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ABSTRACT

We presentiframeavork thatenables belief-desire-intentiofsDI1)

agentto dynamicallychoosdts intentionreconsideratiopolicy in

orderto performoptimally in accordancevith the currentstateof

the ervironment. Our framevork integratesan abstracteDi agent
architecturewith the decisiontheoreticmodelfor discretedelib-

erationschedulingof Russelland Wefald. As intentionreconsid-
erationdeterminesan agents commitmentto its plans,this work

increaseghe level of autonomyin agentsasit pusheghe choice
of commitmentevel from design-timeto run-time. This makesit

possiblefor an agentto operateeffectively in dynamicand open
ervironments whosebehaiour is not knowvn at designtime. Fol-

lowing a preciseformal definition of the framework, we presentan
empirical analysisthat evaluatesthe run-time policy in compari-
sonwith design-timepolicies. We shav thatan agentutilising our
framawork outperformsagentswith fixedpolicies.

1. INTRODUCTION

One of the key problemsin the designof belief-desire-intention
(BDI1) agentsis the selectionof an intention reconsideation pol-
icy [6, 12, 15]. Sucha policy definesthe circumstancesinder
which a BDI agentwill expendcomputationakesourcegdeliber
ating over its intentions. Wastedeffort — deliberatingover inten-
tions unnecessarily— is undesirableasis not deliberatingwhen
suchdeliberationwould have beenfruitful. Thereis currentlyno
consensu®n exactly how or whenan agentshouldreconsideiits
intentions. Currentapproacheso this problemsimply dictatethe
commitmentevel of the agent,rangingfrom cautious(agentsthat
reconsidettheir intentionsat every possibleopportunity)to bold
(agentsthatdo not reconsidewuntil they have fully executedtheir
currentplan). Kinny andGeogef investigatedhe effectivenesof
thesetwo policiesin several typesof ervironments[6]; this work
hasbeenextendedby otherresearcherfl2]. However, in all previ-
ouswork, theintentionreconsideratiopolicy is selectedat design
time, and hardwiredinto the agent. Thereis no opportunityfor
modifying the policy at run time. This is clearly not a practical
solutionfor agentghatmustoperaten dynamicandopenenviron-
ments.

Permissionto male digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

AGENTS’'01May 28-Junel, 2001,Montréal, QuebecCanada.

Copyright 2001ACM 1-58113-326-X/01/0005%$5.00

m j . wool dridge}@sc.liv.ac.uk

In this paper we proposeo let anagentchoosefor itself which
policy to adoptdependingon the currentstateof the ervironment.
To this end,we adopta meta-level decisiontheoletic approad: in-
steadof figuring out whatto decide,the agentmustknov howto
decide.Thekey ideais thatanintentionreconsideratiopolicy can
be seemasakind of meta-level control(cf. [16]), which selectde-
tweendeliberatingandacting. In this frameof referencerelevant
researchhasbeencarriedoutby RussellandWefald[11] ontherole
of meta-reasoningn a decision-theoreticeasoningnodel. Their
modelaimsto controlreasoningoy makingan explicit choicebe-
tweenactionand computation.In this paper we adaptand apply
RussellandWefald’s modelto the problemof intentionreconsider
ationin BDI agentsTheaimis to developarigorousframework for
intentionreconsideratiorthatcanbe appliedandusedby agentsn
practicalcircumstancesMeta-level reasoninghasof coursebeen
a major topic of researchin A1 for sometime, (seee.g.,[7]), but
to the bestof our knowvledge, we are the first to apply a theoret-
ical model of meta-reasoningnd meta-controkto the problemof
optimalintentionreconsideration.

Theremaindeof this paperis structuredasfollows. Thefollow-
ing subsectiormprovides somebasic backgroundinformation and
introduceshetwo models— the BDI architectureandRusselland
Wefald’smodelof decision-theoretimeta-reasoning- uponwhich
ourframework builds. Section2 formaliseshesemodels andshavs
how intentionreconsiderationanbeunderstoodhroughthemedium
of RussellandWefald's model. We thenshav how theanalysiswve
develop can be appliedto the TILEWORLD domain [9]. In sec-
tion 3, we presentanempiricalevaluationof our framework in the
TILEWORLD domain,in section4 we discussrelatedwork andfi-
nally, in section5 we presensomeconclusionsanddiscusgossi-
ble futurework.

Background

Ideally, an autonomousagentreasonsaboutits decisionmaking
processaandchooses decisionmechanisnin accordancevith the
currentstateof the ervironment. If the agenthasboundedre-
sourcesthenthesereasoningprocessesnust be carried out effi-
ciently Thesearethe long term goalsof the researchdescribed
in this paper: we want an agentthat is flexible and autonomous
with respectto openand unpredictableenvironments. Therefore
we mustfirst of all acknavledgethe factthatthe behaiour of the
agentmight in somecasesnot be optimal in the broadestsense:
optimality mustbe consideredvith respecto the constraintghat
an ervironmentputs uponthe agent. In this way, optimality is a
trade-of betweerthe capabilitiesof the agentandthe structureof
the ervironment. The characteristic®of this trade-of have been
empiricallyinvestigatedn [6] and[12].

