
AGENT-BASED
SOFTWARE ENGINEERING

Mike Wooldridge & Michael Fisher

Department of Computing
Manchester Metropolitan University

United Kingdom

M.Wooldridge@doc.mmu.ac.uk

Agent-Based Software Engineering

Presentation Overview

1. Introduce Shoham’s agent-oriented
programming (AOP) proposal.

2. Is AOP a good idea in principle?

3. If it is a good idea, then how do we…

• specify

• implement; and

• verify

agent based systems.

4. Some research problems (tentative).

Wooldridge & Fisher 1

Agent-Based Software Engineering

1 The AOP Proposal

• Yoav Shoham has proposed a ‘new
programming paradigm, based on a societal
view of computation’ (Shoham, 1990).

• The key idea is to build computer systems as
societies of agents.

The central features are:

– agents are autonomous, concurrently
executing computer processes;

– agents are cognitive systems, programmed
in terms of beliefs, goals, and so on;

– agents are reasoning systems, specified in
terms of logic;

– (agents communicate via speech acts —
typed message passing à la (Searle, 1969)).

Wooldridge & Fisher 2

Agent-Based Software Engineering

1.1 Specifics

• Shoham proposed that a complete AOP
system would have three components:

– a logical system for specifying the mental
state and behaviour of agents;

– an interpreted programming language for
programming agents using simple versions
of the logical system;

– an ‘agentification’ process, for generating
executable agents from specifications.

Wooldridge & Fisher 3



Agent-Based Software Engineering

• Shoham has only published results on the first
2 components:

– the logic is a quantified modal logic,
including direct reference to time, and
modalities for representing beliefs and
commitments;

– the language, AGENT0, is a (very) simple
rule-based language, with rules able to refer
to the beliefs and commitments of agents.

(Shoham remarked that the third component is
‘somewhat mysterious’, but indicated that he
was thinking along the lines of Rosenschein &
Kaelbling’s situated automata
paradigm (Rosenschein and Kaelbling, 1986;
Kaelbling and Rosenschein, 1990)).

Wooldridge & Fisher 4

Agent-Based Software Engineering

1.2 Is AOP a Good Idea?

• Let’s begin by asking whether AOP is a good
idea in principle — ignore practicalities for
the moment.

• AOP is distinguished from other programming
paradigms by 2 providing 2 abstractions:

– the autonomous agent abstraction;

– the cognitive agent abstraction.

Wooldridge & Fisher 5

Agent-Based Software Engineering

1.3 The Autonomous Agent Abstraction

• An agent in AOP (as in DAI) is an
autonomous concurrently executing reactive
process…

Autonomy: agents execute without direct human
or other intervention, and have control over
their own state — they can only be affected by
message passing, not by direct manipulation of
state.

Concurrency: agents execute independently of
other agents.

Reactive: agents maintain an ongoing interaction
with their environment — they respond, in a
rational to events that occur.

Proactive: agents do not simply respond to their
environment, they generate and act to achieve
their own goals.

Wooldridge & Fisher 6

Agent-Based Software Engineering

• This notion of an agent is somewhat similar to
the notion of an object as used object-based
concurrent programming (OBCP).

• In OBCP…

– an object encapsulates some state, which is
inaccessible to other objects;

– the state can only be accessed indirectly,
via message passing.;

– the behaviour of an object is determined by
a method/script.

• There are obvious similarities between AOP
and OBCP; it is interesting that two essentially
different research communities (AI/SE) should
come up with such similar ideas.

• The main difference is that agents are
proactive.

• This notion of an agent is probably interesting
and uncontentious.

Wooldridge & Fisher 7



Agent-Based Software Engineering

1.4 The Cognitive Agent Abstraction

• The second distinguishing feature is the use of
mentalistic notions (knowledge, belief, desire,
intention, …) to program agents.

This is a much less mainstream idea.

• The idea is that in everyday life, we use a folk
psychology to explain and predict the
behaviour of complex intelligent systems —
people.

Michael intended to prepare his slides.
Janine believed it was raining.

Wooldridge & Fisher 8

Agent-Based Software Engineering

• This intentional stance is an abstraction tool
— a convenient way of talking about complex
systems, which allows us to predict and
explain their behaviour without having to
understand how the mechanism actually
works.

• Now, much of computer science is concerned
with looking for abstraction mechanisms
(witness procedural abstraction, ADTs,
objects, …)

So why not use the intentional stance as
an abstraction tool in computing — to
explain, understand, and, crucially,
program computer systems?

