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Abstract. Most of the existing work in the study of bargaining behavior uses tech-
niques from game theory. Game theoretic models for bargaining assume that play-
ers are perfectly rational and that this rationality is common knowledge. However, the
perfect rationality assumption does not hold for real-life bargaining scenarios with
humans as players, since results from experimental economics show that humans find
their way to the best strategy through trial and error, and not typically by means of
rational deliberation. Such players are said to be boundedly rational. In playing a game
against an opponent with bounded rationality, the most effective strategy of a player is
not the equilibrium strategy but the one that is the best reply to the opponent’s strat-
egy. The evolutionary model provides a means for studying the bargaining behaviour
of boundedly rational players. This paper provides a comprehensive comparison of the
game theoretic and evolutionary approaches to bargaining by examining their assump-
tions, goals, and limitations. We then study the implications of these differences from
the perspective of the software agent developer.
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1. Introduction

Software agents are being used in a wide range of applications
that include data allocation in large databases, monitoring electric-
ity transformation networks, and vehicle routing among geographi-
cally dispersed dispatch centres (Sandholm 1983; Kraus 2001). More
recently, software agents are being applied to electronic commerce
for business-to-business, business-to-consumer, and consumer-to-con-
sumer transactions (Maes et al. 1999; Sandholm 2000). The Internet
and the world wide web provide the medium through which these
transactions are carried out, and this has resulted in a large increase
in the number of people buying and selling on the web. However,
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many of the steps of the buying process still remain unautomat-
ed. A human buyer is still responsible for collecting and interpret-
ing information on merchants and products, making decisions about
them, and, finally, entering purchase and payment information and
instructions.

Software agents can be used to automate several of the most time
consuming stages of the buying process (Ma 1999; Maes et al. 1999;
Sandholm 2000). For example, a company that needs to order a prod-
uct could have a buying agent that goes through all the stages of the
buying process. The agent can be designed to automatically collect
information on vendors and products that may fit the needs of the
company, evaluate the various offers, make a decision on which mer-
chants and products to investigate, negotiate the terms of transactions
with these merchants, and finally place orders and make automated
payments.

Of these, negotiation forms the key stage in all electronic trans-
actions during which agents communicate and compromise to reach
mutually beneficial agreements. The negotiators have a common inter-
est in cooperating, but have conflicting interests over exactly how to
cooperate. Put differently, agents can mutually benefit from reach-
ing agreement on an outcome from a set of possible outcomes, but
have conflicting interests over the outcome that they prefer. The main
problem that confronts agents in such a situation is to decide how to
cooperate before they actually enact the cooperation, and obtain the
associated benefits. On the one hand, each agent would like to reach
some agreement rather than disagree and not reach any agreement.
But, on the other hand, each agent would like to reach an agreement
that is as favourable to itself as possible. The agents therefore make
a series of offers and counter-offers before an agreement is actually
reached. This makes negotiation a time consuming process. Software
agents not only save the labour time of human negotiators, but also
find solutions that are as beneficial as possible to all the parties (Sand-
holm 2000).

On the basis of the extent to which agents cooperate with others,
they can be divided into two main types: cooperative agents and com-
petitive agents. Agents are said to be cooperative if they work towards
a common goal. On the other hand, competitive or self interested
agents do not share a common goal, but work towards maximizing
their own benefits, as is the situation in all e-commerce applications.
This paper therefore focuses on approaches for designing automated
negotiation systems that are comprised of self-interested agents. In the
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context of self-interested agents, the term bargaining is used to refer to
bilateral negotiations.

The problem of negotiation has long been studied by social sci-
entists, resulting in the development of three main approaches that
describe the strategy a negotiator should choose in different situations.
The first approach is the formal game theoretic approach (Nash 1950;
Harsanyi 1956; Roth 1979; Osborne and Rubinstein 1990). Game
theory offers tools designed to help us understand how decision-mak-
ers behave when they interact. The basic assumptions that underlie
the theory are that decision-makers pursue well defined objectives in
accordance with their self-interest (i.e., they are rational) and that
they take into account their knowledge or expectations of other deci-
sion-makers’ behaviour (i.e., they reason strategically). Under these
assumptions, it provides strategy recommendations and solutions to
games. As it is based on a formal theory, this approach can in prin-
ciple be applied to software agents (Sandholm 2000; Jennings et al.
2001; Kraus 2001; Lomuscio et al. 2003).

