). Satisfying Additivity and
Symmetry can be easily seen, as based on formula (4) �(v1+v2) =

�(v1) + �(v2), and permuting the players names in game will re-
sult in the corresponding permutation of payoffs. The fact, that the
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value satisfies the ↵

k-Null-player Axiom follows from Lemma 1.
To see this, note that if i 62 S, then v(S, P ) appears in the formula
only once. On the other hand, if i 2 S, then v(S, P ) appears once
for each possible transfer of i from S outside with weight (|S| �
1)!(|N |� |S|)!/|N |! times (k�1)!/((k� |P |)!(k�1)

|N|�|S|+1
)

for transfers to existing coalitions, and with weight k�|P | replaced
by k � |P | + 1 for a transfer to a new coalition. The proper refor-
mulation leads to the following formula:

'

k

i

(v) =

X

(S,P )2EC
i2S

(|S|�1)!(|N |�|S|)!
|N |! p(P \S)[mc

k

i

(v)](S, P ),

which proves that if all marginal contributions of player i equal
zero, then he gets zero payoff.

The proof of uniqueness follows from [30, Theorem 1] that states
Efficiency, Symmetry, Additivity and ↵-Null-player Axiom imply
a unique value for every ↵.

In this axiomatization we used a notion of ↵k-null-player, where
each player that had the sums in Formula (3) equal zero is called
a null-player. Our second axiomatization will use only the direct
translation of the standard Null-player Axiom to k-coalitional
games (see section ‘k-Coalitional Games’).

Axiomatization with the standard Null-player Axiom: Interest-
ingly, the probability of a transfer to an existing coalition is always
the same, regardless of coalition joined/left, and even the size of
the partition. We will use this observation to provide our alterna-
tive axiomatization. Apart of two special cases, where joining an
existing coalition has weight zero or one (proposed by Pham Do
and Norde [22] and Skibski [27], respectively), the k-coalitional
Shapley value is the first value with this property proposed in the
literature.

As already mentioned, the standard translation of the Null-player
Axiom is too weak to imply uniqueness. Hence, we obtain unique-
ness by introducing two additional axioms – Sensitivity and Fixed
Impact. The former one analyses how increasing the value of one
specific coalition influences the agents. The latter one is a very ba-
sic condition – we require that increasing the value of a coalition
has at least a slight effect on the payoffs of its members.

• EC
k

-restricted Sensitivity (the value of all coalitions of an
agent affects his payoffs): if v(S, P ) 6= v

0
(S, P ) for some

(S, P ) 2 EC
k

with i 2 S, and v(S

0
, P

0
) = v(S

0
, P

0
) for

(S

0
, P

0
) 6= (S, P ), then '

i

(v) 6= '

i

(v

0
), for every v, v

0 2
PG

k

.

Note that assuming that the increase of a value of a coalition in-
creases the payoffs of members would lead to the strict version of
coalitional monotonicity proposed by Young [35]. The above con-
dition is, however, weaker, and hence more general.

Let us consider how the values of coalitions without player i af-
fect his payoff. To this end, first consider a game without external-
ities. Now, an increase of the value of both coalitions S [ {i} and
S does not change the vector of marginal contributions of agent i,
and does not affect his payoff. In games with externalities, we argue
that there should exist a constant c such that increase of (S, P ) with
i 62 S by the value ! is balanced by an increase of (S+i

, ⌧

S

i

(P ))

by ! · c.

• EC
k

-restricted Fixed Impact (values of coalitions without an
agent affect him similarly to values of coalitions with him):
there exists a constant c such that if v0(S, P ) = !+v(S, P ),
v

0
(S+i

, ⌧

S

i

(P )) = ! ·c+v(S+i

, ⌧

S

i

(P )) for some (S, P ) 2
EC

k

such that {i} 62 P and v

0
(S

0
, P

0
) = v(S

0
, P

0
) other-

wise, then '

i

(v) = '

i

(v

0
).

