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Abstract

One of the key problems in the design of belief-desire-intention
(BDI) agents is that of finding an appropriate policy for in-

tention reconsideration. In previous work, Kinny and Georgeff

investigated the effectiveness of several such reconsideration
policies, and demonstrated that in general, there is no one
best approach — different environments demand different in-
tention reconsideration strategies. In this paper, we fur-
ther investigate the relationship between the effectiveness
of an agent and its intention reconsideration policy in dif-
ferent environments. We empirically evaluate the perfor-
mance of different reconsideration strategies in environments
that are to varying degrees dynamic, inaccessible, and non-
deterministic. In addition to our empirical results, we are
able to give preliminary analytical results to explain some
of our findings.

1 Introduction

Computation is a valuable resource for autonomous agents
that are required to act in complex environments [13]. Such
agents cannot reason indefinitely, either about which goals
to achieve, or what actions to perform in furtherance of
these goals [3]. Any implemented agent will operate under
very real resource bounds — in terms of computation power,
memory, and the time available to make decisions. It fol-
lows that the effective control of reasoning is a key factor in
the success (or otherwise) of an agent system. Research on
resource-bounded decision making and the control of reason-
ing originated in economics and the decision sciences [16, 8];
in AI, such research falls under the banner of meta-level rea-
soning [15]; and in the agent literature, it falls under work
on bounded optimality [14].

In this paper, we examine the relationship between the
properties of the environment in which an agent must oper-
ate, and the requirements for effective control of reasoning
in that environment. Our chosen agent architecture for this
study is the belief-desire-intention (BDI) model [3, 7]. In
BDI agents, decision-making is composed of two main activ-
ities: deliberation (deciding what intentions to achieve) and

means-ends reasoning (deciding how to achieve these inten-
tions) [3]. Deliberation is a computationally costly process,
and in order for a BDI agent to operate effectively, it should
choose to deliberate only when necessary; this requires an
appropriate intention reconsideration policy [3, 9, 18].

In this paper, we investigate the relationship between the
success (or otherwise) of intention reconsideration policies
in BDI agents, and the characteristics of environments that
these agents inhabit. The intuition is that different inten-
tion reconsideration policies will be better suited to different
environmental niches. Our work builds on, and consider-
ably extends that of Kinny and Georgeff, who studied the
performance of different intention reconsideration policies in
environments with varying degrees of dynamism [9]. In our
work, we investigate the performance of intention reconsid-
eration policies in environments where we vary the following
parameters (cf. [13, p46]):

o dynamism — the rate of change of the environment,
independent of the activities of the agent;

e accessibility — the extent to which an agent has access
to the state of the environment;

o determinism — degree of predictability of the system
behaviour for identical system inputs.

The remainder of this paper is organised as follows: sec-
tion 1.1 provides some background to our experiments; sec-
tion 2 lays out the methodology of the experiments; in sec-
tion 3 we present and analyse our experimental results; and
section 4 concludes by placing the investigation into context
and discussing further work.

1.1 Background

Research in the design of autonomous agents throughout the
1970s and early 1980s was dominated by STRIPS-style classi-
cal planning approaches [1]. These approaches focussed on
algorithms for automatic plan generation, that would take as
input a specification of the current world state, a goal to be
achieved, and the actions available to an agent, and would
produce as output a plan to achieve the goal state. This
style of planning, it was believed, is a central component in
rational action. By the mid 1980s, a number of researchers,
(of whom Rodney Brooks is probably the best known [4]),
began to claim that such approaches were fundamentally
flawed, for both pragmatic and philosophical reasons. From
a pragmatic point of view, STRIPS-style planning algorithms
tend to be computationally intractable, rendering them of



limited value to agents that must operate in anything like
real-time environments [6, 5]. From a philosophical point
of view, it was argued that much of what we regard as ev-
eryday intelligence does not arise from abstract deliberation
of the kind involved in STRIPS-style planning, but from the
interaction between comparatively simple agent behaviours
and the agent’s environment.