The second approach, the negotiation guides approach, comprises
informal theories that identify possible beneficial strategies for a nego-
tiator (Fisher and Ury 1981; Raiffa 1982; Johnson 1993). Although
this approach does not make such strong assumptions as the game
theoretic approach, applying these methods to software agents is diffi-
cult since they are not based on a formal theory.

The third and more recent approach is the evolutionary approach
(Andreoni and Miller 1995; Ellingsen 1997; Binmore et al. 1998;
Anthony and Jennings 2002). This approach begins by dropping the
assumption that players are rational. Instead of assuming that play-
ers always calculate the best strategy from a theoretical analysis of the
game, players in the evolutionary approach learn how to play games
through trial and error. They experiment with strategies, observe their
payoffs, try other strategies and find their way to a strategy that works
well. Such players are referred to as being boundedly rational, because
they are not the perfect reasoners commonly assumed in classical
game theory (Samuelson 1996).

In this paper we provide a comprehensive comparison of the game-
theoretic and evolutionary approaches to bargaining by examining
their assumptions, goals and limitations. We then study the impli-
cations of the differences between them from the perspective of the
agent developer.

The remainder of the paper is structured as follows. sections 2 and
3 describe the game theoretic and evolutionary models respectively. In
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section 4 we compare these two approaches. Finally, section 5 ends
with some conclusions.

2. The Game Theoretic Bargaining Model

We begin by giving a description of games and solutions. A game is
a description of strategic interaction that includes the constraints on
the actions that the players can take and the players’ interests, but
does not specify the actions that the players take (Osborne and Rubin-
stein 1994). A solution is a systematic description of the outcomes
that may result in a game under the assumption that the players are
perfectly rational and that this rationality is common knowledge. Gen-
erally speaking, game theory suggests reasonable solutions for games
and examines their properties.

A game can be described in one of the two forms: normal form
or extensive form. The normal form describes games of simultaneous
offers. On the other hand, the extensive form describes games in
which the players make a series of offers and counter-offers and cor-
responds more closely to most real life bargaining situations than
games of simultaneous offers. The model of an extensive game speci-
fies the orders of events; each player can consider his plan of action
not only at the beginning of the game but also whenever he has
to make a decision. The following elements constitute a bargaining
model (Osborne and Rubinstein 1994):

1. The bargaining protocol.

2. The bargaining strategies.

3. The information state of agents.
4. The bargaining equilibrium.

2.1. The bargaining protocol

The protocol specifies the rules of encounter between the negotiation
participants. That is, it defines the circumstances under which the
interaction between agents takes place: what deals can be made and
what sequences of offers are allowed. In general, agents must reach
an agreement on the bargaining protocol to use before bargaining
proper begins. The design of protocols for governing agent interactions
is referred to as mechanism design (Rosenschein and Zlotkin 1994).
The following is a list of the desirable attributes of a well designed
mechanism.
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1. Stability. No agent should have an incentive to deviate from the
agreed upon strategies. In game theory, this is also known as the
notion of strategies in equilibrium (Osborne and Rubinstein, 1994).
The strategy that agents adopt forms a part of the negotiation
mechanism. Once these strategies are determined, agents should
not deviate from them. Otherwise agent developers would have the
incentive to build agents with different manipulative strategies.

2. Simplicity. A well designed mechanism should make low compu-
tational demands on the agents, and require little communication
overhead. This issue is related to both efficiency and stability. If
the negotiation mechanism is simple, it increases the efficiency of
the system, with fewer resources being used to carry out the nego-
tiation itself. Similarly, with stable mechanisms, fewer resources
need to be spent on outguessing the opponent, or trying to dis-
cover his optimal choices. Stability reveals the behaviour publicly,
and agents have nothing better to do than just carry it out.

3. Distribution. The negotiation mechanism should not require a cen-
tral decision-maker, since this causes a performance bottleneck,
and can result in failure of the entire system due to the failure of
a single node.

All these attributes together affect the agent designer’s choice of a
negotiation protocol.

