Model Checking for ACL Compliance Verification

Marc-Philippe Huget
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, UK

mph@csc.liv.ac.uk

ABSTRACT

The problem of checking that agents correctly implement
the semantics of an agent communication language has be-
come increasingly important as agent technology makes its
transition from the research laboratory to field-tested appli-
cations. In this paper, we show how model checking tech-
niques can be applied to this problem. Model checking is
a technique developed within the formal methods commu-
nity for automatically verifying that finite-state concurrent
systems implement temporal logic specifications. We first
describe a variation of the MABLE multiagent BDI program-
ming language, which permits the semantics (pre- and post-
conditions) of ACL performatives to be defined separately
from a system where these semantics are used. We then
show how assertions defining compliance to the semantics
of an ACL can be captured as claims about MABLE agents,
expressed using MABLE’s associated assertion language. In
this way, compliance to ACL semantics reduces to a conven-
tional model checking problem. We illustrate our approach
with a number of short case studies.

Keywords

Agents, Model Checking, Agent Communication Language,
Semantics, Verification

1. INTRODUCTION

The problem of checking that agents correctly implement
the semantics of an agent communication language has be-
come increasingly important as agent technology makes its
transition from the research laboratory to field-tested appli-
cations. In this paper, we show how model checking tech-
niques can be applied this problem, by making use of our
MABLE language for the automatic verification of multia-
gent systems [20].

Model checking is a technique that was developed within
the formal methods community for automatically verifying
that finite-state systems implement temporal logic specifi-

Michael Wooldridge
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF UK

mjw@csc.liv.ac.uk

cations [1]. The name “model checking” arises from the
fact that verification can be viewed as a process of checking
that the system is a model that validates the specification.
The principle underpinning the approach is that the possible
computations of given a system S can be understood as a
directed graph, in which the nodes of the graph correspond
to possible states of S, and arcs in the graph correspond
to state transitions. Such directed graphs are essentially
Kripke structures — the models used to give a semantics
to temporal logics. Crudely, the model checking verification
process can then be understood as follows: Given a system
S, which we wish to verify satisfies some property ¢ ex-
pressed in a temporal logic L, generate the Kripke structure
Ms corresponding to S, and then check whether Ms =1 ¢,
i.e., whether ¢ is L-valid in the Kripke structure Ms. If the
answer is “yes”, then the system satisfies the specification;
otherwise it does not.

Our approach to model checking for the ACL compliance
problem is as follows. In a previous paper [20], we described
our first implementation of the MABLE language. MABLE
is a language intended for the design and automatic veri-
fication of multi-agent systems; it is essentially an imper-
ative programming language, augmented by some features
from Shoham’s agent-oriented programming paradigm [15]:
in particular, agents in MABLE possess data structures cor-
responding to their beliefs, desires, and intentions [19]. A
MABLE system may be augmented by a number of claims
about the system, expressed in a simplified form of the
LORA language given in [19]. Our MABLE compiler trans-
lates the MABLE system into processes in PROMELA, the
input language for the SPIN model checking system [8, 9];
claims are translated into sPIN-format LTL formulae. The
SPIN system can then be directly invoked to determine whether
or not the original system satisfied the original claim.

In this paper, we show how MABLE has been extended in
two ways to support ACL compliance testing. First, we have
added a feature to allow programmers to define the seman-
tics of ACL performatives separately from a program that
makes use of these performatives, thus making it possible
for the same program to exhibit different behaviours with
different semantics. Second, we have extended the MABLE
claims language to support a dynamic logic-style “happens”
construct: we can thus write a claim that expresses that (for
example) whenever an agent performs action «, property ¢
eventually follows. By combining these two features, we can
automatically verify whether or not an agent respects ACL
semantics.

