AGENTS AND SOFTWARE ENGINEERING

MichaelWooldridge
QueenMary andWestfieldCollege, Universityof London
LondonE1 4NS, UnitedKingdom
M J. Wol dri dge@mw. ac. uk

Abstract

Softwareengineergontinuallystrive to developtools
andtechniquego managethe compleity thatis in-

herentin software systems.In this article, we argue
that intelligent agents and agent-basedsystemsare
justsuchtools. Following a discussioron the subject
of whatmakessoftwarecomple, we introduceintel-

ligentagentassoftwarestructurecapableof making
“rational decisions”. Suchrational decision-ma&rs
arewell-suitedto the constructiorof certaintypesof

software,whichmainstreansoftwareengineerindgnas
had little successwith. We then go on to examine
anumberof prototypetechniquegproposedor engi-
neeringagentsystemsincludingformal specification
andverificationmethoddor agentsystemsandtech-
niguesfor implementingagentspecifications.

1 Intr oduction

It haslong beenknown that software developmentis inher
ently difficult — that software hascertainessentiacharac-
teristicsthatmale it hardto developefficient, robust,correct
software. Similarly, it hasalsobeenrecognisedhat certain
typesof softwaresystemareharderto build thanothers.The
disciplineof softwareengineerings ultimatelyaboutunder
standingand masteringthis inherentcompleity, with the
goalof makingsoftwaredevelopmentaneverydayengineer
ing task. Over its threedecadéhistory, softwareengineering
hasdevelopedan increasinglypowerful array of tools with
whichto tacklethecompleity of softwaresystemspf which
the most recentadditionsare the notions of an intelligent
agentand multi-agent systeni24]. In brief, the aim of this
articleis to summarisavhy agentsarepercevedto beanim-
portantnew developmentn softwareengineeringandthen
to review the varioustechniquesand formalismsthat have
beendevelopedfor engineeringagent-basedystemsTo this
end,thearticlebeginsin thefollowing sectionby attempting
to identify someof the maincharacteristicef complec soft-
ware systems.Section3 thendefineswhat we meanby the

term“agent”,andsummarisesvhy suchagentanightbeap-
propriatefor engineeringcomplec softwaresystemsin sec-
tion 4, we describeagent-orientedpecificationtechniques,
focussingin particularon the requirementghat an agent-
orientedspecificatiorframevork will have. In section5, we
discusshow suchspecificationcanbe implementedeither
by directly executingthem,or elseby automaticallysynthe-
sisingexecutablesystemdgrom specificationsSection6 dis-
cussesow implementedsystemsamay be verified, to deter
minewhetheror notthey satisfytheir specificationsFinally,
in section?, we concludewith somecommenton futureis-
suedfor agent-orientedoftwareengineering.

Note that sections4 throughto 6 include somemate-
rial from [23], wherea fuller examinationof, in particular
the specificationjmplementationandverificationof agent-
basedsystemsnaybefound.

2 What MakesComplex Software?

As we notedin sectionl, certaintypesof software system
areharderto successfullyengineetthanothers.Notewe are
not referringhereto algorithmic compleity, in the senseof
NP-completenesandCook’s theorem.Rather we meanthe
compleity of systemspecificationdesignandconstruction
from a softwae engineeringperspectie. In orderto do un-
derstandvhatmakescertaintypesof softwaremorecomplex
thanothers,we will startfrom the abstracwiew of software
systemgresentedn Figurel. Theideais thatary software
systemcanbeviewed asa functionthatis embeddedvithin
someervironment, that takes input from the ervironment,
and producesoutputthat affectsthe ervironment. The en-
vironmentis often software (e.g.,an operatingsystemsuch
asuNIX or Windows 95), sothat the actionsthe agentper
formstake theform of softwareoperationsuchaswriting to
afile. However, if the systemis embeddedvithin a physical
environment,thenthe actionsthe agentperformswill corre-
spondo “real world” actions suchaspickingupandmoving
objects.

Giventhis abstractziew, we canexaminethefactorsthat
affect the complity of engineeringsuchsoftware systems

SYSTEM

input output

ENVIRONMENT

Figurel: An abstractiiew of softwaresystems.

alongatleastthreedimensions:

e Thenature of thesystens ervironment.