A popularapproachto autonomousagentdesignis the belief-



Al gorithm BDl Agent Control Loop
1.

2. B+« Byg;

3. |« lg;

4. 7« null;

5. while (true) do

6. get next percept p

7. update B on the basis of p
8. i f (reconsideB,l)) then

9. D < optiongB, I);

10. | « filter(B, D, 1);

11. if (not soundm,l,B)) then
12. m < plan(B, 1);

13. end-if

14. end-if

15. if (not emptyw)) then

16. a <+ hd(n);

17. executéa);

18. m < tail(7);

19. end-if

20. end-while

Figure 1: The abstract BDI agentcontrol loop. The loop con-
sistsof continuous obsewation, deliberation, planning and ex-
ecution. To perform optimally, the reconsidet. . . ) function de-
cideswhether deliberation and planning is necessary

desire-intentior(BD1) modelof ageng. The controlloop of a BDI
agentis shavn in figure 1, whichis basedon the BDI agentcontrol
loop presentedn [10] and[15, p38]. Theideais thatanagenthas
beliefsB aboutthe world, intentionsl| to achiese anda plan = to
achieve intentions.In lines2—4,the beliefs,intentionsandplanare
initialised. The main controlloop is thenin lines 5-20. In lines
6—7,theagentpercevesandupdatests beliefs;in line 8, it decides
whetherto reconsidepr not; in lines9-13theagentdeliberateshy
generatingnew optionsanddeliberatingover these;in line 12, the
agentgenerates planfor achieving its intentions;andin lines 15—
18 anactionof the currentplanis executed. Becausehe purpose
of the functionsusedin this loop canbe easilyderived from their
nameswe omit theactualformalisationsherefor reason®f space,
but directthereadetto [15, ch2].

It is necessaryor a BDI agentto reconsideiits intentionsfrom
time to time. One of the key propertiesof intentionsis that they
enablethe agentto be goal-driven ratherthan event-driven, i.e.,
by committingto intentionsthe agentcanpursuelong-termgoals.
But whencircumstancelave changedand,for example,aninten-
tion cannotbe achieved arymore,the agentwould do well to drop
thatintention. Similarly, when opportunitiesarisethat enablein-
tentionsthatthe agentcurrently hasnot adoptedthe agentshould
reconsiderHowever, becauseeconsideratiors itself a potentially
costly computationaprocesspnewould not wantthe agentto re-
considerits intentionsat every possiblemoment but merelywhen
it is necessaryo reconsideri.e., when, after reconsiderationthe
setof intentionshaschanged.The purposeof thereconsidef. . . )
functionasshawvn in figure 1 is preciselythis: to deliberatevhenit
paysoff to deliberate(i.e., whendeliberationwill leadto achange
in intentions),andotherwisenotto deliberateput to act.

This givesusinsightinto the desiredbehaiour of anintention
reconsideratiopolicy, butit doesnotsayhow to implemenit. Our
framevork, whichwe introducein thenext sectionjs to beusedfor
this implementationThis modelis basedn the decisiontheoretic
model of Russelland Wefald that we discussin the remainderof

this section.

In [11], RussellandWefald describehaw anagentshouldsched-
ule deliberationand actionto achieve efficient behaiour. Their
framenork is known asdiscretedelibemtion scheduling. Thekey
ideais thatdelibemtionsare treatedasif they were actions Deci-
sion theory givesus variousmodelsof how to determinethe best
possibleaction, of which the maximumexpectedutility modelis
perhapghebestknown. Viewing deliberationsasactionsallows us
to computethe utility of adeliberationaction,andsomalesit pos-
sibleto applytheexpectedutility modelasthemeta-level reasoning
componenbver all possibleactionsanddeliberations However, it
is notdifficult to seethatthis canbe computationallyhard. Russell
and Wefald proposethe following stratgy in orderto overcome
this problem. Assumethat at any momentin time the agenthas
somedefault actionit can perform. The agentcaneitherexecute
this actionor deliberateyvheredeliberationcanleadto a betterac-
tion thanthe currentdefault action. Their control algorithmthen
stateghataslong asthereexist deliberationswith a positive value,
performthe deliberationwith the highestvalue;otherwise execute
thedefault action.

Thispaperdiscussetheintegrationof thedecisiortheoretianodel
for deliberationschedulingfrom Russelland Wefald andthe BDI
agentarchitecture.In the sectionto follow we lay out the initial
formalisationof the model.

2. THE FORMAL MODEL

In this section,we presentour formal model. We introduceall
necessarpasicelementspresenthecontrolalgorithmwhichuses
theseelementsandsuggessomeadditionalassumptionsequired
to make thealgorithmcomputationallyattractize. Finally, we shav
how themodelcanbeappliedto anexamplescenaric—the TILE-
WORLD — which illustratesthe theory and which senes asthe
applicationdomainfor our experiments.

