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ABSTRACT
Wepresentaframework thatenablesabelief-desire-intention(BDI)
agentto dynamicallychooseits intentionreconsiderationpolicy in
orderto performoptimally in accordancewith thecurrentstateof
the environment. Our framework integratesanabstractBDI agent
architecturewith the decisiontheoreticmodel for discretedelib-
erationschedulingof RussellandWefald. As intentionreconsid-
erationdeterminesan agent’s commitmentto its plans,this work
increasesthe level of autonomyin agents,asit pushesthe choice
of commitmentlevel from design-timeto run-time. This makesit
possiblefor an agentto operateeffectively in dynamicandopen
environments,whosebehaviour is not known at designtime. Fol-
lowing apreciseformal definitionof theframework, we presentan
empirical analysisthat evaluatesthe run-time policy in compari-
sonwith design-timepolicies.We show thatanagentutilising our
framework outperformsagentswith fixedpolicies.

1. INTRODUCTION
One of the key problemsin the designof belief-desire-intention
(BDI) agentsis the selectionof an intention reconsideration pol-
icy [6, 12, 15]. Sucha policy definesthe circumstancesunder
which a BDI agentwill expendcomputationalresourcesdeliber-
atingover its intentions.Wastedeffort — deliberatingover inten-
tions unnecessarily— is undesirable,as is not deliberatingwhen
suchdeliberationwould have beenfruitful. Thereis currentlyno
consensuson exactly how or whenan agentshouldreconsiderits
intentions. Currentapproachesto this problemsimply dictatethe
commitmentlevel of theagent,rangingfrom cautious(agentsthat
reconsidertheir intentionsat every possibleopportunity) to bold
(agentsthat do not reconsideruntil they have fully executedtheir
currentplan).Kinny andGeorgeff investigatedtheeffectivenessof
thesetwo policiesin several typesof environments[6]; this work
hasbeenextendedby otherresearchers[12]. However, in all previ-
ouswork, theintentionreconsiderationpolicy is selectedat design
time, and hardwiredinto the agent. Thereis no opportunityfor
modifying the policy at run time. This is clearly not a practical
solutionfor agentsthatmustoperatein dynamicandopenenviron-
ments.
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In this paper, we proposeto let anagentchoosefor itself which
policy to adoptdependingon thecurrentstateof theenvironment.
To this end,we adoptameta-level decisiontheoretic approach: in-
steadof figuring out what to decide,theagentmustknow how to
decide.Thekey ideais thatanintentionreconsiderationpolicy can
beseenasa kind of meta-level control(cf. [16]), which selectsbe-
tweendeliberatingandacting. In this frameof reference,relevant
researchhasbeencarriedoutbyRussellandWefald[11] ontherole
of meta-reasoningin a decision-theoreticreasoningmodel. Their
modelaimsto control reasoningby makinganexplicit choicebe-
tweenactionandcomputation.In this paper, we adaptandapply
RussellandWefald’smodelto theproblemof intentionreconsider-
ationin BDI agents.Theaimis to developarigorousframework for
intentionreconsideration,thatcanbeappliedandusedby agentsin
practicalcircumstances.Meta-level reasoninghasof coursebeen
a major topic of researchin AI for sometime, (seee.g.,[7]), but
to the bestof our knowledge,we are the first to apply a theoret-
ical modelof meta-reasoningandmeta-controlto the problemof
optimalintentionreconsideration.

Theremainderof thispaperis structuredasfollows. Thefollow-
ing subsectionprovides somebasicbackgroundinformation and
introducesthetwo models— theBDI architectureandRusselland
Wefald’smodelof decision-theoreticmeta-reasoning— uponwhich
ourframeworkbuilds. Section2 formalisesthesemodels,andshows
how intentionreconsiderationcanbeunderstoodthroughthemedium
of RussellandWefald’smodel.Wethenshow how theanalysiswe
develop can be appliedto the TILEWORLD domain [9]. In sec-
tion 3, we presentanempiricalevaluationof our framework in the
TILEWORLD domain,in section4 we discussrelatedwork andfi-
nally, in section5 we presentsomeconclusionsanddiscusspossi-
ble futurework.

Background
Ideally, an autonomousagentreasonsabout its decisionmaking
processandchoosesa decisionmechanismin accordancewith the
current stateof the environment. If the agenthas boundedre-
sources,then thesereasoningprocessesmust be carriedout effi-
ciently. Theseare the long term goalsof the researchdescribed
in this paper: we want an agentthat is flexible andautonomous
with respectto openandunpredictableenvironments. Therefore
we mustfirst of all acknowledgethe fact that thebehaviour of the
agentmight in somecasesnot be optimal in the broadestsense:
optimality mustbe consideredwith respectto the constraintsthat
an environmentputsuponthe agent. In this way, optimality is a
trade-off betweenthecapabilitiesof theagentandthestructureof
the environment. The characteristicsof this trade-off have been
empiricallyinvestigatedin [6] and[12].