Whetheror not the systems$ ernvironmentis dynamic
or static, accessibler inaccessibleanddeterministic
or non-deterministiavill affect the compleity of the
softwaredevelopmentprocesdor systemssituatedin
thaternvironment[20, p46]. In general ervironments
that are dynamic,inaccessibleand non-deterministic
will posegreatemproblemsfor the softwaredeveloper
thanstatic,accessiblegeterministicones.

e Thenature of the interaction betweerthe systemand
its ervironment.

The simplestgeneralform of interactionwith an en-
vironmentis wherea systemtakes someinput from
the ervironment,generatesomeoutputasa function
of this input, and thenterminates. Compilersare a
classicexample of such functional systems. Func-
tional systemscan be specifiedusing pre- and post-
conditionformalisms,andmary techniquege.g.,top-
down stepwiserefinementiareavailableto designand
implementthem. A moregeneralandtypically more
comple type of interactionis wherea systemis re-
quiredto maintainan ongoing non-terminatingrela-
tionshipwith its environment. Examplesncludecon-
trol systemsand computeroperatingsystems. It has
long beenrecognisedhatthe engineeringpf suchre-
active systemss hard(see,e.g.,[13]). Notethatre-
active systemgypically containa numberof reactive
sub-systemsyhich interactwith one-anothem order
to generatehe globalsystembehaiour.

e Thenature of the systens specification.

The simplestgenerakortof specificatiorfor a system
is a predicateover programs:eithera programsatis-
fiesthe specificationor it doesnt. This is the model
of specificationshatis implicit within theformal spec-
ification community astypified by work on the z and
vDM specificationanguagesThe specificatiorpred-
icate inducesan equialencerelation over the set of

possibleprograms,wherebyall those programsthat
satisfythe specificationare consideredequally good,

andall thoseprogramsthat fail to satisfyit are con-
sideredequallybad. A morecomple« generaltype of
specificationtakes the form of maximisingpayof: a
systemtis consideregreferableo 1 if the expected
payof by executingrtis greatetthanthe expectedpay-
off by executingrt. Systemshatarebuilt to suchspec-
ificationsareessentiallyrational decisionmalers.

Traditional software engineeringechniqueshave provedto
besuccessfulvhendirectedto the constructiorof functional
systemswith simple predicatespecificationsthat are situ-
atedin static,accessibledeterministicervironments.How-
ever, the constructiorof reactve systemgshataresituatedn
dynamic,inaccessiblenon-deterministi@nvironmentswith
payof-oriented specificationss an essentiallyopen prob-
lem. This paperproceedsrom the claim that in orderto
engineersuchsystemswe neednew softwaredevelopment
techniquesandtools. This is not a very contentiousclaim:
thefactthat developingsuchsystemsds hardis well-known
in mainstreansoftware engineering.The questionis, what
techniqueanight be appropriatefor this task? The second
claim that this papermakesis that the decisionmakingre-
quiredof suchsystemsloselyresembleghe practical rea-
soningthathumansengagen every day. Thedisciplinethat
studiesthe engineeringpf suchcomputationapracticalrea-
sonerds thefield of intelligentagents[24]. Thethird claim
thatthis papermakesis thereforethatthe technologyof in-
telligentagentds a promisingcandidatdor the engineering
of suchcomple softwaresystems.

3 Agent-BasedSystems

By an agent-basedsystemwe meanonein which the key
abstractiorusedis thatof anagent By anagent we meana
systenthatenjoysthefollowing propertie§24, pp116-118]:

e autonomyagentencapsulateomestate(whichis not
accessibleo otheragents)andmake decisionsabout
whatto do basedn this state withoutthedirectinter
ventionof humansor others;

e reactivity agentsare situatedin an ervironment,
(whichmaybethephysicalworld, auservia agraphi-
cal userinterface,a collectionof otheragentsthe IN-
TERNET, or perhapsnary of thesecombined)areable
to perceivethis ervironment(throughthe useof poten-
tially imperfectsensors)andareableto respondn a
timely fashionto changeghatoccurin it;

e pro-activenessagentsdo not simply actin response
to their ervironment, they are able to exhibit goal-
directedbehaiour by takingtheinitiative;

e social ability: agentsinteract with other agents
(and possibly humans) via some kind of agent-
communicatiofanguage, andtypically have the abil-
ity to engagen socialactvities (suchascooperatie
problem solving or negotiation) in orderto achieve
theirgoals.

