
Iterated Boolean Games for Rational Verification

Tong Gao, Julian Gutierrez, Michael Wooldridge
Department of Computer Science

University of Oxford

ABSTRACT
Rational verification is the problem of understanding what tempo-
ral logic properties hold of a multi-agent system when agents are
modelled as players in a game, each acting rationally in pursuit of
personal preferences. More specifically, rational verification asks
whether a given property, expressed as a temporal logic formula,
is satisfied in a computation of the system that might be generated
if agents within the system choose strategies for selecting actions
that form a Nash equilibrium. We show that, when agents are mod-
elled using the Simple Reactive Modules Language, a widely-used
system modelling language for concurrent and multi-agent systems,
this problem can be reduced to a simpler query: whether some
iterated game—in which players have control over a finite set of
Boolean variables and goals expressed as Linear Temporal Logic
(LTL) formulae—has a Nash equilibrium. To better understand the
complexity of solving this kind of verification problem in practice,
we then study the two-player case for various types of LTL goals,
present some experimental results, and describe a general technique
to implement rational verification using MCMAS, a model checking
tool for the verification of concurrent and multi-agent systems.

Keywords
Iterated Boolean Games, Nash Equilibria, Linear Temporal Logic,
Formal Verification, MCMAS, Strategy Logic.

1. INTRODUCTION
This paper is concerned with the analysis of concurrent systems

composed of multiple software agents, in which each agent is as-
sumed to act strategically and rationally in pursuit of a personal goal,
specified as a formula of temporal logic. Since agents are assumed
to be acting strategically, game theory provides a very natural set
of analytical concepts for such systems [23, 25]. If we interpret a
concurrent system as a game in this way, then the outcomes of the
game correspond to computations of the system, and game theo-
retic analysis will identify some computations as being the result
of rational action. The main questions to be answered about such
systems are therefore not simply “what computations might the
system produce?”, but rather, “what computations might the system
produce if the constituent agents act rationally?” If we interpret
acting rationally to mean choosing strategies for acting which form a
Nash equilibrium, then this question amounts to asking “which pos-

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S. Das,
E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017, S∼ao
Paulo, Brazil.
Copyright © 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

sible computations of the system will be produced in equilibrium?”
Further, if we use temporal logic as the language for expressing
properties of our multi-agent system (as is standard in the verifica-
tion community [4, 12]), then we can also interpret this question
as “which temporal logic formulae are satisfied by computations
arising from the selection of strategies in equilibrium?”

This general problem—understanding what temporal logic prop-
erties a system will satisfy, under the assumption that the agents
within it act rationally—has been referred to as rational verifica-
tion [31]. Rational verification may be contrasted with the classical
view of verification, in which we simply ask whether a temporal
logic property holds on some or all possible computations of a sys-
tem. Expressed as a decision problem (which for technical reasons
we refer to as E-NASH), this problem can be stated as follows:

Given: A game G (representing a concurrent/multi-
agent system), and temporal logic formula ϕ.
Question: Is it the case that ϕ holds on a computation
of G that could arise through the agents in G choosing
strategies that form a Nash equilibrium?

The counterpart of this problem is A-NASH, which asks whether a
temporal formula ϕ is satisfied on all computations that could arise
as a result of agents choosing strategies that form a Nash equilibrium.
A seemingly simpler question is NON-EMPTINESS, which asks
whether a game has any Nash equilibria, a borderline measure of
the correct (or desirable) behaviour of a multi-agent system, as a
game without any Nash equilibria is inherently unstable.

Related questions have previously been considered by a number
of researchers—see e,g., [6, 7, 10, 15, 16, 24]. However, a common
feature in this previous work is that the computational models used
as the basis for analysis are highly abstract, and in particular are
not directly based on real-world programming models or languages.
In this paper, we consider multi-agent systems modelled with the
Simple Reactive Modules Language (SRML), which was introduced
to study the complexity of practical ATL model checking [29].
Indeed, SRML is a subset of Reactive Modules [1], a modelling
specification language for concurrent and multi-agent systems that
is widely used in practical model checking systems [3, 20].

We refer to an SRML model (defining the agents in a system, and
the choices available to them) together with a temporal logic formula
for each agent (defining the preferences of that agent) as an SRML
game. SRML games seem to be a natural framework within which
to frame questions relating to rational verification. However, when
it comes to solving such games, that is, implementing algorithms
for rational verification against SRML specifications, it would be
desirable to deal with a simpler model. In this paper, we show that
this is possible. In particular, we show that rational verification
for SRML games can be reduced to the NON-EMPTINESS problem
for Iterated Boolean Games (iBGs [18]), a model that is strictly

less powerful than SRML games. The remainder of the paper is
structured as follows. We start by presenting the framework of
Reactive Module Games, and our reduction to Iterated Boolean
Games. We then present some experimental results, and a technique
to implement rational verification using MCMAS [21].

Motivation and Related Work. Since the early 1990s, a substan-
tial literature has emerged on the verification of multi-agent systems.
Initially, this work focussed on the verification of practical reasoning
agents—the belief-desire-intention architecture [27]. Later work
considered the use of model checking techniques for the verifica-
tion of multi-agent systems implemented in the BDI programming
language AgentSpeak [5]. This strand of work was focussed on
the verification of “rational balance” between mental states, rather
than verifying strategic properties. Some years later, in the late
1990s, the ATL language was proposed, offering a markedly dif-
ferent perspective on the verification of multi-agent systems [2].
ATL was intended to support the verification of properties relating
to the strategic ability of agents and coalitions of agents, and the
development of the MOCHA model checker for ATL promoted the
rapid adoption of this language [3]. A key issue that was investi-
gated in depth was the relationship between strategic ability and the
knowledge of agents [30]. MCMAS was the first model checking
tool to implement epistemic ATL model checking [21]. While the
view of multi-agent systems embodied by ATL promoted a strategic
view of multi-agent systems, ATL was not intended for representing
and reasoning about preferences or game theoretic solution concepts
such as Nash equilibrium. One key limitation of ATL with respect
to this problem is the inability in ATL to refer to strategies in the
object language: Strategy Logic was proposed as a closely-related
formalism to ATL, intended to overcome this limitation [9, 24]. The
MCMAS model checking tool was later adapted to support Strategy
Logic [8], opening up the possibility of model checking strategic
properties within different models of interaction and computation.
Indeed, since SRML specifications have a semantics given by con-
current game structures [2], the models of Strategy Logic formulae,
and Strategy Logic can be used to reason about Nash equilibria, one
can analyse SRML games and do rational verification in this way.
Following this approach, rational verification is solved, indirectly,
via the solution of a parity automaton; see, for instance, [15, 24].
Another instance of a model where strategic behaviour plays a criti-
cal role is the Iterated Boolean Games (iBG) framework. The iBGs
framework was proposed as a model for reasoning about strategic
properties of multi-agent systems in which players have goals ex-
pressed as temporal logic formulae [18]. In iBGs, each agent is
assumed to control a set of Boolean variables, and has preferences
defined by a temporal logic formula that the agent desires to see
satisfied. Work on the iBGs framework introduced the three deci-
sion problems relating to rational verification that we referred to in
the introduction: A-NASH, E-NASH, and NON-EMPTINESS, and
established that these problems are 2EXPTIME-complete in cases
where agent goals are expressed in Linear Temporal Logic. The
iBGs model is closely related to work on rational synthesis [15].
However, it has been argued that the iBGs model does not represent
a realistic model of concurrent and multi-agent systems. For this
reason, some researchers proposed studying instead questions re-
lated to rational verification using more realistic system modelling
languages: for example, Toumi et al. [28] developed a prototype
tool for checking equilibria of multi-agent systems in which agents
are modelled using SRML, and have preferences expressed as CTL
formulae. Wooldridge et al. coined the term rational verification
to refer to the problem of checking what temporal logic properties
hold of a game-like concurrent/multi-agent system [31].

