
AGENTS AND SOFTWARE ENGINEERING

MichaelWooldridge
QueenMary andWestfieldCollege,Universityof London

LondonE14NS,UnitedKingdom
M.J.Wooldridge@qmw.ac.uk

Abstract

Softwareengineerscontinuallystriveto developtools
andtechniquesto managethe complexity that is in-
herentin softwaresystems.In this article,we argue
that intelligent agents and agent-basedsystemsare
just suchtools.Following a discussionon thesubject
of whatmakessoftwarecomplex, we introduceintel-
ligentagentsassoftwarestructurescapableof making
“rational decisions”. Suchrationaldecision-makers
arewell-suitedto theconstructionof certaintypesof
software,whichmainstreamsoftwareengineeringhas
had little successwith. We then go on to examine
a numberof prototypetechniquesproposedfor engi-
neeringagentsystems,includingformalspecification
andverificationmethodsfor agentsystems,andtech-
niquesfor implementingagentspecifications.

1 Intr oduction

It haslong beenknown thatsoftwaredevelopmentis inher-
ently difficult — that softwarehascertainessentialcharac-
teristicsthatmake it hardto developefficient,robust,correct
software. Similarly, it hasalsobeenrecognisedthatcertain
typesof softwaresystemareharderto build thanothers.The
disciplineof softwareengineeringis ultimatelyaboutunder-
standingand masteringthis inherentcomplexity, with the
goalof makingsoftwaredevelopmentaneverydayengineer-
ing task.Over its threedecadehistory, softwareengineering
hasdevelopedan increasinglypowerful arrayof tools with
whichto tacklethecomplexity of softwaresystems,of which
the most recentadditionsare the notionsof an intelligent
agent andmulti-agentsystem[24]. In brief, the aim of this
articleis to summarisewhy agentsareperceivedto beanim-
portantnew developmentin softwareengineering,andthen
to review the varioustechniquesand formalismsthat have
beendevelopedfor engineeringagent-basedsystems.To this
end,thearticlebeginsin thefollowing sectionby attempting
to identify someof themaincharacteristicsof complex soft-
waresystems.Section3 thendefineswhatwe meanby the

term“agent”,andsummariseswhy suchagentsmightbeap-
propriatefor engineeringcomplex softwaresystems.In sec-
tion 4, we describeagent-orientedspecificationtechniques,
focussingin particularon the requirementsthat an agent-
orientedspecificationframework will have. In section5, we
discusshow suchspecificationscanbe implemented,either
by directly executingthem,or elseby automaticallysynthe-
sisingexecutablesystemsfrom specifications.Section6 dis-
cusseshow implementedsystemsmaybeverified, to deter-
minewhetheror not they satisfytheirspecifications.Finally,
in section7, weconcludewith somecommentson futureis-
suesfor agent-orientedsoftwareengineering.

Note that sections4 through to 6 include somemate-
rial from [23], wherea fuller examinationof, in particular,
thespecification,implementation,andverificationof agent-
basedsystemsmaybefound.

2 What MakesComplexSoftware?

As we notedin section1, certaintypesof softwaresystem
areharderto successfullyengineerthanothers.Notewe are
not referringhereto algorithmiccomplexity, in thesenseof
NP-completenessandCook’s theorem.Rather, we meanthe
complexity of systemspecification,design,andconstruction
from a software engineeringperspective. In orderto do un-
derstandwhatmakescertaintypesof softwaremorecomplex
thanothers,we will startfrom theabstractview of software
systemspresentedin Figure1. Theideais thatany software
systemcanbeviewedasa functionthat is embeddedwithin
someenvironment,that takes input from the environment,
andproducesoutput that affects the environment. The en-
vironmentis often software(e.g.,an operatingsystemsuch
asUNIX or Windows 95), so that the actionsthe agentper-
formstaketheform of softwareoperationssuchaswriting to
a file. However, if thesystemis embeddedwithin a physical
environment,thentheactionstheagentperformswill corre-
spondto “real world” actions,suchaspickingupandmoving
objects.