Oneof the main problemsin developingan agentsystemis
thatof obtaininga rational balancebetweerthetendeng of
theagentto reactto ervironmentalchangesndits tendenyg
to acttowardsits goals. It is easyto build agentsthatonly
reactto their environment,andit is also easyto build sys-
temsthatonly acttowardstheir goals.But building a system
that getsan appropriatebalancebetweentheseextremesis
hard[24]. Agentsthatbalancethesetwo kinds of behaiour
canbe understoods practical reasoningsystemsin much
thesensedhatwe discussedbove. They arethuswell suited
to operatein the kinds of ervironmentthat traditional soft-
wareengineerindhasnot beensuccessfuat dealingwith.

Now thatwe understan@vhatanagents, we canbeginto
look at softwae engineeringor agent-basedystemsThus,
in thefollowing sectionsyve examinewhatspecificationgor
agentsystemsnightlook like, how to implementsuchspeci-
fications,andfinally, how to verify thatimplementesgystems
doin factsatisfytheir specifications.

4 Specification

In this section,we considerthe problem of specifyingan
agentsystem.Whatarethe requirementgor an agentspec-
ification framewvork? Whatsort of propertiesmustit be ca-
pableof representingTakingtheview of agentsaspractical
reasoningsystemshatwe discusse@bove, thepredominant
approacho specifyingagentshasinvolvedtreatingthemas
intentional systemghat may be understoodby attributing
to them mental statessuch as beliefs, desires,and inten-
tions[5, 24]. Following this idea,a numberof approaches
for formally specifyingagentshave beendeveloped,which
arecapableof representinghefollowing aspect®f anagent-
basedsystem:

¢ the beliefsthat agentshave — the information they
have abouttheir ervironment,which may be incom-
pleteorincorrect;

¢ thegoalsthatagentswill try to achieve;

¢ theactionsthatagentgperformandtheeffectsof these
actions;

¢ theongoinginteractionthatagentiave— how agents
interactwith eachother and their environmentover
time.

We call atheorywhich explainshow theseaspect®f ageng
interactto effect the mappingfrom sensorinput to effector
output (as shavn in Figure 1) an agent theory The most
successfubpproachto (formal) agenttheory appeardo be
the use of a tempoal modal logic (spacerestrictionspre-
vent a detailedtechnicaldiscussionon suchlogics — see,
e.g.,[24] for extensie references).Two of the bestknown
suchlogical frameworks arethe Cohen-Leesquetheory of
intention [4], and the Rao-Geogeff belief-desire-intention
model[16]. The Cohen-Le&esquemodeltakesasprimitive
justtwo attitudes:beliefsandgoals. Otherattitudes(in par
ticular, the notion of intention) arebuilt up from these. In

contrastRao-Geogef take intentionsasprimitives,in addi-
tion to beliefsandgoals. The key technicalproblemfaced
by agenttheoristsis developinga formal modelthat givesa
good accountof the interrelationshipdetweenthe various
attitudesthattogethercompriseanagentsnternalstate[24].

Comparatiely few seriousattemptdave beenmadeto spec-
ify realagentsystemaisingsuchlogics— see,e.qg.,[8] for

onesuchattempt.

5 Implementation

Oncegivenaspecificationyve mustimplementa systenthat

is correctwith respecto thisspecificationThenext issuewe

consideris this move from abstracspecificatiorto concrete
computationasystem.Thereareatleasttwo possibilitiesfor

achieving thistransformatiorthatwe considetere:

1. somehaev directly executeor animatetheabstracspec-
ification; or

2. somehw translateor compilethe specificationinto a
concretecomputationaform usinganautomatidrans-
lationtechnique.

In the sub-sectionshat follow, we shallinvestigateeachof
thesepossibilitiesin turn.