The remainder of the paper is structured as follows. We

begin with an overview of the ACL compliance checking prob-
lem. We then describe a variation of the MABLE multiagent
BDI programming language, which permits the semantics
(pre- and post-conditions) of ACL performatives to be de-
fined separately from a system where these semantics are
used. We then show how assertions defining compliance to
the semantics of an ACL can be captured as claims about
MABLE agents, expressed using MABLE’s associated asser-
tion language. In this way, compliance to ACL semantics
reduces to a conventional model checking problem. We il-
lustrate our approach with a number of short case studies,
and conclude with a discussion of future work.

2. ACL COMPLIANCE VERIFICATION

One of the main reasons why multi-agent systems are cur-
rently a major area of research and development activity
is that they are seen as a key enabling technology for the
Internet-wide electronic commerce systems that are widely
predicted to emerge in the near future [6]. If this vision of
large-scale, open multi-agent systems is to be realised, then
the fundamental problem of inter-operability must be ad-
dressed. It must be possible for agents built by different
organisations using different hardware and software plat-
forms to safely communicate with one-another via a common
language with a universally agreed semantics. The inter-
operability requirement has led to the development of several
standardised agent communication languages (ACLs) [11, 5].
The development of these languages has had significant in-
put from industry, and particularly from European telecom-
munications companies.

However, in order to gain acceptance, particularly for sen-
sitive applications such as electronic commerce, it must be
possible to determine whether or not any system that claims
to conform to an ACL standard actually does so. We say
that an ACL standard is verifiable if it enjoys this property.
FIPA — currently the main standardisation body for agent
communication languages — recognise that “demonstrating
in an unambiguous way that a given agent implementation
is correct with respect to [the semantics] is not a problem
which has been solved” [5], and identify it as an area of fu-
ture work. (Checking that an implementation respects the
syntaz of an ACL such as that proposed by FIPA is, of course,
trivial.) If an agent communication language such as FIPA’s
is ever to be widely used — particularly for such sensitive
applications as electronic commerce — then such compliance
testing is important. However, the problem of compliance
testing (verification) is not actually given a concrete defini-
tion by FIPA, and no indication is given of how it might be
done.

In [18], the verification problem for agent communication
languages was formally defined for the first time. It was
shown that verifying compliance to some agent communica-
tion language reduced to a verification problem in exactly
the sense that the term in used in theoretical computer sci-
ence. To see what is meant by this, consider the semantics
of FIPA’s inform performative [5, p25]:

(i, inform(j, ¢))
FP: Bip A-B;(BifipV Ujp) (1)
RE: Bjyp

Here (1, inform(j,)) is a FIPA message: the message type
(performative) is inform, the content of the message is ¢,

and the message is being sent from % to j. The intuition
is that agent ¢ is attempting to convince (inform) agent j
of the truth of ¢. The FP and RE define the semantics of
the message: FP is the feasibility pre-condition, which states
the conditions that must hold in order for the sender of the
message to be considered as sincere; RE is the rational effect
of the message, which defines what a sender of the message is
attempting to achieve. The B; is a modal logic connective for
referring to the beliefs of agents (see e.g., [7]); Bif is a modal
logic connective that allows us to express whether an agent
has a definite opinion one way or the other about the truth
or falsity of its parameter; and U is a modal connective that
allows us to represent the fact that an agent is “uncertain”
about its parameter. Thus an agent 4 sending an inform
message with content ¢ to agent j will be respecting the
semantics of the FIPA ACL if it believes ¢, and it it not the
case that it believes of j either that j believes whether ¢ is
true or false, or that j is uncertain of the truth or falsity of
®.
It was noted in [18] that the FP acts in effect as a specifica-
tion or contract that the sender of the message must satisfy
if it is to be considered as respecting the semantics of the
message: an agent respects the semantics of the ACL if, when
it sends the message, it satisfies the specification. Although
this idea has been understood in principle for some time,
no serious attempts have been made until now to adopt this
idea for ACL compliance testing.