• This is the central idea of AOP.

Wooldridge & Fisher 9

Agent-Based Software Engineering

• There seem to be 3 points in favour of this
idea:

Characterising Agents

• It provides us with a familiar, non-technical
way of defining agents.

Nested Representations

• It gives us the potential to specify systems that
include representations of other systems.

It is widely accepted that such nested
representations are essential for agents that
must cooperate with other agents.

Wooldridge & Fisher 10

Agent-Based Software Engineering

Post-Declarative Systems

• AOP is a kind of post-declarative
programming:

– in procedural programming, we say exactly
what a system should do;

– in declarative programming, we state
something that we want to achieve, give the
system general info about the relationships
between objects, and let a built-in control
mechanism (e.g., goal-directed theorem
proving) figure out what to do;

– in AOP, we give a very abstract
specification of the system, and let the
control mechanism figure out what to do,
knowing that it will act in accordance with
some built-in theory of agency (e.g., the
well-known Cohen-Levesque model of
intention).

Wooldridge & Fisher 11



Agent-Based Software Engineering

An Aside

• Again, we find that researchers from a more
mainstream computing discipline have
adopted a similar set of ideas…

• In distributed systems theory, logics of
knowledge are used in the development of
knowledge based protocols (Fagin et al.,
1992).

• The rationale is that when constructing
protocols, one often encounters reasoning such
as the following:

IF process i knows process j has
received message m1

THEN process i should send process j
the message m2.

• In DS theory, knowledge is grounded — given
a precise interpretation in terms of the states of
a process; return to this later…

Wooldridge & Fisher 12

Agent-Based Software Engineering

2 Three Issues

• If AOP is a good proposal, then there are a
number of software engineering issues we
must address.

How do we:

1. specify;

2. implement; and

3. verify

agent-based systems.

Wooldridge & Fisher 13

Agent-Based Software Engineering

2.1 Specifying Agent-Based Systems

• (This issue has received the most attention, so
I will give it least space.)

• Agent specifications are generally given in a
quantified multi-modal logic, containing some
or all of the following features:

– modalities for information attitudes;

– modalities for pro-attitudes;

– representation of action;

– representation of time.

• The key problem in developing a framework
for specifying agent theories is to sort out the
relationship between these different aspects of
agency.

For example, even the relationship between
knowledge and belief is the subject of debate!
The relationship between action and other
attitudes is very troublesome.

Wooldridge & Fisher 14

Agent-Based Software Engineering

• Here are some of the dimensions along which
an agent specification language may vary.

Information attitudes

• knowledge;

• belief;

• mutual information attitudes;

Pro-attitides

• desire;

• intention;

• obligation;

• commitment;

• choice;

• joint/collective pro-attitides;

• …

Wooldridge & Fisher 15



Agent-Based Software Engineering

Action

• direct representation, à la dynamic logic
(Harel, 1984);

• implicit representation;

Time

• linear/branching;

• dense/discrete;

• direct reference/tense operators;

• point based/interval based.

Wooldridge & Fisher 16

Agent-Based Software Engineering

• There are a lot of choices to be made; a good
agent theory must pick on a small subset of
attributes, and explain the relationships
between these attributes.

• Some good current accounts: (Cohen and
Levesque, 1990; Rao and Georgeff, 1991;
Singh and Asher, 1991).

• (And of course, (Wooldridge, 1994)!)

Wooldridge & Fisher 17

Agent-Based Software Engineering

2.2 Implementing Agent-Based Systems

• This is probably the key problem in AOP:

Given a specification ϕ, expressed in
some logical language L, how do we
construct a system S such that S |= ϕ?

• (Note that I’m assuming we have a logical
agent specification — I take this to be a
central component of AOP.)

• There seem to be 2 possibilities:

1. directly execute ϕ;

2. compile ϕ into a directly executable form.

Wooldridge & Fisher 18

Agent-Based Software Engineering

Executing Agent Specifications

• What does it mean, to execute a formula ϕ of
logic L?

• It means generating a logical model, M, for ϕ,
such that M |=L ϕ.

• If this generation is done without interference
— if the agent has complete control over its
environment — then execution reduces to
constructive theorem proving:

show that ϕ is satisfiable by building a
model for ϕ.

• However, agents are not interference-free;
they must construct a model in the presence of
input from the environment.