5.1 Directly Executing Agent Specifications

Supposeave aregivenasystenmspecificationg, whichis ex-
pressedn somelogicallanguagd.. Oneway of obtaininga
concretesystemfrom ¢ is to treatit asan executablespec-
ification, andinterpret the specificationdirectly in orderto
generateheagents behaiour. Interpretinganagentspecifi-
cationcanbe viewed asa kind of constructve proof of sat-
isfiability, wherebywe shaw thatthe specificationd is sat-
isfiable by building a model(in the logical senseor it. If
modelsfor the specificatiorlanguage. canbe givena com-
putationalinterpretationthenmodelbuilding canbe viewed
asexecutingthe specification.To make this discussiorcon-
crete,considetthe ConcurrenM ETATEM programmindan-
guage[7]. In thislanguageagentsareprogrammedy giv-
ing them a temporallogic specificationof the behaiour it
is intendedthey shouldexhibit; this specificatioris directly
executedto generateeachagents behaiour. Modelsfor the
temporallogic in which ConcurrentMETATEM agentsare
specifiedarelineardiscretesequencesf states:executinga
ConcurrentM ETATEM agentspecifications thusa process
of constructingsucha sequencef states. Sincesuchstate
sequencesanbe viewed asthe historiestracedout by pro-
gramsasthey execute the temporallogic uponwhich Con-
currentMETATEM is basedhasa computationalnterpreta-
tion; theactualexecutionalgorithmis describedn [1].

Note that executingConcurrentM ETATEM agentspec-
ifications is possible primarily becausethe models upon
whichthe ConcurrenM ETATEM temporalogic is basedare
comparatrely simple, with an obvious and intuitive com-
putationalinterpretation. However, agentspecificationlan-
guagesin general(e.g., the BDI formalismsof Rao and

Geogeff [16]) arebasedn considerablynorecomple log-

ics. In particularthey areusuallybasednasemantidrame-
work known as possibleworlds [2]. The technicaldetails
are somavhat involved for the purposef this article: the
main pointis that,in geneal, possibleworlds semanticslo

not have acomputationainterpretationin theway thatCon-
currentMETATEM semanticglo. Henceit is not clearwhat
“executing”alogic basedn suchsemanticsnightmean.In

responseo this, a numberof researcherbave attemptedo

developexecutableagentspecificatiolanguagesvith asim-

plified semanticbasis,that hasa computationalinterpreta-
tion. An exampleis Raos AgentSpeak(L) languagewhich

althoughessentiallya BDI system,hasa simple computa-
tional semantic$15].

5.2 Compiling Agent Specifications

An alternative to direct executionis compilation In this
scheme,we take our abstractspecification,and transform
it into a concretecomputationamodelvia someautomatic
synthesigprocessThe mainpercevedadwantage®f compi-
lation over direct executionarein run-time efficiengy. Di-
rect executionof an agentspecification,as in Concurrent
METATEM, above, typically involves manipulatinga sym-
bolic representationf thespecificatioratruntime. Thisma-
nipulationgenerallycorrespondso reasoningf someform,
which is computationallycostly Compilationapproaches
aimto reduceabstracsymbolicspecificationso amuchsim-
pler computationamodel,which requiresno symbolicrep-
resentation.The ‘reasoning’work is thus doneoff-line, at
compile-time;executionof the compiledsystemcanthenbe
donewith little or norun-timesymbolicreasoning.

Compilationapproachesisually dependuponthe close
relationship between models for temporal/modallogic
(which are typically labeled graphsof some kind), and
automata-lile finite state machines. For example, Pnueli
and Rosner[14] synthesisaeactve systemsfrom branch-
ing temporallogic specifications. Similar techniqueshave
alsobeenusedto develop concurrensystemskeletonsfrom
temporalogic specificationsPerhapshebest-knevn exam-
ple of this approacho agentdevelopmenis the situatedau-
tomataparadigmof RosenscheiandKaelbling[19]. They
useanepistemidogic (i.e.,alogic of knowled@[6]) to spec-
ify the perceptioncomponentof intelligent agentsystems.
They thenusedan techniquebasedon constructve proof to
directly synthesiseutomatdrom thesespecification$18].

The generalapproachof automaticsynthesisalthough
theoreticallyappealingjs limited in a numberof important
respects First, asthe agentspecificationanguagebecomes
moreexpressie,thenevenoffline reasonindbecome$oo ex-
pensve to carry out. Secondthe systemggeneratedn this
way are not capableof learning, (i.e., they arenot capable
of adaptingtheir “program” at run-time). Finally, aswith
directexecutionapproachesgentspecificatiorframenorks
tendto have no concretecomputationalnterpretationmak-
ing sucha synthesismpossible.

6 Verification

Oncewe have developeda concretesystemwe needtio shav
thatthis systemis correctwith respecto our original spec-
ification. This processis known as verification andit is
particularlyimportantif we have introducedary informal-
ity into the developmeniprocessWe candivide approaches
to the verificationof systemsnto two broadclasses(1) ax-
iomatic, and(2) semantiqgmodelchecking).In the subsec-
tionsthatfollow, we shalllook attheway in whichthesetwo
approachedave evidencedthemselesin agent-basedys-
tems.