The challenge posed by behaviour-based Al research has
arguably led to some fundamental changes in the agenda
of the Al community. First, it has become widely accepted
that intelligent behaviour in an autonomous agent is more
closely coupled to the environment occupied by the agent
than was perhaps hitherto acknowledged. As a consequence,
there has been renewed interest in the use of more realistic
environmental settings for the evaluation of agent control
architectures. Second, it has become accepted that while
reasoning is an important resource for intelligent decision-
making, it is not the only such resource. As a consequence,
there has been much interest in hybrid approaches to agent
design, which attempt to combine reasoning and behavioural
decision-making [17, 11].

One popular approach to the design of autonomous agents
that emerged in the late 1980s is the belief-desire-intention
(BDI) model [3, 7]. The BDI model gets its name from the
fact that it recognises the primacy of beliefs, desires, and
intentions in rational action. Intuitively, an agent’s beliefs
correspond to information the agent has about the world.
These beliefs may be incomplete or incorrect. An agent’s
desires are states of affairs that the agent would, in an ideal
world, wish to bring about. Finally, an agent’s intentions
represent desires that it has committed to achieving. The
idea is that an agent will not be able to deliberate indefi-
nitely over which states of affairs to bring about; ultimately,
it must fix upon some subset of its desires and commit to
achieving them. These chosen desires are intentions.

A key problem in the design of BDI agents is that of in-
tention reconsideration [3, 9, 18]. This problem arises when
we consider that an agent should not, in general, maintain
an intention indefinitely — either the intention should be
achieved or it should be dropped. This implies that, from
time-to-time, agents should pause to deliberate over their
intentions and reconsider them. But reconsideration is it-
self a computationally costly process. As a rule of thumb,
therefore, an agent should only reconsider intentions when
such reconsideration would lead to a change in intentions —
otherwise the effort invested in reconsideration is wasted.

Developing an appropriate intention reconsideration pol-
icy — which keeps an agent committed to its intentions just
as long as it would be rational to do so — is thus a critical is-
sue in the design of any BDI agent. In a series of experiments,
Kinny and Georgeff [9] investigated the relative performance
of intention reconsideration strategies for BDI agents in dif-
ferent environmental settings. The experimental framework
they used involved a PRS BDI system [7] that was situated
in Pollack and Ringuette’s TILEWORLD domain [12].

In essence, the TILEWORLD is a grid environment on
which there are agents, tiles, obstacles, and holes. An agent
can move up, down, left, or right, and can move tiles to-
wards holes. An obstacle is a group of immovable grid cells.
Holes have to be filled up with tiles by the agent. An agent
scores points by filling holes with tiles, with the aim be-
ing to score as many points as possible. The TILEWORLD
is inherently dynamic: starting in some randomly generated
world state, based on parameters set by the experimenter, it
changes over time in discrete steps, with the appearance and
disappearance of holes. The experimenter can set a number

of TILEWORLD parameters, including: the frequency of ap-
pearance and disappearance of tiles, obstacles, and holes;
the shape of distributions of scores associated with holes;
and the choice between hard bounds (instantaneous) or soft
bounds (slow decrease in value) for the disappearance of
holes. In the TILEWORLD, holes appear randomly and ex-
ist for as long as their life-ezpectancy, unless they disappear
because of the agent’s actions. The interval between the
appearance of successive holes is called the hole gestation
time.

The aims of Kinny and Georgeff’s investigation were
to “(1) assess the feasibility of experimentally measuring
agent effectiveness in a simulated environment, (2) investi-
gate how commitment to goals contributes to effective agent
behaviour and (3) compare the properties of different strate-
gies for reacting to change” [9, p82]. The full TILEWORLD
domain was considered too complex for the experiment, and
the testbed was therefore simplified in several ways. First,
tiles were omitted: an agent scores points simply by moving
to holes. In addition, the agent was assumed to have perfect,
zero-cost knowledge of the state of the world. Finally, it was
assumed that agents only form correct and complete plans,
and only generate plans for visiting a single hole (rather
than planning multiple-hole tours).