• Model-building is thus an iterative process:

– environment makes something true;

– agent responds by making something else
true, in such a way as to satisfy ϕ;

– environment responds;

– …

Wooldridge & Fisher 19



Agent-Based Software Engineering

• Execution and theorem proving are closely
related

⇒
execution of sufficiently rich (quantified)
languages not possible.

• At first sight, it might seem that suggesting the
direct execution of complex agent
specification languages is naive; that it is
exactly the kind of suggestion that detractors
of symbolic AI hate.

• One should be very careful about what claims
or proposals we make; in particular, there has
been no work done on directly executing the
kind of multi-modal logic that we use to
specify agents.

• However, in certain circumstances, execution
of interesting agent specification languages is
possible.

Wooldridge & Fisher 20

Agent-Based Software Engineering

Concurrent METATEM

• (Fisher and Wooldridge, 1993) describes a
DAI programming language called Concurrent
METATEM, which is based on the direct
execution of temporal logic.

• A Concurrent METATEM system contains a
number of concurrently executing agents, each
of which is programmed by giving it a TL
specification of the behaviour of it is intended
the agent should exhibit.

• A specification has the form

i
Pi ⇒ Fi

where Pi is a TL formula referring only to the
present or past, and Fi is a TL formula
referring to the present or future.

• (The separation theorem of Gabbay tells us
that an arbitrary TL formula can be rewritten
into this form.)

Wooldridge & Fisher 21

Agent-Based Software Engineering

• The general idea is

on the basis of the past do the future.

• Internally, these rules are further rewritten into
separated normal form, removing much of the
structural complexity of the formula.

• Agents in Concurrent METATEM communicate
by broadcast message passing; each agent is
given an interface, which determines the
messages it can send and receive.

• An example Concurrent METATEM agent
definition (resource controller):
rc(ask)[give] :

ask(x) ⇒ give(x);
(¬ask(x) (give(x) ∧ ¬ask(x)) ⇒ ¬give(x)
give(x) ∧ give(y) ⇒ (x = y)

• Rule 1: if someone askes, then eventually
give;

Rule 2: don’t give unless someone has asked
since you last gave;

Rule 3: if you give to 2 people, they must be
the same person (i.e., don’t give to > 1 person
at a time).

Wooldridge & Fisher 22

Agent-Based Software Engineering

Snow White and the Dwarves

• To illustrate Concurrent METATEM in more
detail, here are some example programs…

• Snow White has some sweets (resources),
which she will give to the Dwarves (resource
consumers).

• She will only give to one dwarf at a time.

• She will always eventually give to a dwarf that
asks.

• Here is Snow White, written in Concurrent
METATEM:

Snow-White(ask)[give]:
ask(x) ⇒ ◊ give(x)

give(x) ∧ give(y) ⇒ (x = y)

Wooldridge & Fisher 23



Agent-Based Software Engineering

• The dwarf ‘eager’ asks for a sweet initially,
and then whenever he has just received one,
asks again.

eager(give)[ask]:
start ⇒ ask(eager)

give(eager) ⇒ ask(eager)

• Some dwarves are even less polite: ‘greedy’
just asks every time.

greedy(give)[ask]:
start ⇒ ask(greedy)

Wooldridge & Fisher 24

Agent-Based Software Engineering

• Fortunately, some have better manners;
‘courteous’ only asks when ‘eager’ and
‘greedy’ have eaten.

courteous(give)[ask]:
((¬ ask(courteous) give(eager)) ∧
(¬ ask(courteous) give(greedy))) ⇒

ask(courteous)

• And finally, ‘shy’ will only ask for a sweet
when noone else has just asked.

shy(give)[ask]:
start ⇒ ◊ ask(shy)

ask(x) ⇒ ¬ ask(shy)
give(shy) ⇒ ◊ ask(shy)

Wooldridge & Fisher 25

Agent-Based Software Engineering

Some Remarks

• Why does executing TL work? Because TL is
(amongst other things) a language for
expressing constraints that must hold between
successive states.

• Execution is thus a process of generating
constraints as past-time antecedents are
satisfied, and then trying to generate part of a
TL model in the presence of these constraints.

Wooldridge & Fisher 26

Agent-Based Software Engineering

• In contrast to the kind of agent specification
language we discussed above, the TL we use
is very simple (and yet is still highly
undecidable). Because models for TL are so
simple (linear discrete sequences of states), it
is clear how we might execute a formula.

• But how are we to execute agent specification
languages, with modalities for beliefs, desires,
and so on?

Even if it was theoretically possible, could we
make it computationally tractable?