6.1 Axiomatic Approaches

Axiomatic approacheto programverificationwerethefirst
to enterthe mainstreanof computersciencewith the work
of Hoarein the late 1960s[10]. Axiomatic verificationre-
quiresthatwe cantake our concreteprogram,andfrom this
progranmsystematicallglervealogicaltheorythatrepresents
the behaviour of the program. Call this the programtheory
If the programtheoryis expressedn the samelogical lan-
guageasthe original specificationthenverificationreduces
to a proof problem: shaw thatthe specificatioris a theorem
of (equialently, is a logical consequencef) the program
theory The developmenif a programtheoryis madefeasi-
ble by axiomatizinghe programmindanguagéen whichthe
systemis implemented.For example,Hoarelogic givesus
more or lessan axiomfor every statementypein a simple
pascAL-like language.Oncegiven the axiomatizationthe
programtheory can be derived from the programtext in a
systematiovay.

Perhapghe mostrelevant work from mainstreancom-
puter scienceis the specificationand verification of reac-
tive systemausingtemporallogic, in the way pioneerecdby
Pnueli,Mannaandcolleague$l?]. Theideais thatthecom-
putationsof reactve systemsareinfinite sequencesyhich
correspondo modelsfor linear temporallogic. Temporal
logic canbeusedbothto developa systenspecificationand
to axiomatizea programminglanguage. This axiomatiza-
tion canthenbe usedto systematicallyderive the theory of
aprogramfrom the programtext. Both the specificatiorand
the programtheorywill thenbe encodedn temporallogic,
andverificationhencebecomes proof problemin temporal
logic.

Comparatiely little work hasbeencarried out within
the agent-basedystemscommunityon axiomatizingmulti-
agentervironments. We shall review just one approach.
In [22], an axiomaticapproacho the verificationof multi-
agentsystemsvasproposedEssentiallytheideawasto use
a temporalbelief logic to axiomatizethe propertiesof two
multi-agentprogrammindanguagesGiven suchan axiom-
atization,a programtheoryrepresentinghe propertiesof the
systemcould be systematicallyderivedin theway indicated
abore. A temporalbelief logic was usedfor two reasons.
First, a temporalcomponentwas requiredbecauseas we
obsened above, we needto capturethe ongoingbehaiour
of a multi-agentsystem. A belief componentvasusedbe-

causethe agentswe wish to verify are eachsymbolic Al
systemsin their own right. Thatis, eachagentis a sym-
bolic reasoningsystem,which includesa representatiomf
its ervironmentanddesiredbehaiour. A belief component
in thelogic allows usto captureghesymbolicrepresentations
presentwithin eachagent. The two multi-agentprogram-
ming languageshatwereaxiomatizedn thetemporabelief
logic wereShohams AGENTO [21], andFishers Concurrent
METATEM (seeabove). Notethatthis approactreliesonthe
operationof agentsbeingsuficiently simplethattheir prop-
ertiescanbeaxiomatizedn thelogic. It worksfor Shohams
AGENTO andFishersConcurrenM ETATEM largelybecause
theselanguage$ave a simple semanticscloselyrelatedto
rule-basedsystemswhich in turn have a simplelogical se-
mantics.For morecomplex agentsan axiomatizatioris not
sostraightforvard. Also, capturingthe semantic®f concur
rentexecutionof agentss not easy(it is, of courseanarea
of ongoingresearchn computersciencegenerally).

6.2 SemanticApproaches:Model Checking

Ultimately, axiomaticverificationreducesto a proof prob-
lem. Axiomaticapproachew verificationarethusinherently
limited by the difficulty of this proof problem. Proofsare
hardenoughgvenin classicalogic; theadditionof temporal
and modal connectvesto a logic makesthe problemcon-
siderablyharder For this reasonmoreefficient approaches
to verificationhave beensought. One particularly success-
ful approachis that of modelchedking. As the namesug-
gests,whereasaxiomaticapproachegenerallyrely on syn-
tacticproof, modelcheckingapproachearebasecnthese-
manticsof the specificatiolanguage.