Giventhisabstractview, wecanexaminethefactorsthat
affect the complexity of engineeringsuchsoftwaresystems

1



ENVIRONMENT

SYSTEM

outputinput

Figure1: An abstractview of softwaresystems.

alongat leastthreedimensions:

� Thenatureof thesystem’senvironment.

Whetheror not the system’s environmentis dynamic
or static, accessibleor inaccessible, anddeterministic
or non-deterministicwill affect the complexity of the
softwaredevelopmentprocessfor systemssituatedin
thatenvironment[20, p46]. In general,environments
that aredynamic,inaccessible,andnon-deterministic
will posegreaterproblemsfor thesoftwaredeveloper
thanstatic,accessible,deterministicones.

� Thenature of the interaction betweenthe systemand
its environment.

The simplestgeneralform of interactionwith an en-
vironmentis wherea systemtakes someinput from
theenvironment,generatessomeoutputasa function
of this input, and then terminates. Compilersare a
classicexample of such functional systems. Func-
tional systemscan be specifiedusing pre- and post-
conditionformalisms,andmany techniques(e.g.,top-
down stepwiserefinement)areavailableto designand
implementthem. A moregeneral,andtypically more
complex type of interactionis wherea systemis re-
quiredto maintainan ongoing, non-terminatingrela-
tionshipwith its environment.Examplesincludecon-
trol systemsandcomputeroperatingsystems.It has
long beenrecognisedthat theengineeringof suchre-
activesystemsis hard(see,e.g.,[13]). Note that re-
active systemstypically containa numberof reactive
sub-systems,which interactwith one-anotherin order
to generatetheglobalsystembehaviour.

� Thenatureof thesystem’sspecification.

Thesimplestgeneralsortof specificationfor a system
is a predicateover programs:eithera programsatis-
fies the specification,or it doesn’t. This is the model
of specificationsthatis implicit within theformalspec-
ification community, astypified by work on the Z and
VDM specificationlanguages.Thespecificationpred-
icate inducesan equivalencerelation over the set of
possibleprograms,wherebyall thoseprogramsthat
satisfy the specificationareconsideredequallygood,

andall thoseprogramsthat fail to satisfy it arecon-
sideredequallybad. A morecomplex generaltypeof
specificationtakes the form of maximisingpayoff : a
systemπ is consideredpreferableto π

�
if theexpected

payoff by executingπ is greaterthantheexpectedpay-
off byexecutingπ

�
. Systemsthatarebuilt tosuchspec-

ificationsareessentiallyrationaldecisionmakers.

Traditionalsoftwareengineeringtechniqueshave proved to
besuccessfulwhendirectedto theconstructionof functional
systemswith simple predicatespecifications,that are situ-
atedin static,accessible,deterministicenvironments.How-
ever, theconstructionof reactivesystemsthataresituatedin
dynamic,inaccessible,non-deterministicenvironmentswith
payoff-orientedspecificationsis an essentiallyopen prob-
lem. This paperproceedsfrom the claim that in order to
engineersuchsystems,we neednew softwaredevelopment
techniquesandtools. This is not a very contentiousclaim:
the fact thatdevelopingsuchsystemsis hardis well-known
in mainstreamsoftwareengineering.The questionis, what
techniquesmight be appropriatefor this task? The second
claim that this papermakesis that the decisionmakingre-
quiredof suchsystemscloselyresemblesthe practical rea-
soningthathumansengagein every day. Thedisciplinethat
studiestheengineeringof suchcomputationalpracticalrea-
sonersis thefield of intelligentagents[24]. Thethird claim
that this papermakesis thereforethat the technologyof in-
telligentagentsis a promisingcandidatefor theengineering
of suchcomplex softwaresystems.