We note that a number of other approaches to ACL compli-
ance testing have been proposed in the literature. Although
it is not the purpose of this paper to contribute to this de-
bate, we mention some of the key alternatives. Pitt and
Mamdani defined a protocol-based semantics for AcLs [12]:
the idea is that the semantics of an ACL are defined in terms
of the way that they may be used in the context of larger
structures, i.e., protocols. Singh championed the idea of so-
cial semantics: the idea that an ACL semantics should be
understood in terms of the observable, verifiable changes in
social state (the relationships between agents) that using a
performative causes [16].

3. MABLE

MABLE is a language intended for the design and automatic
verification of multi-agent systems. The language was in-
troduced in [20]; here, we give a high-level summary of the
language, and focus in detail on features new to the language
since [20].

Agents in MABLE are programmed using what is essen-
tially a conventional imperative programming language, en-
riched with some features from agent-oriented programming
languages such as AGENTO [15], GOLOG [10], and AGENTS-
PEAK [13]. Thus, although the control structures (iteration,
sequence, and selection) resemble (and indeed are closely
modelled on) those found in languages such as ¢, agents
in MABLE have a mental state, consisting of data structures
that represent the agent’s beliefs, desires, and intentions (cf.
[19]). The semantics of MABLE program constructs are de-
fined with respect to the mental states of the agents that
perform these statements. For example, when an agent ex-
ecutes an assignment operation such as

x =5

then we can characterise the semantics of this operation by

saying that it causes the agent executing the instruction to
subsequently believe that the value of x is 5.

In addition, MABLE systems may be augmented by the
addition of formal claims made about the system. Claims
are expressed using a (simplified) version of the belief-desire-
intention logic LOR.A [19], known as MORA [20]; we dec-
sribe this language in more detail below.

The MABLE language has been fully implemented. The
implementation makes use of the SPIN system [8, 9], a freely
available model-checking system for finite state systems. De-
veloped at AT&T Bell Labs, SPIN has been used to formally

verify the correctness of a wide range of finite state dis- P
tributed and concurrent systems, from protocols for train e
signalling to autonomous spacecraft control systems [9]. SPIN program
allows claims about a system to be expressed in proposi-

tional Linear Temporal Logic (LTL): SPIN is capable of au- \v(/

tomatically checking whether or not such claims are true or

false. preprocessor
The MABLE compiler takes as input a MABLE system and

associated claims (in MOR.A) about this system (see Figure l

1). MABLE generates as output a description of the MABLE

system in PROMELA, the system description language for mii

finite-state systems used by the SPIN model checker, and
a translation of the claims into the LTL form used by SPIN
for model checking. SPIN can then be used to automatically
verify the truth (or otherwise) of the claims, and simulate
the execution of the MABLE system, using the PROMELA
interpreter provided as part of SPIN.

" PROMELA
SPIN LTL claim| code

Communication in MABLE &N

In the version of MABLE described in [20], communication
was restricted to inform and request performatives, the se-
mantics of which were modelled on the corresponding Fipa
performatives. However, this communication scheme rapidly system simulation Y
proved to be too limiting, and has been significantly ex- "PAN.C”
tended in the current version of MABLE. In particular, a /m
user may use any kind of performative required: MABLE
provides generic send and receive program instructions. \[/
The abstract syntax of the message sending instruction is:

C compiler

Ac = send(CA j of p) /¥ § € Agld, ¢ € wff (MORA) */ l

(The sender of this message is not represented here, but exccutable
is the agent executing the statement.) The basic meaning veter
of the statement is that a message is sent to agent j using
the communicative act CA: the content of the message is .

(The keyword of is syntactic sugar only; it can be replaced yes the dlams arevalic oo e merot i
by any identifier, and has no effect on the semantics of the hereis acounter example”
program.)

Here is a concrete example of a MABLE send statement. Figure 1: Operation of MABLE

send(inform agent2 of (a == 10)

This means that the sender informs agent2 that a == 10.
For the moment, we will postpone the issue of the semantics
of this statement; as we shall see below, it is possible for a
programmer to define their own semantics, separately from
the program itself.

The abstract syntax of the receive instruction is as fol-
lows.