A popularapproachto autonomousagentdesignis the belief-



Algorithm: BDI Agent Control Loop
1.
2. B � B� ;
3. I � I � ;
4. ��� null;
5. while (true) do
6. get next percept � ;
7. update B on the basis of � ;
8. if (reconsider� B � I 	 ) then
9. D � options� B � I 	 ;
10. I � filter � B � D � I 	 ;
11. if (not sound�
��� I � B	�	 then
12. �
� plan� B � I 	 ;
13. end-if
14. end-if
15. if (not empty����	�	 then
16. ��� hd����	 ;
17. execute����	 ;
18. ��� tail �
��	 ;
19. end-if
20. end-while

Figure 1: The abstract BDI agent control loop. The loop con-
sistsof continuousobservation, deliberation, planning and ex-
ecution. To perform optimally, the reconsider��������� function de-
cideswhether deliberation and planning is necessary.

desire-intention(BDI) modelof agency. Thecontrol loop of a BDI

agentis shown in figure1, which is basedon theBDI agentcontrol
loop presentedin [10] and[15, p38]. Theideais thatanagenthas
beliefsB aboutthe world, intentionsI to achieve anda plan � to
achieve intentions.In lines2–4,thebeliefs,intentionsandplanare
initialised. The main control loop is then in lines 5–20. In lines
6–7,theagentperceivesandupdatesits beliefs;in line 8, it decides
whetherto reconsideror not; in lines9–13theagentdeliberates,by
generatingnew optionsanddeliberatingover these;in line 12, the
agentgeneratesa planfor achieving its intentions;andin lines15–
18 anactionof thecurrentplan is executed.Becausethepurpose
of the functionsusedin this loop canbeeasilyderived from their
names,weomit theactualformalisationsherefor reasonsof space,
but directthereaderto [15, ch2].

It is necessaryfor a BDI agentto reconsiderits intentionsfrom
time to time. Oneof the key propertiesof intentionsis that they
enablethe agentto be goal-driven rather than event-driven, i.e.,
by committingto intentionstheagentcanpursuelong-termgoals.
But whencircumstanceshave changedand,for example,aninten-
tion cannotbeachievedanymore,theagentwould do well to drop
that intention. Similarly, whenopportunitiesarisethat enablein-
tentionsthat theagentcurrentlyhasnot adopted,theagentshould
reconsider. However, becausereconsiderationis itself apotentially
costlycomputationalprocess,onewould not want theagentto re-
considerits intentionsat every possiblemoment,but merelywhen
it is necessaryto reconsider, i.e., when,after reconsideration,the
setof intentionshaschanged.Thepurposeof the reconsider���������
functionasshown in figure1 is preciselythis: to deliberatewhenit
paysoff to deliberate,(i.e.,whendeliberationwill leadto achange
in intentions),andotherwisenot to deliberate,but to act.

This givesus insight into the desiredbehaviour of an intention
reconsiderationpolicy, but it doesnotsayhow to implementit. Our
framework, whichweintroducein thenext section,is to beusedfor
this implementation.This modelis basedon thedecisiontheoretic
modelof RussellandWefald that we discussin the remainderof

this section.
In [11], RussellandWefalddescribehow anagentshouldsched-

ule deliberationand action to achieve efficient behaviour. Their
framework is known asdiscretedeliberation scheduling1. Thekey
ideais thatdeliberationsare treatedasif they were actions. Deci-
sion theorygivesus variousmodelsof how to determinethe best
possibleaction,of which the maximumexpectedutility model is
perhapsthebestknown. Viewing deliberationsasactionsallowsus
to computetheutility of adeliberationaction,andsomakesit pos-
sibleto applytheexpectedutility modelasthemeta-level reasoning
componentover all possibleactionsanddeliberations.However, it
is notdifficult to seethatthis canbecomputationallyhard.Russell
and Wefald proposethe following strategy in order to overcome
this problem. Assumethat at any momentin time the agenthas
somedefault actionit canperform. The agentcaneitherexecute
this actionor deliberate,wheredeliberationcanleadto a betterac-
tion thanthe currentdefault action. Their control algorithmthen
statesthataslongasthereexist deliberationswith a positive value,
performthedeliberationwith thehighestvalue;otherwise,execute
thedefault action.

Thispaperdiscussestheintegrationof thedecisiontheoreticmodel
for deliberationschedulingfrom RussellandWefald andthe BDI

agentarchitecture.In the sectionto follow we lay out the initial
formalisationof themodel.

2. THE FORMAL MODEL
In this section,we presentour formal model. We introduceall
necessarybasicelements,presentthecontrolalgorithmwhichuses
theseelements,andsuggestsomeadditionalassumptionsrequired
to make thealgorithmcomputationallyattractive. Finally, weshow
how themodelcanbeappliedto anexamplescenario— theTILE-
WORLD — which illustratesthe theory and which serves as the
applicationdomainfor our experiments.

Themostimportantissueweareconcernedwith relatesto theset
of availableactionsA of theagent:wedistinguishbetweenexternal
actionsAext  �

a ! a"#! a" "�!$�$���%� , affecting theagent’s environment,
andinternal actionsAint  �

d ! d" !$�����%� , affectingtheinternalstate
of the agent. We let A  Aext & Aint andassumeAint ' Aext  )( .
Weassumetheagent’senvironment,(i.e.,everythingexternalto the
agent),maybein any of a setE  �

e! e"�! e" "�!$�$���%� of environment
states.We let utility bedefinedover environmentstates:Ue * E +
IR. If the agentusesmaximumexpectedutility theory (MEU) as
a decisionstrategy, it choosesanactionameu , Aext for which the
utility of theoutcomestateis maximal:

ameu  .-�/1032�-54
a 6 Aext

7
e 6 E

P � e 8 a� Ue � e� (1)

whereP � e 8 a� denotestheprobability of statee occurring,given
thattheagentchoosesto performexternalactiona.