3 Agent-BasedSystems

By an agent-basedsystem, we meanone in which the key
abstractionusedis thatof anagent. By anagent, we meana
systemthatenjoysthefollowing properties[24, pp116–118]:

� autonomy: agentsencapsulatesomestate(whichis not
accessibleto otheragents),andmake decisionsabout
whatto dobasedon thisstate,without thedirectinter-
ventionof humansor others;

� reactivity: agentsare situated in an environment,
(whichmaybethephysicalworld, auservia agraphi-
cal userinterface,a collectionof otheragents,the IN-
TERNET, or perhapsmany of thesecombined),areable
to perceivethisenvironment(throughtheuseof poten-
tially imperfectsensors),andareableto respondin a
timely fashionto changesthatoccurin it;

� pro-activeness: agentsdo not simply act in response
to their environment, they are able to exhibit goal-
directedbehaviour by takingtheinitiative;

� social ability: agents interact with other agents
(and possibly humans) via some kind of agent-
communicationlanguage, andtypically have theabil-
ity to engagein socialactivities (suchascooperative
problem solving or negotiation) in order to achieve
theirgoals.

2



Oneof themainproblemsin developinganagentsystemis
thatof obtaininga rationalbalancebetweenthetendency of
theagentto reactto environmentalchangesandits tendency
to act towardsits goals. It is easyto build agentsthat only
reactto their environment,and it is alsoeasyto build sys-
temsthatonlyacttowardstheirgoals.But building a system
that getsan appropriatebalancebetweentheseextremesis
hard[24]. Agentsthatbalancethesetwo kindsof behaviour
canbe understoodaspractical reasoningsystems, in much
thesensethatwe discussedabove. They arethuswell suited
to operatein the kinds of environmentthat traditionalsoft-
wareengineeringhasnotbeensuccessfulatdealingwith.

Now thatweunderstandwhatanagentis,wecanbegin to
look atsoftware engineeringfor agent-basedsystems.Thus,
in thefollowing sections,weexaminewhatspecificationsfor
agentsystemsmight look like,how to implementsuchspeci-
fications,andfinally, how toverify thatimplementedsystems
do in factsatisfytheir specifications.

4 Specification

In this section,we considerthe problemof specifyingan
agentsystem.Whataretherequirementsfor anagentspec-
ification framework? Whatsortof propertiesmustit beca-
pableof representing?Takingtheview of agentsaspractical
reasoningsystemsthatwediscussedabove,thepredominant
approachto specifyingagentshasinvolvedtreatingthemas
intentional systemsthat may be understoodby attributing
to them mental statessuch as beliefs, desires,and inten-
tions [5, 24]. Following this idea,a numberof approaches
for formally specifyingagentshave beendeveloped,which
arecapableof representingthefollowingaspectsof anagent-
basedsystem:

� the beliefs that agentshave — the information they
have abouttheir environment,which may be incom-
pleteor incorrect;

� thegoalsthatagentswill try to achieve;

� theactionsthatagentsperformandtheeffectsof these
actions;

� theongoinginteractionthatagentshave— how agents
interactwith eachother and their environmentover
time.

We call a theorywhichexplainshow theseaspectsof agency
interactto effect the mappingfrom sensorinput to effector
output (as shown in Figure 1) an agent theory. The most
successfulapproachto (formal) agenttheoryappearsto be
the useof a temporal modal logic (spacerestrictionspre-
vent a detailedtechnicaldiscussionon suchlogics — see,
e.g.,[24] for extensive references).Two of the bestknown
suchlogical frameworksarethe Cohen-Levesquetheoryof
intention [4], and the Rao-Georgeff belief-desire-intention
model[16]. The Cohen-Levesquemodeltakesasprimitive
just two attitudes:beliefsandgoals.Otherattitudes(in par-
ticular, the notion of intention) arebuilt up from these. In

contrast,Rao-Georgeff take intentionsasprimitives,in addi-
tion to beliefsandgoals. The key technicalproblemfaced
by agenttheoristsis developinga formal modelthatgivesa
good accountof the interrelationshipsbetweenthe various
attitudesthattogethercompriseanagentsinternalstate[24].
Comparatively few seriousattemptshavebeenmadeto spec-
ify realagentsystemsusingsuchlogics— see,e.g.,[8] for
onesuchattempt.