Finally, we show that both new axioms coupled with the standard
translation of the original Shapley axioms imply uniqueness.

THEOREM 2. The k-coalitional Shapley value is the only value
that satisfies Efficiency, Symmetry, Additivity, the EC

k

-restricted
Null-player Axiom, EC

k

-restricted Sensitivity, and EC
k

-restricted
Fixed Impact.

PROOF. Theorem 1 implies that our value satisfies standard ax-
ioms – Efficiency, Symmetry, Additivity and the EC

k

-restricted
Null-player Axiom. Furthermore, Lemma 1 implies that it satis-
fies EC

k

-restricted Sensitivity, i.e., the change in the value of a
embedded coalition, (S, P ), affects the corresponding elementary
marginal contribution [emc

i

(v)](S, P ) or [emc

i

(v)](S+i

, ⌧

S

i

(P ))

if i 62 S which a has non-zero weight in Formula 5. EC
k

-restricted
Fixed Impact is also satisfied based on the same formula for c =

1
k�1 .

Let us now prove uniqueness. Let ' be the value which satisfies
all six axioms. An elementary game e(S,P ) is a game in which only
embedded coalition (S, P ) has value 1, and is the only coalition
with a non-zero value:

e

(S,P )
(S

0
, P

0
) =

(
1 if (S0

, P

0
) = (S, P ),

0 otherwise.

From Additivity, we know that

'

i

(v) =

X

(S,P )2ECk

'

i

(e

(S,P )
).

Consider EC
k

-restricted Sensitivity and EC
k

-restricted Fixed Im-
pact. EC

k

-restricted Sensitivity implies that in the formula for '
i

every embedded coalition counts:

'

i

(e

(S,P )
) 6= 0. for every (S, P ) 2 EC

k

. (6)

Furthermore, EC
k

-restricted Fixed Impact implies that there exist a
constant c such that

c · '
i

(e

(S,P )
) + '

i

(e

(S�i,⌧
T
i (P ))

) = 0 (7)

for every (S, P ) 2 EC
k

such that i 2 S, and for every T 2 P \
{S}. Consider an arbitrary embedded coalition (S, P ) such that i 2
S and |P | = k. Note that player i is a null-player in the following
game:

e

(S,P )
+

X

T2P\{S}

e

(S�i,⌧
T
i (P ))

.

T = ; is not included in the sum, as (S�i

, ⌧

;
i

(P )) 62 EC
k

. Thus,
EC

k

-restricted Null-player Axiom implies that

'

i

(e

(S,P )
) = �

X

T2P\{S}

'

i

(e

(S�i,⌧
T
i (P ))

).

This fact combined with (7) implies that

'

i

(e

(S,P )
) = c · |P \ {S}| · '

i

(e

(S,P )
).

Finally, Formula (6) implies c = 1
k�1 .

From the set of all extensions of the Shapley value to games
with externalities only one – the McQuillin value [16] – can be ap-
plied to our restricted setting. We characterize it using the average
approach: let us define the game without externalities as follows:
v̂

McQ

(S) = v(S, {S,N \ S}). The McQuillin value is the Shap-
ley value for this game: 'McQ

i

(v) = SV

i

(v̂

McQ

). We show below
that McQuillin’s value is a special case of the k-coalitional Shapley
value.
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PROPOSITION 2. The McQuillin value is the 2-coalitional
Shapley value.

PROOF. Consider the k-coalitional Shapley value with k = 2.
As we recall the interpretation of our process, we see there is only
one exit and all agents leaving coalition S form one group – N \S.
Thus, the marginal contribution for every permutation coincides
with the marginal contributions in the game v̂McQ; hence, both val-
ues are equal.

k-coalitional Shapley value, although proposed for a restricted
environments, can be directly applied also for an arbitrary game
with externalities. It is easy to verify that the value is uniquely
characterize by both axiomatization also in this environment. In
the same manner, k-coalitional Shapley value can be applied to m-
coalitional games with m > k. However, as it ignores values of
coalitions embedded in partition bigger than k, it will not satisfy
EC

m

-restricted Sensitivity. Finally, for n players, the n-coalitional
Shapley value is uniquely characterized by non-restricted (as they
are restricted to all embedded coalitions: EC

n

= EC) versions of
the axioms.