Ac = receive(CA i of p) /* i€ Agld,p € Varld */

As might be guessed, this means that the receiver receives
a message from ¢ for which the communicative act is CA
and the message content is ¢. Communication synchronous
in the current version of MABLE, and so for this statement
to succeed there must be a corresponding send by agent <.

A key component of the current instantiation of MABLE is
that programmers can define their own semantics for com-
municative acts, separately from a program. Thus it is pos-
sible to explore the behaviour of the same program with
a range of different semantics, and thus to investigate the
implications of different semantics.

The basic model we use for defining semantics is a STRIPS-
style pre-/post-condition formalism, in the way pioneered for
the semantics of speech acts by Cohen and Perrault [2], and
subsequently applied to the semantics of the KQML [3] and
FIPA [5] languages. Thus, to give a semantics to performa-
tives in MABLE, a user must define for every such commu-
nicative act a pre-condition and a post-condition. Formally,
the semantics for a communicative act CA are defined as a
pair {CApre, CApost), where CA,.. is a condition (a MABLE
predicate), and CApos: is an assertion. The basic idea is
that, when an agent executes a send statement with perfor-
mative CA, this message will not be sent until CA, is true.
When an agent executes a receive statement with perfor-
mative CA, then when the message is received, the assertion
CApost will be made true.

The MABLE compiler looks for performative semantic def-
initions in a file that is by convention named mable.sem.
A mable.sen file contains a number of performative defini-
tions, where each performative definition has the following
structure:

i: CA(j, phi)
pre-condition
post-condition

where i, j and phi are the sender, recipient, and content
of the message respectively, and CA is the name of the per-
formative. The following lines define the pre-condition and
post-condition associated with the communicative act CA.
It is worth commenting on how these semantics are dealt
with by the MABLE compiler when it generates PROMELA
code.

With respect to the pre-condition, the above performative
definition is translated into a PROMELA guarded command
with the following structure.

pre-condition -> send the message

The “->” is PROMELA’s guarded command structure: to the
left of -> is a condition, and to the right is a program state-
ment (an action). The semantics of the construct are that
the process executing this statement will suspend (in effect,
go to sleep) until the condition on the left hand side is true.
When (more accurately, if) the condition becomes true, then
the right hand side is “enabled”: that is, it is ready to be
executed, and assuming a fair process scheduler, will indeed
be executed.

Notice that it is possible to define the pre-condition of a
performative simply as “1”, i.e., a logical constant for truth,
which is always true; in this case, the send message part of
the performative will always be enabled.

With respect to the post-condition, MABLE translates
receive messages into PROMELA code with the following
structure:

receive message;
make post-condition true

Thus once a message is received, the post-condition will be
made true. Notice that post-conditions in a mable.sem file
do not correspond to the “rational effect” parts of messages
in FIPA semantics [4]; we elaborate on the distinction below.

Here is a concrete example of a mable.sem performative
semantic definition:

i:inform(j,phi)
1
(believe j (intend i (believe j phi)))

This says that the sender of a message will always send an
inform message directly; it will not wait to check whether
any condition is true. It also says that when an agent re-
ceives an inform message, it will subsequently believe that
the sender intends that the receiver believes the content.

Several examples of pre-conditions and post-conditions
are given in section ??. The use of semantics during the
translation process is shown in Figure 2.

MABLE
program

Semanticsfile
for communicative acts

preprocessor

MABLE
compiler

PROMELA
code

Figure 2: Operation of the MABLE system with the
semantics file.

In summary, by disconnecting the semantics of a commu-
nicative act from a program that carries out such an act,
we can experiment to see the effect that different kinds of
semantics can have on the same agent. In the following sec-
tion, we will see how this may be done in practice.

Claims

A key component of MABLE is that programs may be in-
terspersed with claims about the behaviour of agents, ex-

pressed in MORA, a subset of the LORA language in-
troduced in [19]. These claims can then be automatically
checked, by making use of the underlying SPIN model checker.
If the claim is disproved, then a counter example is provided,
illustrating why the claim is false.