5 Implementation

Oncegivenaspecification,wemustimplementasystemthat
is correctwith respectto thisspecification.Thenext issuewe
consideris this move from abstractspecificationto concrete
computationalsystem.Thereareat leasttwo possibilitiesfor
achieving this transformationthatweconsiderhere:

1. somehow directlyexecuteoranimatetheabstractspec-
ification;or

2. somehow translateor compilethespecificationinto a
concretecomputationalform usinganautomatictrans-
lation technique.

In the sub-sectionsthat follow, we shall investigateeachof
thesepossibilitiesin turn.

5.1 Dir ectly ExecutingAgent Specifications

Supposewearegivenasystemspecification,ϕ, which is ex-
pressedin somelogical languageL. Oneway of obtaininga
concretesystemfrom ϕ is to treat it asan executablespec-
ification, and interpret the specificationdirectly in orderto
generatetheagent’sbehaviour. Interpretinganagentspecifi-
cationcanbeviewedasa kind of constructive proof of sat-
isfiability, wherebywe show that the specificationϕ is sat-
isfiableby building a model(in the logical sense)for it. If
modelsfor thespecificationlanguageL canbegivena com-
putationalinterpretation,thenmodelbuilding canbeviewed
asexecutingthespecification.To make this discussioncon-
crete,considertheConcurrentMETATEM programminglan-
guage[7]. In this language,agentsareprogrammedby giv-
ing thema temporallogic specificationof the behaviour it
is intendedthey shouldexhibit; this specificationis directly
executedto generateeachagent’s behaviour. Modelsfor the
temporallogic in which ConcurrentMETATEM agentsare
specifiedarelineardiscretesequencesof states:executinga
ConcurrentMETATEM agentspecificationis thusa process
of constructingsucha sequenceof states.Sincesuchstate
sequencescanbe viewedasthehistoriestracedout by pro-
gramsasthey execute,the temporallogic uponwhich Con-
currentMETATEM is basedhasa computationalinterpreta-
tion; theactualexecutionalgorithmis describedin [1].

Note that executingConcurrentMETATEM agentspec-
ifications is possibleprimarily becausethe models upon
whichtheConcurrentMETATEM temporallogic is basedare
comparatively simple, with an obvious and intuitive com-
putationalinterpretation.However, agentspecificationlan-
guagesin general(e.g., the BDI formalisms of Rao and

3



Georgeff [16]) arebasedonconsiderablymorecomplex log-
ics. In particular, they areusuallybasedonasemanticframe-
work known as possibleworlds [2]. The technicaldetails
aresomewhat involved for the purposesof this article: the
mainpoint is that, in general, possibleworldssemanticsdo
not have a computationalinterpretationin theway thatCon-
currentMETATEM semanticsdo. Henceit is not clearwhat
“executing”a logic basedonsuchsemanticsmightmean.In
responseto this, a numberof researchershave attemptedto
developexecutableagentspecificationlanguageswith asim-
plified semanticbasis,that hasa computationalinterpreta-
tion. An exampleis Rao’s AgentSpeak(L) language,which
althoughessentiallya BDI system,hasa simple computa-
tionalsemantics[15].