The modelcheckingproblem,in abstract,s quite sim-
ple: givenaformula¢ of languagd., andamodelM for L,
determinenvhetheror not¢ is validin M, i.e.,whetheror not
M =L ¢. Model checking-basederificationhasbeenstud-
ied in connectiorwith temporallogic. Thetechniqueonce
againreliesuponthe closerelationshipbetweenmodelsfor
temporallogic andfinite-statemachines.Supposédhat ¢ is
the specificationfor somesystem,and 1t is a programthat
claimsto implementd. Then,to determinevhetheror not 1t
truly implementsp, we take 1, andfrom it generatea model
Mr that correspondso 11, in the sensethat M encodesall
the possiblecomputationsof 17 determinewhetheror not
Mq = 0, i.e., whetherthe specificationformula ¢ is valid
in My; the programr satisfieghe specificationp justin case
theanswelis ‘yes’. The mainadwantageof modelchecking
over axiomaticverificationis in compleity: modelcheck-
ing usingthe branchingtime temporallogic cTL ([3]) can
be donein polynomialtime, whereaghe proof problemfor
mostmodallogicsis quitecomple.

In [17], RaoandGeogeff presentnalgorithmfor model
checkingagentsystems.More precisely they give analgo-
rithm for takingalogical modelfor their (propositionalBDI
agentspecificationanguageanda formulaof the language,
anddeterminingwhetherthe formulais valid in the model.
Thetechniquas closelybasecbnmodelcheckingalgorithms
for normalmodallogics[9]. They shawv thatdespitethe in-

clusion of three extra modalities, (for beliefs, desires,and
intentions),into the cTL branchingtime framework, the al-
gorithm s still quite efficient, runningin polynomialtime.
Sothe secondstepof the two-stagemodelcheckingprocess
describedabove canstill be doneefficiently. However, it is
not clearhow thefirst stepmight berealisedfor BDI logics.
Wheredoesthe logical modelcharacterizingan agentactu-
ally comesfrom — canit be derived from an arbitrarypro-
gramTt, asin mainstreancomputerscience?To do this, we
would needto take a programimplementedn, say PASCAL,
andfrom it derive the belief, desire,and intention accessi-
bility relationsthatare usedto give a semanticgo the BDI
componenbf thelogic. Becauseaswe notedearliet there
is no clearrelationshipbetweenthe BDI logic andthe con-
cretecomputationamodelsusedto implementagentsit is
notclearhow suchamodelcouldbederived.

7 Conclusions

In thisarticle,| have givenasummaryof why agentsareper
ceivedto be asignificanttechnologyfor software engineer
ing, and also of the main techniquedor the specification,
implementationandverificationof agentsystems Software
engineeringor agentsystemss at an early stageof devel-
opment,andyet the widespreachcceptancef the concept
of an agentimplies that agentshave a significantfuture in
software engineering.If the technologyis to be a success,
thenits software engineeringaspectaill needto be taken
seriously Probablythe mostimportantoutstandingissues
for agent-basedoftwareengineeringare: (i) anunderstand-
ing of thesituationdn whichagentsolutionsareappropriate;
and (ii) principledbut informal developmentechniquedor
agentsystems.While someattentionhasbeengivento the
latter (in the form of analysisanddesignmethodologiegor
agentsystemg11]), almostno attentionhasbeengiven to
theformer(but seg[25]).

References

[1] H. Barringer M. Fisher D. Gabbay G. Gough, and
R. Owens. METATEM: A framework for program-
ming in temporallogic. In REXWbrkshopon Step-
wise Refinemenof Distributed SystemsModels,For-
malisms,Correctnes§LNCSVolume430), pages94—
129.SpringerVerlag:Berlin, Germary, Junel989.

[2] B. Chellas.Modal Logic: AnIntroduction Cambridge

UniversityPress:CambridgeEngland,1980.

[3] E.M. Clarke andE. A. Emerson Designandsynthesis
of synchronizatioskeletonsusingbranchingime tem-
porallogic. In D. Kozen,editor, Logicsof Programs—
Proceedingsl981 (LNCSVWolume 131), pages52—71.

SpringerVerlag:Berlin, Germairy, 1981.
(4]

P. R. CohenandH. J. Levesque. Intentionis choice
with commitment. Artificial Intelligence 42:213-261,

1990.

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

D. C. Dennett.ThelntentionalStance TheMIT Press:
CambridgeMA, 1987.

R.Fagin,J.Y. Halpern,Y. MosesandM. Y. Vardi. Rea-
soningAboutKnowled@. TheMIT Press:Cambridge,
MA, 1995.