Themostimportantissuewe areconcerneavith relateso theset
of availableactionsA of theagent:we distinguishbetweerexternal
actionsAe = {a,@,d",...}, affecting the agents ervironment,
andinternal actionsAn: = {d, d’, ... }, affectingtheinternalstate
of theagent. We let A = Aeq U Ainr andassumeAins N Aeq = 0.
We assumeheagents ervironment(i.e., everythingexternalto the
agent),maybein ary of asetE = {e €,¢€’,...} of ervironment
statesWe let utility be definedover environmentstatesUe : E —
IR. If the agentusesmaximumexpectedutility theory (MEU) as
a decisionstrat@y, it choosesanactionamey € Aex for which the
utility of the outcomestateis maximal:

ey = arg max 262 P(e| a)Ue(e) (1)

whereP(e | a) denoteshe probability of statee occurring,given
thattheagentchoosedo performexternalactiona.

However intuitive this notion of decisionmakingis, mary prob-
lemsarisewhenMEu is usedin therealworld. It assume&le(E) is
known beforedeciding thatenoughtime is availableto obtainamey,
andit doesnot extendto sequentiakdecisionmaking. Russelland
Wefald offer an alternatve [11]. Theideaunderlyingtheir model
is thattheagentchoosedbetweeny(1) adefault externalactionages,
and(2) aninternalactionfrom the setof internalactions— atary
moment,the agentselectsan actionfrom {ager, d, d’,...}. The
only purposeof aninternalactionis to revise the default external

1This contrastswith the continuousdeliberationschedulingrame-
work, whichis thetermmainly usedto cover work suchasarytime
algorithms(seee.g.[1]).



action, presumablyto a betterone. This algorithm doesnot en-
surean optimal choice, but computationallyit canbe a lot more
attractve thanMmeu. To choosebetweeractions we needto repre-
sentthe preferencegor thoseactions,which we do via a function
Ua : A — IR, which representshe netvalue of an action (either
externalor internal). Note thatnow we have two kinds of utilities

in the model: for ervironmentstatesand for actionsrespectiely.

We relatetheseby letting the utility of anactiona betheweighted
sumof theenvironmentstategheactionmayleadto:

Ua(@) = ) P(e| a)Ue(e) @)

ecE

whereP(e | a) is the probability of outcomee giventhatthe agent
choosego performexternalactiona, andUe(e) is the utility of e.

Now, the bestpossibleinternalactionfor theagentto undertalke,
referredto astheoptimaldelibemtion, is thedeliberatiorwith max-
imum utility:

dopt = arg max Ua(d). ?3)

RussellandWefald's decisioncontrolalgorithm(pca) thenletsthe
agentdeliberatevhenthereexistsa deliberatiorwith apositive net
value,andactwhenthisis notthecase.

While bcA reduceghesearctspaceof actionsto deliberateover
(it limits theactionsfor which utilities mustbecomputedo thede-
faultaction),it is still notapplicablen real-time,becaus¢he com-
putationof dopt is generallyvery costly (seee.g.,[14]). We arenot
soconcernedvith this intractability here,sincewe only considera
singleinternalaction: the deliberationthatleadsto new intentions.
Thekey is to determinethe utility of this actionasopposedo the
externalactionsavailableto theagent.

In orderto representhe behaiour of the ervironment,we use
anexternalstatetransitionfunction A/ : E x A* — E, whichmaps
a stateof the environmentanda sequencef actionsto somenew
ervironmentstate. Notice that the ervironmentis hereimplicitly
assumedo be deterministic.

Thusfar, we have presentedRussellandWefald's decisionalgo-
rithm andthe BDI agentarchitecture. We nowv formalise Russell
andWefald's modelof meta-reasoningndshaw thatit canbeused
for implementingthe reconsidef. .. ) functionin BDI: we shav
how to computethe utility of externalandinternalactions,explain
how to estimatethe utilities of internal actionsand thenconcern
ourseheswith representingemporalconstraintson the utilities of
internalactions.

First, we redefinethe notion of MEU usingthesericher seman-
tics. An agentchooseshe optimal external action — the action
thatmaximisesexpectedutility:

E(Ue(N (enom, [a]))) = Y P(&)Ue(N (&, [a])) 4)

g€E

whereenow, @ € E anda € Aet; M (€now, [a]) is theresultof exe-
cutingactiona in the currentervironmentstate;P(e) is the prob-
ability thatthe currentervironmentstateis e ; and (e, [a]) is the
resultof executingactiona in ervironmentstatee. Notethatthis
definition takes only externalactionsinto account. We definethe
value of aninternalactioninitially asthe differencebetweenthe
utility of executingthedefault actionager andaninternalactiond:

Ua(d) = Ue(N (€now [d; @a])) — Ue(N (@nom [acer]))  (5)

whereag € Aesq denoteghe externalactionresultingfrom d and
N (&now, [d; aq]) is theervironmentstateresultingfrom first execut-
ing d andthenexecutingay. Notethe following two assumptions
in this definition: d immediatelyresultsin anexternalactionag and
executingd doesnot costarything computationally Thefirst as-
sumptionexcludesseriesof internalactions: it might be the case
thatd will notresultimmediatelyin anexternalaction.Russelland
Wefald referto aninternalactionthatimmediatelyresultsin anex-
ternalactionasa completecomputation andto onethatdoesnot
necessarilylo soasa partial computatioA — the setof complete
computationss a subsebf the setof partialcomputationsin [11],
the emphasids mainly on completecomputations.Heretoo, we
areonly concernedvith completecomputationsandleave the is-
sueof partial computationsasan interestingtheoreticalextension
of theframework for furtherwork.