However intuitive this notionof decisionmakingis, many prob-
lemsarisewhenMEU is usedin therealworld. It assumesUe � E � is
known beforedeciding,thatenoughtimeis availableto obtainameu,
andit doesnot extendto sequentialdecisionmaking. Russelland
Wefald offer an alternative [11]. The ideaunderlyingtheir model
is thattheagentchoosesbetween:(1) adefaultexternalactionadef,
and(2) aninternalactionfrom thesetof internalactions— at any
moment,the agentselectsan action from

�
adef ! d ! d"#!$���$�%� . The

only purposeof an internalactionis to revise the default external
9
Thiscontrastswith thecontinuousdeliberationschedulingframe-

work, whichis thetermmainlyusedto coverwork suchasanytime
algorithms(seee.g.[1]).



action, presumablyto a betterone. This algorithm doesnot en-
surean: optimal choice,but computationallyit canbe a lot more
attractive thanMEU. To choosebetweenactions,we needto repre-
sentthepreferencesfor thoseactions,which we do via a function
Ua * A + IR, which representsthe net valueof an action(either
externalor internal). Note thatnow we have two kindsof utilities
in the model: for environmentstatesandfor actionsrespectively.
We relatetheseby letting theutility of anactiona betheweighted
sumof theenvironmentstatestheactionmayleadto:

Ua � a�  
7
e6 E

P � e 8 a� Ue � e� (2)

whereP � e 8 a� is theprobabilityof outcomee giventhattheagent
choosesto performexternalactiona, andUe � e� is theutility of e.

Now, thebestpossibleinternalactionfor theagentto undertake,
referredtoastheoptimaldeliberation, is thedeliberationwith max-
imumutility:

dopt  .-�/10;2�-�4
d 6 Aint

Ua � d �%� (3)

RussellandWefald’sdecisioncontrolalgorithm(DCA) thenletsthe
agentdeliberatewhenthereexistsadeliberationwith apositive net
value,andactwhenthis is not thecase.

While DCA reducesthesearchspaceof actionsto deliberateover
(it limits theactionsfor whichutilities mustbecomputedto thede-
faultaction),it is still notapplicablein real-time,becausethecom-
putationof dopt is generallyvery costly(seee.g.,[14]). We arenot
soconcernedwith this intractabilityhere,sincewe only considera
singleinternalaction:thedeliberationthatleadsto new intentions.
Thekey is to determinetheutility of this actionasopposedto the
externalactionsavailableto theagent.

In orderto representthe behaviour of the environment,we use
anexternalstatetransitionfunction, < * E = A >3+ E, whichmaps
a stateof theenvironmentanda sequenceof actionsto somenew
environmentstate. Notice that the environmentis hereimplicitly
assumedto bedeterministic.

Thusfar, we havepresentedRussellandWefald’sdecisionalgo-
rithm andthe BDI agentarchitecture.We now formaliseRussell
andWefald’smodelof meta-reasoningandshow thatit canbeused
for implementingthe reconsider���5�$��� function in BDI: we show
how to computetheutility of externalandinternalactions,explain
how to estimatethe utilities of internalactionsand thenconcern
ourselveswith representingtemporalconstraintson theutilities of
internalactions.

First, we redefinethe notion of MEU usingthesericher seman-
tics. An agentchoosesthe optimal external action — the action
thatmaximisesexpectedutility:

E � Ue �?<@� enow !$A aB
�C�C�  
7
ei 6 E

P � ei � Ue �?<@� ei !�A aB
�C� (4)

whereenow ! ei , E anda , Aext; <@� enow !�A aB
� is theresultof exe-
cutingactiona in thecurrentenvironmentstate;P � ei � is theprob-
ability thatthecurrentenvironmentstateis ei ; and<D� ei !5A aB
� is the
resultof executingactiona in environmentstateei . Note that this
definition takesonly externalactionsinto account.We definethe
valueof an internalaction initially as the differencebetweenthe
utility of executingthedefault actionadef andaninternalactiond:

Ua � d �  Ue �?<@� enow !$A d E ad B
�C�GF Ue �?<@� enow !�A adef B
�C� (5)

wheread , Aext denotesthe externalactionresultingfrom d and
<@� enow !�A d E ad B
� is theenvironmentstateresultingfrom first execut-
ing d andthenexecutingad. Note the following two assumptions
in thisdefinition:d immediatelyresultsin anexternalactionad and
executingd doesnot costanything computationally. The first as-
sumptionexcludesseriesof internalactions: it might be the case
thatd will not resultimmediatelyin anexternalaction.Russelland
Wefald referto aninternalactionthatimmediatelyresultsin anex-
ternalactionasa completecomputation, andto onethat doesnot
necessarilydo soasa partial computation2 — thesetof complete
computationsis asubsetof thesetof partialcomputations.In [11],
the emphasisis mainly on completecomputations.Here too, we
areonly concernedwith completecomputationsandleave the is-
sueof partial computationsasan interestingtheoreticalextension
of theframework for furtherwork.

