Adaptive Task and Resour ce Allocation in
Multi-Ag ent Systems

S. Shaheen Fatima and Michael Wooldridge
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, U.K.

{s.s.fatima, m.j.wooldridge}@csc.liv.ac.uk

ABSTRACT

In this paper, we present an adaptive organizational policy
for multi-agent systems called TRACE. TRACE allows a col-
lection of multi-agent organizations to dynamically allocate
tasks and resources between themselves in order to efficiently
process an incoming stream of task requests. TRACE is in-
tended to cope with environments in which tasks have time
constraints, and environments that are subject to load vari-
ations. TRACE is made up of two key elements: the task al-
location protocol (TAP) and the resource allocation protocol
(rRAP). The TAP allows agents to cooperatively allocate their
tasks to other agents with the capability and opportunity to
successfully carry them out. As requests arrive arbitrarily,
at any instant, some organizations could have surplus re-
sources while others could become overloaded. In order to
minimize the number of lost requests caused by an overload,
the allocation of resources to organizations is changed dy-
namically by the resource allocation protocol (RAP), which
uses ideas from computational market systems to allocate
resources (in the form of problem solving agents) to organi-
zations. We begin by formally defining the task allocation
problem, and show that it is NP-complete, and hence that
centralized solutions to the problem are unlikely to be fea-
sible. We then introduce the task and resource allocation
protocols, focussing on the way in which resources are al-
located by the rRAP. We then present some experimental
results, which show that TRACE exhibits high performance
despite unanticipated changes in the environment.

1. INTRODUCTION

It has long been recognized that the ability of a multi-agent
system to dynamically reorganize its structure and operation
at run-time is highly valuable for many application domains;
see, e.g., [2, 11, 10]. In this paper, we investigate the perfor-
mance of a particular approach to dynamically reallocating
tasks and resources in a multi-agent system. This adap-
tive organizational policy ([1]) is called TRACE (Task and

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

AGENTS 01 May 28-Junel, 2001,Montréal, QuebecCanada.

Copyright 2001ACM 1-58113-326-X/01/0005$5.00

Resource Allocation in a Computational Economy). TRACE
was designed for systems with the following characteristics:

e tasks — problems to be solved — arrive in the system
at unpredictable, random intervals, and so the system
load varies over time;

o tasks are characterized by a type (corresponding to the
skills required by an agent in order to carry the task
out), a duration (the amount of time it takes to carry
the task out), a deadline (the latest time at which the
task can be completed), and a priority (how critical
the task is); and

e agents are heterogeneous, in the sense that different
agents have different capabilities.

The main aim is thus for agents in the system to be able
to schedule tasks on the fly so as to maximize the number
of tasks successfully completed by their deadline. As agents
have different capabilities, it is necessary for agents to co-
operate in order to allocate tasks effectively.

The remainder of this paper is structured as follows. We
begin in the following section by describing and formally
defining the problem that TRACE is intended to solve. We
then investigate its computational complexity, and show that
the underlying problem — multi-agent task scheduling —
is NP-complete, and hence is unlikely to be amenable to
centralized, brute force solutions. In section 3, we present
TRACE in detail. The TRACE algorithm builds upon the pre-
vious work of Fatima et al [9, 8]: the problem of develop-
ing an adaptive organizational policy is divided into task
and resource allocation sub-problems. In TRACE, changes
in load are handled by changing the distribution of knowl-
edge across agents and diverting resources where they are
needed most. This entails dynamic reorganization of the
system: the structure of the system changes over time, with
agents entering and leaving problem solving organizations.
Existing approaches such as agent cloning [4] and the mo-
bile agent paradigm [13] do not allocate resources to tasks
on priority basis. In order to do this, our approach uses
a price-directed micro-economic approach [17, 6, 16, 15] for
resource allocation. TRACE has two components: the task al-
location protocol (TAP) and the resource allocation protocol
(RAP). The TAP takes requests for tasks and the schedules
that agents have, and cooperatively allocates subtasks to
agents within an organization. As requests arrive arbitrar-
ily, at any instant, some organizations could have surplus
resources while others could become overloaded. In order to

minimize the number of lost requests caused by an overload,
the allocation of resources to organizations is changed dy-
namically by the resource allocation protocol (RAP), which
uses ideas from computational market systems to allocate
resources (in the form of problem solving agents) to organi-
zations.

The MAS organization for TRACE is described in section 2.
The task and resource allocation protocols are described in
section 3. The results of simulation are presented in sec-
tion 4, and section 5 gives some conclusions.