A claim is introduced outside the scope of an agent, with
the keyword claim followed by a MORA formula, and ter-
minated by a semi-colon. The formal syntax of MORA
claims is given in Figure 3. The language of claims is thus
that of quantified linear temporal BDI logic, with the dy-
namic logic style happens operator, similar in intent and
role to that in LORA [19]. Quantification is only allowed
over finite domains, and in particular, over: agents (e.g.,
“every agent believes ¢”); finite sets of objects (e.g., enu-
meration types); and integer number ranges. We will here
give an overview of the main constructs of the claim lan-
guage, focussing on those that are new since [20].

The goal of MORA (and also in fact of the whole MABLE
framework) is that we should be able to verify whether pro-
grams satisfy properties of the kind expressed in BDI log-
ics [14, 19]. To illustrate how MORA claims work, we here
give some informal examples.

Consider the following LORA formula, which says that
if agent a1 believes the reactor failed, then a: intends that
whenever ay believes the reactor failed (i.e., a1 wants to
communicate this to az).

(Bel a1 reactorFailed) = (Int a1 (Bel a2 reactorFailed))

We can translate such a formula more or less directly into
a MORA claim, suitable for use by MABLE. Consider the
following:

claim []
((believe al reactorFailed) ->
(intend al (believe a2 reactorFailed)));

The only noticeable difference is that, in the LORA for-
mula, the intended interpretation is that we need to make
the “whenever” explicit with the use of the temporal [] (“al-
ways”) connective. The following LOR.A formula says that
if some agent wants agent az to believe that the reactor has
failed, then eventually, a2 will believe it has failed.

Vi - (Int i (Bel ay reactorFailed)) = {>(Bel az reactorFailed)
This translates directly into the following MORA claim.

claim
forall i : agent
[J((intend i (believe a2 reactorFailed))
-> <>(believe a2 reactorFailed));

Thus far, the examples we have given illustrate features that
were present in the version of MABLE documented in [20]; we
now describe the main new feature of MORA claims, mod-
elled on LORA’s Happens construct [19, p.62]. In LORA,
there is a path expression of the form

(Happens i «)

which intuitively means “the next thing that happens is o”.
Thus, for example, the following LOR.A formula says that

if agent a; performs the action of flicking the switch, then
the reactor eventually hot.

(Happens a; flick) = {>reactorHot

The current version of MABLE provides such a facility. We
have a MORA construct

(happens ag stmt)

where ag is the name of an agent and stmt is a MABLE
program statement. This predicate will be true in a state
whenever the next statement enabled for execution by agent
ag is stmt. Consider the following concrete example.

claim
[1 ((happens al x = 10;)
-> <>(believe al x==10));

This claim says that, whenever the next statement to be
enabled for execution by agent a1l is the assignment x=10;
(notice that the semi-colon is part of the program statement,
and must therefore be included in the happens construct),
then eventually, al believes that variable x has the value
10. (A single equals sign in MABLE is an assignment, while
a double equals sign is the equality predicate.) As we will
see below, the happens construct plays a key role in our
approach to ACL compliance verification.

Before leaving this section, a note on how the happens
construct is implemented by the MABLE compiler. The
idea is to annotate the model that MABLE generates, with
new propositions that will be set to be true in a given state
whenever the corresponding agent is about to execute the
corresponding action. To do this, the MABLE compiler
passes over the parse tree of the MABLE program, look-
ing for program statements matching those that occur in
happens claims. Whenever it finds one, it inserts a pro-
gram instruction setting the corresponding new proposition
to true; when the program statement is executed, the propo-
sition is set to false. The toggling of the proposition value is
wrapped within PROMELA atomic constructs, to ensure that
the toggling process itself does not alter the control flow of
the generated system.

Although this process increases the size of the generated
model, it does so only linearly with the number of happens
constructs, and does not appear to affect performance signif-
icantly. Similarly, the pre-processing time required to insert
new propositions into the model is polynomial in the size of
the model and the number of happens claims.