COROLLARY 2. n-coalitional Shapley value is the only value
that satisfies Efficiency, Symmetry, Additivity, Null-player Axiom,
Sensitivity, and Fixed Impact.

We note that only for n = 2 this value coincides with an existing
one, i.e., with the already mentioned McQuillin’s value.

5. COMPUTATIONS UNDER SPECIFIC
REPRESENTATIONS

In this section, we discuss the complexity of calculating the k-
coalititional Shapley value based on two representations proposed
for games with externalities – Embedded MC-Nets [18] and Parti-
tion Decision Trees [29]. As we will prove, there exists an interest-
ing connection between computing the k-coalitional Shapley value
and the problem of k-colorings in a graph.

We start with a property of the k-coalitional Shapley value that
is crucial from a computational perspective.

LEMMA 2. The k-coalitional Shapley value satisfies the Strong
Null-player Axiom: if an agent is a null-player (in a strict sense),
then he has no impact on the payoffs of others, i.e., he can be re-
moved from the game.

PROOF. Let player j be a null-player. For an embedded coalition
(S, P ) such that j 2 S, consider the game ṽ

(S,P ) defined as:

ṽ

(S,P )
= e

(S,P )
+

X

T2P\{S}[{;}

e

(S�j ,⌧
T
j (P ))

.

See proof of Theorem 2 for a definition of elementary game e(S,P ).
We can easily check that agent j is a null-player in ṽ

(S,P ), and the
collection of games hṽ(S,P )i(S,P )2EC,j2S

forms a basis for games
where agent j is a null-player. Now, the game ṽ

(S,P ) with agent j
removed simplifies to the elementary game e

(S�j ,P�j) where only
coalition (S�j

, P�j

) has a non-zero value which is 1 (P�j

is a
partition of players over N \ {j}). Thus, it is enough to show that
'

i

(N, ṽ

(S,P )
) = '

i

(N�j

, e

(S�j ,P�j)
) holds for every i 2 N \

{j}.
Assume that i 62 S. From Lemma 1 we have:

'

k

i

(ṽ

(S,P )
) =

|S|!(|N |� |S|� 1)!

|N |! p(P \ S)+

+

X

T2P\{S}[{;}

(|S|� 1)!(|N |� |S|)!
|N |! p(⌧

T

j

(P ) \ S�j

),

for p(P \ S) = (k�1)!

(k�|P |)!·(k�1)|N|�|S| . Simple calculations give:

X

T2P\{S}[{;}

p(⌧

T

j

(P ) \ S�j

) =

=

(k � 1)!

(k � |P |)! · (k � 1)

|N|�|S|+1
((|P |� 1) + (k � |P |)),

which equals p(P \ S). Thus,

'

k

i

(ṽ

(S,P )
) =

= p(P \S)
✓
(|S|�1)!(|N |�|S|)!

|N |! +

|S|!(|N |�|S|�1)!

|N |!

◆

= p(P \ S) (|S|�1)!(|N |�|S|�1)!

(|N |� 1)!

= '

k

i

(e

(S�j ,P�j)
).

As payoffs of all agents not in S remain the same after removing
player j, then based on efficiency and symmetry, the payoffs of
agents from S also do not change.

The importance of this lemma comes from the fact that most repre-
sentations (the aim of which is to provide a concise description of
the game) usually focus on modelling relationships between sub-
sets of agents. Following Lemma 2, when calculating the value, we
can limit ourselves to agents that matter for a given relationship.