5.2 Compiling Agent Specifications

An alternative to direct execution is compilation. In this
scheme,we take our abstractspecification,and transform
it into a concretecomputationalmodelvia someautomatic
synthesisprocess.Themainperceivedadvantagesof compi-
lation over direct executionare in run-timeefficiency. Di-
rect executionof an agentspecification,as in Concurrent
METATEM, above, typically involvesmanipulatinga sym-
bolic representationof thespecificationatruntime. Thisma-
nipulationgenerallycorrespondsto reasoningof someform,
which is computationallycostly. Compilationapproaches
aimto reduceabstractsymbolicspecificationstoamuchsim-
pler computationalmodel,which requiresno symbolicrep-
resentation.The ‘reasoning’work is thusdoneoff-line, at
compile-time;executionof thecompiledsystemcanthenbe
donewith little or no run-timesymbolicreasoning.

Compilationapproachesusuallydependupon the close
relationship between models for temporal/modal logic
(which are typically labeled graphsof some kind), and
automata-like finite statemachines. For example, Pnueli
and Rosner[14] synthesisereactive systemsfrom branch-
ing temporallogic specifications.Similar techniqueshave
alsobeenusedto developconcurrentsystemskeletonsfrom
temporallogic specifications.Perhapsthebest-knownexam-
ple of thisapproachto agentdevelopmentis thesituatedau-
tomataparadigmof RosenscheinandKaelbling [19]. They
useanepistemiclogic (i.e.,a logic of knowledge[6]) to spec-
ify the perceptioncomponentof intelligent agentsystems.
They thenusedan techniquebasedon constructive proof to
directlysynthesiseautomatafrom thesespecifications[18].

The generalapproachof automaticsynthesis,although
theoreticallyappealing,is limited in a numberof important
respects.First, astheagentspecificationlanguagebecomes
moreexpressive,thenevenoffline reasoningbecomestooex-
pensive to carry out. Second,the systemsgeneratedin this
way arenot capableof learning, (i.e., they arenot capable
of adaptingtheir “program” at run-time). Finally, as with
directexecutionapproaches,agentspecificationframeworks
tendto have no concretecomputationalinterpretation,mak-
ing sucha synthesisimpossible.

6 Verification

Oncewehavedevelopedaconcretesystem,weneedto show
that this systemis correctwith respectto our original spec-
ification. This processis known as verification, and it is
particularly importantif we have introducedany informal-
ity into thedevelopmentprocess.We candivide approaches
to theverificationof systemsinto two broadclasses:(1) ax-
iomatic; and(2) semantic(modelchecking). In thesubsec-
tionsthatfollow, weshalllook at theway in which thesetwo
approacheshave evidencedthemselves in agent-basedsys-
tems.

6.1 Axiomatic Approaches

Axiomatic approachesto programverificationwerethefirst
to enterthemainstreamof computerscience,with thework
of Hoarein the late 1960s[10]. Axiomatic verificationre-
quiresthatwe cantake our concreteprogram,andfrom this
programsystematicallyderivealogicaltheorythatrepresents
thebehaviour of theprogram.Call this theprogramtheory.
If the programtheory is expressedin the samelogical lan-
guageastheoriginal specification,thenverificationreduces
to a proof problem:show that thespecificationis a theorem
of (equivalently, is a logical consequenceof) the program
theory. Thedevelopmentof a programtheoryis madefeasi-
ble by axiomatizingtheprogramminglanguagein which the
systemis implemented.For example,Hoarelogic givesus
moreor lessan axiom for every statementtype in a simple
PASCAL-like language.Oncegiven the axiomatization,the
programtheorycan be derived from the programtext in a
systematicway.

Perhapsthe most relevant work from mainstreamcom-
puter scienceis the specificationand verification of reac-
tive systemsusingtemporallogic, in the way pioneeredby
Pnueli,Manna,andcolleagues[12]. Theideais thatthecom-
putationsof reactive systemsare infinite sequences,which
correspondto modelsfor linear temporallogic. Temporal
logic canbeusedbothto developasystemspecification,and
to axiomatizea programminglanguage. This axiomatiza-
tion canthenbe usedto systematicallyderive the theoryof
a programfrom theprogramtext. Both thespecificationand
the programtheorywill thenbe encodedin temporallogic,
andverificationhencebecomesa proof problemin temporal
logic.