2. THE PROBLEM

In this section, we formally define the problem that the
TRACE system is trying to solve, and the structure of the sys-
tem. The basic idea is as follows. We have a multi-agent sys-
tem M, which is structured as a set of k computational or-
ganizations M = {01, ... ,0r}. Each organization is a set of
agents: organizations have no internal structure. Different
organizations contain mutually disjoint sets of agents. We
denote the set of all agents by AG = {a1,...,a;}. The mem-
bers of an organization o € M are denoted by membs(o),
so membs(o) C AG. If M is a multi-agent system, then we
will abuse notation slightly and write membs(M) to denote
the members of M, so membs(M) = |J, ¢, membs(o).

At every time step, agents may be allocated a (possibly
empty) set of tasks to carry out. (We are not concerned here
with where these tasks arise from.) A task 7 is defined as a
quad

7 = (t,dl, dur, prior)

where t is the type of the task, dl € IN is a natural number
corresponding to the deadline of the task, dur € IN is a (non-
zero) natural number denoting the duration of the task, and
finally, prior € IN is a natural number denoting the priority
of the task.

The type of a task corresponds to the type of activity
that the task involves. The idea is that different tasks may
require different kinds of capabilities in order to carry the
task out; different agents have different capabilities, and so
not all agents can carry out all types of tasks. The type of
a task is thus a specification of the capabilities required to
carry out the task.

The deadline of the task corresponds to the latest time at
which the task might usefully be carried out. We model time
via the natural numbers IV, and assume that every agent
uses the same model, and in addition, that every agent has
access to a global system clock. Notice that an alternative
approach would be to specify a quality function for each
task, which indicates the utility of completing the task at
each time point (cf. [3]).

The duration of a task indicates the number of time steps
required to carry out the task. In order to carry out a task,
an agent with the appropriate capability must work on the
task for at least this many consecutive time steps in order
to complete it.

Finally, the priority of a task simply denotes how impor-
tant the task is; the higher the priority, the more important
it is.

Let TY = {t1,...} be the set of all task types, and let

TA=TY xIN x IN x IN

denote the set of all tasks. If 7 € T A is a task, then we de-
note the type of 7 by type(r), the deadline of 7 by dI(7), the
duration of 7 by dur(7), and the priority of 7 by prior(r).

Agents each have a set of capabilities and a schedule. An
agent’s capabilities are a subset of T); we denote the ca-
pabilities of agent a € AG by cap(a), so cap(a) C TY. If
a € AG and 7 € T A, then agent a has the capability to
carry out task 7 iff type(7) € cap(a).

An agent’s schedule defines what tasks the agent is work-
ing on and when it is working on these tasks. Tasks on
an agent’s schedule represent commitments that the agent
has about the future. Formally, a schedule is a function
from time points to tasks; we denote the schedule of agent
a € AG by sched(a), so sched(a) is a (partial) function
sched(a) : IN — T.A. Notice that schedules must satisfy the
following requirement:

Va € AG,Vn € IN, sched(a)(n) = 7 implies type(T) € cap(a).

Thus agents are only allowed to be committed to tasks of
which they are capable.

A schedule is complete if every task that appears in the
schedule is allocated sufficient consecutive time steps to com-
pletely carry out the task, where the number of time steps
required to complete the task is defined by the duration at-
tribute of the task. Notice that an agent cannot process
more than one task at any given time.

Within each organization, member agents are divided into
two classes: permanent agents and marketable agents. Per-
manent agents are agents that are permanently assigned to a
particular organization. In contrast, marketable agents are
agents that may be temporarily re-assigned to another orga-
nization. Intuitively, permanent agents represent the capital
of the organization, whereas marketable agents represent the
labour.

If o € M is an organization, then we denote the perma-
nent agents in o by perm(o), and the marketable agents in o
by mar(o); we require that perm(o) N mar(o) = § and that
perm(o) Umar(o) = membs(0).

Permanent agents in each organization periodically re-
ceive tasks to carry out — we refer to these as requests.
These requests arrive randomly; no agent knows either what
tasks it will receive or when it will receive tasks. The intu-
ition is that these tasks are problems that the agent must
solve. If an agent a cannot solve a task 7 itself (i.e., if either
type(r) & cap(a) or else the schedule of a does not permit
completion of 7 before dl(7)), then a can ask other agents
in its organization to perform the task. These agents are
assumed to be benevolent, so that if they have the capabil-
ity and the opportunity, then they will agree to carry out
the task. However, if no other agent in the organization can
complete the task before dI(7), then the task is decommit-
ted, in which case it reappears in the system at a later date,
with a later deadline. One of the main goals of our work is
to minimize the number of decommitted tasks.