2.2. The bargaining strategies

An agent’s strategy is a specification of the sequence of actions (usu-
ally offers or responses) the agent plans to make during negotiation.
At any instant, an agent’s action depends on what the other players
(including himself) have done at earlier points, which constitutes the
history of negotiation. A strategy is therefore defined as a function
from the history of negotiation to the agent’s current action. There
will usually be many strategies that are compatible with a particular
protocol, each of which may produce a different outcome. For exam-
ple, an agent could concede at the first round, or bargain very hard
throughout negotiation until its timeout is reached (Pruitt 1981; Raiffa
1982; Faratin et al. 1998). It follows that the negotiation strategy an
agent employs is crucial with respect to the outcome of negotiation.
It should also be clear that strategies which perform well with certain
protocols will not necessarily do so with others. The choice of a strat-
egy to use is thus a function not just of the specifics of the negotia-
tion scenario, but also the protocol in use. The strategy of a rational
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decision-maker always gives the optimal action (i.e., the one that max-
imizes its expected utility).

2.3. The information state of agents

An agent’s information state describes the information it has about
negotiation parameters such as the players’ utility functions, their
reserve values, their discounting factors, and their deadlines. The
strategy selected by an agent depends on its information state. von
Neumann and Morgenstern (1944) introduced the fundamental clas-
sification of games into those of complete information and those of
incomplete information. The former category is basic. In these games
the players are assumed to know all relevant information about the
rules of the game and players’ preferences that are represented by util-
ity functions (Nash 1950).

The complete information assumption is limiting because uncer-
tainty is endemic in most realistic applications. In the latter category,
information may be lacking about a variety of factors in the bargain-
ing problem. Each player may have some private information about
his own situation that is unavailable to the other players, while hav-
ing only probabilistic information about the private information about
other players. Following Harsanyi (Harsanyi and Selten 1972), mod-
els of games of incomplete information proceed from the assumption
that all players start with the same probability distribution on this pri-
vate information and that these priors are common knowledge.! This
is modelled by having the game begin with a probability distribution,
known to all players. Thus players not only have priors over other
players’ private information, they also know what priors the other
players have over their own private information. Strategic models of
incomplete information thus include an extra level of detail, since they
specify not only the actions and information available to the other
players in the course of the game, but also their probability distribu-
tions and information prior to the start of the game.

Another important model of strategic bargaining is Rubenstein’s
infinite horizon alternating offers game (Rubinstein 1982). This takes
the time preferences of bargainers into consideration, in the form of
their discounting factors, but again assumes complete information. It
was later extended in Rubinstein (1985) for bargaining with incom-
plete information about time preferences.

Other models of incomplete information include (Fudenberg and
Tirole 1983; Fudenberg et al. 1985; Sandholm and Vulkan 1999;
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Fatima et al. 2001). Fudenberg and Tirole (1983) analyse an infi-
nite horizon bargaining game by taking the players’ valuations and
a probability distribution over them as common knowledge. Fuden-
berg et al. (1985) analyse buyer—seller infinite horizon bargaining
games in which reserve prices are uncertain, but time preferences
are known. Sandholm and Vulkan (1999) consider uncertainty over
agent deadlines. A common feature of all these models is that they
treat the information state of agents as common knowledge. Fatima
et al. (200b, 2004) address uncertainty over two parameters, deadlines
and reserve prices, by treating each agent’s information as its private
knowledge. Each of these models is formulated for a different envi-
ronment and the strategic behavior of rational agents is studied. The
equilibrium of a game depends on the players’ information states, and
changing the information state of a player results in a change in the
equilibrium of the game (Fatima et al. 2002a).

2.4. The bargaining equilibrium

Perhaps the most crucial element of a bargaining model is its equi-
librium. As mentioned earlier in this section, this is what makes a
negotiation mechanism stable. The earliest concept of equilibrium was
the Nash equilibrium. This was defined for games of simultaneous
offers Nash 1950. Two strategies are in Nash equilibrium if each
agent’s strategy is the best response to its opponent’s strategy. This
is a necessary condition for system stability where both agents act
strategically. For sequential offer protocols, the Nash equilibrium con-
cept was strengthened in multiple ways by requiring that the strate-
gies stay in equilibrium at every step of the game (van Damme 1983).
In summary, rationality, as understood in game theory, requires that
each agent will select an equilibrium strategy when choosing indepen-
dently.

Finally, game theory not only provides the concept of equilibrium,
but also studies the properties of the equilibrium solution. The follow-
ing are desirable solution properties (Osborne and Rubinstein 1994;
Rosenschein and Zlotkin 1994).