In Kinny and Georgeft’s experiments, two different types
of reconsideration strategy were used: bold agents, which
never pause to reconsider their intentions before their cur-
rent plan is fully executed, and cautious agents, which stop
to reconsider after the execution of every action. These char-
acteristics are defined by a degree of boldness, which speci-
fies the maximum number of plan steps the agent executes
before reconsidering its intentions. Dynamism in the envi-
ronment is represented by the rate of world change and is
manipulated by changing the ratio of the clock rates of the
TILEWORLD and the agent. The effectiveness of the agent
is represented by its score (the sum of values of holes filled)
divided by the maximum score it could in principle have
achieved (the sum of the scores of all holes appearing in
the TILEWORLD during a trial). The results of the experi-
ments show that a cautious agent outperforms a bold agent
in highly dynamic environments; intuitively, because in dy-
namic environments, which change frequently, it pays to re-
consider intentions frequently.

In Kinny and Georgeff’s investigation, as mentioned pre-
viously, the agent has perfect zero-cost knowledge of the
world. In later work by Kinny, Georgeff, and Hendler [10] a
sensing cost was introduced, that represents the time cost
of processing sensor information. The aim of this work was
to show that an optimal sensing rate exists, depending on
the degree of world dynamism and the sensing cost. A
model was presented that captures the trade-off between
time saved by early detection of change and time wasted by
too frequent sensing. Applying a cost to sensing is different
from varying the accessibility of the world. Varying accessi-
bility essentially means varying the amount of information
accessible to the agent, which implicates that it does not
matter how much the agent attempts to obtain information.
If a cost is applied to sensing, the information is available,
but for a higher price.

Note that intention reconsideration is a kind of meta-
level control [15, 18]. Other researchers have investigated
meta-level control issues in autonomous agents. For exam-
ple, Boddy and Dean [2] developed anytime algorithms for
optimal scheduling of reasoning in dynamic environments.



2 Experimental Methodology

The aim of our work is to experimentally investigate the
performance of a range of intention reconsideration policies
in environments with different properties. To do this, we
make use of a simulation of a single agent inhabiting an
adapted TILEWORLD environment [12] — see the preceding
section for a more detailed description of the TILEWORLD.
The task of the agent is to visit holes in order to gain as
many points as possible. The agent decides which hole to
visit based on hole distances — it always chooses to visit the
nearest hole. We adopted the same simplifications to the
original TILEWORLD as Kinny and Georgeff (as discussed in
the previous section) and adapted the system in two further
ways: (i) we omitted obstacles from the TILEWORLD; and (ii)
we allowed the agent to move diagonally over the grid (in
addition to moving horizontally and vertically). Omitting
obstacles simplifies the problem domain without trivializing
it; allowing diagonal movement is an obvious extension.

Following Kinny and Georgeff [9], we define the effective-
ness € of an agent as the ratio of the actual score achieved
by the agent to the score that could in principle have been
achieved. This measurement is thus independent of ran-
domly distributed parameters in a trial. It also avoids prob-
lems such as machine-dependency and prevention of repe-
tition of experiments on different machines, which would
occur if the effectiveness of an agent was based on such mea-
sures as CPU-time or elapsed time [12].

There are three main environmental attributes that we
vary in our experiments:

e Dynamism (an integer in the range 1 to 80 denoted
by <) represents the ratio between the world clock
rate and the agent clock rate [9]. If v = 1, then the
world executes one cycle for every cycle executed by
the agent. Larger values of 7 mean that the environ-
ment is executing more cycles for every agent cycle;
if 4 > 1 then the information the agent has about its
environment may not necessarily be up to date.

e Accessibility (a real value in the range 0 to 1 denoted
by «) represents the proportion of the environment
that is visible to the agent. If @ = 1, then the agent
can see the entire TILEWORLD, and thus has complete,
perfect information about its environment; if @ = 0,
then the agent can see nothing of its environment but
the grid point it currently occupies.