The first representation that we discuss, Embedded MC-Nets, is
an extension of the MC-Nets representation [7]. The basic build-
ing block of the original MC-Nets is a boolean expression over N
of the form: p1 ^ p2 ^ . . . ^ p

k

^ ¬n1 ^ ¬n2 ^ . . . ^ ¬n
l

, with
p1, p2, . . . pk 2 N being positive literals, and n1, n2, . . . , nl

2 N

being negative literals. Coalition S satisfies a given boolean expres-
sion if it contains all agents corresponding to positive literals, and
does not contain any agent corresponding to a negative literal.

Now, a single rule of Embedded MC-Nets is of the form:

↵ | �1,�2, . . . ,�m

! w,

where w 2 R, and ↵,�1,�2, . . . ,�m

are the standard MC-Nets
boolean expressions. An embedded coalition (S, P ) satisfies the
entire rule if S satisfies ↵ and, for every �

i

, there exists a coalition
T 2 P such that T satisfies �

i

. We assume also that agents that
appear in a negative part of the rules appear also somewhere in the
positive ones.

THEOREM 3. Calculating the k-coalitional Shapley value from
a single Embedded MC-Nets rule is equivalent to the problem of
counting (k � 1)-colorings of a graph. Thus, it is #P-complete.

PROOF. First, we assume that: ↵ does not contain negative lit-
erals (each can be added as a separate boolean expression on the
right-hand side), sets of positive literals in all boolean expressions
↵,�1, . . . ,�m

do not overlap (if they do, they can be combined, or
if not – for example if one of these expressions is ↵ – the rule is self-
contradictory), and that each expression is not contrary. Now, based
on the Strong Null-player Axiom (Lemma 2), we assume that the
game only consists of agents that appear in the rule – N . Thus, the
only coalition with a non-zero value in the game described using
this rule is a coalition formed by agents from positive literals from
↵. We will denote it by S. The value, however, is non-zero only in
partitions that satisfy boolean expressions from the right-hand side.

Thus, our goal is to compute the sum of weights of all such par-
titions. Recall that the weight of a partition is the number of func-
tions f : P \ S ! K�1 such that f�1

(K�1) = P \ S divided
by (k � 1)

|N|�|S| (and using the process interpretation, the num-
ber of ways agents can leave the grand coalition and form partition
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Figure 1: Computing the k-coalitional Shapley value based on
an Embedded MC-Nets rule using k-coloring. Here, g(k) is a
chromatic polynomial.

P \ S outside using k exits). To achieve our goal, consider a graph
with m nodes that corresponds to boolean expressions �1, . . . ,�m

.
Now, two expressions are connected if there exists a negative lit-
eral in one of them, with agent from the other one. Thus, an edge
means that these expressions cannot be merged. Now, each (k�1)-
coloring of this graph (assigning colors from set {1, 2, . . . , k�1} in
such a way that connected nodes have different colors) corresponds
to one partition of agents that satisfies the boolean expressions, i.e.,
one function f that meets the above criteria and the number of col-
orings divided by (k � 1)

|N|�|S| is equal to the sum of weights of
partitions.

The intuition behind the above proof is depicted in Figure 1. Rule
(3^¬5)(4^¬6)(5^6^¬7)(7^¬4) can be represented by the graph
(see the frame) in which every node corresponds to one boolean
expression. For this graph, we calculate the chromatic polynomial
for k�1, i.e., the number of k�1-colorings. This value, as argued
in the proof, is equal to the k-coalitional Shapley value of player 1.

Although the above result shows that computing our value is hard
in general, the relation to k-coloring shows that whenever rules
can be modelled by a graph for which counting the number of k-
colorings is simple, we have a polynomial algorithm for our prob-
lem. We state the two following corollaries.

COROLLARY 3. The 2-coalitional and 3-coalitional Shapley
values can be calculated in polynomial time under the Embedded
MC-Nets representation.

This result comes from trivial algorithms that count k-colorings
for k = 1, 2.3 Another result comes from the restriction of the
Embedded MC-Nets.

COROLLARY 4. The k-coalitional Shapley value can be calcu-
lated in polynomial time under the Embedded MC-Nets represen-
tation restricted to rules without negative literals.