The system is assumed to proceed in a series of rounds,
where at every round, an agent may receive tasks to process,
and needs to decide how to process them. The agent may
communicate with other agents at this stage, if required.
After deliberation, the agents are required to update their
internal schedule, and in particular, to come to a decision
about what task to work on for that round (they cannot sub-
sequently backtrack from the decision about what to work

on for that round, although they are allowed to modify their
later schedule).

If an organization finds that it has tasks than it cannot
process, then it can buy labour from other organizations in
order to subsequently process tasks. This labour comes in
the form of the marketable agents — permanent agents are
not permitted to work for other organizations. Labour is
purchased for a single round. In order to purchase labour,
each permanent agent a is given a fund F, € IR, which is
renewed at every round.

Complexity

It is worth noting that the task scheduling problem TRACE
is attempting to solve is computationally hard; in fact, we
can show that the problem of determining whether or not
it is possible to allocate a collection of tasks to a group of
agents such that all tasks are guaranteed to be completed
is Np-complete. Consider a multi-agent system as specified
above, and consider an allocation of tasks to agents; recall
that every agent will receive a (possibly empty) allocation
of tasks at every round. Formally, such an allocation can be
understood as a function with the signature

AG — 274

We will assume that the function is presented in the form of
a table. The idea is to determine whether or not, given the
agents with capabilities as specified and current schedules,
all tasks can be successfully completed before their deadline.
Assuming that agents have finite schedules (i.e., that there
is some time in the future after which they have no tasks
scheduled) then we can show:

THEOREM 1. Multi-agent task scheduling is NP-complete.

PROOF. For membership of NP, simply guess a schedule
for each agent, and verify that this schedule is complete (i.e.,
every task is fully carried out), that every task is carried
out by an agent with the appropriate capabilities, and that
every task is finished before its deadline. The size of the
schedule to be guessed will be bounded by the deadline of the
last scheduled task, the number of agents, and the number of
tasks. Verification can easily be done in time polynomial in
the size of the schedule.

To show NP-hardness, we reduce the bin packing problem
to multi-agent task scheduling [12, pp204—206]. An instance
of the bin packing problem is determined by m positive in-
tegers, vi,... ,vn, and two further integers, the capacity C
and the number of bins B. The goal is to determine whether
the numbers can be partitioned into B subsets, each of which
has total sum at most C. To reduce bin packing to multi-
agent task scheduling, we create a task T; corresponding to
each integer v;, with deadline dl(7;) set equal to C and du-
ration dur(7;) set equal to v;. The type of each task is set to
some dummy value to. We then then create B agents, (i.e.,
one for each bin), where each agent is capable of tasks of
type to (so any task can be given to any agent). It should be
clear that the tasks can be partitioned between the agents so
as to be completed before their deadlines just in case the in-
tegers vi, ... ,vn can be partitioned into B bins so that each
bin has total value at most C. Since the reduction is clearly
possible in polynomial time, we are done. [

Organisation 1 i % % % % Organisation 2
marketable
{ % i agent:

0 permanentagents
permanent %
agents

resource marketable

resource manager agent:

manage

13
marketable
resource ALSLRL

manager

permanent

%7% % agents

Organisation n

Figure 1:
TRACE.

Structure of a multi-agent system in

Notice that this problem is somewhat similar to the COOPSAT
problem discussed in [5], where the aim is for an agent to de-
termine whether or not cooperation is in principle possible
in order to solve one of its goals.

Also note that the version of this problem which involves
determining a general policy for task allocation that can be
used at run time to allocate tasks between agents is more
akin to stochastic scheduling and other PSPACE-complete
problems of decision making under uncertainty — see [12,
pp470-474].

3. THE TRACE SYSTEM

‘We can now describe the TRACE system in more detail. The
aim of the system is to maximize the throughput of tasks,
and in particular:

e to0 process tasks before their deadline;
e t0 minimize the number of decommitted tasks;
e to0 process tasks on a priority basis; and

e to make efficient use of resources.

The overall structure of the TRACE system is shown in Fig-
ure 1. A MAS in TRACE is a collection of computational or-
ganizations, where each organization has three components:

e a set of permanent agents, which are assigned to the
organization indefinitely;

e a set of marketable agents, which are “owned” by the
organization, but which may be temporarily hired by
other organizations in order to make up shortfalls in
labour;

e 3 distinguished agent known as the resource manager
(rM), which has the dual responsibility of both deter-
mining resource needs (in the sense of agents) for the
organization, and of renting labour from other organi-
zations when required.