4. VERIFYING ACL COMPLIANCE

We now demonstrate how MABLE can be used to verify
compliance with ACL semantics. We begin with a running
example that we will use in the following sections. The
MABLE code is given in Figure 4. In this example, two
agents have several beliefs and they simply send a message
among themselves containing this belief. The selection of the
message to be sent is done non deterministically through the
choose statement. The insertion of these beliefs in agents’
mental state is done through the assert statements. Beliefs
correspond to conditions on values and differ from one agent
to another one. After sending messages, agents wait for a
message from the other agent. (Due to space restrictions,
we do not give the PROMELA code that is generated by these
examples.)

formula ::=

forall IDEN ":" domain formula
| exists IDEN : domain formula
| any primitive MABLE condition
| (formula)
| (happens Ag stmt)
| (believe Ag formula)
| (desire Ag formula)
| (intend Ag formula)
| [formula
| <> formula
| formula U formula
| ! formula
| formula && formula
| formula || formula
| formula -> formula

domain ::=

agent
| NUMERIC .. NUMERIC
| {IDEN,..., IDEN }

/* universal quantification */
/* existential quantification */
/* primitive conditions */

/* parentheses */

/* statement is executed by agent */
/* agent believes formula */
/* agent desires formula */

/* agent intends formula */

/* always in the future */

/* sometime in the future */
/* until */

/* negation */

/* conjunction */

/* disjunction */

/* implication */

/* set of all agents */
number range */
/* a set of names */

Figure 3: The syntax of MORA claims.

Verifying Pre-Conditions

Verifying pre-conditions consists means verifying that agents
satisfy the pre-condition part of an ACL performative’s se-
mantics whenever they send the corresponding message. We
will focus in this paper only on the inform performative; the
cases for request and the like are similar.

Two approaches are possible for the pre-conditions: either
agents are sincere (they only ever send an inform message if
they believe its content), or else they are not (in which case
they can send a message without checking to see whether
they believe it). We can use MABLE’s ACL semantics to
define these two types of agents. Consider first the following
mable.sem definition.

i:inform(j,phi)
(believe i phi)
(believe j (intend i (believe j phi)))

This says that the pre-condition for an inform performative
is that the agent believes the content (phi) of the message.
By defining the semantics in this way, an agent will only send
the message if it believes it. (If the sender never believes
the content, then its execution is indefinitely postponed.)

By way of contrast, consider the following mable.sem def-
inition of the inform performative.

i:inform(j,phi)
1
(believe j (intend i (believe j phi)))

Here, the guard to the send statement is 1, which, as in
languages such as ¢, is interpreted as a logical constant for
truth. Hence the guard will always succeed, and the mes-
sage send statement will always be enabled, irrespective of
whether or not the agent actually believes the message con-
tent. Notice that this second case is actually the more gen-
eral one, which we would expect to find in most applications.

The next stage is to consider the process of actually check-
ing whether or not agents respect the semantics of the lan-
guage; of course, if we enforce compliance by way of the
mable.sen file, then we would hope that our agents will al-
ways satisfy the semantics. But it is of course also possible
that an agent will respect the semantics even though they
are not enforced by the definition in mable.sem. (Again,
this is in fact the most general case.)

For inform performatives, we can express the property to
be checked in LORA [19] as follows:

A [J(Happens i inform(j, ¢)) = (Bel ip)

This formula simply says that, whenever agent ¢ sends an
“inform” message to agent j with content ¢, then ¢ believes
¢. Now, given the enriched form of MABLE claims that
we described above, we can directly encode this formula in
MORA, as follows:

claim
(1
(
(happens agentl
send(inform agent2 of (a == 10));)
->
(believe agentl (a == 10))
)5

This claim will hold of a system if, whenever the program
statement

send (inform agent2 of (a == 10));

is executed by agent1, then in the system state from which
the send statement is executed, agent1 believes that a == 10.