e Determinism (an integer in the range 0 to 100 denoted
by &) represents how certain it is that an action has
the expected outcome. The idea is that an agent per-
forms actions in order to bring about certain states of
affairs. However, in most realistic environments, ac-
tions are non-deterministic, in that they can have a
number of possible outcomes. Thus § represents the
probability that an action will have its intended out-
come, expressed as a percentage. If § = 100, then the
agent can be certain that every action it performs will
have the desired effect; as § — 0 the probability that
an action will have an undesirable outcome increases.
In our scenario, actions are movements that can be
made by an agent, either north, south, east, west, or
diagonally. We model non-determinism by allowing
actions to move the agent in an unintended direction
— for example, in attempting to move north, the agent
may actually end up moving east. This represents the
situation in mobile robotics, where a robot attempting

Parameter Value/Range
world dimension 20

hole score 10

hole life-expectancy  [240,960]
hole gestation time [60,240]
dynamism () (1,80)
accessibility (a) (0,1)
determinism (4) (0,100)
number of time-steps 15,000

number of trials 50
replanning rate 0 or co
planning cost (p) 0,1,2,0r4

Table 1: Overview of the experiment parameters

to move in some direction can never be sure that it will
succeed in moving in that direction.

The experiments we conducted are divided into two series:
the single parameter variation series, in which we varied
one parameter per experiment; and the combined parame-
ters variation series, in which we systematically varied two
parameters per experiment. In the single parameter varia-
tion we respectively minimized or maximized the parameters
other than the one varied: in the dynamism experiment, we
maximized accessibility (¢ = 1) and maximized determin-
ism (& = 100); in the accessibility experiment, we minimized
dynamism (y = 1) and maximized determinism (§ = 100);
finally, in the determinism experiment, we minimized dy-
namism (v = 1) and maximized accessibility (@ = 1).

With respect to agent properties, we varied the replan-
ning rate and the planning cost. The replanning rate repre-
sents the boldness of the agent. We set it for each experi-
mental condition to 1 (the agent replans every time before
performing an action — a cautious agent) and co (the agent
never replans while executing a plan — a bold agent). The
planning cost represents the time cost of planning: the num-
ber of time-steps required to form a plan. We set it for each
experimental condition to 0, 1, 2, and 4. In what follows, we
denote planning cost by p. In table 1 we give an overview
of the values of relevant parameters that we used in the ex-
periments ([z,y] denotes a uniform distribution from z to y
and (z,y) denotes the range from z to y). Note that each
TILEWORLD was run for 15,000 time steps, and each run was
repeated 50 times, in order to eliminate experimental error.

3 Results and Analysis

In this section, we present the results of our experiments.
The experiments with single parameter variation resulted in
the graphs shown in figure 1. The experiments with com-
bined parameter variation resulted in the graphs shown in
figures 4, 5, and 6. The graphs for the combined param-
eter series generalise those of the single parameter series,
and so in principle it would suffice to give the graphs of the
combined parameter series only. However, in the interest of
clarity, we included graphs for both series'. We refer to a
plot of effectiveness € as in figure 1 as an effectiveness curve
and to a plot of € as in figures 4, 5, and 6 as an effectiveness
surface.

1To save space, we omitted the graphs from the combined parame-
ter variation series for planning cost equal to 1 and 2, as although we
conducted these experiments, the results were consistent with those
of the single parameter variation experiments.
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Figure 1: Experimental results (single parameter variation).
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Figure 2: Theoretical effectiveness for a bold agent when
dynamism is varied.

3.1 Single parameter variation
Dynamism

From the results of the dynamism experiment, as plotted
in figures 1.a and 1.b, we observe that the shapes of the
effectiveness curves are similar, but not the curves them-
selves. We can explain the shape of the effectiveness curves
and the differences between the curves as follows. If the dy-
namism of the world is at a minimum (y = 1), then holes
appear and disappear sufficiently slowly that the agent can
visit each hole before it disappears, which results in a per-
fect score (e = 1) of the agent. As -y increases, then at some
point, holes start to disappear before the agent has visited
them, and € starts to drop below 1. The effectiveness curve
first declines steeply, later more gradually and eventually

Effectiveness

40
Dynamism

Figure 3: Theoretical effectiveness for a cautious agent when
dynamism is varied.

asymptotically approaches zero.