Task requests are sent to members of the organization ar-
bitrarily, and so the requirement for resources at each or-
ganization varies, leaving some organizations with surplus
resources, and others with insufficient resources. In order

to schedule tasks, TRACE makes use of two protocols — the
task allocation protocol (TAP), and the resource allocation
protocol (RAP). Allocation of tasks to agents within an orga-
nization is done through the TAP and allocation of resources
to each of these organizations is done through the RAP. We
now describe each of these protocols in turn.

3.1 Task Allocation Protocol

The task allocation protocol used in TRACE is closely based
on the Contract Net [14]. It is used within an organization in
order to determine an allocation of tasks to agents within the
organization. This involves finding suitable team members
and the actual time at which the tasks can be executed.

Due to lack of space only a high level description of the
TAP is presented here — see [7] for details. In order to find
team members and arrive at a commonly agreed time with
them, an agent a that receives a request for a task 7 firstly
determines whether or not it has the capability to carry out
the task (i.e., whether or not type(r) € cap(a)), and if so,
whether the task can be carried out by the agent before the
deadline’ dI(r) of the task. If not, it generates a proposal
for others to carry out the task, and sends an announcement
message [14] to all agents of its organization indicating the
task and the proposed time of the task. The other agents
of the organization determine if the task and its time are
acceptable with reference to their existing schedule, and if so
send a bid message to the agent that sent the announcement
— the organizer. If the proposed time is not acceptable, the
prospective team member sends a bid with a modified time.
If the organizer finds the modified time acceptable, then it
agrees in principle to the task, otherwise it may propose
some other time and this process repeats until a mutually
agreed time is arrived at.

During the task allocation process, any conflicts that arise
with preexisting commitments are resolved on the basis of
task priorities. Lower priority tasks are either rescheduled
to accommodate a more critical task, or decommitted alto-
gether if deadlines make rescheduling impossible. Whenever
an agent drops an existing commitment to accommodate a
higher priority request, it informs all organization members.
When a task is decommited, the manager of that task in-
crements a counter, which indicates the number of decom-
mitted tasks. All task managers periodically send this value
to their respective RMs. In addition to this, all marketable
agents calculate the percentage time they remain idle during
a certain period. This information is also passed on to the
respective RMs, which then perform reallocation.

(As an aside, notice that in our actual implementation
of TRACE, agents were sent goals to achieve. In order to
satisfy these goals, agents made use of a predetermined plan
library, in which each plan was a sequence of tasks to carry
out. Instead of delegating a single task, a task organizer
would negotiate with members of its organization in order
to delegate all sub-tasks. See [7] for details.)

3.2 Resource Allocation Protocol

As the demand for tasks of different types varies over time,
so the need for labour resources will vary in different organi-

'"Deadlines are associated with tasks to ensure termination
of the TAP. Thus if a task request is made without a dead-
line, TRACE fixes a deadline for it on the basis of its duration.
These are low priority tasks that are assumed to be resub-
mitted if they get decommitted.

zations. The RAP periodically reallocates marketable agents
to organizations in accordance with their demands. This re-
sults in reorganization (change in the number of agents in an
organization, the distribution of domain knowledge and the
communication structure) of the MAS. The RAP reorganizes
the MAS so that decommitted requests can be honored when
they arrive again.

The RM obtains the resource needs of an organization from
its permanent agents, and on the basis of this information,
arrives at a suitable allocation. As the number of marketable
agents is fixed, and multiple organizations could be contend-
ing for these agents, an allocation is arrived at on the basis of
the criticality of decommitted tasks. The permanent agents
of an organization convey information about the criticality
of decommitted tasks indirectly by contributing some funds
to the resource manager; the greater the criticality of de-
commitments, the higher the contribution of funds. The
permanent agents also specify how many additional agents
(po) would be required by the organization o0 € M. The
method used for obtaining pu, is explained below. Thus the
contribution of funds made by an organization indicates the
maximum price that the organization is willing to pay in or-
der to buy pu, marketable agents. The contribution of funds
varies from organization to organization and reflects their
relative needs for additional resources. The organizations
that offer more funds are considered to be more in need of
resources than those offering less.