Theequationspresentedsofar assumethattheagenthasimme-
diateaccessto its utility function. In reality, however, this is hardly
thecasefor peoplewhenthey makedecisions.Instead,they haveto
estimateutilities of environmentstatesbeforedecidingandindeed
sowill our agentneedto estimateits utilities. In theequationswe
replacetheutility U by autility estimateHUeI , whereJ , A > is ase-
quenceof actions.Then HUeI denotestheestimationof astateutility
afterexecutingthespecifiedcourseof action J . Consequently, we
replacethevalueof anactionUa by theestimatevalue HUa. In this
way, equation(5) becomes:

HUa � d �  HUe K SL dM �?<@� enow !�A dB
�C�
F HUe K SL dM �?<D� enow !�A adefB
�C� (6)

where ASE dB denotesa sequenceof computationsS followed by
computationd, and HUe K SL dM � E � denotesthe utility estimateof the
environmentstatebasedon ASE dB — in theequationresultingfrom
executingd or adef respectively.

Now, estimatesareby default randomat initialisation, i.e., be-
fore d is executed.In orderto beableto utilise knowledgeof, for
example,statisticalknowledgeof the distribution of HUa from past
situations,weneedto usetheexpectationsof theseestimates.Con-
sequently, we replace(6) by:

E �NHUa � d �C�  E �NHUeK SL dM �?<@� enow !5A dB
�C�
FOHUe K SL dM �?<@� enow !�A adefB
�C�C�%� (7)

RussellandWefaldshow thatthevalueof E �NHUa � d �C� dependsonthe
probability distribution for futureutility estimatesfor externalac-
tions.After d hasbeenexecuted,theagenthasat its disposala joint
distribution for theprobabilitythatexternalactions

�
a ! a"�! a" "�!��$�$�%�

obtainnew utility estimates
�
u ! u" ! u" " !$�$�$��� , respectively. Thenthe

externalaction resultingfrom d is the action with corresponding
maximumestimatedutility, weightedby the probability distribu-
tion for this action. The utility of the currentbestexternalaction
— thedefaultaction— is theestimatedutility of it, weightedby its
probabilitydistribution— thatis, theprojectionof thejoint proba-
bility distributionfor thisparticularaction.For theformalisationof
this, we direct the interestedreaderto RussellandWefald’s paper
[11].

Until now, wehave not takeninto accountthefactthatouragent
is situatedin a real-timeenvironment. We representthis depen-
denceby a cost of time: we distinguishbetweenintrinsic utility
P
In section4 we refer to the fact that our work is closelyrelated

to theresearchof Markov DecisionProcesses(MDP’s) [2]: we can
relatecompleteandpartialcomputationsasusedhereto finite and
infinite horizonsin MDP’s.



HUI � E � — a time-independentutility, andtotal utility — theintrin-
sic utilityQ correctedwith a temporaldiscountfactor. Until now we
have beenonly concernedwith theintrinsicutility. A costfunction
C * Aint + IRdenotesthedifferencebetweentheintrinsicandtotal
utility. Assumingtheexistenceof someimplementationof C, the
estimatedutility of anactionad aftersomeinternalactiond is then

HUe �?<D� enow !�A d E ad B
�C�  HUI �?<@� enow !$A ad B
�C�GF C � d � (8)

which expressesthattheutility of c is its intrinsic utility minusthe
cost of performingd; this thus correspondswith the total utility
of ad. Internal actionsonly affect the agent’s internal stateand
thereforeC � d � only dependson its own length 8 d 8 . A function
TC * IR + IR thenexpressesthe time costof an internalaction,
takingasinput thelengthof anactionandoutputtingthetime cost
of it. Then(8) canberewritten as

HUe �?<D� enow !$A d E ad B
�C�  HUI �?<@� enow !�A ad B��C�RF TC �18 d 8 �%� (9)

Intuitively, we candefinethe valueof an internalactiond as the
differencebetweenthebenefit— theutility of theexternalactionad

asresultingfrom d — minusits cost— thetimeit takesto perform
d. RussellandWefaldshow thiscanbeformalisedby rewriting (9)
asfollows:

HUa � d �  DS � d �GF TC �18 d 8 �%! (10)

where S � d � expressestheestimatedbenefitof d:

S � d �  HUI K SL d M �?<@� enow !$A ad B
�C�
F HUI K SL d M �?<@� enow !�A adefB��C�%�

Is is clear that in this model it is still not feasiblein practiceto
assessthe expectedvalue of all continuationsof a computation,
becausecomputationscan be arbitrarily long. Russelland We-
fald make two simplifying myopic assumptions,through which
somemajordifficultiesconcerningthetractabilityof themodelare
avoided.Thefirst assumptionis thatthealgorithmsusedaremeta-
greedy, in that they considersingleprimitive steps,estimatetheir
ultimateeffect andchoosethe stepappearingto have the highest
immediatebenefit. The secondassumptionis the single-stepas-
sumption: acomputationvalueasacompletecomputationis ause-
ful approximationto its true valueasa possiblypartial computa-
tion.