The equationgresentedgofar assumahatthe agenthasimme-
diateaccesso its utility function. In reality, however, thisis hardly
thecasefor peoplewhenthey make decisionslnsteadthey haveto
estimateutilities of ervironmentstatesheforedecidingandindeed
sowill ouragentneedto estimatédts utilities. In the equationsve
replacetheutility U by autility estimateJe,, wheres € A* isase-
quenceof actions. ThenUe, denotesheestimatiorof a stateutility
after executingthe specifiedcourseof actiono. Consequentiywe
replacethe valueof anactionU, by the estimatevalue Us. In this
way, equation(5) becomes:

Ua(d) = LA"e[S;d] (N(QWOM [d]))
— Ue[S;d] (N(amw, [adef])) (6)

where[S; d] denotesa sequenceof computationsS followed by
computationd, and Ugsq(E) denotesthe utility estimateof the
environmentstatebasedon [S; d] — in the equatiorresultingfrom
executingd or agef respectrely.

Now, estimatesare by default randomat initialisation, i.e., be-
fore d is executed.In orderto be ableto utilise knowvledgeof, for
example, statisticalknowledgeof the distribution of U from past
situationswe needto usethe expectation®of theseestimatesCon-
sequentlywe replace(6) by:

E(Ua(d)) = E(Ugse(N (enow, [d]))
— Uggsa)(V (8o, [Bger]))- @)

RussellandWefald shav thatthevalueof E(Ua(d)) depend®nthe
probability distribution for future utility estimatedor externalac-
tions. After d hasbeenexecutedtheagenthasatits disposahjoint
distribution for theprobabilitythatexternalactions{a, &, a", ...}
obtainnew utility estimatequ, U, u”, ... }, respectiely. Thenthe
external actionresultingfrom d is the action with corresponding
maximum estimatedutility, weightedby the probability distribu-
tion for this action. The utility of the currentbestexternalaction
— thedefaultaction— is theestimatedutility of it, weightedby its
probability distribution — thatis, the projectionof thejoint proba-
bility distributionfor this particularaction. For theformalisationof
this, we directthe interestedreaderto RussellandWefald’s paper
[11].

Until now, we have nottakeninto accounthefactthatouragent
is situatedin a real-timeervironment. We representhis depen-
denceby a costof time we distinguishbetweenintrinsic utility

2In section4 we refer to the fact that our work is closelyrelated
to theresearctof Markov DecisionProcessefvMDP's) [2]: we can
relatecompleteandpartial computation@susedhereto finite and
infinite horizonsin MDP's.



0, (E) — atime-independenttility, andtotal utility — theintrin-
sic utility correctedwith atemporaldiscountfactor Until now we
have beenonly concernedvith theintrinsic utility. A costfunction
C : Aint — IRdenoteghedifferencebetweertheintrinsic andtotal
utility. Assumingthe existenceof someimplementatiorof C, the
estimatedutility of anactionay aftersomeinternalactiond is then

Ue(W (€now, [; aa])) = Ui (N (enow, [aa])) — C(d)  (8)

which expresseshattheutility of c is its intrinsic utility minusthe
costof performingd; this thus correspondswith the total utility
of a4. Internal actionsonly affect the agents internal stateand
thereforeC(d) only dependon its own length| d |. A function
TC : IR — IR thenexpresseghe time costof aninternal action,
takingasinputthelengthof anactionandoutputtingthetime cost
of it. Then(8) canberewrittenas

Ue(N (€now, [d; &a])) = Ui (A (€now; [a])) = TC(1 d [)-  (9)

Intuitively, we candefinethe value of aninternalactiond asthe
differencebetweerthebenefit— theutility of theexternalactionag
asresultingfrom d — minusits cost— thetime it takesto perform
d. RussellandWefald shaw this canbe formalisedby rewriting (9)
asfollows:

Ua(d) = A(d) - TC(| d ), (10)

whereA(d) expresseshe estimatedenefitof d:

Ad) = Uiigq(N (€row [ad]))
— Ungsia (N (€now, [aced]))-

Is is clearthatin this modelit is still not feasiblein practiceto
assesghe expectedvalue of all continuationsof a computation,
becausecomputationscan be arbitrarily long. Russelland We-
fald make two simplifying myopic assumptionsthrough which
somemajor difficultiesconcerninghetractability of the modelare
avoided. Thefirst assumptioris thatthe algorithmsusedaremeta-
greedy in thatthey considersingle primitive steps,estimatetheir
ultimate effect and choosethe stepappearingo have the highest
immediatebenefit. The secondassumptions the single-stepas-
sumption acomputationvalueasa completecomputatioris ause-
ful approximationto its true value asa possibly partial computa-
tion.