Note that, without negative literals, the graph that represents restric-
tions in connecting formulas does not have edges. Another example
of the application of Theorem 3 is Corollary 5.

With Partition Decision Trees [29], a game is represented as a
set of rooted directed trees, called a PDT rule. Each PDT rule is a
tree (V,E), with root x and two label functions f

V

and f

E

– non-
leaf nodes are labelled with agents’ names, leaf nodes are labelled
with payoff vectors, and edges are labelled with numbers that cor-
respond to coalitions. Thus, one path defines a partition of agents
and their value. Conciseness of this representation comes from two
features. Firstly, not all agents have to appear on a path. Secondly,
trees are additive (the value of embedded coalition is the sum of
values of this coalition in every tree), thus separate concise rules
can be independently described.
3For k = 1 there exists (only one) k-coloring if a graph have no
edges. For k = 2, each connected component has two k-colorings
if it is bipartite (otherwise, zero k-colorings exists for the whole
graph).

COROLLARY 5. The k-coalitional Shapley value can be calcu-
lated from Partition Decision Trees in polynomial time.

PROOF. Each path of the Partition Decision Trees can be trans-
lated into a set of Embedded MC-Nets rules. In such rules, boolean
expressions cannot be merged and the graph of restrictions is a
clique. As for cliques, the chromatic polynomial (and the number
of colorings) is known; hence, based on Theorem 3, we get a poly-
nomial algorithm.

6. DIPLOMACY AND THE GEOSTRATE-
GIC IMPORTANCE OF EUROPEAN RE-
GIONS

Diplomacy is a popular board game, created in the 1950s, that was
inspired by national rivalries at the outset of World War I [26].
Diplomacy not only achieved enormous success among the gen-
eral public, but was also played by politicians and diplomats, such
as John F. Kennedy and Henry Kissinger. Aspects of the game have
proved to be of interest both for game theorists [33] and computer
scientists [12, 8, 10]. In this section, we will show how the concepts
and techniques developed in this paper may be used to analyse the
relative importance of provinces in Diplomacy.

The Diplomacy board is an approximate map of Europe, divided
into 75 provinces, with seven players corresponding to empires that
existed before WWI. Each player initially controls a few provinces
and with his/her armies tries to expand this territory, with the aim
of dominating the continent. Conflicting interests lead to battles for
contested provinces.

The attack/defence rules are as follows: a player that attacks a
province wins a battle if his/her attack is stronger than the defence
forces and stronger than any other simultaneous attack by other
parties. The strength of an attack is measured by the number of
armies that attack the province from adjacent provinces. Similarly,
the strength of the defence is the number of armies that support the
province from the adjacent provinces, plus one if there is an army
already in the province.

One particularly interesting feature of the game is that the 75
provinces preserve the geographic advantages of particular loca-
tions. Hence, a natural question arises as to the relative importance
of each of the provinces, given its strategic position on the map of
Europe: Should a player try to position her army in more central
provinces, from which it is possible to attack many neighbours but,
as such, which are more exposed to enemy attacks? Or is it better
to focus on more peripheral provinces, with fewer neighbours?

In what follows, we show that, under certain simplifying assump-
tions, it is possible to construct value function that corresponds
to the aforementioned attack/defence rules in the game of Diplo-
macy. Moreover, we show that this value function admits a polyno-
mial algorithm for the k-coalitional Shapley value. In other words,
we develop a scalable method of measuring relative importance of
provinces in the context of attack/defence rules. To this end, we
model the Diplomacy game board as a graph G = (V,E) in which
nodes V represent provinces and edges E connect neighbouring
provinces. Next, we construct a k-coalitional game on this graph.
In particular, we assume that each province/node is a player in a co-
operative game in which at most 7 coalitions can be created. Each
such coalition should be interpreted as the territory controlled by a
single empire.