Having now definedboth the BDI modelanddiscretedelibera-
tion scheduling,we discusshow themodelscanbeintegrated.The
agent’scontrolloopof our framework is theBDI agentcontrolloop
asshown in figure 1. As mentionedabove, integratingthe frame-
works comesdown to implementingthe reconsider���5�$��� function
in this control loop. This implementationis shown in figure2; it is
basedonRussellandWefald’smeta-reasoningmodel.Thefunction
computeUtility���$����� computestheestimatedutility of deliberation,
by applyingequations(7) to (10). Theargumentof this functionis
theagent’s setof beliefs.Thesebeliefstypically includethevalues
of thenecessarydistributionsfor computingtheestimates,e.g.,the
dynamismof theenvironment.

Becausewe usethe BDI model,we treatdeliberationon a very
abstractlevel: we merelyrecognisedeliberationasa way to alter
thesetof intentions.Therefore,weareonlyconcernedwith asingle
internalaction: deliberationitself. The reconsider�����$�%� function
then decideswhetherto deliberate(indicatedby reconsider���������
evaluatingto “true”), or act (reconsider�����$�1� evaluatesto “f alse”).

Function: boolean reconsider� B � I 	
1.
2. get current plan � from I;
3. adef �T�VU W�X ;
4.
5. Ua � adef 	��)Y e 6 E P � e Z adef	 Ue � e	 ;
6. [Ua � d 	\� computeUtility� B	 ;
7.
8. if ( ��[Ua � d 	�] Ua � adef 	 ) > 0) then
9. return true;
10. end-if
11. return false;

Figure2: The reconsider�����$��� function in the BDI agentcontrol
loop. It computesandcomparesthe utilities of acting and delib-
erating, and decides,basedon the outcomeof this comparison,
whether to deliberateor not.

We canregardchoosingto actasthedefault actionadef andchoos-
ing to deliberateas the single internalaction. It is clear that this
relatesRussellandWefald’s modelto the BDI model. We areleft
with two questions:whatshouldthedefault actionadef beandhow
dowe computetheutilities of choosingto deliberateversuschoos-
ing to act?Wedealwith thesequestionssubsequently.

Let ^ be the setof all plans. A plan is a recipefor achieving
an intention; � , ^ representsa plan, consistingof actions �_A `5B
through�_A nB , where�aA i B , Aext andn denotesthelengthof theplan.
The agent’s means-endsreasoningis representedby the function
plan *cb � B�d= b � I �e+f^ , usedon line 12 in figure 1. At any
momentin time, we let the default actionadef be �aA `�B , wherethe
computationof theutility of adef is donethroughequation(4). This
answersthefirst question.

Thecomputationof theutility of deliberationis doneusingRus-
sell and Wefald’s model: we estimatethe utility of deliberation,
basedondistributionswhichdeterminehow theenvironmentchanges.
Thesedistributionsarenecessaryknowledgebecausetheoptimal-
ity of intentionreconsiderationdependsonlyoneventsthathappen
in theenvironment.For now, weassumethattheagentknows these
distributionsandthat they arestatic (they do not changethrough-
out the existenceof the environment)andquantitative. (Because
theseassumptionsmaybeconsideredvery demanding,we explain
in section5 how weplanto adjustourmodelin futurework to drop
them.) Usingthesedistributionsandequation(6), we estimatethe
utility of deliberationas the differencebetweenthe utility of the
outcomeof thedeliberation(i.e., a revised �_A `�B ), andadef (i.e., the
current �aA `5B ). Situatedin a real-timeenvironment,the agentwill
discounttheestimatedutility of deliberation,basedonthelengthof
deliberating,usingequation(10). The decisioncontrol algorithm
DCA thenprescribesto deliberateandexecutethe revised �_A `�B if
this estimateis positive, andto act— executethecurrent �aA `�B —
otherwise.

Thisresultsin ametalevel controlfunctionreconsider�������1� which
enablestheagentatany timeto computetheutility of �_A `�B andalso
to estimatetheutility of deliberatingover its intentions,andthen,
accordingto theseutilities, acts(by executing �_A `5B ) or deliberates
(by reconsideringits intentions).Next, weillustratethetheorywith
a simpleexemplarscenario.

The Tileworld
Our exemplardomainis a simplified TILEWORLD [9], which in-
volves a grid environmenton which thereare agentsand holes.



Function: boolean reconsider� B � I 	
1.
2. get distIH from B;
3. get avedist from B;
4. get newholes from B;
5. get current plan � from I;
6. adef �T�\U W�X ;
7.
8. Ua � adef 	�� n � distIH 	 ;
9. [Ua � d 	\� n � avedist g newholes 	 ;
10.
11. if ( ��[Ua � d 	�] Ua � adef 	 ) > 0) then
12. return true;
13. end-if
14. return false;

Figure3: The reconsider��������� function for the TILEWORLD. De-
liberation is considerednecessarywhenit is expectedthat since
the last deliberation, the curr ent goal has disappeared or that
new goalshave appeared.