Comparatively little work has beencarried out within
theagent-basedsystemscommunityon axiomatizingmulti-
agentenvironments. We shall review just one approach.
In [22], an axiomaticapproachto the verificationof multi-
agentsystemswasproposed.Essentially, theideawasto use
a temporalbelief logic to axiomatizethe propertiesof two
multi-agentprogramminglanguages.Givensuchanaxiom-
atization,aprogramtheoryrepresentingthepropertiesof the
systemcouldbesystematicallyderivedin theway indicated
above. A temporalbelief logic was usedfor two reasons.
First, a temporalcomponentwas requiredbecause,as we
observed above, we needto capturethe ongoingbehaviour
of a multi-agentsystem.A belief componentwasusedbe-

4



causethe agentswe wish to verify are eachsymbolic AI
systemsin their own right. That is, eachagentis a sym-
bolic reasoningsystem,which includesa representationof
its environmentanddesiredbehaviour. A belief component
in thelogic allowsusto capturethesymbolicrepresentations
presentwithin eachagent. The two multi-agentprogram-
ming languagesthatwereaxiomatizedin thetemporalbelief
logic wereShoham’s AGENT0 [21], andFisher’sConcurrent
METATEM (seeabove).Notethatthisapproachrelieson the
operationof agentsbeingsufficiently simplethattheir prop-
ertiescanbeaxiomatizedin thelogic. It worksfor Shoham’s
AGENT0 andFisher’sConcurrentMETATEM largelybecause
theselanguageshave a simplesemantics,closelyrelatedto
rule-basedsystems,which in turn have a simplelogical se-
mantics.For morecomplex agents,anaxiomatizationis not
sostraightforward.Also, capturingthesemanticsof concur-
rentexecutionof agentsis not easy(it is, of course,anarea
of ongoingresearchin computersciencegenerally).

6.2 SemanticApproaches:Model Checking

Ultimately, axiomaticverificationreducesto a proof prob-
lem. Axiomaticapproachestoverificationarethusinherently
limited by the difficulty of this proof problem. Proofsare
hardenough,evenin classicallogic; theadditionof temporal
and modal connectives to a logic makes the problemcon-
siderablyharder. For this reason,moreefficient approaches
to verificationhave beensought. Oneparticularlysuccess-
ful approachis that of modelchecking. As the namesug-
gests,whereasaxiomaticapproachesgenerallyrely on syn-
tacticproof,modelcheckingapproachesarebasedonthese-
manticsof thespecificationlanguage.

The modelcheckingproblem,in abstract,is quite sim-
ple: givena formulaϕ of languageL, anda modelM for L,
determinewhetheror notϕ is valid in M, i.e.,whetheror not
M

� �
L ϕ. Model checking-basedverificationhasbeenstud-

ied in connectionwith temporallogic. The techniqueonce
againreliesuponthecloserelationshipbetweenmodelsfor
temporallogic andfinite-statemachines.Supposethat ϕ is
the specificationfor somesystem,andπ is a programthat
claimsto implementϕ. Then,to determinewhetheror not π
truly implementsϕ, we take π, andfrom it generatea model
Mπ that correspondsto π, in the sensethat Mπ encodesall
the possiblecomputationsof π; determinewhetheror not
Mπ

� �
ϕ, i.e., whetherthe specificationformula ϕ is valid

in Mπ; theprogramπ satisfiesthespecificationϕ just in case
theansweris ‘yes’. Themainadvantageof modelchecking
over axiomaticverificationis in complexity: modelcheck-
ing using the branchingtime temporallogic CTL ([3]) can
bedonein polynomialtime, whereastheproof problemfor
mostmodallogicsis quitecomplex.