2. PRELIMINARIES
Models. Let Φ be a finite set of Boolean variables. A valuation
for propositional logic is a set v ⊆ Φ, with the interpretation that
p ∈ v means that p is true under valuation v, while p 6∈ v means
that p is false under v. Let V(Φ) = 2Φ be the set of all valuations
for variables Φ; where Φ is clear, we omit reference to it and write
V . We use Kripke structures to model the dynamics of our systems.
A Kripke structure K over Φ is given by K = 〈S, S0,R, π〉, where
S = {s0, . . .} is a finite non-empty set of states, S0 ⊆ S is the
set of initial states, R ⊆ S × S is a total transition relation on
S, and π : S → V is a valuation function, assigning a valuation
π(s) to every s ∈ S. Where K =〈S, S0,R, π〉 is a Kripke structure
over Φ, and Ψ ⊆ Φ, we denote the restriction of K to Ψ by K|Ψ,
where K|Ψ =〈S, S0,R, π|Ψ〉 is the same as K except that π|Ψ is the
valuation function defined as follows: π|Ψ(s) = π(s) ∩Ψ.

Runs. A run of K is a sequence ρ = s0, s1, s2, . . . where for all t ∈
N we have (st, st+1) ∈ R. Using square brackets around parameters
referring to time points, we let ρ[t] denote the state assigned to time
point t by run ρ. We say ρ is an s-run if ρ[0] = s. A run ρ of K
where ρ[0] ∈ S0 is referred to as an initial run. Let runs(K, s) be
the set of s-runs of K, and let runs(K) be the set of initial runs of K.
Notice that a run ρ ∈ runs(K) induces an infinite sequence ρ ∈ Vω

of propositional valuations, viz., ρ = π(ρ[0]), π(ρ[1]), π(ρ[2]),
We denote by runs(K) the set of these sequences. Given Ψ ⊆ Φ
and a run ρ : N → V(Φ), we denote the restriction of ρ to Ψ by
ρ|Ψ, i.e., ρ|Ψ[t] = ρ[t] ∩Ψ for each t ∈ N.

Linear Temporal Logic (LTL). LTL extends propositional logic
with two operators, X (“next”) and U (“until”), that can be used to
express properties of runs, e.g., of a Kripke structure. The syntax of
LTL is defined w.r.t. a set Φ of Boolean variables as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ Φ. The remaining classical logic operators are defined in
the standard way; also, we write Fϕ = > Uϕ and Gϕ = ¬F¬ϕ,
for “eventually” and “always” respectively. We interpret formulae
of LTL with respect to pairs (ρ, t), where ρ is a run of a Kripke
structure K =〈S, S0,R, π〉 and t ∈ N is a temporal index into ρ:

(ρ, t) |= >
(ρ, t) |= p iff p ∈ π(ρ[t])
(ρ, t) |= ¬ϕ iff it is not the case that (ρ, t) |= ϕ
(ρ, t) |= ϕ ∨ ψ iff (ρ, t) |= ϕ or (ρ, t) |= ψ
(ρ, t) |= Xϕ iff (ρ, t + 1) |= ϕ
(ρ, t) |= ϕUψ iff for some t′ ≥ t : ((ρ, t′) |= ψ and

for all t ≤ t′′ < t′: (ρ, t′′) |= ϕ).

If (ρ, 0) |= ϕ, we write ρ |= ϕ and say that ρ satisfies ϕ. An LTL
formula ϕ is satisfiable if there is a run satisfying ϕ. A Kripke
structure K satisfies ϕ if ρ |= ϕ for all initial runs ρ of K. Finally,
with |ϕ|we denote the size of ϕ, given by its number of subformulae.

Simple Reactive Modules and Multi-Player Games. We consider
concurrent and multi-agent systems described using the Simple
Reactive Modules Language (SRML), a language introduced in [29]
to study the complexity of practical ATL model checking. Agents
in Reactive Modules are known as modules, which consist of:

(i) an interface, which defines the module’s name, the set of
Boolean variables under the control of the module; and

(ii) a number of guarded commands, which define the choices
available to the module at every state.

Guarded commands are of two kinds: those used for initialising
the variables under the module’s control (init guarded commands),
and those for updating these variables subsequently (update guarded
commands). A guarded command has two parts: a condition part
(the “guard”) and an action part, which defines how to update the
value of (some of) the variables under the control of a module. The
intuitive reading of a guarded command ϕ ; α is “if the condition
ϕ is satisfied, then one of the choices available to the module is to
execute the action α”. We note that the truth of the guard ϕ does not
mean that α will be executed: only that such a command is enabled
for execution—that is, that it may be chosen for execution.

Formally, a guarded command g over some set of Boolean vari-
ables Φ is an expression

ϕ ; x′1 := ψ1; · · · ; x′k := ψk

where ϕ (the guard) is a propositional formula over Φ, each xi is
a controlled variable, and each ψi is a propositional logic formula
over Φ. Let guard(g) denote the guard of g. Thus, in the above rule,
guard(g) = ϕ. We require that no variable appears on the left hand
side of two assignment statements in the same guarded command.
We say that x1, . . . , xk are the controlled variables of g, and denote
this set by ctr(g). If no guarded command of a module is enabled,
the values of all variables in ctr(g) are left unchanged; in SRML
notation, if needed, skip will refer to this particular case.

Formally, an SRML module, mi, is defined as a tuple mi =
〈Φi, Ii,Ui〉, where: Φi ⊆ Φ is the (finite) set of variables controlled
by mi; Ii is a (finite) set of initialisation guarded commands, such
that for all g ∈ Ii, we have ctr(g) ⊆ Φi; and Ui is a (finite) set
of update guarded commands, such that for all g ∈ Ui, we have
ctr(g) ⊆ Φi. An SRML arena is defined to be an (n + 2)-tuple

A =〈N,Φ,m1, . . . ,mn〉

where N = {1, . . . , n} is a set of agents, Φ is a finite and non-empty
set of Boolean variables, and for each agent i ∈ N, mi =〈Φi, Ii,Ui〉
is an SRML module over Φ that defines the choices available to agent
i. It is required that {Φ1, . . . ,Φn} forms a partition of the set of
variables Φ (so every variable in Φ is controlled by some module,
and no variable is controlled by more than one module).