Let H representthe setof possibleholes;an environmentstateis
an elementfrom the set E  b � H � with memberse! e" ! e" " !$�$�$� .
An agentcan move up, down, left, right and diagonally. Holes
have to be visited by the agentin order for it to gain rewards.
The TILEWORLD startsin somerandomlygeneratedworld state
andchangesover time with the appearanceanddisappearanceof
holesaccordingto somefixeddistributions— thusH changesover
time. The agentmovesaboutthe grid onestepat a time. We let
Aext  �

noop! ne! e! se! s! sw! w ! nw! n� , whereeachactiondenotes
thedirectionto move next andthenoopis a null action,by execut-
ing whichtheagentstaysstill. Theagent’sonly internalactionis to
deliberate,thusAint  �

d � . At any giventime, if holesexist in the
world, anagenthasasingleintendedholeIH— theholeit is head-
ing for — over which it is deliberating.If no holesexist, theagent
staysstill. Let disth denotethe distancebetweenthe agentand
holeh , H. Thenmindist  h2�ikj � disth 8 h , H � denotesthe
distanceto the hole closestto the agent. The agent’s deliberation
functiond selectsIH, basedonmindist; themeans-endsreason-
ing function plan selectsa plan � to get from the agent’s current
location to IH. For example,if the agentis currently at location
��lN!�`m� andIH is at ��no!�po� , then �  A sE sE swB . Weassumethatd and
plan areoptimal, in thatd selectstheclosestholeandplan selects
thefastestroute.

Accordingto our model,theagentmustat any time choosebe-
tweenexecutingaction �aA `�B anddeliberating.Basedon the utili-
tiesof theseactions,thereconsider�����$��� functiondecideswhether
to act or to deliberate.Let the utility of an environmentstatebe
the inverseof the distancefrom the agentto its intendedhole,
n � distIH � , wheren is anorder-reversingmapping3. Equation(2)
thendefinestheutility of anexternalaction.While in this domain,
theutility of anexternalactionis immediatelyknown, theutility of
internalactionsis not immediatelyknown, andmustbeestimated.
In accordancewith our model, we use pre-defineddistributions
here:theutility of aninternalactionis estimatedusingknowledge
of thedistribution of the appearanceanddisappearanceof holes4.
q
TheTILEWORLD is adomainin which it is easierto expresscosts

(in termsof distances)ratherthanutilities. With anorder-reversing
mappingfrom coststo utilities, we can continueto useutilities,
which fits ourmodelbetter.r
Note thatwe do not let theagentknow whenor whereholesap-

Parameter Value/Range
world dimension 20
holescore 10
holelife-expectancy [240,960]
holegestationtime [60,240]
dynamism( s ) (1,80)
accessibility 20
determinism 100
numberof time-steps 15,000
numberof trials 25
planningcost(p) 0, 1, 2, or 4

Table 1: Overview of the experimentparameters

Thereasonfor this is thattheappearanceandthedisappearanceof
holesareeventsthat causetheagentto changeits intentions.For
example,whenthesetof holesH doesnot changewhile executing
aplan,thereis noneedto deliberate;but whenH doeschange,this
might meanthatIH hasdisappearedor that a closerhole hasap-
peared:reconsiderationis necessary. Let avedist betheaverage
distancefrom theagentto every locationon thegrid; this is a triv-
ial computation.Let newholes betheestimatednumberof holes
thathave appearedsincethelastdeliberation;this is calculatedus-
ing thedynamismof theworld andthegestationperiodof holes—
thegestationperiodis theelapsedtimein betweentwo successively
appearingholes.We deemavedist t newholes anappropriate
estimatefor theutility of deliberation.

The reconsider��������� function for TILEWORLD agentsis shown
in figure3. We let thebelief setof theagentat leastconsistof

B  �
distIH ! avedist ! newholes �

andlet theintentionsetbe

I  �
IH �N�

Thereconsider��������� functioncomputestheutility of executing�aA `5B
andestimatestheutility of deliberating:if

distIH u avedist

newholes

theagentacts,andif not, it deliberates.
As mentionedabove, this doesnot guaranteeoptimalbehaviour,

but it enablestheagentto determineits commitmentto a planau-
tonomously. We empirically evaluateour framework in the next
section,anddemonstrateanagentusingsuchanintentionreconsid-
erationschemeperformsbetterthanwhena level of commitment
is hardwiredinto theagent.

3. EXPERIMENT AL RESULTS
In thissectionwepresentaseriesof simulationsin whichweutilise
a TILEWORLD environment— asdescribedabove — inhabitedby
a singleagent.Theexperimentsarebasedon themethodologyde-
scribedin [12]. (We repeatedtheexperimentsdescribedin [12] to
ensurethat our resultswereconsistent;theseexperimentsyielded
identicalresults,whichareomittedherefor reasonsof space.)

In [12], theperformanceof a rangeof intentionreconsideration
policies were investigatedin environmentsof different structure.

pear, we merelygive it somemeasureof how fasttheenvironment
changes.