In [17], RaoandGeorgeff presentanalgorithmfor model
checkingagentsystems.More precisely, they give analgo-
rithm for takingalogicalmodelfor their (propositional)BDI
agentspecificationlanguage,anda formulaof thelanguage,
anddeterminingwhetherthe formula is valid in the model.
Thetechniqueis closelybasedonmodelcheckingalgorithms
for normalmodallogics [9]. They show thatdespitethe in-

clusion of threeextra modalities,(for beliefs, desires,and
intentions),into the CTL branchingtime framework, theal-
gorithm is still quite efficient, running in polynomial time.
Sothesecondstepof thetwo-stagemodelcheckingprocess
describedabove canstill bedoneefficiently. However, it is
not clearhow thefirst stepmight berealisedfor BDI logics.
Wheredoesthe logical modelcharacterizinganagentactu-
ally comesfrom — canit bederivedfrom anarbitrarypro-
gramπ, asin mainstreamcomputerscience?To do this, we
wouldneedto takeaprogramimplementedin, say, PASCAL,
andfrom it derive the belief, desire,and intentionaccessi-
bility relationsthat areusedto give a semanticsto the BDI
componentof the logic. Because,aswe notedearlier, there
is no clearrelationshipbetweentheBDI logic andthecon-
cretecomputationalmodelsusedto implementagents,it is
notclearhow suchamodelcouldbederived.

7 Conclusions

In thisarticle,I havegivenasummaryof why agentsareper-
ceived to bea significanttechnologyfor softwareengineer-
ing, and also of the main techniquesfor the specification,
implementation,andverificationof agentsystems.Software
engineeringfor agentsystemsis at an early stageof devel-
opment,and yet the widespreadacceptanceof the concept
of an agentimplies that agentshave a significantfuture in
softwareengineering.If the technologyis to be a success,
then its softwareengineeringaspectswill needto be taken
seriously. Probablythe most importantoutstandingissues
for agent-basedsoftwareengineeringare: (i) anunderstand-
ing of thesituationsin whichagentsolutionsareappropriate;
and(ii) principledbut informal developmenttechniquesfor
agentsystems.While someattentionhasbeengiven to the
latter (in the form of analysisanddesignmethodologiesfor
agentsystems[11]), almostno attentionhasbeengiven to
theformer(but see[25]).

References

[1] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and
R. Owens. METATEM: A framework for program-
ming in temporallogic. In REX Workshopon Step-
wiseRefinementof DistributedSystems:Models,For-
malisms,Correctness(LNCSVolume430), pages94–
129.Springer-Verlag:Berlin, Germany, June1989.

[2] B. Chellas.ModalLogic: An Introduction. Cambridge
UniversityPress:Cambridge,England,1980.

[3] E. M. ClarkeandE. A. Emerson.Designandsynthesis
of synchronizationskeletonsusingbranchingtimetem-
porallogic. In D. Kozen,editor, Logicsof Programs—
Proceedings1981 (LNCSVolume131), pages52–71.
Springer-Verlag:Berlin, Germany, 1981.

[4] P. R. Cohenand H. J. Levesque. Intention is choice
with commitment.Artificial Intelligence, 42:213–261,
1990.

5



[5] D. C. Dennett.TheIntentionalStance. TheMIT Press:
Cambridge,MA, 1987.

[6] R.Fagin,J.Y. Halpern,Y. Moses,andM. Y. Vardi.Rea-
soningAboutKnowledge. TheMIT Press:Cambridge,
MA, 1995.

[7] M. Fisher. An alternative approachto concurrenttheo-
remproving. In J.Geller, H. Kitano,andC. B. Suttner,
editors,Parallel Processingin Artificial Intelligence3,
pages209–230.Elsevier SciencePublishersB.V.: Am-
sterdam,TheNetherlands,1997.

[8] M. FisherandM. Wooldridge. On the formal specifi-
cationandverificationof multi-agentsystems. Inter-
national Journal of Cooperative InformationSystems,
6(1):37–65,1997.