The behaviour/semantics of an SRML arena is obtained by exe-
cuting guarded commands, one for each module, in a synchronous
and concurrent way. The execution of an SRML arena proceeds in
rounds, where in each round every module mi = 〈Φi, Ii,Ui〉 pro-
duces a valuation vi for the variables in Φi on the basis of a current
valuation v. For each SRML arena A, the execution of guarded com-
mands induces a unique Kripke structure, denoted by KA, which
formally defines the semantics of A. A particular construction is
given in [29]. Based on KA, one can define the sets of runs al-
lowed in A, namely, those associated with the Kripke structure KA.
Similarly, for each SRML module m, the execution of guarded com-
mands induces a unique Kripke structure, denoted by mA, which
formally defines the semantics of m. Sometimes, we will be inter-
ested in the size of arenas and modules. We say that the size of an
arena A =〈N,Φ,m1, . . . ,mn〉, denoted by |A| is |m1|+ . . .+ |mn|,
where the size of a module mi = 〈Φi, Ii,Ui〉, denoted by |mi|, is
|Φi| + |Ii| + |Ui|. Also, we will use LTL characterisations of the
runs of arenas A and modules m. Such LTL formulae, denoted by
TH(A) and TH(m), respectively, are polynomial in the sizes of A
and m, and satisfy that, for every run ρ, we have ρ ∈ runs(KA) if
and only if ρ |= TH(A), and similarly for modules.

Using SRML we can model multi-agent systems represented as
multi-player games. That model of games has two components,
described next. The first component is an arena, which defines
the players, the variables they control, and the choices available

to them in every game state. The second component defines the
preferences of all players: every player i is associated with a goal γi,
which will be an LTL formula. The idea is that players desire to
see their goal satisfied by the outcome of the game. Formally, an
SRML game is given by a structure G =〈A, γ1, . . . , γn〉 where A =
〈N,Φ,m1, . . . ,mn〉 is an arena with player set N, Boolean variable
set Φ, and mi an SRML module defining the choices available to each
player i; moreover, for each i ∈ N, the LTL formula γi represents
the goal that i aims to satisfy. On this basis, the size of a game, |G|,
is given by |A|+ |γ1|+ . . .+ |γn|, where |γi| is the size of γi.

Games are played by each player i selecting a strategy σ that will
define how to make choices over time. Given an SRML arena A =
〈N,Φ,m1, . . . ,mn〉, a strategy for module mi =〈Φi,Visi, Ii,Ui〉 is
a structure σ = (Qi, q0

i , δi, τi), where Qi is a finite and non-empty
set of states, q0

i ∈ Qi is the initial state, δi : Qi × V(Φ)→ Qi is a
transition function, and τi : Qi → Vi is an output function. Let Σi

be the set of strategies for mi. A strategy σ can be represented by an
SRML module (of polynomial size in |σ|) with variable set Φi ∪ Qi.
We write mσ for such a module specification.

Once every player i has selected a strategy σ, a strategy pro-
file ~σ = (σ1, . . . , σn) results and the game has an outcome. Be-
cause strategies are deterministic, the outcome of a game with SRML
arena A =〈N,Φ,m1, . . . ,mn〉 is the unique run over Φ induced by
~σ, which we denote by ρ(~σ), that is, the infinite run⋃

i∈N

τi(q0
i),

⋃
i∈N

τi(δi(q0
i ,
⋃
i∈N

τi(q0
i))), . . . ,

which is the unique infinite run associated with the SRML arena
A~σ =〈N,Φ ∪

⋃
i∈N Qi,mσ1 , . . . ,mσn〉 restricted to valuations with

respect to Φ, i.e., the Kripke structure KA~σ |Φ. Since the outcome of
a game determines whether each player’s goal is or is not satisfied,
we can now define a preference relation %i over outcomes for each
player i with goal γi. For strategy profiles ~σ and ~σ′, we have

ρ(~σ) %i ρ(~σ′) if and only if ρ(~σ′) |= γi implies ρ(~σ) |= γi.

On this basis, we also define the concept of Nash equilibrium [25]:
given a game G = (A, γ1, . . . , γn), a strategy profile ~σ is a Nash
equilibrium of G if for all players i and all strategies σ′, we have

ρ(~σ) %i ρ((~σ−i, σ
′
i)),

where (~σ−i, σ
′
i) denotes (σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn), the strat-

egy profile where the strategy of player i in ~σ is replaced by σ′i .
Hereafter, let NE(G) be the set of Nash equilibria of G.

Rational Verification. Once a multi-agent system has been mod-
elled as a multi-player game, from a game-theoretic point of view, a
number of queries about the correctness of the system naturally arise.
These questions—which represent the game-theoretic counterparts
of some core decision problems in automated formal verification
from logical specifications—are defined as follows:

Given: SRML game G, LTL formula ϕ.
E-NASH: Does ∃~σ ∈ NE(G). ρ(~σ) |= ϕ hold?

Given: SRML game G, LTL formula ϕ.
A-NASH: Does ∀~σ ∈ NE(G). ρ(~σ) |= ϕ hold?

Given: SRML game G.
NON-EMPTINESS: Is it the case that NE(G) 6= ∅?

These three problems, specifically stated for SRML games, form
the core of what it is known as rational verification [31]. In what
follows, we will show that, for Reactive Modules games, these
questions can all be reduced to a single decision problem in a much
simpler model: namely, to NON-EMPTINESS for iBGs [18].

module rbmei controls pi, qi

init
:: > ; p′i := ⊥, q′i := B

update
:: (qj ∧ ¬pj) ∨ pi ; p′i := >, q′i := >
:: (qj ∧ ¬pj) ∨ pi ; p′i := ⊥, q′i := >
:: ¬pi ∧ qi ; q′i := ⊥

Figure 1: A mutual exclusion algorithm with 3 processes/agents:
rbmei, with i ∈ {0, 1, 2}. In this SRML specification, we have
B = >, if i = 0, and B = ⊥ otherwise. Moreover, j = (i+2) mod 3.

Example. In order to illustrate, and better understand, how to model
multi-agent systems using SRML, while following a game-theoretic
approach, we now show an example, using the concrete syntax of
SRML, in which three agents are engineered so that some desirable
computational properties are guaranteed under rational behaviour.

The multi-agent system we use in this example implements a mu-
tual exclusion algorithm (MEA). MEAs play a key role in distributed
systems. They ensure that in concurrent settings two processes can-
not enter a ‘critical region’ (CR) at the same time. Well-known
examples of MEAs are, e.g., Peterson’s algorithm or Lamport’s bak-
ery algorithm [11]. This kind of algorithm may readily be defined
in SRML. The modules in Figure 1 specify an SRML arena

Arbme =〈{0, 1, 2}, {p0, p1, p2, q0, q1, q2}, rbme0, rbme1, rbme2〉,

which implements a three-agent distributed ring-based mutual exclu-
sion algorithm (cf., [11], pp. 474–5). The algorithm easily extends
to settings with any finite number of agents. The key idea of a
ring-based algorithm is that the agents are organised in a cycle along
which a ‘token’ is passed—similar to a distributed implementation
of a round-robin scheduler. Possession of the token signifies exclu-
sive permission to enter the CR and an agent can enter the CR only
if such an agent is in possession of the token.