We can insert this claim into the system in Figure 4, and
use MABLE to check whether it is valid. If we do this, then
we find that the claim is indeed valid; inspection of the code
suggests that this it what we expect.

int selection-agentl;
int selection-agent2;
agent agentl {
int inform-agent2;
inform-agent2 = 0;

selection-agentl = 0;

assert((believe agentl (a == 10)));
assert((believe agentl (b == 2)));
assert((believe agentl (c == 5)));

choose(selection-agentl, 1, 2, 3);

if (selection-agentl == 1) {
print("agentl -> a = 10\n ");
send(inform agent2 of (a == 10));

}

if (selection-agentl == 2) {
print("agentl -> b = 2\n ");
send(inform agent2 of (b == 2));

}

if (selection-agentl == 3) {
print("agentl -> ¢ = 5\n ");
send(inform agent2 of (c == 5));

}

receive(inform agent2 of inform-agent2);
print("agentl receives %d\n ", inform-agent2);

}

agent agent2 {

int inform-agenti;
inform-agentl = 0;

selection-agent2 = 0;

assert((believe agent2 (d == 3)));
assert((believe agent2 (e == 1)));
assert((believe agent2 (f == 7)));

choose(selection-agent2, 1, 2, 3);

if (selection-agent2 == 1) {
print("agent2 -> d = 3\n ");
send(inform agentl of (d == 3));

}

if (selection-agent2 == 2) {
print("agent2 -> e = 1\n ");
send(inform agentl of (e == 1));

if (selection-agent2 == 3) {
print("agent2 -> £ = 7\n ");
send(inform agentl of (f == 7));

}

receive(inform agentl of inform-agentl);
print("agent2 receives %d\n", inform-agenti);

Figure 4: The base example.

Verifying pre-conditions implies as well that we check agents
do not inform other agents about facts that they do not be-
lieve. Given the MABLE code presented in Figure 4, we have
just to remove the line

assert((believe agentl (a == 10)));

and then set the pre-condition of the inform to 1 (i.e., true)
in the mable.sem file, and check the previous claim. Ob-
viously, the claim is not valid since agent1 informs agent2
about something it does not believe.

Verifying Rational Effects

We consider an agent to be respecting the semantics of
an ACL if it satisfies the specification defined by the pre-
condition part of a message whenever it sends the mes-
sage [18]. The rational effect part of a performative seman-
tics define what the sender of the message wants to achieve
by sending it; but of course, this does not imply that sending
the message is sufficient to ensure that the rational effect is
achieved. This is because the agents that receive messages
are assumed to be autonomous, exhibiting control over their
own mental state. Nevertheless, it is useful to be able to de-
termine in principle whether an agent respects the rational
effect part of an ACL semantics or not, and this is the issue
we discuss in this section.

We will consider two cases in this section: credulous agents
and sceptical agents. Credulous agents correspond to agents
that always believe the information sent by other agents.
We can directly define credulous agents in the following
mable.sen file.

i:inform(j, phi)
(believe i phi)
(believe j phi)

This says that the recipient (j) of an inform message will
always come to believe the contents of an inform message.

Sceptical agents are those that believe that the sender
intends that they believe the information; they do not nec-
essarily come to directly believe the contents of the message.

i:inform(j, phi)
(believe i phi)
(believe j (intend i (believe j phi)))

We can directly define a MOR.A claim to determine whether
or not an agent that is sent a message eventually comes to
believe it.

claim []
(
(happens agentl
send (inform agent2 of (a == 10));)
->
<>(believe agent2 (a == 10))
)

This claim is clearly valid for credulous agents, as defined
in the mable.sem file given above; running MABLE with the
example system immediately confirms this.