1. Individual Rationality. For both the players, the agreement must
represent a situation at least as favourable as the conflict situation
(i.e., no agreement). Otherwise the players would have no incentive
to negotiate.

2. Efficiency. An agreement is efficient if there is no wasted utility,
i.e., it is not possible to increase the utility of one of the agents
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without decreasing the utility of other agents. Such an outcome is
said to be Pareto-optimal.

3. Uniqueness. Uniqueness is a desirable property because it allows
the solution to be identified unequivocally.

4. Symmetry. A bargaining mechanism is said to generate a symmet-
ric solution if it does not treat the players differently on the basis
of inappropriate criteria. Exactly what constitutes inappropriate
criteria depends on the specific domain. For instance, a bargaining
mechanism is said to possess the property of symmetry if the out-
come does not depend on the identity of the first player, i.e., which
player starts the process of negotiation.

3. The Evolutionary Model

While a perfectly rational player determines the equilibrium strategy
from a theoretical analysis of the game, a boundedly rational player
finds the most effective strategy by learning through trial and error.
Evolutionary or genetic algorithms (GAs) provide a metaphor that
can be used for economic learning (Reichmann 1999). GA learning is
now being widely studied for applications that involve bargaining and
markets (Andreoni and Miller 1995; Dawid 1996; Bullard and Duffy
1998; Anthony and Jennings 2002).

GAs are an abstraction of biological evolution, and provide a
framework for learning and adaptation by moving from one popula-
tion of genes to a new population by using natural selection together
with the genetics-inspired operators of crossover and mutation. Before
describing how learning is accomplished through these operators, we
list the elements of an evolutionary model and then describe each ele-
ment in detail. The following are the key elements of an evolutionary
model (Goldberg 1989; Mitchell 2001).

1. A population of individuals

2. The player interactions

3. The set of evolutionary operators
4. The stable state

3.1. Population of individuals
An evolutionary model imagines a game being played not by a sin-

gle set of players, but by large populations of players. These players
are repeatedly, randomly matched to play the game. The players are
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analogous to genes, and strategies are the behaviours or characteris-
tics with which these genes endow their hosts. The payoff of a gene is
its ability to produce offspring. Those genes that lead to higher rates
of reproduction will flourish in a population at the expense of those
that lead to lower reproduction rates. Each agent is characterized by
a strategy that it plays when it is matched against another player. As
a game proceeds, each agent observes the payoff of its strategy. It also
observes the payoffs and strategies of others, and has access to infor-
mation concerning how others have played. In the light of these obser-
vations, it adjusts its strategies. These adjustments involve experiments
with strategies that it has not tried, but are overall designed to switch
away from strategies that give low payoffs to strategies that give high
payoffs. The task for the evolutionary model is to study this process
of dynamic strategy adjustment.

Each genetic individual within the genetic population is assigned a
fitness value. The fitness of an individual gives information about his
performance according to the problem to be solved. The fitness usu-
ally equals the value of a function, optimized by means of the genetic
algorithm. For instance, in a bargaining scenario, the utility associated
with a strategy represents the fitness value of the agent playing that
strategy.

There are two types of population, viz., symmetric and asymmet-
ric. The symmetric population is the simpler of the two and involves
all the players having the same fitness function (Young 1993; Ellingsen
1997; Binmore et al. 1998). In the asymmetric population, players
have different fitness functions. For example, in bargaining between a
buyer and a seller, the utility functions of agents differ. Such scenarios
are handled by having two separate subpopulations, one representing
the buyer and the other representing the seller.

3.2. Player interactions

The kind of player interactions in an evolutionary model are different
from the player interactions in a game theoretic model. In the game
theoretic model, a single set of players interact with each other. In
contrast, in every generation, players in the evolutionary model are
repeatedly, randomly matched to play the game. The matched players
then negotiate using some predefined protocol. The utility that results
from these negotiations forms an individual’s fitness value. Individuals
for the next generation are then selected on the basis of their fitness
values. This is done by means of the evolutionary operators.
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3.3. Evolutionary operators

In the evolutionary model, the players have access to the strategies
played by other individuals and the associated payoffs. In the light of
this information, they learn to play the most effective strategy. Learn-
ing thus forms an essential element of the evolutionary model. GA
learning is a way of social rather than individual learning. Social learn-
ing means learning from others, and is conceptually different from
the conventional Al based learning, which involves learning by single,
isolated agents, as typified by Lucas (1986) and Heinemann (2000).
Learning in the evolutionary model is a compound of three basic
types of learning, and is realised by means of three basic operators
— selection, crossover, and mutation. The three different learning tech-
niques that correspond to these three operators are: learning by imi-
tation (selection/reproduction), learning by communication (crossover)
and learning by experimentation (mutation) (Reichmann 1999). Each
of these is explained below.