Thus, in Arbme each agent i controls two variables, pi and qi.
Variable pi being true means that agent i enters the CR, whereas qi

indicates that agent i has the token. In the initial state, no player is in
the CR and agent 0 has the token. Once an agent i is in the CR, i.e.,
if pi is true, she can stay there indefinitely. On exiting the CR, i.e., if
¬pi ∧ qi holds, agent i immediately passes the token to agent i + 1,
assuming arithmetic modulo 3 throughout the example.

The behaviour of the system, although concurrent and distributed,
is rather clear from the SRML specification. In particular, observe
that, on all runs of Arbme, at every time, at most one agent can
enter the CR—that is, if pi = > then (¬pi+1 ∧ ¬pi+2) holds. On
possession of the token, each agent can decide whether to enter the
CR or not. However, to ensure the correct operation of the system,
as a protocol designer, we let each agent i have as goal the LTL
formula γi = GF¬qi so that each agent is designed to rationally
follow a starvation-free protocol (a desirable property in distributed
systems which ensures that no process is perpetually denied from
having access to shared resources), as explained next.

Clearly, the system allows for many different runs, some of which
are undesirable, e.g., one in which an agent enters the CR and
remains there indefinitely—this behaviour would violate the desired
starvation-free property. However, only some special runs of the
system can arise when playing a Nash equilibrium—i.e., only some
runs can be rationally sustained by all agents. A powerful property
of this SRML specification is that on all runs that are sustained by
Nash equilibria, the system is guaranteed to be starvation-free! Thus,
both safety and liveness for the system can be uniformly engineered
following a simple game-theoretic approach using SRML.

3. REDUCTIONS
The framework of SRML games makes it possible to model multi-

agent systems in a relatively natural and high level way. However,
this flexibility comes at a price: implementing solvers for SRML
games—i.e., tools that automatically do rational verification—is
not a straightforward task. In fact, until recently, only a proof-of-
concept implementation of a decision problem within the rational
verification paradigm had been developed [28, 31], although with
respect to goals given by CTL formulae.1

Because of this, it would be desirable to be able to do rational
verification in a framework simpler than SRML games. In this section
we show how to do this. In particular, we show how to reduce the
three key decision problems about rational verification in SRML
games into a single decision problem on a simpler model of games:
the NON-EMPTINESS problem for iterated Boolean Games [18].

3.1 Iterated Boolean Games
Iterated Boolean games (iBGs [18]) are similar to SRML games,

but strictly less expressive2 and with a more succinct representation.
Formally, an iBG is a tuple

H =〈N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn〉

where, as in SRML games, N = {1, . . . , n} is a set of agents, Φ is a
finite and non-empty set of Boolean variables, and for each agent
i ∈ N, Φi is the set of Boolean variables controlled by i, which
defines the choices available to agent i, namely, the set of valuations
vi ⊆ V(Φi). We also require that Φ1, . . . ,Φn forms a partition of
Φ, and let each γi be the LTL goal of agent i, and strategies be
defined as strategies in SRML games, that is, as structures of the
form σi = (Qi, q0

i , δi, τi), for each agent i in the game.
Then, in terms of expressive power, the only difference between

iBGs and SRML games is that whereas in an iBG each agent i, at
each game state, agent i can always choose to play any valuation
vi in V(Φi), in an SRML games the choices of every agent i can
be restricted to be a strict subset of Φi. On the other hand, even
though every iBG H can be represented as an SRML game G, this
may be possible only via an unavoidable exponential blow-up in the
model representation: the number of guarded commands of G may
be required to be exponentially bigger than the number of Boolean
variables in H. To see this, consider the following example.

Example. Let H =〈{1}, {x, y}, {x, y}, γ1〉 be a one-player iBG in
which agent i has LTL goal γ1. The SRML game G that represents H
is given by G =〈{1}, {x, y},m1, γ1〉, in which the smallest SRML
module m1 that can model the behaviour of agent 1 is as follows:

module m1 controls {x, y}
init
:: >; x′ := >; y′ := >
:: >; x′ := >; y′ := ⊥
:: >; x′ := ⊥; y′ := >
:: >; x′ := ⊥; y′ := ⊥
update
:: >; x′ := >; y′ := >
:: >; x′ := >; y′ := ⊥
:: >; x′ := ⊥; y′ := >
:: >; x′ := ⊥; y′ := ⊥

Thus, clearly the size of G is in general exponentially bigger than
the size of H, which is simply given by |N|+ |Φ|+ |γ1|+ . . .+ |γn|.
1In this paper, we consider LTL goals instead of CTL goals as this
is the way that, currently, SRML games and iBGs are defined.
2For instance, the example in Figure 1 cannot be modelled in iBGs.

3.2 From SRML Games to iBGs
The first reduction is from SRML games to iBGs. In particular,

we show that NON-EMPTINESS for SRML games can be reduced to
NON-EMPTINESS for iBGs, that is, to the following problem:

Given: iBG H.
NON-EMPTINESS: Is it the case that NE(H) 6= ∅?

Formally, we have the following result.

THEOREM 1. Let G = 〈N,Φ,m1, . . . ,mn〉 be an SRML game.
There is an iBG H of size polynomial in G such that

NE(G) 6= ∅ if and only if NE(H) 6= ∅
PROOF. Let H =〈N′,Φ′, (Φj)j∈N′ , (γj)j∈N′〉 be the iBG where:

• N′ = N ∪ {n + 1, n + 2};

• Φ′ = Φ ∪ {p, q}, with p and q two fresh Boolean variables;

• Φj = Φi, if i = j; Φn+1 = {p}; Φn+2 = {q};

• γj = TH(mi) ∧ γi, if i = j;

• γn+1 = TH(G) ∨ (p↔ q);

• γn+2 = TH(G) ∨ ¬(p↔ q);

such that TH(G) =
∧

i∈N TH(mi). That the size of H is polynomial
in the size of G is obvious from the above construction.

Now, we prove the rest of the statement by showing both implica-
tions. For the left-to-right direction, first suppose that ~σ ∈ NE(G),
and let every agent j in H, with i = j, use a strategy σ∗j that plays
consistently with σi = (Qi, q0

i , δi, τi) in ~σ. Formally, such a strat-
egy σ∗j = (Qj, q0

j , δj, τj) is defined as follows: Qj = Qi; q0
j = q0

i ;
τj = τi; and δj(q, v ∪ v′) = δi(q, v), for every v ∈ V(Φ) and
v′ ∈ V({p, q}). Moreover, let agents n + 1 and n + 2 use any
available strategy, say σn+1 and σn+2. Let ~σH be the strategy profile
(σ∗1 , . . . , σ

∗
n , σn+1, σn+2). Firstly, observe that agents n + 1 and

n + 2 get their goals satisfied in H since

ρ(~σH) |= γn+1

and

ρ(~σH) |= γn+2

—because TH(G) is satisfied.
Moreover, for every i ∈ N, if agent i gets its goal γi achieved in

G, then agent j, with i = j, will also get its goal achieved in H, since

ρ(~σH) |= TH(mi) ∧ γi .