Some observations on the differences in the curves can
be made directly. First, it is clear that varying the cost
of planning has much more influence on the effectiveness of
a cautious agent than on the effectiveness of a bold agent.
Second, if planning is free (p = 0), then a cautious agent
performs better than a bold agent if v > 7. Third, if p = 1,
then a cautious agent performs worse than a bold agent,
independent of the dynamism of the world.

In an attempt to explain the shape of the graph in fig-
ure l.a, we used brute force computation to calculate the
mean distance an agent has to travel to any hole in our
TILEWORLD — as it turns out, the mean distance to any
hole in our experiments is approximately 9. As previously
stated, the effectiveness of an agent is the ratio of its ac-
tual score to the maximum score. This can be denoted
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Figure 4: Dynamism and Accessibility — the results for a bold agent are in (a) and (b), for a cautious agent in (c) and (d).

by € = scoreagent/Score€maz. We can easily calculate the
maximum score, namely scorémaz = T/g, where T denotes
the number of time-steps and g denotes the hole gesta-
tion time. The agent’s actual score can be calculated by
scoreagent = T/ f, where f denotes the total time the agent
takes to fill a hole. Similar to Kinny and Georgeff, we define
f to be given by f = d x (p/k + m), where d is the hole
distance, p is the planning cost, k is the reconsideration fre-
quency, and m is the time to move a single step (here always
1). If we set kK = d, we have a bold agent, and when we set
k = 1, we have a cautious agent. Now we can define the
effectiveness of the agent as ¢ = g/(y x f). The curves in
figures 1.a and 1.b can be approximated by this function?,
using the values from table 1 and a mean hole distance of
9. This approximation is shown in figure 2 and 3 for a bold
agent and cautious agent, respectively.

Accessibility

The shape of the effectiveness curves in the graphs 1.c and
1.d can be explained from the way we implemented the
accessibility of the agent. If the accessibility is minimal
(a = 0), the agent can only see the point where it is currently
located. With the exception of a hole appearing coinciden-
tally on that location, the agent cannot score any points,
and its effectiveness is minimal (e = 0). If the accessibility
is maximal (@ = 1), the agent can see all points in the world,
and has sufficient time to reach holes before they disappear,
in which case its effectiveness is perfect (e = 1). If a < 0.5,

2The function however assumes that the life-expectancy of holes
is infinite.

then the curve is concave; if @ > 0.5, the curve is convex.
This value can be explained from the fact that if a > 0.5
and the agent is on an optimal location, (the middle of the
grid), then it can see all the points in the world.

From figures 1.c and 1.d it appears that there is no great
difference between the results for the bold agent if planning
cost is varied and between the curves for the cautious agent
if planning cost is varied. Neither is there much difference
between the curves for the bold agent and the curves for
the cautious agent. A variance analysis on the experimen-
tal data confirms that the differences between the curves,
within the bold and cautious agent effectiveness curves as
well as between them, are not significant. An explanation for
this might be that when accessibility is varied, the amount
of deliberation an agent engages in does not influence the
effectiveness of the agent. Intuitively, there is not enough
information for the agent to deliberate over in order to in-
crease its effectiveness.

Note that in addition to giving agents “limited vision”,
we conducted a series of experiments in which we simulated
agents with notsy sensors. The idea was that there would be
a probability n that any given piece of information (percept)
received by the agent was incorrect. If n = 0, then the
agent’s sensors would be perfect: all information available
to the agent would be correct. If n = 1, then every piece
of information available to the agent would be incorrect.
We systematically varied the value of 5 from 0 to 1, and
investigated the performance of bold and cautious agents
for each, with different planning costs. These experiments
yielded a linear relationship between effectiveness and 7.