M. Fisher An alternatve approactto concurrentheo-
remproving. In J. Geller, H. Kitano,andC. B. Suttner
editors,Parallel Processingn Artificial Intelligence3,
pages209-230Elsevier SciencePublishers.V.: Am-
sterdam;TheNetherlands1997.

M. FisherandM. Wooldridge. On the formal specifi-
cation and verification of multi-agentsystems. Inter-

national Journal of Coopeative Information Systems
6(1):37-65,1997.

J.Y. HalpernandM. Y. Vardi. Model checkingversus
theoremproving: A manifesto.In V. Lifschitz, editor,

Al andMathematicalTheoryof Computation— Papels

in Honorof JohnMcCarthy, pagesl51-176 Academic
Press1991.

C. A. R. Hoare. An axiomaticbasisfor computerpro-
gramming. Communication®f the ACM, 12(10):576—
583,1969.

D. Kinny andM. Geogeff. Modelling and designof
multi-agentsystems. In J. P. Miller, M. Wooldridge,
andN. R. Jenningseditors,IntelligentAgentslil (LNAI
\Volume 1193) pages1-20. SpringerVerlag: Berlin,
Germaly, 1997.

Z. MannaandA. Pnueli. Tempoal \erification of Re-
activeSystems— Safety SpringerVerlag:Berlin, Ger
mary, 1995.

A. Pnueli. Specificationand developmentof reactve
systems. In Information Processing86. Elsevier Sci-
encePublishersB.V.: Amsterdam,The Netherlands,
1986.

A. PnueliandR. Rosner Onthesynthesiof areactve
module. In Proceedingsof the SixteenthACM Sym-
posiumon the Principles of ProgrammingLanguajes
(POPL), pagesl 79—190January1 989.

A. S.Rao. AgentSpeak(L)BDI agentsspeakoutin a
logical computabldanguage.ln W. Vande Veldeand
J.W. Perramgditors, AgentsBreakingAway: Proceed-
ings of the SeventhEuropeanWorkshopon Modelling
Autonomoug\gentsin a Multi-Agent\World, (LNAI Vol-

umel038) pagest2-55.SpringerVerlag:Berlin, Ger

mary, 1996.

A. S.RaoandM. Geogefi. BDI Agents:from theory
to practice. In Proceedingf the First International
Confeenceon Multi-AgentSystem@CMAS-95) pages
312-319SanFranciscoCA, Junel995.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

A. S. RaoandM. P. Geogeff. A model-theoreti@ap-
proachto theverificationof situatedreasoningystems.
In Proceedingsof the Thirteenth International Joint
Confeenceon Atrtificial Intelligence(lJCAI-93), pages
318-324 Chamiery, France,1993.

S. Rosenscheirand L. P. Kaelbling. The synthesis
of digital machineswith provable epistemicproper

ties. In J.Y. Halpern,editor, Proceedingf the 1986
Confeenceon Theoetical Aspectof ReasoningAbout
Knowledg, pages33—-98.MorganKaufmannPublish-
ers:SanMateo,CA, 1986.

S.J.RosenscheiandL. P. Kaelbling. A situatedview
of representatiomndcontrol. In P. E. Agre andS. J.
Rosenscheireditors,Computationallheoriesof Inter-
action and Agency pages515-540.The MIT Press:
CambridgeMA, 1996.

S.RusselbndP. Norvig. Artificial Intelligence:AMod-
ern Appmoach. Prentice-Hall 1995.

Y. Shoham. Agent-orientedprogramming. Artificial
Intelligence 60(1):51-921993.

M. Wooldridge. The Logical Modelling of Computa-
tional Multi-AgentSystemsPhDthesis Departmenbf
ComputationUMIST, ManchesterUK, October1992.

M. Wooldridge. Agent-basedsoftware engineering.
IEE Transaction®n Softwae Engineering144(1):26—
37,February1997.

M. WooldridgeandN. R. Jennings.Intelligentagents:
Theoryandpractice. TheKnowledg EngineeringRe-
view, 10(2):115-1521995.

M. WooldridgeandN. R. Jennings. Pitfalls of agent-
orienteddevelopmentln Proceeding®ftheSecondn-
ternationalConfeenceon Autonomoug\gents(Agents
98), pages385-391,Minneapolis/StPaul, MN, May
1998.