In addition, agents who do not get their goal achieved in G cannot
beneficially deviate in H. Suppose σ′j is a deviation from σ∗j in H
(in a way, a deviation from σi of ~σ). Then, necessarily, we have

ρ((~σH)−j, σ
′
j) 6|= TH(mi) ∧ γi .

If, on the one hand,

ρ((~σH)−j, σ
′
j) |= TH(mi)

then

ρ((~σH)−j, σ
′
j) 6|= γi

because ~σ ∈ NE(G), and neither any TH(mi) nor any γi depends on
p or q. If, on the other hand,

ρ((~σH)−j, σ
′
j) |= γi

then

ρ((~σH)−j, σ
′
j) 6|= TH(mi)

as otherwise σ′j would determine a beneficial deviation in G for
agent i, with i = j, which is impossible since ~σ ∈ NE(G). Then,
either way we have

ρ((~σH)−j, σ
′
j) 6|= TH(mi) ∧ γi

for every agent j and alternative strategy σ′j . Thus, we can conclude
that ~σH ∈ NE(H), and therefore that NE(H) 6= ∅, as required.

For the right-to-left direction, suppose that ~σ ∈ NE(H). Since ~σ
is a Nash equilibrium then ρ(~σ) |= γn+1 and ρ(~σ) |= γn+2 . This
means that every agent j in H plays consistently with the choices
available in G, since

TH(G) =
∧
i∈N

TH(mi)

must be satisfied.
Then, let every agent i in G use a strategy σ∗i that plays con-

sistently with σj = (Qj, q0
j , δj, τj) of ~σ, for every i = j, which is

possible only because TH(G) is satisfied. Formally, such a strat-
egy σ∗i = (Qi, q0

i , δi, τi) is defined as follows: Qi = Qj; q0
i = q0

j ;
τi = τj; and δi(q, v) = δi(q, v ∪ v′), for every v ∈ V(Φ) and
any v′ ∈ V({p, q}). Let ~σG be the strategy profile (σ∗1 , . . . , σ

∗
n)

constructed in this way. Therefore, if

ρ(~σ) |= TH(mi) ∧ γi

in H, then

ρ(~σG) |= γi

in G. Moreover, if

ρ(~σ) 6|= TH(mi) ∧ γi

in H, then

ρ(~σG) 6|= γi

in G, because TH(mi) must be satisfied in H. In addition, every
agent i in G who does not get its goal γi satisfied cannot beneficially
deviate. For a contradiction, suppose that such an agent and strategy
exit, i.e., suppose that there is an agent i and strategy σ′i such that

ρ(((~σG)−i, σ
′
i)) |= γi

with ρ(~σG) 6|= γi in G.
Then, we know that there is a strategy σ′j = σ∗j for agent j, with

j = i, defined as in the left-to-right part of this proof, in this case
constructed from the strategy profile ((~σG)−i, σ

′
i), such that

ρ((~σ−j, σ
′
j)) |= TH(mi) ∧ γi

in H, which is impossible because ~σ ∈ NE(H).

Note that Theorem 1 does not state that iBGs are as expressive
as SRML games. We know that this is not the case since the class
of Kripke structures (arenas) that can be defined by SRML games is
strictly bigger than the class of Kripke structures defined by iBGs.
What Theorem 1 shows is simply that checking whether an SRML
game G has a Nash equilibrium can be reduced to checking whether
some iBG constructed from G also has a Nash equilibrium—and that
this can be done at the same computational complexity cost since
the constructed iBG is polynomial in the size of G. It is known, and
not hard to see, that the other direction also holds (i.e., that the NON-
EMPTINESS problem for iBGs can be reduced to NON-EMPTINESS
for SRML games), but at the cost of an exponential blow-up in the
worst case scenario, as illustrated in the example given before.

3.3 From E-Nash to Non-Emptiness
In this section we show a second reduction, namely, that E-NASH

can be reduced to NON-EMPTINESS, regardless of whether the
question is asked for SRML games or iBGs. It should be noted that a
reduction in the other direction is trivial, and already known [18]:
NON-EMPTINESS is E-NASH in case ϕ = >. Obviously, such a
reduction takes constant time, as it does the one presented next.

THEOREM 2. Let G be a game (either an iBG or an SRML
GAME) and ϕ be an LTL formula. There is a game H (an iBG
or an SRML game, correspondingly), of constant size in G, such that

NE(H) 6= ∅ if and only if ∃~σ ∈ NE(G) . ρ(~σ) |= ϕ

PROOF. Since the statement, and proof, uniformly applies to
both iBGs and SRML games, let us call G simply a game of an iBG
or an SRML game. Now, let H be the game G which in addition has
two more agents, say n+1 and n+2, with goals γn+1 = ϕ∨(p↔ q)
and γn+2 = ϕ ∨ ¬(p ↔ q), where Φn+1 = {p} and Φn+2 = {q}
for two fresh Boolean variables p and q. Also, for a given strategy
profile ~σ, say in G/H, let ~σ′ be the strategy profile in H/G that can
be constructed from ~σ just as described in the proof of Theorem 1,
that is, the strategy profile that adds/removes two agents to/from ~σ.
Now, we prove the statement by showing both implications.

For the right-to-left direction, suppose that, for some ~σ in G, we
have ~σ ∈ NE(G) and ρ(~σ) |= ϕ. Then,

ρ(~σ′) |= γn+1

and

ρ(~σ′) |= γn+2

for all strategies σn+1 and σn+2 in H. Obviously, if ~σ ∈ NE(G)
then ~σ′ ∈ NE(H) because no player can beneficially deviate and
n + 1 and n + 2 will get their goals satisfied since, in particular, ϕ
must be satisfied.

Now, for the left-to-right direction, suppose that ~σ ∈ NE(H), for
some ~σ in H. Because of players n + 1 and n + 2, we know that

ρ(~σ) |= ϕ

in H. Then, it follows that

ρ(~σ′) |= ϕ

in G. Agents who get their goal achieved in H will necessarily get
their goal achieved in G. Moreover, agents who do not get their goal
achieved in H do not have a beneficial deviation in G. If they did
such a beneficial deviation would also be possible in H, which is
impossible since ~σ ∈ NE(H). Therefore, ~σ′ ∈ NE(G) and ~σ′ |= ϕ
in G, as required. Finally, that H is of constant size in the size of the
game G immediately follows from the construction of H.

3.4 From A-Nash to Non-Emptiness
The final reduction, namely from A-NASH for SRML games to

NON-EMPTINESS for iBGs, goes via E-NASH using Theorems 1
and 2. This reduction is simple, and relies on the fact that A-NASH
and E-NASH are (logically) dual problems. Let G be a game and ϕ
an LTL formula. To solve A-NASH with respect to G and ϕ, we can
simply ask if E-NASH for G and ¬ϕ can be answered negatively.
If it does, then, for all ~σ in NE(G) we have ρ(~σ) |= ϕ, either
because NE(G) is empty or because every ~σ in NE(G) satisfies
ϕ. Clearly, this reduction does not involve any exponential blow-
ups, as in previous cases, and therefore it follows that all questions
about rational verification for SRML games can be reduced to NON-
EMPTINESS for iBGs. We now present some experimental results.