[9] J. Y. HalpernandM. Y. Vardi. Model checkingversus
theoremproving: A manifesto.In V. Lifschitz, editor,
AI andMathematicalTheoryof Computation—Papers
in Honorof JohnMcCarthy, pages151–176.Academic
Press,1991.

[10] C. A. R. Hoare. An axiomaticbasisfor computerpro-
gramming.Communicationsof theACM, 12(10):576–
583,1969.

[11] D. Kinny andM. Georgeff. Modelling anddesignof
multi-agentsystems. In J. P. Müller, M. Wooldridge,
andN. R.Jennings,editors,IntelligentAgentsIII (LNAI
Volume 1193), pages1–20. Springer-Verlag: Berlin,
Germany, 1997.

[12] Z. MannaandA. Pnueli. Temporal Verificationof Re-
activeSystems— Safety. Springer-Verlag:Berlin, Ger-
many, 1995.

[13] A. Pnueli. Specificationanddevelopmentof reactive
systems. In InformationProcessing86. Elsevier Sci-
encePublishersB.V.: Amsterdam,The Netherlands,
1986.

[14] A. PnueliandR. Rosner. On thesynthesisof a reactive
module. In Proceedingsof the SixteenthACM Sym-
posiumon the Principlesof ProgrammingLanguages
(POPL), pages179–190,January1989.

[15] A. S. Rao. AgentSpeak(L):BDI agentsspeakout in a
logical computablelanguage.In W. VandeVeldeand
J.W. Perram,editors,AgentsBreakingAway: Proceed-
ings of the SeventhEuropeanWorkshopon Modelling
AutonomousAgentsin a Multi-AgentWorld, (LNAI Vol-
ume1038), pages42–55.Springer-Verlag:Berlin, Ger-
many, 1996.

[16] A. S. RaoandM. Georgeff. BDI Agents: from theory
to practice. In Proceedingsof the First International
ConferenceonMulti-AgentSystems(ICMAS-95), pages
312–319,SanFrancisco,CA, June1995.

[17] A. S. RaoandM. P. Georgeff. A model-theoreticap-
proachto theverificationof situatedreasoningsystems.
In Proceedingsof the Thirteenth International Joint
ConferenceonArtificial Intelligence(IJCAI-93), pages
318–324,Chamb́ery,France,1993.

[18] S. Rosenscheinand L. P. Kaelbling. The synthesis
of digital machineswith provable epistemicproper-
ties. In J. Y. Halpern,editor, Proceedingsof the 1986
ConferenceonTheoreticalAspectsof ReasoningAbout
Knowledge, pages83–98.MorganKaufmannPublish-
ers:SanMateo,CA, 1986.

[19] S.J.RosenscheinandL. P. Kaelbling. A situatedview
of representationandcontrol. In P. E. Agre andS. J.
Rosenschein,editors,ComputationalTheoriesof Inter-
action and Agency, pages515–540.The MIT Press:
Cambridge,MA, 1996.

[20] S.RussellandP. Norvig.Artificial Intelligence:AMod-
ernApproach. Prentice-Hall,1995.

[21] Y. Shoham. Agent-orientedprogramming. Artificial
Intelligence, 60(1):51–92,1993.

[22] M. Wooldridge. TheLogical Modelling of Computa-
tional Multi-AgentSystems. PhDthesis,Departmentof
Computation,UMIST, Manchester, UK, October1992.

[23] M. Wooldridge. Agent-basedsoftware engineering.
IEE TransactionsonSoftwareEngineering, 144(1):26–
37,February1997.

[24] M. WooldridgeandN. R. Jennings.Intelligentagents:
Theoryandpractice.TheKnowledge EngineeringRe-
view, 10(2):115–152,1995.

[25] M. WooldridgeandN. R. Jennings.Pitfalls of agent-
orienteddevelopment.In Proceedingsof theSecondIn-
ternationalConferenceonAutonomousAgents(Agents
98), pages385–391,Minneapolis/StPaul, MN, May
1998.

6