The rRMs periodically determine the resource needs of their
respective organizations and conduct reorganization accord-
ingly. Each such period is called reorganization cycle. The
MAS is organized as a market economy composed of interact-
ing buyers and sellers. The commodities in this economy are
the marketable agents required to carry out tasks. Buyers
are organizations that wish to purchase new agents in or-
der to perform some computation. Sellers are the resource
managers that wish to sell the marketable agents for the du-
ration of one reorganization cycle. The buyers and sellers
execute a resource allocation protocol to arrive at an op-
timal allocation of resources. Reallocation is done at the
beginning of every reorganization cycle. For reallocation to
be completed, each RM must perform the following steps:

1. Obtain information pertaining to the requirement for
additional resources from agents of its organization.

2. Compute the equilibrium allocation on the basis of in-
formation acquired in step 1.

3. Transfer relevant domain knowledge to the newly allo-
cated agents.

4. Notify permanent agents of its organization about the
new allocation.

Each of these steps is explained in detail below.

Step 1. The requirement for resources in any reorgani-
zation cycle is determined on the basis of the information
about the previous cycle. Agents of an organization convey
the following four items of information about the previous
cycle to their respective RMs at the beginning of every reor-
ganization cycle:

1. Information about the number of decommitments (D).

The permanent agents send this information because
only they act as organizers and keep track of the num-
ber of decommitments. Demand for new agents, po,
in an organization o can be computed from the num-
ber of decommitments (D) made by the organization
in that cycle and the number of tasks that remain un-
completed. As the requests that are decommitted by
the TAP are the ones that have low priority, they are
very much likely to occur again. Based on this infor-
mation, new agents are introduced that have the ca-
pability to take on the decommitted tasks when they
are requested again.

2. Information about the decommitted tasks.

The type, duration, and deadline of decommitted tasks
is also sent by each permanent agent to the RM; this
information is used for dynamic distribution of domain
knowledge to agents (see step 3).

3. Information about idle time.

This is used to identify idle agents. Marketable agents
convey this information, because only these agents can
be reallocated. The ones that remain idle for more
than 50% of the reorganization cycle time are treated
as superfluous and considered for allocation to some
other organization in need of them. Thus if an orga-
nization o is allocated X marketable agents in a cycle,
has D = 0 for that cycle, and has Y agents that re-
main idle most of the time, then the number of agents
it requires for the next cycle, uo, is taken to be X —Y.

4. Information about the contribution of funds (Fy).

Each permanent agent a in organization o contributes
funds F, to their resource manager in every reorgani-
zation cycle. The sum F,, of these values for all perma-
nent agents indicates the maximum the organization
is willing to pay for buying p, additional agents (ob-
tained from item 1 or 3).

Funding units are used as an abstract form of priority. The
organizations that contribute more are deemed to be more
in need of additional agents than the ones contributing less.
It is assumed that the amount of funds to be contributed is
determined by the application. It is the application’s bur-
den to ensure that important computations are well funded.
The RMs conduct markets (see step 2) on behalf of high-
level applications and intimate the equilibrium price of a
marketable agent to the permanent agents of its organiza-
tion. On the basis of its funding in any reorganization cycle,
the equilibrium price for that cycle, and the total number
of decommitments, the application can determine how much
to contribute for the next cycle.

Step 2: Every RM encapsulates details about the funds
(from item 4) and demand for new agents (from items 1
or 3) for its organization and communicates this informa-
tion to every other RM of the MAS. The protocol consists
of this communication step followed by a local computation
by each resource manager. Each resource manager locally
computes the equilibrium price of a marketable agent.

The demand for marketable agents at organization o, at
price p, is given by the function z,(p), which is defined as

Demanded

Allocated -------

Number of agents
o
5

.
0 5 10 15 20 25 30 35 40 45 50
Reorganisation cycle

Figure 2: A graph of agents demanded (solid line)
and agents allocated (dotted line) against time dur-
ing a typical run of TRACE.

otherwise

ifp< Lo
Z0(p) = { e o (1)
P

where F, = Zae;;erm(o) F, is the contribution of funds made
by the organization o.
The total demand for agents at price p across all the or-

ganizations in system M is:

Z Zo(p)

oEM

Let sa(p) denote the total supply of marketable agents at
price p in M:

_ | erM mar(0)| if p > pmin
sm(p) = { 0 otherwise 2)

where pp,i, indicates the minimum price at which the re-
source managers will sell marketable agents.