Before proceeding with the definition of the value function, let
us introduce the following notation. We will denote by M(i) the
set of neighbors of node i 2 V , and by M+(i) = M(i) [ {i} –
the set of neighbors including node i. We define the strength of the
attack of nodes S ✓ V on node i as the number of i’s neighbors
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Figure 2: A sample network. Each color denotes a different
coalition and flags denote the strongest attackers’ colors. Here,
node A has 3 red neighbors, so it is counted to the red coalition
valuation. Node B has 2 red neighbors, only 1 green, and it is
blue itself; hence, B is also captured by the red. Node C has 2
neighbors blue and 2 green. Thus, it has both green and blue
flags. Node D is green and has 1 green neighbor, while all the
opponents have attack strength of 1; hence, D has a green flag.
We have ⌫(red)=4, ⌫(blue)=3, ⌫(green)=3.

(including i) in S: infl
i

(S) = |M+(i)\S|. Furthermore, denoting
by P a partition of nodes V , let the strongest attackers on node
i, denoted max infl

i

(P ), be the coalitions in P that have highest
attack strength on i. Formally:

max infl

i

(P ) = {S 2 P | infl
i

(S) = max

T2P

infl

i

(T )}.

We are ready now to formally define a k-coalitional cooperative
game over graph G = (V,E), where k = 7, G corresponds to
the board of the Diplomacy game, and where the value function
corresponds to the attack/defence rules in this game. In particular,
let (G, ⌫) 2 PG

k

with ⌫ : EC
k

! R be defined as:

⌫(S, P ) = |{i 2 V | S 2 max infl

i

(P )}|.

In words, the value of a coalition in our game is the sum of ele-
ments gained from attacking adjacent provinces: coalition S cap-
tures node j only if S is one of its strongest attackers (see Figure 2
for an example). We call (G, ⌫) the Network Control Game. We
can also rewrite it as:

⌫(S, P ) =

P
j2V

1(S 2 max infl

j

(P )),

where 1(�) denotes a function that takes values one 1 if the condi-
tion � is satisfied, and 0 otherwise. We will call expression 1(S 2
max infl

j

(P )) j’s component of value of S in P .
Note that our value function assumes the following simplifica-

tion of Diplomacy attack/defence rules: we do not differentiate
between sea and land provinces, we ignore the fact that some
provinces are supply centers, and we assume that any configura-
tion of provinces that belong to a single player is feasible.4

The key computational result of this section is that the k-coali-
tional Shapley value for the above game can be computed in poly-
nomial time. To this end, let us focus on the marginal contribution
of an arbitrary node. In particular, node i, by leaving coalition S,
can decrease its value by changing the value of any of the com-
ponents from 1 to 0. Because the attack is only local, i can only
affect either his own component or any of his neighbors. Moreover,
node i can decrease j’s component only if coalition S 63 j was
the strongest attacker on j. If this holds, there are two ways i can
decrease the component of node j 2 M+(i):

(a) if there is another coalition that has the same attack strength
4We believe that to some extent all such assumptions could be
waived, without compromising polynomial complexity of the al-
gorithm. This extension, however, is left for future work.

as S, j’s value will be decreased independently of the coali-
tion that i moves to,

(b) if there is no coalition that has the same attack strength on j

as S, but there is another coalition T that has attack strength
smaller by 1, then i will decrease value of S if and only if he
moves to T .

We formalize this observation in the following proposition.

PROPOSITION 3. Let (G, ⌫) be the Network Control Game. An
elementary marginal contribution [emc

i

(v)](S, P ) (i.e., the effect
that node i has on the value of coalition S if he moves to S in
partition P ) can be decomposed as follows:

[emc

i

(⌫)](S, P ) = ⌫(S+i

, ⌧

S

i

(P ))�⌫(S, P ) =

=

X

j2M+(i)

1(S+i

2max infl

j

(⌧

S

i

(P )))�1(S2max infl

j

(P )).

Now, we have the following theorem:

THEOREM 4. The k-coalitional Shapley value of the Network
Control Game can be computed in polynomial time assuming that
k is constant.

PROOF. The proof is based on the following lemma.