4. IBGS IN PRACTICE
As shown in the previous section, rational verification for multi-

agent systems modelled as SRML games can be solved by solving the
NON-EMPTINESS problem for iBGs. Since all reductions presented
before are at most polynomial in the size of the given SRML games,
one can do this without paying any (theoretical) computational
complexity cost. This is true only for games with two or more
agents: whereas rational verification is 2EXPTIME-complete in the
general case, it can be solved in PSPACE for games with only one
agent. Then, at least in theory, rational verification is as hard for
two-player games as it is for n-player games, with n ≥ 2. However,
it is only reasonable to expect that in practice it may be easier to
solve two-player games than to solve n-player games, if n > 2.

Because of this reason we will, in this section, first explore the
setting that we believe provides an experimental lower bound to
rational verification: solving the NON-EMPTINESS problem for
iBGs with only two agents. Clearly, with respect to the number of
agents in a multi-agent system, no problem about rational verifica-
tion would be in practice easier to solve than this case. In particular,
we will study how to solve in practice the NON-EMPTINESS for
two-player iBGs of imperfect recall and perfect information.3

4.1 Non-Emptiness via Synthesis
In [17] it was shown that NON-EMPTINESS for two-player iBGs

can be solved through the solution of a number of synthesis problems
for CTL∗ formulae [13]. Using this technique we can implement
a solver for NON-EMPTINESS with the use of any tool or library
for CTL∗ synthesis. In order to obtain the experimental results pre-
sented in this paper, we have made used of a recent implementation
for MCMAS [21] of an algorithm for model checking Strategy Logic
(SL) specifications [8, 9]. In particular, using SL we can express the
CTL∗ problems that need to be solved in order to find a solution
for NON-EMPTINESS in two-player iBGs. These CTL∗ problems,
whose solution we have implemented in MCMAS, are determined
by Theorem 3, given below. In order to be able to formally state the
theorem, we need to introduce some definitions first.

A synthesis problem can be seen as a two-player zero-sum game
in which one player, the Verifier, tries to show that a given formula
ϕ (over a set of Boolean variables Φ) can be satisfied, whereas the
other player, the Falsifier, tries to show that this is not the case.
The choices of the players are given by Φ. Whereas the Verifier
controls the variables in Φ1 ⊆ Φ, the Falsifier controls Φ2 =
Φ \ Φ1. In case ϕ is a temporal logic formula, the game proceeds
in rounds, by each player making a choice given by vi ∈ V(Φi),
with i ∈ {1, 2}—just as in an iBG. The infinite sequence of joint
choices/valuations built in this way determines whether ϕ can or
cannot be synthesised: if Verifier has a winning strategy in this game,
then ϕ can be synthesised; if Falsifier has such a winning strategy,
then ϕ cannot be synthesised. Since these games are determined,
a winning strategy always exists. We write SYNTH(ϕ(Φ),Φ1) for
a synthesis problem, where ϕ is a formula over Φ that we want to
analyse and Φ1 is the set of variables controlled by Verifier.

The logic we use to solve NON-EMPTINESS via synthesis is
CTL∗, an extension of LTL with an existential (“∃ϕ”) and a univer-
sal (“∀ϕ”) quantifier. The former, ∃ϕ, expresses that “there is a path
where ϕ holds” and the latter, (“∀ϕ”), that “in every path ϕ holds”.
Details on the formal semantics of CTL∗ can be found in [12, 13].
With these definitions in place, we can now state Theorem 3.

3It is known that whereas two-player SRML games with perfect
information are as hard as n-player SRML games with perfect infor-
mation, with n ≥ 2, this is not the case for games with imperfect
information. In such a case while the two-player case is decidable,
and in 2EXPTIME, the n-player case is undecidable for every n > 2.

THEOREM 3 (FROM [17]). Let G =〈{1, 2},Φ,Φ1,Φ2, γ1, γ2〉
be a two-player iBG. Then, NE(G) 6= ∅ if and only if either

• SYNTH(γ1 ∧ γ1 ,Φ); or

• SYNTH(¬γ2 ,Φ1) and SYNTH(¬γ1 ,Φ2); or

• SYNTH(∃γ1 ∧ ∀¬γ2 ,Φ1) or SYNTH(∃γ2 ∧ ∀¬γ1 ,Φ2).

As shown by Theorem 3 (for proof details see [17, 19]), NON-
EMPTINESS for iBGs with two players can be reduced to checking
a number of synthesis problems. Our implementation in MCMAS
of Theorem 3 uses SL, a logic to reason about strategic behaviour in
multi-player games. SL also extends LTL, in this case with three new
operators: an existential strategy quantifier 〈〈x〉〉, a universal strategy
quantifier [[x]], and an agent binding operator (i, x). Intuitively, these
three new operators can be read as “there is a strategy x”, “for every
strategy x”, and “let agent i use the strategy associated with x”,
respectively. Details on the formal semantics of SL can be found,
e.g., in [9]. With the game-theoretic interpretation of a synthesis
problem given before, we can use SL, along with MCMAS, to
express and solve the synthesis problems considered in Theorem 3.

4.2 Experimental Results using MCMAS
It should be immediately apparent that rational verification must

be expected to be a very demanding problem from a practical point
of view: the 2EXPTIME LTL synthesis problem is a simple special
case, which can be seen as a two-agent turn-based zero-sum perfect-
information scenario [26]. Thus, to check the practical complexity
of automatically solving the problems we have investigated in this
paper, we use (LTL) goal specifications of four types: safety, reach-
ability, stutter-invariant, and general specifications. Each of these
types can be syntactically characterised in LTL as follows.

Safety specifications, which are used to ensure that a system
never visits an invalid state, are characterised by the G-fragment
of LTL, the sublogic of LTL where G is the only temporal oper-
ator. Reachability Specifications, which are used to ensure that a
program/system eventually visits a desired state (for instance, to
check for program termination), are characterised by the F-fragment
of LTL, the sublogic of LTL where F is the only temporal opera-
tor. Stutter-invariant specifications, which combine any Boolean
combinations of both safety and reachability goals and disallow
the use of X, are characterised by the (G,F)-fragment of LTL; this
type of specifications are used for modular reasoning and system
refinement since they do not take into account repetitions of states
in execution runs of a system. Finally, we also consider general LTL
specifications, where U and X are not restricted in any way.