The market will be in equilibrium when p has a value such
that

> 2o(p) = sm(p) (3)

oeM

In order to find the value of p that satisfies (3), the RMs ini-
tialize p to the maximum of prices offered by all the organi-
zations. This price is then iteratively decreased till Equation
(3) is satisfied. The number of iterations can be reduced by
using an approximation condition of the form

> 2(p) — sm(p)

oEM

<e (4)

where

> 2(p) — sm(p)

0EM

is the aggregate excess demand. A more precise statement
of the computation is now given.

Number of Organizations
4 8 16 32 64
Percentage reduction 74.12 75.98 74.30 75.10 74.10

Table 1: TRACE scales up: the percentage reduction in decommitments remains stable as the number of

organizations grows.

Orgi Orgs Orgs Orga

Funding Ratio

33.23 23.33 20.00 23.22

Proportion of agents allocated 34.21 23.68 18.42 23.68

Table 2: Fairness of resource allocation.

Each resource manager goes through the following com-
putations:

1. Communicate F, and p, for its organization to every
other resource manager.

2. Initialize p to the maximum of prices offered by all
the organizations, and compute the aggregate excess
demand.

3. Iteratively decrement price p by d, (the step size pa-
rameter) until the approximation condition (4) is sat-
isfied.

Once the equilibrium price is determined the RMs transfer
relevant domain knowledge to the newly allocated agents.
This is done as follows.

Step 3. The steps described above compute the equilibrium
allocation of marketable agents to organizations. However,
these agents can lack the domain knowledge required to take
on the tasks of an organization. This means that such agents
need to be first endowed with the required knowledge before
they are allocated to an organization. In addition to manag-
ing resource allocation, the RM also does the job of allocating
this knowledge to the new agents.

The rRM possesses all the knowledge required by its orga-
nization. Out of this only a selected portion is allocated to
the new agent. In order to determine this portion the RM
obtains information about the decommitted tasks from all
agents of its organization (see step 1). The domain knowl-
edge required to execute these tasks is then transferred to
the incoming agent. This kind of dynamic distribution of
knowledge enables effective use of available computational
resources; an agent that is idle but lacks knowledge required
to execute tasks can acquire that information as indicated
above.

Step 4. The RMs finally notify all permanent agents of their
respective organizations about the equilibrium price and the
new allocation. After reorganization, all permanent agents
update their organizational knowledge. Subsequently, the
TAP refers to this changed organizational knowledge to select
team members for tasks. Organizations in TRACE therefore
exist at a logical level and are represented as organizational
knowledge with permanent agents.

4. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of TRACE, a number
of experiments were carried out. These serve to quantify its

ability to reduce the number of decommitments, fairly dis-
tribute resources among competing goals, adapt to changes
in computational load by reorganizing the MAS, and make
effective use of resources. The system was implemented in
¢, and the behavior of the system was studied by randomly
varying the computational load across different organiza-
tions in the MAs.

Reduction in Decommitments. The first experiment
was done to measure the reduction in the number of decom-
mitments made by the system. Each organization of the MAS
was assumed to have 10 permanent agents and the number
of marketable agents was 10 times the number of organiza-
tions. The system was allowed to run for 100 reorganization
cycles by gradually varying the computational load in each
organization for every cycle — Figure 3 shows a fragment
of a typical run. Different organizations contributed dif-
ferent amounts of funds but the amount contributed by an
organization was held constant over all the 100 cycles. The
total number of decommitments over the entire run was then
found.

As a control, the experiment was repeated without us-
ing the TRACE RAP (i.e., by simply dividing the marketable
agents equally among the organizations, and keeping the
number of agents in each organization constant throughout).
From these two results the percentage reduction in the num-
ber of decommitments using the reorganization method was
determined. The results of this study are summarized in
Table 1.

A desirable characteristic of open MAS is the ability to
scale well to large systems. The simulation results as shown
in Table 1 were obtained by increasing the number of or-
ganizations from 4 to 64. Note that in this experiment the
number of agents increases with the number of organizations
(we had 10 permanent agents in each organization, and the
total number of marketable agents was 10 times the number
of organizations). The number of requests was increased in
the same proportion. Basically, the conditions to which an
organization is subjected are the same but the number of
such organizations has been scaled up.

This increase, however, did not affect the percentage re-
duction in decommitments. This indicates that with respect
to reduction in decommitments, the proposed reorganization
approach scales well to large systems. These results were
obtained in the absence of a funding strategy. The perfor-
mance of the system can however be improved by having
the application make use of effective funding strategies.