Becausewe usesimilar experimentalparametershere,we briefly
summarisev theparametersof the [12] experiments.Environments
werevaried to the degreeof dynamism, denotedby s — the rate
of changeof the environmentindependentof the activities of the
agent,accessibility— the extent to which an agenthasaccessto
the stateof the environment, and determinism— the degree of
predictabilityof thesystembehaviour for identicalsysteminputs.
Here,we assumetheenvironmentis fully accessibleanddetermin-
istic. With respectto agentproperties,theplanningcostp andre-
consideration strategy werevaried. The planningcost represents
the time costof planning,i.e., the numberof time-stepsrequired
to form a plan, and took values0, 1, 2 and4. Two reconsidera-
tion strategieswereinvestigated:a bold agentnever replanswhile
executinga plan, anda cautiousagentreplansevery time before
executinganaction.For theseexperiments,we introduceanadap-
tive agent,which figuresout for itself how committedto its plans
it shouldbe. Thedecisionmechanismof this agentis basedon the
theoryasdescribedin section2.

Wemeasuredthreedependentvariables:theeffectivenessw of an
agentis the ratio of the actualscoreachieved by the agentto the
scorethatcould in principlehave beenachieved;commitmentx is
expressedashow many actionsof a plan areexecutedbeforethe
agentreplans5; the costof acting c is the total numberof actions
theagentexecutes6.

In table1 we summarisethevaluesof theexperimentalparam-
eters( A x ! yB denotesa uniform distribution from x to y and � x ! y�
denotestherangefrom x to y).

Results
Theexperimentsfor dynamismresultedin thegraphsshown in fig-
ure4. In figure5.awe plottedcommitmentx of anadaptive agent,
varyingdynamism,with a planningcostp of 0, 1, 2 and4, respec-
tively7. Thecommitmentof acautiousandboldagentareof course
constantly0 and1 respectively. In figure5.b,thecostof actingc is
plottedfor thethreeagentsfor p  zy . Thecostof actingrepresents
the numberof time stepsthat the agentperformedan action. We
refer to a plot of effectivenessw asin figure 4 asan effectiveness
curve. We continuethissectionwith ananalysisof theseresults.

Analysis
For the bold andcautiousagent,we obtainedthe sameresultsas
from the seriesof experimentsasdescribedin [12]. Whenplan-
ning is free (p  ` ) as in graph4.a, it wasshown in the experi-
mentsin [12] thata bold agentoutperformsa cautiousagent.This
out-performancewas,however, negligible in a very dynamicen-
vironment. In theseexperiments,it is very clear that in a static
world (wheredynamismis low), a bold agentindeedoutperforms
a cautiousagent.But from somepoint onwards(dynamismis ap-
proximately28), a cautiousagentoutperformsa bold one. This
observationagreeswith thenaturalintuition thatit is betterto stick
{
Commitmentfor aplan � with lengthn is � k F|n5�Ct}� n F|n5� , where

k is the numberof executedactions. Observe that commitment
definesa spectrumfrom a cautiousagent( x  ` , becausek  n )
to a bold one( x  n , becausek  n).~
Whereascostof actingcaneasilybefactoredinto theagent’s ef-

fectiveness,we decidedto measureit separatelyin orderto main-
tain clearcomparabilitywith previousresults.�
The collecteddatawas smoothedusinga Bezier curve in order

to get thesecommitmentgraphs,becausethe commitmentdata
showedheavy variationresultingfrom thewaydynamismis imple-
mented.Dynamismrepresentstheactingratio betweentheworld
andtheagent;this ratio oscillateswith therandomdistribution for
hole appearances,on which the adaptive agentbasesits commit-
ment.

with a planaslongaspossibleif theenvironmentis not very likely
to changemuch,andto dropit quickly if theenvironmentchanges
frequently. More importantly, when planning is free, the adap-
tive agentoutperformsthe other two agents,independentof the
dynamismof the world. This meansthat adaptive agentsindeed
outsmartbold andcautiousagentswhenplanningis free.

As planning cost increases,the adaptive agent’s effectiveness
getsvery closeto the bold agent’s effectiveness.However, there
is moreto this: whenwe take the costof actinginto account,we
observethattheadaptiveagent’sactingcostis muchlower. Consid-
eringthesecosts,we cansafelystatethattheadaptive agentkeeps
outperformingtheboldagent.Whenplanningis expensive (p  zy )
as in graph4.d, the cautiousagentsuffers the most from this in-
creasein planningcost. This is becauseit only executesonestep
of its currentplanandafterthat,it immediatelyplansagain.It thus
constructsplansthe most often of our typesof agents. We also
observe thattheboldagentandadaptive agentachieve asimilaref-
fectiveness.But again,asshown in 4.d,theadaptive agent’s acting
costsaremuchlower.

We includedthe level of commitmentfor an adaptive agent,as
shown in figure4.d, to demonstratehow commitmentis relatedto
thedynamismof theworld. Someinterestingobservationscanbe
madehere. Firstly, we seethat planningcost hasa negative in-
fluenceon commitment— as planningcost increases,the level
of commitmentdecreases.The reasonfor this is that the costof
planningis the time it takesto plan; asthis valueincreases,more
eventscantake placein theworld duringtheplanningperiod,and
it becomesmoreattractive to replanearlierratherthanlater. Sec-
ondly, we seethatif dynamismincreases,thelevel of commitment
decreases.This canbe easilyexplainedfrom the intuition, asde-
scribedabove, that in a very fast changingworld, it is better to
reconsidermoreoftenin orderto beeffective.