The performance of our implementation of two-player iBGs in
MCMAS mainly depends on two factors: the size of the Kripke
structure induced by the game, and the complexity of the goals of
the players. Our experiments show that, overall, regardless of the
type of specifications used, MCMAS computes a solution for NON-
EMPTINESS in less than 10 minutes for systems with a few dozens
of states. Small differences, in the order of a few seconds, can be
seen (increasingly in execution times) when moving from safety to
reachability and from reachability to stutter-invariant specifications.
For general LTL specifications, the execution time starts growing
more rapidly with respect to stutter-invariant properties. Moreover,
only in cases where the only modal operator used in system specifi-
cations is “next” (X), MCMAS is able to handle bigger systems in
less than 10 minutes. For instance, in this case, the systems that can
be handled may have up to 10 thousand states. This clearly shows a
performance below desirable for industrial-size systems, which can
have thousands of states, but it is still an acceptable execution time
to check systems where only up to a hundred states are generated.

Remark:. At this point it is important to note that checking the
existence of Nash equilibria in a game with LTL goals is very
difficult for a human, even for systems with no more than 10 states
as in such a case there can be up to 10! (∼3.6 million) different
memoryless strategy profiles in the game, should a manual or a
brute-force algorithm were used to solve the problem.

4.3 General iBGs in MCMAS
In the previous section we studied how complex is to solve NON-

EMPTINESS for two-player iBGs using MCMAS, where the goal
was to find experimental lower bounds for the problem. However,
in theory, MCMAS, along with SL, can be used to solve the NON-
EMPTINESS problem for (imperfect-recall) iBGs with any number
of variables, agents, and types of LTL goals—and therefore any
rational verification problem studied before. In this section, we
present how to do this by presenting a polynomial translation from
iBGs to ISPL, the specification language used by MCMAS.

ISPL is a language to model interpreted systems [14]. A system
in ISPL consists of a set of agents, together with a designated
agent Environment. It also specifies a set of initial states and a
set of temporal logic goals (which can be given in SL) that can
be checked against the system. Moreover, an agent has at least
five parts: a name, a set of controlled variables, a set of actions,
a protocol, which indicates the actions that an agent can take at a
given state, and an evolution part, which indicates how to update
the values of the controlled variables depending on the actions that
can be taken by the agent; thus, an agent selecting an action has
the effect of updating the values of the variables that such an agent
controls. Agents interact with one another, as well as with the agent
Environment, as in an iBG: at each time step, every agent chooses
an action, which defines a valuation for the variables it controls.
Temporal logic goals are then interpreted in the possible execution
runs of the multi-agent system defined in this way.

Example. A trivial, but exponential, translation of an iBG into
ISPL can be implemented as follows. Take, for instance, the agent
(of the iBG) associated with the SRML module, m1, presented in
Section 3.1. Such an agent is translated into ISPL as shown below:

Agent m1
Vars:

x:boolean; y:boolean;
end Vars
Actions = {ac00,ac01,ac10,ac11};
Protocol:
Other : {ac00,ac01,ac10,ac11};

end Protocol
Evolution:
(x=false) and (y=false) if Action=ac00;
(x=false) and (y=true) if Action=ac01;
(x=true) and (y=false) if Action=ac10;
(x=true) and (y=true) if Action=ac11;

end Evolution
end Agent

Figure 2: ISPL representation of an agent in an iBG. In this example,
the agent controls two Boolean variables, namely x and y.

While simple, the ISPL representation of agents illustrated in
Figure 2 clearly shows an unavoidable exponential blow-up, if a
trivial translation is used. To remedy this problem, we propose a
different translation, polynomial in the size of the input iBG, in
which we again follow a logic-based approach: in this case, we use
the power of SL to avoid the undesirable exponential blow-up.

Agent varx
Vars:

x:boolean;
end Vars
Actions = {ac0,ac1};
Protocol:

Other : {ac0,ac1};
end Protocol
Evolution:

x=false if Action=ac0;
x=true if Action=ac1;

end Evolution
end Agent

Figure 3: ISPL model of an agent that controls a single variable.

A Polynomial Translation. A translation from iBGs into ISPL—
and therefore from SRML games into ISPL—that does not result
in an exponential blow-up can be defined as follows. First define,
for every variable in the given iBG, an agent in ISPL. Therefore,
if the given iBG has n Boolean variables, then the resulting ISPL
specification has n + 1 agents (one per Boolean variable plus the
environment agent). Then, such an agent, for a Boolean variable x
is as shown in Figure 3. Secondly, use the power of SL to specify
that a set of ISPL agents corresponds to a single agent in the iBG
given as input. This can be done, e.g., in the following way. An SL
expression that characterises the existence of a Nash equilibria is:

ϕNE = 〈〈st1〉〉 . . . 〈〈stn〉〉(1, st1) . . . (n, stn)∧
i∈{1,...,n}(¬γi → [[altsti]](i, altsti)¬γi) .

Informally, ϕNE expresses that there is a strategy profile (st1, . . . , stn)
such that, for every agent i, if i does not have its goal γi achieved by
the unique run ρ((st1, . . . , stn)) induced by such a strategy profile,
and decides to use any alternative strategy, say altsti, then agent i
does not get its goal achieved in such a case either, that is, γi is not
satisfied by the run ρ((st1, . . . , altsti, . . . , stn)) either.

We can now use the power of SL to specify cooperation between
agents, so that, if an agent, say i, in an iBG controls a set of Boolean
variables Φi = {x, y, . . . , z}, then the ISPL agents corresponding to
this iBG player i (that is, the ISPL agents varx,vary,...,varz
using the notation in Figure 3) can both cooperate and jointly deviate
to achieve γi. In order to present an SL expression that characterises
the kind of behaviour just described, let us use the following nota-
tion: given an iBG H =〈N,Φ (Φ)i∈N , (γi)i∈N〉, the corresponding
agents in ISPL will have exactly the same name as the Boolean vari-
able they represent. For instance, variable x ∈ Φ has an associated
ISPL agent x. Having this in mind, the desired SL expression that
expresses the existence of Nash equilibria (NON-EMPTINESS) in
the resulting ISPL system can be written as follows:

ϕ′NE = 〈〈stx〉〉 . . . 〈〈stz〉〉(x, stx) . . . (z, stz)
∧
i∈N

(¬γi → ψi)

where

ψi = [[astl]] . . . [[astm]](l, astl) . . . (m, astm)¬γi

such that Φi = {l, . . . ,m}.
Thus, using this SL specification, we can effectively translate any

iBG into an ISPL specification of polynomial size. This, in turn,
allows one to represent SRML games as polynomially sized ISPL
systems/specifications so that rational verification for SRML games
(with imperfect recall) can be automated using MCMAS.

5. CONCLUSION & FUTURE WORK

Model Checking vs. Rational Verification. Since the introduc-
tion of temporal logics, such as LTL or CTL [12], formal verifi-
cation has been a very active area of research, which has led to
the development of an impressive number of tools and techniques.
Perhaps, the most successful technique within formal verification is
model checking, which nowadays has got mature enough to handle
systems of industrial size. Rational verification, on the other hand,
is still in its infancy: the main ideas and techniques underlying it
are under development, while current tool support can only handle
systems of small size. But rational verification is expected to be a
computationally harder problem, and this can easily be seen from
its game-theoretic presentation. While the most basic questions
about traditional formal verification, including model checking, can
be solved by reductions to two-player zero-sum games, in rational
verification all essential questions consider n-player non-zero-sum
games, which at least in practice are usually harder to solve. Ratio-
nal verification is also different from model checking in the kinds of
properties that each technique tries to check: while model checking
is interested in correctness with respect to all possible behaviours of
a system, rational verification is interested only in behaviours that
can be sustained by a Nash equilibrium, when a system is modelled
as a game. This, in particular, adds a new ingredient to the verifi-
cation problem, as it is now necessary to take into account players’
preferences with respect to the possible runs of the system.