Fairness of Resource Allocation. In TRACE, funds are

Demand of marketable agents

0 1 1

0 20 40

60 80 100
Reorganisation cycle

Figure 3: A graph of load against time for four organizations in a typical run of TRACE.

analogous to priority. In order to test the fairness of re-
source distribution, a set of experiments was done for differ-
ent funding ratios among organizations (keeping the demand
for agents constant across all of the organizations).

The results of these experiments are summarized in Table
2. The first row specifies the funding ratio and the second
row indicates the relative number of agents obtained by each
organization. A fair distribution is one in which each orga-
nization is able to obtain a share of resources that is close to
its share of total system funding. As we can see from Table
2, TRACE allocates resources in a manner that is reasonably
close to the funding ratio in all the runs.

Adaptiveness of the M AS. The main objective of TRACE
is to make the MAs adaptive to variations in load. Fig-
ure 2 shows the variation in number of marketable agents
demanded over 50 cycles in one organization and the agents
acquired by it over 50 cycles through the RAP. As the num-
ber of decommitments in a cycle increases, the number of
new agents in the next cycle increases correspondingly. For
instance, in reorganization cycle 2, when the requirement
for agents increased from 10 to 11, the number of additional
agents in the next cycle increases correspondingly. Similarly,
a decrease in the number of decommitments results in a de-
crease in the number of agents. These results demonstrate
the ability of the MAS to adapt to load variations.

Efficient use of Resources. As shown in Figure 1, the
average number of agents over 50 cycles is 12. In order to
achieve the same level of performance as in TRACE, a MAS
with constant number of agents would require 14 permanent
agents (the maximum number of agents required by one or-
ganization). Thus the proposed approach, (which requires
12 agents on an average), is more economical in terms of
resources.

Reorganization Overhead. Clearly, reorganization is not
desirable if the computation and communication overheads
outweigh the benefits accrued. One source of overhead is the
resource managers, which were introduced into the multi-
agent system to perform reallocation of agents. The sole
function of these agents is to perform reallocation at the
beginning of every reorganization cycle. The resource man-
agers however remain idle for the remaining part of the cycle.
In order to make effective use of these resource managers,
they can be allocated tasks just like other agents of the or-
ganization. The second source of overhead is the communi-
cation cost that is incurred as a result of transfer of infor-
mation from the agents of an organization to their resource
manager and vice versa. The number of messages that are
sent to a resource manager in organization o is equal to the
number of agents in its organization, i.e., [membs(o)|. Thus
there would be O(|membs(o)|) transfers of information to
the resource manager at the beginning of the reorganization
cycle. After arriving at the equilibrium price, the resource
manager broadcasts information about the new agents and
the equilibrium price to all agents of its organization. This
requires another O(|membs(o)|) message transfers. So for
every organization there would be O(2 x |membs(0)|) mes-
sages sent per reorganization cycle.

In addition to this, some communication takes place among
resource managers. This is the communication regarding the
funds and the required number of agents that is broadcast
by every resource manager to every other resource manager.
However, this communication is not considerable since the
number of resource managers is very small compared to the
total number of agents in the multi-agent system. The third
factor that needs to be considered is the time required by re-
source managers to arrive at the equilibrium price. The con-
vergence time depends on the number of iterations required

to reach equilibrium. The number of iterations depends on
dp (the step size parameter), and e. The smaller these val-
ues, the more feasible is the allocation of agents, but larger
is the number of iterations. Larger values reduce the num-
ber of iterations but may not result in an allocation with the
same degree of feasibility: the price of an agent that resource
managers arrive at may not be sufficiently close to the actual
equilibrium price. This results in an infeasible allocation of
resources where the amount of resources allocated may not
be equal to the amount of resources available.

5. CONCLUSIONSAND FUTURE WORK

This paper proposed an adaptive organizational policy called
TRACE for time constrained domains with varying computa-
tional load. The simulation results presented here show the
effectiveness of TRACE.

A number of other approaches have been proposed for
handling load variations in multi-agent systems. One of
these is the work on organization self design [2, 11, 10].
This approach performs reorganization through two primi-
tives, namely composition and decomposition of agents. De-
composition divides one agent into two and is triggered in
response to an overload. Composition combines two agents
into one in order to free up computing resources when they
are not required. The goal of this method is to achieve real
time performance through reorganization.

Mobile agents are another possible solution to overloads [13].

A mobile agent is a program that is able to migrate from
host to host on a network under its own control. The agent
chooses when and where it will migrate and interrupts its
own execution and continues elsewhere on the network. Ev-
ery agent therefore needs to keep track of variations in load.
In contrast to this, load variations in TRACE are handled by
the RMs, and all other agents solely carry out domain prob-
lem solving activity. This results in reduced reorganization
overhead.