4. RELATED WORK
Thenotionof commitmenthasbeenwidely studiedin theagentlit-
erature.Two differentfieldsof researchcanbeeasilydistinguished:
asingleagentandmulti agentcase.In bothfields,only recentlyin-
vestigationhasbeeninitiated on run-timedecisionmaking. Until
now, themajority of previous work presupposedtheproblemasa
design-timeone. Whereasin the singleagentfield, commitment
is mostly referredto asa deliberation andaction trade-off, in the
multi agentfield it is a “pledge” to undertake a specifiedcourseof
action(from [4]) and,obviously, morerelatedto thesocialproperty
of agents.

Our work originatesin the researchon the role of intentionsin
the deliberationprocessof practicalreasoningagents,which was
initiated by Bratmanet al. [3]. Sincethen, Pollack hasinvesti-
gatedthe issueof commitmentin singlepracticalreasoningagent
systemsby meansof overloadingintentions[8]. The ideabehind
overloadingis closely relatedto the filter overridemechanismin
theinitial BDI agentmodelasdescribedin [3]: theagentmakesuse
of opportunitiesthat arisein the world, basedon the intentionsit
hasalreadyadopted.This researchis morefocusedon theoptimal
usageof thecurrentsetof intentions,ratherthantheactualprocess
of deliberatingover intentions.

More recently, Velosoet al. [13] useda rationalebasedmoni-
toring (RBM) methodto controlof reasoningin intentionalsystems.
The ideabehindRBM is thatplandependentfeaturesof theworld
are monitoredduring plan execution; if a featurechangesvalue,
this is reasonto replan. It must be notedherethat the determi-
nationof suchmonitorsis a very domain-dependenttaskandthis
mighthinderthewayto amoregeneraldomain-independenttheory
of controlof reasoning.
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Figure4: Performanceof a cautious,bold and adaptiveagent.Effectivenessis measuredasa resultof a varying degreeof dynamism
of the world. The four panelsrepresentthe effectivenessat differ ent planning costs(denotedby p), ranging fr om 0 to 4.

Finally, researchon Partially ObservableMarkov DecisionPro-
cesses(POMDP’s) by Kaelbling et al. [5] is relevant to our work,
sinceit offersaformalframework whichcanbeusedin conjunction
with our modelin orderto generaliseit to a moreinclusive model,
applicableto a wider rangeof decisionproblems.

5. DISCUSSION
In this paperwe presenteda preliminary formal model for BDI

agentsthat areableto determinetheir own intentionreconsidera-
tion strategybasedonfuturegoalsandarisingopportunities.By ap-
plying themodelin asimpleTILEWORLD scenario,wehaveshown
thatanagentusingthemodelyieldsbetterresultsthanagentswith
fixedstrategies.Thisempiricalevaluationdemonstratesthebenefit
of flexibility in reasoningfor agentssituatedin dynamicandopen
environments.

While theBDI modelenablestheagentto direct its futuredelib-
erationsandactionsby adoptingcertainintentions,it is crucial for
the agentto determinefor itself how committedit is to thesein-
tentions.This hasto bedoneautonomously, becausecommitment
changesdependingon how the environmentchanges.Our agent
choosesalevel of commitmentaccordingto thecurrentstateof the
environment,andbasesthis choiceon estimatesfrom distributions
of how the environmentchanges.An exampleof sucha distribu-
tion in the TILEWORLD is the frequency with which holesappear

anddisappearduringtheexistenceof theworld. Currently, thesys-
tem is limited in the way that thesedistributionsaregiven to the
agentandthey areassumedto bestatic. Futurework will include
researchon theseissues:we proposeresearchin which the agent
obtainsthe distributions itself using reinforcementlearning,and
we have initiated empirical researchwhich will demonstratehow
thelevel commitmentchangesundervariouskindsof distributions.

Theempiricalinvestigationweconductedshowedinterestingre-
sults. Firstly, an agent’s effectivenessincreasesas its reasoning
mechanismis more flexible. Secondly, when the environment’s
rateof changeincreases,the level of commitmentdecreases.This
correspondsto theintuition thatintentionsaremoreliableto recon-
siderationwhentheenvironmentchangesfast. Finally, theexper-
imentsshowed thatasplanningtakeslonger, the level of commit-
mentdecreases.This canbe explainedas follows: whenit takes
longerto plan,theprobabilitythattheenvironmentchangesduring
planningincreases.In orderto copewith this, oneneedsto replan
soonerratherthanlater.

This work is part of researchthat aims to determineefficient
mechanismsfor the control of reasoningin environmentsof dif-
ferentstructure.In future work we hopeto extendthe framework
to cover richerenvironmentsin termsof realismandstructure:we
intendto deliver anagentthat is flexible andautonomouswith re-
spectto openandunpredictableenvironments.
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Figure 5: Commitment for an adaptive agent and Cost of Acting for a cautious,bold and adaptive agent. In (a), the commitment
level is plotted asa function of the dynamismof the world for an adaptive agentwith planning cost(denotedby p) of 0, 1, 2 and 4. In
(b), the costof acting — the number of time stepsthat the agentmoves– is plotted asa function of the dynamism of the world for a
cautious,bold and adaptive agentwith a planning costof 4.
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