Having now definedboth the BDI modelanddiscretedelibera-
tion schedulingyve discusshow themodelscanbeintegrated.The
agents controlloop of ourframework is theBD1 agentcontrolloop
asshawvn in figure 1. As mentionedabove, integratingthe frame-
works comesdown to implementingthe reconside. . . ) function
in this controlloop. Thisimplementatioris shavn in figure 2; it is
basednRussellandWefald's meta-reasoningnodel. Thefunction
computeUtility. . . ) computeghe estimateditility of deliberation,
by applyingequationg7) to (10). The argumentof this functionis
theagents setof beliefs. Thesebeliefstypically includethevalues
of thenecessargistributionsfor computingthe estimatese.g.,the
dynamismof theenvironment.

Becausewe usethe BDI model, we treatdeliberationon a very
abstractievel: we merelyrecognisedeliberationasa way to alter
thesetof intentions.Thereforeweareonly concernedvith asingle
internal action: deliberationitself. The reconsidet. .. ) function
then decideswhetherto deliberate(indicatedby reconsidet. . .)
evaluatingto “true”), or act(reconsidef. . . ) evaluateso “false”).

Function: bool ean reconsidefB,I)

get current plan « froml;
agef < w[0];

lAJa(adef) — X ece P(e] agen)Ue(8);
Ua(d) < computeUtilityB);

if ((Ua(d) —Ua(ager)) > 0) then
return true;

end-if

return fal se;

RBOX N hoONE

=o

Figure 2: The reconsidet. . . ) function in the BDI agentcontrol
loop. It computesand comparesthe utilities of acting and delib-
erating, and decides basedon the outcomeof this comparison,
whether to deliberate or not.

We canregardchoosingto actasthe default actionages andchoos-
ing to deliberateasthe singleinternal action. It is clearthat this
relatesRussellandWefald’s modelto the BDI model. We areleft
with two questionswhatshouldthedefault actionages be andhow
dowe computethe utilities of choosingto deliberateversuschoos-
ing to act?We dealwith theseguestionsubsequently

Let IT be the setof all plans. A planis a recipefor achiezing
anintention; = € II represents plan, consistingof actionsz[0]
throughr[n], wherer[i] € Aex andndenoteshelengthof theplan.
The agents means-endseasonings representedy the function
plan : p(B) x p(I) — II, usedon line 12 in figure 1. At ary
momentin time, we let the default actionager be 7[0], wherethe
computatiorof theutility of ager is donethroughequation(4). This
answerghefirst question.

The computatiorof the utility of deliberationis doneusingRus-
sell and Wefald’s model: we estimatethe utility of deliberation,
basedndistributionswhichdeterminénow theernvironmentchanges.
Thesedistributionsare necessarknonvledgebecausehe optimal-
ity of intentionreconsideratiodepend®nly on eventsthathappen
in theervironment.For now, we assumeéhattheagentknows these
distributionsandthatthey arestatic (they do not changethrough-
out the existenceof the environment)and quantitative (Because
theseassumptionsnay be consideredrery demandingyve explain
in section5 how we planto adjustour modelin futurework to drop
them.) Using thesedistributionsandequation(6), we estimatethe
utility of deliberationasthe differencebetweenthe utility of the
outcomeof the deliberation(i.e., a revised[0]), andages (i.e., the
currentr[0]). Situatedin a real-timeenvironment,the agentwill
discountheestimatedutility of deliberationpasednthelengthof
deliberating,using equation(10). The decisioncontrol algorithm
DCA thenprescribego deliberateand executethe revised 7[0] if
this estimateis positive, andto act— executethe currentr[0] —
otherwise.

Thisresultsn ametalevel controlfunctionreconsideg. . . ) which
enablegheagentatary time to computetheutility of #[0] andalso
to estimatethe utility of deliberatingover its intentions,andthen,
accordingto theseutilities, acts(by executing[0]) or deliberates
(by reconsideringts intentions).Next, weillustratethetheorywith
asimpleexemplarscenario.

The Tileworld

Our exemplardomainis a simplified TILEWORLD [9], which in-
volves a grid ervironmenton which there are agentsand holes.



Function: bool ean reconsidefB,I)
get dist|y fromB;

get avedi st from B;

get newhol es from B;

get current plan « froml;
agef < m[0];

NG A®WNE

Ua(ader) - n(di st n);
9. Ug(d) < n(avedi st /newhol es);

10.

11. if ((Ua(d) — Ua(ager)) > 0) then
12. return true;

13. end-if

14. return fal se;

Figure3: Thereconsidet. .. ) function for the TILEWORLD. De-
liberation is considered necessarywhenit is expectedthat since
the last deliberation, the current goal has disappeared or that
new goalshave appeared.

Let H representhe setof possibleholes;an ervironmentstateis

an elementfrom the setE = p(H) with memberse, €,¢€",....