Of course, the claim may also be true for sceptical agents,
depending on how their program is defined. We can directly
check whether or not a particular sceptical agent comes to
believe the message it has been sent, with the following
claim:

claim

|

(

(believe agent2

(intend agentl
(believe agent2 (a == 10))))

->

<>(believe agent2 (a == 10))

)

5. CONCLUSION

‘We have described extensions to the MABLE multiagent pro-
gramming language and its associated logical claim language
that make it possible to verify whether MABLE agents sat-
isfy the semantics of ACLs. We illustrated the approach with
a number of case studies. A key issue for future work is
that of moving from the design level (which is what MABLE
represents) to the implementation level, in the form of, for
example, JAVA code. One possibility we are currently in-
vestigating is to enable MABLE to automatically generate
JAVA code once a design has been satisfactorily debugged.
Another interesting avenue for future work is investigating
whether the MABLE framework might be used in the verifi-
cation of other ACL semantics, such as Pitt’s protocol-based
semantics [12], or Singh’s social semantics [17].

Acknowledgments This work was supported by the EC
under project IST-1999-10948 (SLIE) and by the EPSRC
under project GR/R27518.

6. REFERENCES
[1] E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Checking. The MIT Press: Cambridge, MA, 2000.

[2] P. R. Cohen and C. R. Perrault. Elements of a plan
based theory of speech acts. Cognitive Science,
3:177-212, 1979.

[3] T. Finin and R. Fritzson. KQML — a language and
protocol for knowledge and information exchange. In
Proceedings of the Thirteenth International Workshop
on Distributed Artificial Intelligence, pages 126-136,
Lake Quinalt, WA, July 1994.

[4] FIPA. Specification part 2 — Agent communication
language, 1997. The text refers to the specification
dated 23 October 1997.

[5] FIPA. Specification part 2 — Agent communication
language, 1999. The text refers to the specification
dated 16 April 1999.

[6] C. Guilfoyle, J. Jeffcoate, and H. Stark. Agents on the
Web: Catalyst for E-Commerce. Ovum Ltd, London,
April 1997.

[7] J. Y. Halpern and Y. Moses. A guide to completeness
and complexity for modal logics of knowledge and
belief. Artificial Intelligence, 54:319-379, 1992.

[8] G. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall International: Hemel
Hempstead, England, 1991.

[9] G. Holzmann. The Spin model checker. IEEE
Transaction on Software Engineering, 23(5):279-295,
May 1997.

[10] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. Scherl. Golog: A logic programming language for
dynamic domains. Journal of Logic Programming,
31:59-84, 1996.

[11]

[12]

[13]

[19]

[20]

J. Mayfield, Y. Labrou, and T. Finin. Evaluating
KQML as an agent communication language. In

M. Wooldridge, J. P. Miiller, and M. Tambe, editors,
Intelligent Agents II (LNAI Volume 1037), pages
347-360. Springer-Verlag: Berlin, Germany, 1996.

J. Pitt and E. H. Mamdani. A protocol-based
semantics for an agent communication language. In
Proceedings of the Sizteenth International Joint
Conference on Artificial Intelligence (IJCAI-99),
Stockholm, Sweden, August 1999.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. Van de Velde and
J. W. Perram, editors, Agents Breaking Away:
Proceedings of the Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent
World, (LNAI Volume 1038), pages 42-55.
Springer-Verlag: Berlin, Germany, 1996.

A. S. Rao and M. Georgeff. Decision procedures for
BDI logics. Journal of Logic and Computation,
8(3):293-344, 1998.

Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51-92, 1993.

M. Singh. Agent communication languages:
Rethinking the principles. IEEE Computer, pages
40-49, December 1998.

M. P. Singh. The intentions of teams: Team structure,
endodeixis, and exodeixis. In Proceedings of the
Thirteenth European Conference on Artificial
Intelligence (ECAI-98), pages 303-307, Brighton,
United Kingdom, 1998.

M. Wooldridge. Verifiable semantics for agent
communication languages. In Proceedings of the Third
International Conference on Multi- Agent Systems
(ICMAS-98), pages 349-365, Paris, France, 1998.

M. Wooldridge. Reasoning about Rational Agents. The
MIT Press: Cambridge, MA, 2000.

M. Wooldridge, M. Fisher, M.-P. Huget, and

S. Parsons. Model checking multiagent systems with
MABLE. In Proceedings of the First International
Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), pages 952-959,
Bologna, Italy, 2002.