LEMMA 3. Assume we have n numbered items and k colors,
and we color each item with a single color. Let’s denote 

d

k

(n) the
number of colorings such that each of the colors is used at most d
times. Then, assuming that k is constant, d

k

(n) can be computed
in polynomial time.

PROOF. First, observe that d

k

(n) = 0 if n > k · d. Otherwise,
we use exponential generating functions to count the colorings. In
this approach, we consider a power series K(x) =

P
i>0 

d

k

(i)

x

i

i!
and using analytical transformation resolve its n-th coefficient.

For k = 1, there is only one coloring for each n if n  d; hence,
the corresponding exponential generating function is

P
d

i=0
x

i

i! .
Multiplying this function k times (i.e., taking the convolution of
the sequence) and expanding using multinomial theorem, we get:

K(x) =

 
dX

i=0

x

i

i!

!
k

=

X

a0+...+ad=k

 
k

a0, . . . , ad

!
dY

i=0

✓
x

i

i!

◆
ai

.

We can now extract (x
n

n! ) ,
P

(i · a
i

) = n coefficient, that is:

n!

X
 

k

a0, . . . , ad

!
dY

i=0

✓
1

i!

◆
ai

,

where we sum over all non-negative integers a0, . . . , ad

such thatP
d

i=0 ai

= k and
P

d

i=0 i · ai

= n. To the best of our knowledge
this is not computable in polynomial time in general case, as there is
an exponential number of all partitions (a0, . . . , ad

) of k. However,
for constant (or small) k, this can be done efficiently.

We use the interpretation of the process formalized in Formula
(4) to compute the k-coalitional Shapley value. Recall, that accord-
ing to this interpretation, this value equals to the change in the value
of the grand coalition caused by player i in the process of players
leaving the grand coalition in a random order and randomly divid-
ing themselves into partition of k�1 coalitions. Let ⇡ be a permuta-
tion and P a partition. We will denote by P (i,⇡) a partition formed
before player i leaves, assuming preceding players are partitioned
according to P , i.e., P (i,⇡) = {S \ Z

⇡

i+ | S 2 P} [ {Z⇡

i+}.
Now, to facilitate calculation of the expected value, we define the
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following events in the space ⌦ = ⇧⇥
S

m2K P
m

(i.e., space of all
permutations of nodes and all possible partitions) that corresponds
to attack strength of player i on player j, and, in particular, cases
(a) and (b) from the analysis of marginal contribution.

(a) CA

i

j

(⇡, P ) = ((Z

⇡

i+) 2 max infl

j

(P (i,⇡)))^(9
S2P (i,⇡) :

S 6= Z

⇡

i+^infl

j

(S) = infl

j

(Z

⇡

i+)) means that the nodes that
follow i in ⇡ and i itself are a strongest attacker on node j

and there is another coalition with the same attack strength
on node j as Z⇡

i+;
(b) CB

i

j

(⇡, P ) = ((Z

⇡

i+) 2 max infl

j

(P (i,⇡)))^(infl
j

(P (i)\
Z

⇡

i

))+1 = infl

j

(Z

⇡

i+))^¬CA

i

j

(⇡, P ) means that the nodes
that follow i in ⇡ and i itself are a strongest attacker on node
j and there is no other coalition with the same attack strength
on node j, but the coalition that i leaves to (coalition of i in
P without nodes that succeed i) has attack strength smaller
only by one.

Combining Proposition 3 with formula for k-coalitional Shapley
value (Formula (4)), we have:

'

k

i

(v) =

X

j2M+(i)

prob(CA

i

j

(⇡, P )) + prob(CB

i

j

(⇡, P )).