Agent cloning is proposed as a more general approach than
agent mobility [4]. Cloning is the act of creating and activat-
ing a clone agent to execute some of the agent’s tasks, and is
performed when an agent predicts an overload. Cloning sub-
sumes agent mobility. Agent migration can be implemented
by creating a clone on a remote machine, transferring the
task from the original agent to the clone and dying. Thus
agent mobility is an instance of agent cloning. Agent mobil-
ity and cloning do not ensure fairness of resource allocation.
TRACE allocates resources to tasks on the basis of their crit-
icality. Thus if the system is overloaded, low priority tasks
are decommitted to accommodate high priority ones. This
allows the performance of the system to degrade gracefully.

There are several interesting extensions possible for future
work. Currently, the reorganization cycle time in TRACE is
fixed. Finding a means of dynamically varying the reorga-
nization cycle time will make the framework more adaptive.
We are also working towards comparing TRACE with existing
approaches.

6. REFERENCES

[1] S. Cammarata, D. McArthur, and R. Steeb. Strategies of
cooperation in distributed problem solving. In Proceedings
of the Eighth International Joint Conference on Artificial
Intelligence (IJCAI-83), Karlsruhe, Federal Republic of
Germany, 1983.

[2] D. D. Corkill. A Framework for Organizational Self-Design
in Distributed Problem Solving Networks. PhD thesis,
University of Massachusetts, February 1983.

[3] K. Decker and V. Lesser. Designing a family of
coordination algorithms. In Proceedings of the First
International Conference on Multi-Agent Systems
(ICMAS-95), pages 73-80, San Francisco, CA, June 1995.

[4] K. S. Decker, K. Sycara, and M. Williamson. Cloning for
intelligent adaptive information agents. In C. Zhang and
D. Lukose, editors, Multi Agent Systems, pages 63-75.
Springer-Verlag: Berlin, Germany, 1997.

[5] M. d’Inverno, M. Luck, and M. Wooldridge. Cooperation
structures. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI-97),
pages 600—605, Nagoya, Japan, 1997.

[6] E. H. Durfee, D. L. Kiskis, and W. P. Birmingham. The
agent architecture of the University of Michigan digital
library. IEE Proceedings on Software Engineering,
144(1):61-71, February 1997.

[7] S. Fatima. An Adaptive Organizational Policy for
Multi-Agent Systems. PhD thesis, Department of Computer
and Information Science, University of Hyderabad, India,
December 1999.

[8] S. Fatima and G. Uma. AASMAN: An adaptive
organizational policy for a society of market based agents.
Sadhana Academy Proceedings in Engineering Science,
23(4):377-392, August 1998.

[9] S. Fatima and G. Uma. An adaptive organizational policy
for multi agent systems — AASMAN. In Proceedings of the
Third International Conference on Multi-Agent Systems
(ICMAS-98), pages 120-127, Paris, France, 1998.

[10] F. Guichard and J. Ayel. Logical reorganization of DAI
systems. In M. Wooldridge and N. R. Jennings, editors,
Intelligent Agents: Theories, Architectures, and Languages
(LNAI Volume 890), pages 118-128. Springer-Verlag:
Berlin, Germany, January 1995.

[11] T. Ishida, L. Gasser, and M. Yokoo. Organization self
design of production systems. IEEE Transactions on
Knowledge and Data Engineering, 4(2):123-134, April
1992.

[12] C. H. Papadimitriou. Computational Complexzity.
Addison-Wesley: Reading, MA, 1994.

[13] V. A. Pham and A. Karmouch. Mobile software agents: An
overview. IEEE Communications Magazine, pages 26—-37,
July 1998.

[14] R. G. Smith. A Framework for Distributed Problem
Solving. UMI Research Press, 1980.

[15] W. Walsh and M. Weldon. A market protocol for
decentralized task allocation. In Proceedings of the Third
International Conference on Multi- Agent Systems
(ICMAS-98), pages 325-332, Paris, France, 1998.

[16] Michael P. Wellman, W. P. Birmingham, and E. H. Durfee.
The digital library as a community of information agents.
IEEE Egpert, 11(3):10-11, 1996.

[17] F. Ygge and H. Akkermans. On resource oriented multi
commodity market computation. In Proceedings of the
Third International Conference on Multi-Agent Systems
(ICMAS-98), pages 365-371, Paris, France, 1998.