(Note that languages like AGENT0 do not
implement their associated logics — the
correspondence between the logic and
language is actually quite loosely defined.)

• We are looking at incorporating belief
modalities into Concurrent METATEM —
watch this space!

Wooldridge & Fisher 27



Agent-Based Software Engineering

Compiling Agent Specifications

• An alternative to direct execution is
compilation.

• In this paradigm, we take a specification ϕ,
and do a constructive proof of the satisfiability
of ϕ — this involves generating a logical
model for ϕ.

• Models for modal logics are typically directed
graphs, which closely resemble automata.

Thus, the idea goes, generate a model for ϕ,
and read off the automata for ϕ from the
model that results.

You end up (hopefully) with a very simple
machine that does not do complex symbolic
reasoning.

Wooldridge & Fisher 28

Agent-Based Software Engineering

• Much similar work in mainstream computer
science:

– (Manna and Pnueli, 1984) generate
synchronisation skeletons for concurrent
systems from linear TL specifications;

– (Pnueli and Rosner, 1989) generate reactive
modules from branching TL (CTL*)
formulae;

Conclusions of this work: it’s hard!

Works well in the propositional case — not
well at all in general.

Again, we run up against undecidability of
quantified logic, and the general difficulty of
theorem proving.

Wooldridge & Fisher 29

Agent-Based Software Engineering

Situated Automata

• One application of this technique in AI, is the
situated automata paradigm (Rosenschein and
Kaelbling, 1986).

• In this approach, an agent contains 2 parts:

– a perception part;

– an action part.

Wooldridge & Fisher 30

Agent-Based Software Engineering

• The perception part is specified in terms of a
logic of knowledge; the possible worlds
underlying this logic are given a precise
interpretation in terms of the states of an
automaton.

The RULER program takes a perception
specification and compiles it down to an
automaton, by doing a constructive proof.

• The perception part is specified in terms of
goal reduction rules, which encode
information about how to achieve goals.

The GAPPS program takes these goal reduction
rules, and from them generates, a set of
situation action rules (encoded in the form of a
digital circuit).

Wooldridge & Fisher 31



Agent-Based Software Engineering

• The situated automata approach looks very
attractive.

• Question: What are the limitations of the
approach?

– it can’t work for arbitrary (quantified)
specifiations, so how far can we go?

– logic of situated intentions/desires?

– can an agent learn?

Wooldridge & Fisher 32

Agent-Based Software Engineering

3 Verifying Agent-Based Systems

• Finally, given a system S and specification ϕ,
how do we verify S with respect to ϕ, i.e., how
do we show that S |= ϕ?

• Two approaches:

– semantic (model checking);

– axiomatic.

Wooldridge & Fisher 33

Agent-Based Software Engineering

Model Checking

• In mainstream computer science, model
checking means:

– taking a program Π, and from that program
generating the model MΠ corresponding to
that program;

– showing that MΠ |= ϕ, i.e., that the
specification formula ϕ holds in MΠ, and
thus that the program satisfies its
specification.

• Model checking is generally reckoned to be
easier than theorem proving!

Wooldridge & Fisher 34

Agent-Based Software Engineering

• (Rao and Georgeff, 1993) have described a
process for model checking AOP systems.

They give an algorithm for taking a logical
model for their (propositional) agent
specification language, and a formula of the
language, and determining whether the
formula is valid in the model.

• However, it is not clear where the logical
model characterising an agent actually comes
from — can it be derived from an arbitary
program Π, as in mainstream computer
science?

• In general, it is not clear how the goal,
intention, etc., accessibility relations can be
associated with an agent. This is the problem
of grounding abstract possible worlds
semantics — giving them a concrete
interpretation.

Wooldridge & Fisher 35



Agent-Based Software Engineering

Axiomatic Methods

• (Wooldridge, 1992) proposed an axiomatic
method for verification.

• The idea is:

– develop a formal model of the type of
system you wish to reason about;

– use the histories traced out in the execution
of such as system as the semantic basis for
a logic, which can be used for representing
the properties of such systems;

– show how the theory of a system can be
derived in your logic;

– use the proof theory of your logic to verify
properties of the implemented system.

• Main problems:

– good models of concurrency;

– automating proof theory…

Wooldridge & Fisher 36

Agent-Based Software Engineering

4 AOP Research Directions

• General:

– is the intentional stance appropriate? some
experiments?

• Specification:

– automated proof methods for agent
specification languages — the enabling
technology for AOP?

– agent logics that can account for action;

– a complete agent theory.