SRML games vs. iBGs. In this paper we have shown how to re-
duce the main questions about the equilibrium analysis of SRML
games into iBGs, and how to automatically solve them in practice us-
ing the MCMAS model checking tool. Then, one may wonder why
not to consider iBGs in the first place instead. There are at least two
main reasons for this. Firstly, iBGs are strictly less powerful than
SRML games.4 While in an SRML game one can impose constraints
on the actions that an agent can take at any given time, in iBGs this
is not possible: at any time step the choices available to an agent are
exactly all the possible valuations of the variables that such an agent
controls. From a modelling point of view this may be an undesirable
aspect of iBGs. Secondly, SRML games are defined directly based
on a specification language used by a number of practical model
checking tools, e.g., MOCHA [3] or PRISM [20], which already
provide quite a large number of reasoning techniques for SRML
specifications—although their toolkits of reasoning techniques do
not currently include algorithms for rational verification.

Future Work. On the one hand, from a theoretical point of view, it
would be interesting to know whether some, or all, of our ideas may
transfer to other settings, such as games with quantitative payoffs,
imperfect information, or different preference relations. A first
step could be to consider more general preferences relations, for
instance, as done in Lukasiewicz games [22]. On the other hand,
from a practical point of view, it would also be desirable to check
if rational verification can be implemented more efficiently using
other model checking systems, or if alternative algorithms for the
NON-EMPTINESS problem can be found—which may not rely on
the solution of synthesis problems or on the use of SL. Alternatively,
one could consider SL directly over SRML games or iBGs only.

Acknowledgements. We thank the financial support of the ERC
Advanced Investigator grant 291528 (“RACE”) at Oxford.

4Formally, the class of Kripke structures induced by iBGs is strictly
smaller than the class of Kripke structures defined by SRML arenas.

REFERENCES
[1] R. Alur and T. A. Henzinger. Reactive modules. Formal

Methods in System Design, 15(11):7–48, July 1999.
[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time

temporal logic. Journal of the ACM, 49(5):672–713, Sept.
2002.

[3] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K.
Rajamani, and S. Taşiran. Mocha: Modularity in model
checking. In CAV 1998: Tenth International Conference on
Computer-aided Verification, (LNCS Volume 1427), pages
521–525. Springer-Verlag: Berlin, Germany, 1998.

[4] C. Baier and J.-P. Katoen. Principles of Model Checking. The
MIT Press: Cambridge, MA, 2008.

[5] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking agentspeak. In Proceedings of the Second
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-03), Columbia University, NY,
USA, July 2003.

[6] P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Pure
nash equilibria in concurrent games. Logical Methods in
Computer Science, 2015.

[7] N. Bulling, W. Jamroga, and J. Dix. Reasoning about temporal
properties of rational play. Annals of Mathematics and
Artificial Intelligence, 53(1–4):51–114, 2008.

[8] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano.
MCMAS-SLK: A model checker for the verification of
strategy logic specifications. In Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, pages 525–532, 2014.

[9] K. Chatterjee, T. Henzinger, and N. Piterman. Strategy logic.
Information and Computation, 208(6):677–693, June 2010.

[10] K. Chatterjee and T. A. Henzinger. A survey of stochastic
omega-regular games. Journal Of Computer And System
Sciences, 78:394–413, 2012.

[11] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed
Systems: Concepts and Design. Addison Wesley, 2005.

[12] E. A. Emerson. Temporal and modal logic. In Handbook of
Theoretical Computer Science Volume B: Formal Models and
Semantics, pages 996–1072. Elsevier, 1990.

[13] E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘not never’
revisited: on branching time versus linear time temporal logic.
Journal of the ACM, 33(1):151–178, 1986.

[14] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
About Knowledge. The MIT Press: Cambridge, MA, 1995.

[15] D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis.
In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 190–204.
Springer, 2010.

[16] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Reasoning
about equilibria in game-like concurrent systems. In
International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 408–417. AAAI
Press, 2014.

[17] J. Gutierrez, P. Harrenstein, and M. Wooldridge.
Expresiveness and complexity results for strategic reasoning.

In 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages
268–282, 2015.

[18] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated
boolean games. Information and Computation, 242:53–79,
2015.

[19] J. Gutierrez, G. Perelli, and M. Wooldridge. Imperfect
information in reactive modules games. In Principles of
Knowledge Representation and Reasoning (KR), pages
390–400. AAAI Press, 2016.

[20] M. Kwiatkowska, G. Norman, and D. Parker. Prism:
Probabilistic model checking for performance and reliability
analysis. ACM SIGMETRICS Performance Evaluation Review,
36(4):40–45, 2009.

[21] A. Lomuscio and F. Raimondi. MCMAS: a tool for verifying
multi-agent systems. In Proceedings of The Twelfth
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS-2006).
Springer-Verlag: Berlin, Germany, 2006.

[22] E. Marchioni and M. Wooldridge. Lukasiewicz games: A
logic-based approach to quantitative strategic interactions.
ACM Transactions on Computational Logic,
16(4):33:1–33:44, 2015.

[23] M. Maschler, E. Solan, and S. Zamir. Game Theory.
Cambridge University Press: Cambridge, England, 2013.

[24] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi.
Reasoning about strategies: On the model-checking problem.
ACM Transactions on Computational Logic,
15(4):34:1–34:47, 2014.

[25] M. J. Osborne and A. Rubinstein. A Course in Game Theory.
The MIT Press: Cambridge, MA, 1994.

[26] A. Pnueli and R. Rosner. On the synthesis of an asynchronous
reactive module. In International Colloquium on Automata,
Languages, and Programs (ICALP), volume 372 of LNCS,
pages 652–671. Springer, 1989.

[27] A. S. Rao and M. P. Georgeff. A model-theoretic approach to
the verification of situated reasoning systems. In Proceedings
of the Thirteenth International Joint Conference on Artificial
Intelligence (IJCAI-93), pages 318–324, Chambéry, France,
1993.

[28] A. Toumi, J. Gutierrez, and M. Wooldridge. A tool for the
automated verification of Nash equilibria in concurrent games.
In Proceedings of the Twelfth International Colloquium on
Theoretical Aspects of Computing (ICTAC 2015), Cali,
Colombia, 2015.

[29] W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the
complexity of practical ATL model checking. In International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 201–208. ACM, 2006.

[30] W. van der Hoek and M. Wooldridge. Time, knowledge, and
cooperation: Alternating-time temporal epistemic logic and its
applications. Studia Logica, 75(1):125–157, 2003.

[31] M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni,
G. Perelli, and A. Toumi. Rational verification: From model
checking to equilibrium checking. In Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-2016), 2016.