Reproduction is a means of deriving a new population from an old
one. Reproduction is done by selecting particular individuals out of
the pool of the old population. The assignment of fitness to each of
the individuals is the crucial part of the learning process. It is the fit-
ness of a strategy that determines whether it is reproduced. Selection
is the process of passing on agents that have a high fitness value, rel-
ative to the other agents, to the next generation. This is analogous to
learning by imitation, since the good strategies are passed on without
any change to the next generation. Learning by pure imitation will
lead to stability, but optimality will occur only by pure chance.

The second operator (i.e., crossover) is a recombination operator.
Crossover randomly chooses two genetic individuals, called parents,
from the population and creates an offspring by combining parts of
the bit strings of the two parents. Crossover can be interpreted as a
form of learning by communication. Two agents meet, talk to each
other about their strategies, and adapt parts of each other’s behav-
iour. A complete strategy that is produced by crossover may not be
the same as any of the strategies in the initial population, but parts
of the strategy are those that are already there in the initial popula-
tion.

The third operator is mutation. Mutation randomly alters single
bits of the bit string by which a genetic individual is coded. It can
be viewed as learning by experimentation. While selection (imitation)
and crossover (communication) can reproduce strategies already in use
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(at least partially) by other individuals, mutation (experimentation) is
able to find strategies that have never been used before. Mutation is
the only operation that introduces completely new strategies into the
system (i.e., those that were not present in the initial population). The
initial population evolves as a result of selection, crossover, and muta-
tion, and reaches a stable state in which a large majority of individu-
als in the population play the most effective strategy.

3.4. Stable state

Stability is a situation in which — after some evolutionary changes
— a state is established in which the population, as a whole, shows
a uniform behaviour. The population is allowed to evolve until it
reaches a stable state (i.e., almost all the individuals exhibit the same
behaviour and play the same strategy). In this state, although new
strategies may get generated through crossover and mutation, they
cannot invade the population on account of their being inferior to the
stable strategy played by a significant proportion of the population.
The outcome generated by the stable strategy is the stable outcome.

Recall that the population in the evolutionary model can be either
symmetric or asymmetric. If the population is symmetric, then no
matter what strategies individuals play in the initial state, the three
evolutionary operators always cause the population to evolve to a sta-
ble state in which the players play the most effective strategy. For
instance, a study of the evolutionary stability in a symmetric pop-
ulation has been carried out in Young (1993), Ellingsen (1997) and
Binmore et al. (1998).

On the other hand, if the population is asymmetric, and there are
two subpopulations, then the evolution of strategies in each subpopu-
lation depends on the evolution of strategies in the other subpopula-
tion (i.e., the strategies coevolve). As noted in Binmore et al. (1998),
the stability results that hold for the symmetric information scenario
may not hold for an asymmetric population. Moreover, in such a sce-
nario, the stable strategy of each subpopulation can depend on how
the two subpopulations are initialised. In this context, Fatima et al.’s
(2003) study the coevolution of negotiation strategies for bilateral
negotiation. There are two subpopulations, one representing the buyer
and the other representing the seller. The results of this study demon-
strate that in some negotiation scenarios the stable state changes if the
initial population changes, while in others the stable state is indepen-
dent of how the two populations are initialized.
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4. A Comparison of Game Theoretic and Evolutionary Models

The similarity between the two models is that agents in both game
theoretic and evolutionary models behave as expected utility maxi-
mizers. While game theoretic agents show this behaviour by virtue
of their self-interest and rationality, agents in the evolutionary model
(although boundedly rational) show a similar behaviour on account of
learning, since only the fittest (given that fitness is measured in terms
of utility) agents survive and reach the stable state. The difference lies
in how the agents maximize their utility. This is caused by the differ-
ences that underlie these approaches, and their main characteristics.
These are discussed in detail below. Table 1 provides a summary of
the comparison.