An agentcan move up, down, left, right and diagonally Holes
have to be visited by the agentin order for it to gain rewards.
The TILEWORLD startsin somerandomly generatedvorld state
and changesver time with the appearancand disappearancef

holesaccordingo somefixeddistributions— thusH changesver

time. The agentmoves aboutthe grid one stepat a time. We let

Aet = {no0p Ne €, se s, sw, W, nw, n}, whereeachactiondenotes
thedirectionto move next andthe noopis a null action,by execut-
ing whichtheagentstaysstill. Theagentsonly internalactionis to

deliberatethusAi,s = {d}. At ary giventime, if holesexist in the

world, anagenthasasingleintendecholel H— theholeit is head-
ing for — over whichit is deliberating.If no holesexist, theagent
staysstill. Letdi st denotethe distancebetweenthe agentand

holeh € H. Thenmi ndi st = min{dist, | h € H} denoteghe

distanceto the hole closestto the agent. The agents deliberation
functiond selectd H, baseconm ndi st ; themeans-endseason-
ing function plan selectsa plan 7 to getfrom the agents current
locationto | H. For example, if the agentis currently at location

(2,0) andl His at(1, 3), thenw = [s; s5; sW]. We assumehatd and

plan areoptimal,in thatd selectghe closesthole andplan selects
thefastestroute.

Accordingto our model,the agentmustat ary time choosebe-
tweenexecutingactionz[0] anddeliberating. Basedon the utili-
ties of theseactionsthereconsidef. . . ) functiondecidesvhether
to actor to deliberate. Let the utility of an ervironmentstatebe
the inverse of the distancefrom the agentto its intendedhole,
n(di st 1), wheren is anorderreversingmapping. Equation(2)
thendefinesthe utility of anexternalaction. While in this domain,
theutility of anexternalactionisimmediatelyknown, the utility of
internalactionsis notimmediatelyknowvn, andmustbe estimated.
In accordancewith our model, we use pre-defineddistributions
here:the utility of aninternalactionis estimatedisingknowledge
of the distribution of the appearancanddisappearancef hole$.

2TheTILEWORLD is adomainin whichit is easietto expresscosts
(in termsof distances)atherthanutilities. With anorderreversing
mappingfrom coststo utilities, we can continueto use utilities,
which fits our modelbetter

“Note thatwe do not let the agentknow whenor whereholesap-

Parameter Value/Range
world dimension 20
holescore 10
holelife-expectang  [240,960]
hole gestatiortime [60,240]
dynamism(+y) (1,80)
accessibility 20
determinism 100
numberof time-steps 15,000
numberof trials 25
planningcost(p) 0,1,2,or4

Table 1: Overview of the experiment parameters

Thereasorfor thisis thatthe appearancandthe disappearancef
holesareeventsthat causethe agentto changeits intentions. For
example,whenthesetof holesH doesnot changewhile executing
aplan,thereis no needto deliberatebut whenH doeschangethis
might meanthat | H hasdisappearedr thata closerhole hasap-
pearedreconsideratioiis necessaryetavedi st betheaverage
distancerom the agentto every locationon the grid; this is a triv-
ial computationLet newhol es betheestimatechumberof holes
thathave appearedincethelastdeliberationithisis calculatedus-
ing thedynamismof theworld andthegestatiorperiodof holes—
thegestatiorperiodis theelapsedimein betweertwo successiely
appearindholes. We deemavedi st /newhol es anappropriate
estimatefor the utility of deliberation.

Thereconsidet. . . ) functionfor TILEWORLD agentsis shavn
in figure 3. We let the belief setof the agentatleastconsistof

B = {di st n,avedi st ,newhol es}

andlet theintentionsetbe

| = {I H}.

Thereconside. . . ) functioncomputesheutility of executingr[0]
andestimateshe utility of deliberating:if

avedi st
newhol es

theagentacts,andif not, it deliberates.

As mentionedabore, this doesnot guarante®ptimalbehaiour,
but it enableshe agentto determindts commitmentto a planau-
tonomously We empirically evaluateour framework in the next
sectionanddemonstratanagentusingsuchanintentionreconsid-
erationschemeperformsbetterthanwhena level of commitment
is hardwiredinto theagent.

distip<

3. EXPERIMENT AL RESULTS

In thissectionwe presentserieof simulationsn whichwe utilise
aTILEWORLD ervironment— asdescribecabore — inhabitedby
asingleagent.The experimentsarebasedon the methodologyde-
scribedin [12]. (We repeatedhe experimentsdescribedn [12] to
ensurethat our resultswere consistenttheseexperimentsyielded
identicalresults which areomittedherefor reason®of space.)

In [12], the performanceof a rangeof intentionreconsideration
policies were investigatedin environmentsof different structure.

pear we merelygive it somemeasuref how fastthe ernvironment
changes.