The shape of the graphs in figures 1.c and 1.d can easily
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be put on a theoretical footing. Because the world changes
slow enough for the agent to reach a hole when observed
(y = 1), the agent’s effectiveness corresponds with its wvisi-
bility — the number of grid points the agent can see around
itself. Calculating this visibility by brute force computation
resulted in a curve identical to the effectiveness curve as in
1.c or 1.d. Using a curve-fitting method, this visibility curve
can be approximated by a biquadratic function®.

Determinism

The effectiveness curves for the determinism experiment are
plotted in figures 1.e and 1.f. If the determinism of the world
is minimal (§ = 0), the outcomes of the agent’s actions are
never as intended by the agent. But because the agent can
still encounter a hole by accident, it achieves a higher score
than minimal (¢ > 0). If determinism is maximal (§ = 1),
the outcomes of the agent’s actions are always the outcomes
as intended by the agent, and the agent achieves a perfect
score (¢ = 1). The reason for this is that determinism is
defined as the chance that the outcome of an agent’s action
is the outcome intended by the agent. If § = 0, the agent
never arrives at the location it intends. If § = 1, the agent
always arrives at the intended location. As § increases, the
agent slowly starts to arrive at the intended holes and thus
increases its score. The curve inclines slowly at first and

3For example, for a 5 x 5 world the agent’s visibility can be de-
scribed by (—a? + 9a + 5)2/d?, where a denotes accessibility of the
world before normalization (a = axd) and d denotes world dimension.
The constant values in this function depend on the world dimension
d.

later steeper, until § > 40, from where the effectiveness stays
approximately perfect (e ~ 1). We speculate that the agent
can achieve a perfect score when § > 40 for the following
reason. If § exceeds a certain threshold (here: § > 40),
the agent can compensate for failed actions by replanning.
As long as the intended hole does not disappear, the agent
can replan and in the end will reach the hole. This means
an increase in deliberation, but a justified one, because it
increases the effectiveness of the agent considerably.

When one considers the effectiveness curves for a bold
agent, it is clear there is not much difference between them.
As the planning cost p is increased, € decreases. This decline
is slight because the agent must replan completely after ex-
ecuting a plan, rather than because the agent does not need
to reconsider its plans. This is also the reason why, with
the exception of when planning is free (p = 0), a bold agent
performs better than a cautious agent. A cautious agent has
to replan after every step, whereas a bold agent does not do
this and therefore a bold agent can perform more effectively.
However, when planning is free, the cautious agent outper-
forms the bold agent, because it does not need to execute
its complete plan before replanning. In this case, a cautious
agent’s plans are more flexible and thus shorter. With ref-
erence to figure 1.f, it is immediately obvious that planning
cost has a significant impact on effectiveness for cautious
agents in non-deterministic environments.

Before we leave this section, we note that the effective-
ness of the agent depends on other characteristics of the
environment, such as the life-expectancy of holes. If the
life-expectancy of a hole is too short, then the agent cannot
reach the hole by planning again. In this case, § must be
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Figure 6: Dynamism and Determinism — the results for a bold agent are in (a) and (b), for a cautious agent in (c) and (d).

very high in order for the agent to score any points. On Even in a worst case scenario — a cautious agent where plan-
the other hand, if holes never disappear, the agent would ning cost is 4 — the decrease in effectiveness from maximal
achieve a perfect score, even when 4 is very low. effectiveness (e = 1), where accessibility is maximal (o = 1)

and determinism is maximal (§ = 100), is steeper when ac-
cessibility decreases than when determinism decreases. In

3.2 Combined parameter variation € > . S-
other cases, effectiveness stays maximal until determinism

The experimental results from the combined parameter vari- is approximately 40 (§ = 40). We explained the reason
ation of dynamism and accessibility are shown in figure 4; of for this in section 3.1: the agent can compensate for non-
accessibility and determinism in figure 5; and of dynamism determinism in the environment by replanning.

and determinism in figure 6. All effectiveness surfaces are Figure 6 shows that the agent’s effectiveness changes
consistent with the effectiveness curves individually. In for faster over the dynamism axis than over the determinism
example the variation of dynamism and accessibility, if dy- axis, from which we conclude that dynamism has more in-
namism is minimal (y = 1), the curve corresponds to the fluence on the effectiveness of the agent than determinism.

individual effectiveness curve for accessibility and if acces-
sibility is maximal (o = 1), the curve corresponds to the
individual effectiveness curve for dynamism. For these val-
ues, the analysis is thus similar to the analysis for the single
parameter variations.