The first difference lies in the number of agents. In the game theo-
retic model a game is viewed as being played by a single set of play-
ers, while the evolutionary model views the game as being played by
a large’ population of players, so that the effect of an individual’s
actions on the entire population can be ignored.

Second, the two models differ in terms of their basic assumptions.
The main assumption in the game theoretic model is that the play-
ers are perfectly rational, and that this rationality is common knowl-
edge. On the basis of this assumption, agents find the equilibrium
strategy from a theoretical analysis of the game, and always play the
equilibrium strategy. Game theory need not apply to human behav-
iour, since in practice humans do not always behave as the theory
suggests (Roth 1995). An agent’s optimal actions may be quite differ-
ent depending upon whether it is playing against a perfectly rational
agent or an ordinary person. The outcome prescribed by game theory
for the former may not be valid when playing against the latter. For
instance, in a game of poker one plays differently against an inexperi-
enced player than against an experienced one. If an experienced player
plays against an inexperienced player, he can win the game by using
a strategy that is the best response to the opponent’s strategy and not
by using the equilibrium strategy. Game theory thus cannot always be
used as a guide to behaviour (Samuelson 1996).

The behaviour of agents that have bounded rationality can only
be studied by dropping the assumption of perfect rationality. Instead
of being perfectly rational agents, which always play the equilibrium
strategy from a theoretical analysis of the game, the players in real-life
scenarios must learn how to play games through trial and error. The
players must be able to learn the effective strategy by experimenting
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Table 1. A comparison of game theoretic and evolutionary models

Criterion

Game theoretic model

Evolutionary model

Number of players
Basic assumption
about rationality
Strategy

set

Strategy

Outcome

Player

interactions
Learning

Sharing of knowledge

Single set
Perfect rationality

Players have strategy
sets from which

they choose

particular strategies
Defined in terms of
the history of the play

Determined by
equilibrium strategies
One shot games

No learning;
equilibrium outcome is
determined from a
theoretical analysis

of the game;

No shared knowledge

Large populations
No assumption

Society has the strategy
set and individuals
inherit

or choose from it
Depends only on the
genes and not the
previous history
Determined

by stable state

Repeated random pairing
of agents

Players learn the best
strategy through repeated
interaction with

other players

Players have access to
strategies played

by others and

the associated payoffs
which they use

for learning

with strategies, observing their payoffs, and trying other strategies in
the search space. The evolutionary algorithms make no assumption
about the rationality of players. In this model, agents learn the best
strategy by playing against a large population of agents and observ-
ing their payoffs as well as those of others. The central assumption in
the evolutionary model is that the population is very large, so that the
effect of the behaviour of a single individual on the entire population
can be ignored.

The third difference lies in the way that agents select strategies.
In the game theoretic model, each agent has a set of strategies from
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which it chooses a particular strategy. On the other hand, in the
evolutionary model the entire population has a strategy set and indi-
viduals inherit or choose from it.

The fourth difference lies in the way that strategies are defined.
While the game theoretic model defines a strategy in terms of the his-
tory of the play (i.e., the sequence of offers and counter offers), the
evolutionary model defines a strategy in terms of the genes that con-
stitute the strategy, and not in terms of previous history.

The fifth difference lies in the way in which an outcome is deter-
mined. In the game theoretic model, the outcome is determined by the
equilibrium strategies, while in the evolutionary model it is determined
by the stable state of the population.

The sixth difference lies in way in which players interact. In the
game theoretic model, a single set of players engage in one shot or
repeated games, but in the evolutionary model there is repeated ran-
dom pairing of agents.

The seventh difference lies in whether the agents can learn strat-
egies through trial and error. In the game theoretic model, agents
do not learn, but instead determine the outcome of a game from a
theoretical analysis, which is possible because of the perfect rational-
ity assumption. On the other hand, agents in the evolutionary model
learn the best strategy through repeated interaction with other players,
and through experimentation using selection, crossover, and mutation
as the operators.