Here we used additivity of the expected value and the fact that
events CAi

j

(⇡, P ) and CB

i

j

(⇡, P ) are disjoint.
Let us compute |CAi

j

(⇡, P )|. This event means that Z⇡

i+ is one
of the strongest attackers of node j, but Z⇡

i+ \ {i} is not (indepen-
dently of the coalition i joins). First, we observe that only nodes
that are j’s neighbors matter (let n = |M+(j)| be the number of
them). Among them: (i) the order and partition of nodes succeed-
ing i in ⇡ does not matter; (ii) among nodes proceeding i in ⇡ there
is a coalition S such that infl

j

(S) = infl

j

(Z

⇡

i+) and there is no
stronger attacker on j. We sum over the number of j’s neighbors
before i in ⇡, denoted by l. From (i) we get (n� l� 1)!(k� 1)

n�l

and from (ii) and Lemma 3 

n�l+1
k�1 (l)� 

n�l

k�1(l), thus:

|CAi

j

(⇡, P )| =
n�1X

l=0

(n�l�1)!(k�1)

n�l

(

n�l+1
k�1 (l)�

n�l

k�1(l)).

Similarly to the case of CA

i

j

(⇡, P ) we compute |CBi

j

(⇡, P )|
(combinatorial details are omitted):

|CBi

j

(⇡, P )| =
n�1X

l=0

(n� l� 1)!(k � 1)

n�l

l!

(l � (n� l � 1))!



n�l�1
k�2 (l � (n� l � 1)).

At the end, we divide cardinalities of both events by |⌦| = n! ·
(k � 1)

n (all permutations and all divisions of M+(j) into k � 1

coalitions) to obtain the required probabilities. Thus,

'

k

i

(v) =

X

j2M+(i)

|CAi

j

(⇡, P )|+ |CBi

j

(⇡, P )|
|M+(j)|! · (k � 1)

|M+(j)| , (8)

which concludes the proof.

Let us now compute the k-coalitional Shapley Value for the board
of Diplomacy using the above formula. The results are presented in
Table 1 and illustrated in Figure 3. They have the following inter-
pretation in the Diplomacy context: if we add the top province to
our empire then, on average, the probability of launching a suc-
cessful attack by our armies will increase most (assuming the sim-
plified attack/defence rules). According to the k-coalitional Shap-
ley value, we observe that the worst provinces are either peripheral
and poorly connected (Portugal, Skagerrak, Barents Sea) or central
on the map and very well connected (Ruhr, Budapest, Berlin). The
top provinces, on the other hand, are those that are not central on the

Worst Provinces k-SV Best Provinces k-SV
Portugal 0.002 Smyrna 0.311
Skagerrak 0.005 Norway 0.294
Barents Sea 0.005 St. Petersbourg 0.265
Helgoland Bight 0.013 Norwegian Sea 0.262
Ruhr 0.014 Armenia 0.256
Budapest 0.014 W. Mediterranean 0.246
Berlin 0.014 M.-Atlantic Ocean 0.233

Table 1: The best and the worst provinces.
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Figure 3: The Diplomacy board. Green provinces are the best
according to k-coalitional Shapley value (dark green – top 3).
Red provinces are the worst (dark red – top 3).

map but that are adjacent to more central provinces (Smyrna, Nor-
way, St. Petersburg) and large sea provinces. Interestingly, these
results are consistent with the widespread belief that Turkey and
Russia have best geostrategic positions [5]. However, according to
the same source, England is also believed to have the best position)
but it is no identified as such by our method.

We emphasise that, our results do not represent a definite state-
ment on which provinces are the most important in Diplomacy:
Firstly, we made simplifying assumptions in the definition of the
value function. Secondly, because the rules of Diplomacy are com-
plex, the final results does not depend only on the map and at-
tack/defence rules, but on various factors such as the players’ level
of experience or negotitation skills. Nevertheless, we believe our
analysis provides useful strategic insights into the game.

7. CONCLUSIONS
In this paper, we introduced k-coalitional cooperative games – a
class of cooperative games designed for settings where no more
than k coalitions can co-exist. We proposed a natural extension
of the Shapley value to these games and studied its computational
properties. Finally, we applied our techniques to analyse the board
game Diplomacy. To the best of our knowledge our work is the first
study of network properties based on a cooperative games with ex-
ternalities. In future work, we are keen to study other solution con-
cepts, such as the core for games with externalities [11].
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