Wooldridge & Fisher 37

Agent-Based Software Engineering

• Implementation:

– limitations of compilation (situated
automata):

∗ how far towards first-order can we take
it?

∗ can we give a good grounded semantics
for goals, intentions, and the like?

∗ learning? (apparently, Kaelbling has
done some work on this.)

∗ algorithms for synthesising agents from
intentional specifications.

– execution (@ MMU)

∗ efficient implementation of Concurrent
METATEM;

∗ extra modalities (belief) in Concurrent
METATEM;

∗ groups as first-class objects in
Concurrent METATEM.

Wooldridge & Fisher 38

Agent-Based Software Engineering

• Verification:

– model checking — can we derive a model
for an agent specification language from an
arbitrary program?

– axiomatic approaches

∗ good models of concurrency.;
∗ realistic models of agents.

Wooldridge & Fisher 39



Agent-Based Software Engineering

References

Cohen, P. R. and Levesque, H. J. (1990). Intention
is choice with commitment. Artificial
Intelligence, 42:213–261.

Fagin, R., Halpern, J. Y., and Vardi, M. Y. (1992).
What can machines know? on the properties of
knowledge in distributed systems. Journal of the
ACM, 39(2):328–376.

Fisher, M. and Wooldridge, M. (1993). Executable
temporal logic for distributed A.I. In
Proceedings of the Twelfth International
Workshop on Distributed Artificial Intelligence
(IWDAI-93), pages 131–142, Hidden Valley, PA.

Harel, D. (1984). Dynamic logic. In Gabbay, D.
and Guenther, F., editors, Handbook of
Philosophical Logic Volume II — Extensions of
Classical Logic, pages 497–604. D. Reidel
Publishing Company. (Synthese library Volume
164).

Wooldridge & Fisher 40

Agent-Based Software Engineering

Kaelbling, L. P. and Rosenschein, S. J. (1990).
Action and planning in embedded agents. In
Maes, P., editor, Designing Autonomous Agents,
pages 35–48. The MIT Press.

Manna, Z. and Pnueli, A. (1984). Synthesis of
communicating processes from temporal logic
specifications. ACM Transactions on
Programming Languages and Systems,
6(1):68–93.

Pnueli, A. and Rosner, R. (1989). On the synthesis
of an asynchronous reactive module. In
Proceedings of the Sixteenth International
Colloquium on Automata, Languages, and
Programs.

Rao, A. S. and Georgeff, M. P. (1991). Modeling
rational agents within a BDI-architecture. In
Fikes, R. and Sandewall, E., editors,
Proceedings of Knowledge Representation and
Reasoning (KR&R-91), pages 473–484. Morgan
Kaufmann Publishers, Inc.

Rao, A. S. and Georgeff, M. P. (1993). A
model-theoretic approach to the verification of
situated reasoning systems. In Proceedings of
the Thirteenth International Joint Conference on

Wooldridge & Fisher 41

Agent-Based Software Engineering

Artificial Intelligence (IJCAI-93), pages
318–324, Chambéry, France.

Rosenschein, S. and Kaelbling, L. (1986). The
synthesis of digital machines with provable
epistemic properties. In Halpern, J. Y., editor,
Proceedings of the 1986 Conference on
Theoretical Aspects of Reasoning About
Knowledge, pages 83–98. Morgan Kaufmann
Publishers, Inc.

Searle, J. R. (1969). Speech Acts: An Essay in the
Philosophy of Language. Cambridge University
Press.

Shoham, Y. (1990). Agent-oriented programming.
Technical Report STAN–CS–1335–90,
Department of Computer Science, Stanford
University.

Singh, M. P. and Asher, N. M. (1991). Towards a
formal theory of intentions. In Logics in AI —
Proceedings of the European Workshop
JELIA-90 (LNAI Volume 478), pages 472–486.
Springer-Verlag.

Wooldridge, M. (1992). The Logical Modelling of
Computational Multi-Agent Systems. PhD thesis,
Department of Computation, UMIST,

Wooldridge & Fisher 42

Agent-Based Software Engineering

Manchester, UK. (Also available as Technical
Report MMU–DOC–94–01, Department of
Computing, Manchester Metropolitan
University, Chester St., Manchester, UK).

Wooldridge, M. (1994). Coherent social action. In
Cohn, A., editor, Proceedings of the Eleventh
European Conference on Artificial Intelligence
(ECAI-94). John Wiley & Sons.

Wooldridge & Fisher 43