The final difference lies in whether agents have a shared knowledge
of the strategies played by the other agents and the associated payoffs.
In the game theoretic model, agents have no such shared knowledge,
but in the evolutionary model agents learn to play better strategies
on the basis of this shared knowledge. We now study the implications
of these differences to the agent developer. From the differences listed
above, it can be seen that 8developing software agents using the game
theoretic approach is easier than developing agents using the evolu-
tionary approach. This is mainly due to the following reasons. First,
the game theoretic model involves a single set of players. So if there
are n players in a game, then the number of agents is also n. On
the other hand, the evolutionary model involves large populations of
players. If the population is symmetric, then there is a single large
population of players. But if the population is asymmetric, then each
player type is represented by a large population. Consequently, a small
increase in the number of player types leads to a considerable increase
in the population size.
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Second, in the game theoretic model, a game is played just once. In
contrast, players in the evolutionary model need to repeatedly inter-
act with each other until the stable state is reached. As the popula-
tion size increases, the time it takes for the population to stabilize also
increases.

The third issue is associated with learning, and in particular,
whether or not it can be done offline. If learning can be done offline,
the best strategy can be determined statically, and agents can be coded
with this strategy. The actual bargaining process becomes simpler,
since it does not involve online learning. Whether learning in the evo-
lutionary model can be done offline depends on the population. If
the population is symmetric (i.e., all individuals have the same utility
function), then the stable outcome does not depend on the initial state
of the population. It is therefore common to initialise the popula-
tion randomly (Goldberg 1989; Koza et al. 1991). This allows learn-
ing to be done offline and the agents can be encoded with the stable
strategy.

On the other hand, when the population is asymmetric, it is com-
posed of subpopulations with individuals in different subpopulations
having different utility functions. In such situations, the subpopu-
lations coevolve; the evolution of strategies in each subpopulation
depends on the evolution of strategies in the others. Moreover, the
stable outcome can depend on how the subpopulations are initialised
(Fatima et al.’s 2003). Consequently, it may not be possible to deter-
mine the stable outcome offline. For instance, if we consider a simple
bilateral negotiation scenario, we have two subpopulations — one rep-
resenting the buyer and the other representing the seller. The buyer
(seller) cannot determine the stable outcome without knowing how the
seller (buyer) subpopulation is initialised. In such situations, learning
can only be done online. In other words there need not be a single
stable outcome (as in the case of symmetric population); changing the
initialization of individuals in any population can result in a change
in the stable outcome. Since software agents may be constructed by
separate designers and/or may represent different real world parties,
at the time of development, the software agent developer may not
know the actual initialization of different populations. Consequently,
the evolutionary algorithm needs to be run each time there is a nego-
tiation. This results in excessive computation, communication, and
time overheads, which can become prohibitive, particularly in applica-
tions that require negotiation to end by a deadline. For one-to-many
and many-to-many negotiations, these overheads become higher as the
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number of player types increases. Thus in terms of the properties of
the negotiation mechanism we see that the game theoretic model may
be easier to implement than the evolutionary model.

5. Conclusions

A number of game-theoretic models have been explored that solve
the bargaining problem. More recently, evolutionary approaches have
been applied to the same problem. This paper describes these two
approaches and provides a comparative study in terms of their under-
lying assumptions and their main characteristics, such as the require-
ment for common knowledge, the definition of strategy, the solution
concepts, the kind of player interactions, the presence of learning, and
whether it can be done offline. We then study the implications of these
differences from the perspective of the software agent developer. More
specifically, the discussion suggests the following main conclusions.

Although the game-theoretic model assumes perfect rationality,
designing software agents is easier since the agents only need to
play the equilibrium strategy. On the other hand, the evolutionary
approach does not assume perfect rationality, but may require the
software agents to learn the stable strategy every time there is a nego-
tiation. If the stable outcome depends on the initial population, then
learning cannot be done offline. On line learning results in excessive
computation, communication, and time overheads that can become
prohibitive, particularly in applications that require negotiation to end
by a deadline. For one-to-many and many-to-many negotiations, these
overheads become higher as the number of player types increases.
Thus in terms of the properties of the negotiation mechanism we se
that the game theoretic model may be easier to implement than the
evolutionary model.

Notes

1. An event is said to be mutual knowledge in some state if in that state each player
knows the event. An event is said to be common knowledge if not only is it mutual
knowledge but also each player knows that all other players know it, each player
knows that all other players know that all the players know it, and so on.

2. Yao and Darwen (2000) studies how the stability of an evolutionary model changes
with a change in population size.
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