Becausewe usesimilar experimentalparametersere,we briefly
summarisehe parametersf the [12] experiments.Environments
were variedto the degreeof dynamismdenotedby v — the rate
of changeof the ervironmentindependenbf the actiities of the
agent,accessibility— the extentto which an agenthasaccesso
the stateof the ervironment, and determinism— the degree of
predictability of the systembehaiour for identicalsysteminputs.
Here,we assumehe ervironmentis fully accessibl@enddetermin-
istic. With respecto agentpropertiesthe planningcostp andre-
consideation strategy werevaried. The planningcostrepresents
the time costof planning,i.e., the numberof time-stepsrequired
to form a plan, andtook valuesO, 1, 2 and4. Two reconsidera-
tion stratgieswereinvestigated:a bold agentnever replanswhile
executinga plan, and a cautiousagentreplansevery time before
executinganaction. For theseexperimentswe introducean adap-
tive agent,which figuresout for itself how committedto its plans
it shouldbe. Thedecisionmechanisnof this agentis basedn the
theoryasdescribedn section2.

We measuredhreedependentariablestheeffectiveness of an
agentis the ratio of the actualscoreachieved by the agentto the
scorethatcouldin principle have beenachieved; commitmeng3 is
expressedas how mary actionsof a plan are executedbeforethe
agentreplans; the costof acting c is the total numberof actions
theagentexecute$.

In table 1 we summarisehe valuesof the experimentalparam-
eters([x, y] denotesa uniform distribution from x to y and (x, y)
denotegherangefrom x to y).

Results

Theexperimentdor dynamisnresultedn thegraphsshavn in fig-
ure4. In figure5.awe plottedcommitment3 of anadaptve agent,
varying dynamismywith a planningcostp of 0, 1, 2 and4, respec-
tively’. Thecommitmenif acautiousandbold agentareof course
constantly0 and1 respectiely. In figure5.b, the costof actingc is
plottedfor thethreeagentdor p = 4. Thecostof actingrepresents
the numberof time stepsthat the agentperformedan action. We
referto a plot of effectiveness asin figure 4 asan effectiveness
curve We continuethis sectionwith ananalysisof theseresults.

Analysis

For the bold and cautiousagent,we obtainedthe sameresultsas
from the seriesof experimentsas describedn [12]. Whenplan-
ning is free (p = 0) asin graph4.a, it wasshavn in the experi-
mentsin [12] thata bold agentoutperformsa cautiousagent. This
out-performancevas, however, negligible in a very dynamicen-
vironment. In theseexperiments,it is very clearthatin a static
world (wheredynamismis low), a bold agentindeedoutperforms
a cautiousagent.But from somepoint onwards(dynamismis ap-
proximately 28), a cautiousagentoutperformsa bold one. This
obsenrationagreewith the naturalintuition thatit is betterto stick

5Commitmenfor aplan with lengthnis (k — 1) /(n — 1), where
k is the numberof executedactions. Obsere that commitment
definesa spectrumfrom a cautiousagent(3 = 0, becausé& = 1)

to aboldone(B = 1, becausé = n).

SWhereasostof actingcaneasilybe factoredinto the agents ef-

fectivenesswe decidedto measuret separatelyn orderto main-
tain clearcomparabilitywith previousresults.

"The collecteddatawas smoothedusing a Bezier curve in order
to get thesecommitmentgraphs,becausehe commitmentdata
shavedheavy variationresultingfrom theway dynamismis imple-

mented. Dynamismrepresentshe actingratio betweenthe world

andthe agent;this ratio oscillateswith the randomdistribution for

hole appearancesyn which the adaptve agentbasests commit-
ment.

with aplanaslong aspossibleif theenvironmentis notvery likely
to changemuch,andto dropit quickly if theervironmentchanges
frequently More importantly when planningis free, the adap-
tive agentoutperformsthe other two agents,independenbf the
dynamismof the world. This meansthat adaptve agentsindeed
outsmartbold andcautiousagentavhenplanningis free.

As planning costincreasesthe adaptve agents effectiveness
getsvery closeto the bold agents effectiveness. However, there
is moreto this: whenwe take the costof actinginto accountwe
obserethattheadaptve agents actingcostis muchlower. Consid-
eringthesecosts,we cansafelystatethatthe adaptve agentkeeps
outperforminghebold agent.Whenplanningis expensve (p = 4)
asin graph4.d, the cautiousagentsuffers the mostfrom this in-
creasan planningcost. This is becauset only executesone step
of its currentplanandafterthat, it immediatelyplansagain.lt thus
constructsplansthe most often of our typesof agents. We also
obsere thatthe bold agentandadaptve agentachie/e a similar ef-
fectivenessBut again,asshavn in 4.d, the adaptve agents acting
costsaremuchlower.

We includedthe level of commitmentfor an adaptve agent,as
shawn in figure 4.d, to demonstratdiov commitmentis relatedto
the dynamismof theworld. Someinterestingobsenationscanbe
madehere. Firstly, we seethat planningcosthasa negative in-
fluenceon commitment— as planning costincreasesthe level
of commitmentdecreasesThe reasonfor this is that the costof
planningis the time it takesto plan; asthis valueincreasesmore
eventscantake placein theworld duringthe planningperiod,and
it becomesnoreattractive to replanearlierratherthanlater Sec-
ondly, we seethatif dynamismincreasesthelevel of commitment
decreasesThis canbe easily explainedfrom the intuition, asde-
scribedabove, that in a very fastchangingworld, it is betterto
reconsidemoreoftenin orderto be effective.