With the combined parameter variation experiments we
want to show which parameters dominate in complex envi-
ronments. It is clear from the effectiveness surfaces in figure
4 that dynamism has more influence on the effectiveness of
the agent than accessibility. This follows from the fact that

the surfaces change more rapidly over the dynamism axis o All tested characteristics influence the effectiveness of

4 Discussion

In this paper, we examined the effectiveness of bold and
cautious intention reconsideration strategies, for a range of
planning costs, in environments defined by varying degrees
of dynamism, accessibility, and determinism. From our sin-
gle parameter variation experiment we can derive the fol-
lowing conclusions:

than over the accessibility axis. From maximal effectiveness
LT e the agent.
(e = 1), where dynamism is minimal (v = 1) and accessibil-
ity is maximal (o = 1), the decline in effectiveness is much e We obtained the same results for dynamic environ-
steeper when dynamism increases than when accessibility ments as Kinny and Georgeff [9]. The intention recon-
decreases. sideration policy (bold or cautious) the agent adopts
It is clear from figure 5 that accessibility has more in- has a significant impact on the effectiveness of the

fluence on the effectiveness of the agent than determinism. agent. In a more static environment, a bold agent



performs best, and in a more dynamic environment,
a cautious agent performs best. Our experiment also
shows that this observation heavily depends on the
cost of planning. If planning is expensive, too much
deliberation results in sub-optimal performance.

e The accessibility of the world has a severe impact on
the effectiveness of an agent. However, when the world
is static and deterministic, accessibility does not influ-
ence the effectiveness of the intention reconsideration
strategy. Our explanation for this is that, if « is low,
there is not enough information for the agent to delib-
erate over in order to increase its effectiveness. Hence,
additional deliberation in such circumstances does not
pay off, or, in other words, deliberation is never useful
when the environment is not accessible.

e Reconsidering intentions in a highly non-deterministic
world only pays off if planning is free. The reason for
this is that an agent does not need to reconsider its
plans, but just needs to plan more often in order to
increase its effectiveness.

We can derive the following conclusions from the experi-
ments with combined parameter variation:

e All results on combined parameter variation are con-
sistent with the results on single parameter variation.
This enables us to compare the results of the two se-
ries with each other: the conclusions for the single
parameter variation series are valid for the combined
parameter variation too.

o The effectiveness of agents is minimal in environments
that are both dynamic and inaccessible or inaccessible
and non-deterministic. In environments that are both
dynamic and non-deterministic, an agent can achieve
effectiveness only by chance.

e Finally, a more important observation we made con-
cerned which environmental characteristic influenced
the agent’s effectiveness the most: the dynamism of
the environment. Determinism has the least influence
on the effectiveness. This might be because the agent
can compensate for non-determinism in the environ-
ment by replanning instead of reconsidering its plans.

The experiments we conducted can be extended in a number
of obvious ways. First, we can extend the system we used
by implementing domain-dependent decision strategies, as
in [9]. Second, the accessibility characteristic of the envi-
ronment can be implemented differently. We implemented
it as how much of the environment the agent can see. But
we can also interpret a space-bounded variation of accessi-
bility, as how much information the agent can hold about
its environment. Third, we can change the way an agent
reacts to an non-deterministic environment. The testbed
offers a possibility to implement an investigation into de-
cision strategies based solely on the agent’s utility function
and probability function in a very clean way. The agent only
needs to have a utility function defined over its surrounding
points and the determinism of the environment delivers the
probability function. (The derivation of such utility func-
tions in a non-trivial way is, of course, itself a matter for
research.) Finally, we can attempt to derive analytical re-
sults to explain the experimental results we obtained.
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