4. RELATED WORK

Thenotionof commitmenthasbeenwidely studiedin the agentlit-
erature Two differentfieldsof researcltanbeeasilydistinguished:
asingleagentandmulti agentcase.In bothfields,only recentlyin-
vestigationhasbeeninitiated on run-time decisionmaking. Until
now, the majority of previous work presupposethe problemasa
design-timeone. Whereasn the single agentfield, commitment
is mostly referredto asa delibemtion and actiontrade-of, in the
multi agentffield it is a“pledge” to undertak a specifieccourseof
action(from[4]) and,obviously, morerelatedto thesocialproperty
of agents.

Our work originatesin the researchon the role of intentionsin
the deliberationprocessof practicalreasoningagentswhich was
initiated by Bratmanet al. [3]. Sincethen, Pollack hasinvesti-
gatedthe issueof commitmentin singlepracticalreasoningagent
systemsby meansof overloadingintentions[8]. Theideabehind
overloadingis closely relatedto the filter override mechanismin
theinitial BDI agentmodelasdescribedn [3]: theagentmakesuse
of opportunitiesthat arisein the world, basedon the intentionsit
hasalreadyadopted.This researchs morefocusedon the optimal
usageof the currentsetof intentions ratherthanthe actualprocess
of deliberatingoverintentions.

More recently Velosoet al. [13] useda rationale basedmoni-
toring (RBM) methodto controlof reasoningn intentionalsystems.
TheideabehindreM is that plan dependenteaturesof the world
are monitoredduring plan execution; if a featurechangesvalue,
this is reasonto replan. It mustbe noted herethat the determi-
nationof suchmonitorsis a very domain-dependeriiskandthis
mighthinderthewayto amoregeneraddomain-independetieory
of controlof reasoning.
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Figure 4: Performance of a cautious,bold and adaptive agent. Effectivenesss measured asa resultof a varying degreeof dynamism
of the world. The four panelsrepresentthe effectivenessat differ ent planning costs(denotedby p), ranging from 0 to 4.

Finally, researchon Partially Obsenable Markov DecisionPro-
cessegPOMDP's) by Kaelbling et al. [5] is relevantto our work,
sinceit offersaformalframevork which canbeusedn conjunction
with our modelin orderto generalisét to amoreinclusive model,
applicableto a wider rangeof decisionproblems.

5. DISCUSSION

In this paperwe presenteda preliminary formal model for BDI
agentsthat areableto determinetheir own intentionreconsidera-
tion stratgy basedn futuregoalsandarisingopportunities By ap-
plying themodelin asimpleTILEWORLD scenariowe have shavn
thatanagentusingthe modelyields betterresultsthanagentsawvith
fixedstratgies. This empiricalevaluationdemonstratethe benefit
of flexibility in reasoningor agentssituatedin dynamicandopen
environments.

While the BDI modelenableghe agentto directits future delib-
erationsandactionsby adoptingcertainintentions,it is crucialfor
the agentto determinefor itself how committedit is to thesein-
tentions. This hasto be doneautonomouslybecauseommitment
changesdependingon how the environmentchanges.Our agent
chooses level of commitmentaccordingo the currentstateof the
ernvironment,andbaseghis choiceon estimategrom distributions
of how the ervironmentchanges.An exampleof sucha distribu-
tion in the TILEWORLD is the frequeng with which holesappear

anddisappeaduringtheexistenceof theworld. Currently thesys-
temis limited in the way that thesedistributions are given to the
agentandthey areassumedo be static. Futurework will include
researchon theseissues:we proposeresearchin which the agent
obtainsthe distributions itself using reinforcementearning, and
we have initiated empirical researchwhich will demonstratdow
thelevel commitmenthangesindervariouskindsof distributions.

Theempiricalinvestigationwe conductedshavedinterestinge-
sults. Firstly, an agents effectivenessincreasesas its reasoning
mechanismis more flexible. Secondly when the environments
rateof changeincreasesthelevel of commitmentdecreasesThis
correspond#o theintuition thatintentionsaremoreliable to recon-
siderationwhenthe ervironmentchangedast. Finally, the exper
imentsshaved thatas planningtakeslonger the level of commit-
mentdecreasesThis canbe explainedasfollows: whenit takes
longerto plan,the probabilitythatthe ervironmentchangesluring
planningincreasesin orderto copewith this, oneneedgo replan
sooneratherthanlater

This work is part of researchthat aimsto determineefficient
mechanismdor the control of reasoningn environmentsof dif-
ferentstructure.In future work we hopeto extendthe framework
to cover richerervironmentsin termsof realismandstructure:we
intendto deliver anagentthatis flexible andautonomouswith re-
spectto openandunpredictablenvironments.
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Figure 5: Commitment for an adaptive agentand Cost of Acting for a cautious, bold and adaptive agent. In (a), the commitment
level is plotted asa function of the dynamism of the world for an adaptive agentwith planning cost(denotedby p) of 0,1,2 and 4. In
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