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Abstract

The use of software agents for automatic contract negotiation in e-commerce and e-trading en-
vironments has been the subject of considerable recent interest. A widely studied abstract model
considers the setting in which a set of agents have some collection of resources shared out between
them and attempt to construct a mutually beneficial optimal reallocation of these by trading re-
sources. The simplest such trades are those in which a single agent transfers exactly one resource
to another—so-called ‘ one-resource-at-a-time' or ‘O-contracts' . In this research note we consider
the computational complexity of anumber of natural decision problemsin this setting.
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1. Introduction

Mechanisms for automatically negotiating the allocation of resources in a group of
agents form an important body of work within the multiagent systems field. Typical ab-
stract models derive from game-theoretic perspectives in economics and among the issues
that have been addressed are strategies that agents may use to negotiate, e.g., [9,12,14], and
protocols for negotiation in agent societies, e.g., [2,10].

In this paper, we investigate the computational complexity of one of the most fundamen-
tal questions that may be asked of such a negotiation setting: that of whether a particular

* Corresponding author.
E-mail address: ped@csc.liv.ac.uk (PE. Dunne).

0004-3702/$ — see front matter [ 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2005.01.006



24 PE. Dunneet al. / Artificial Intelligence 164 (2005) 23-46

outcome is feasible under the assumption that negotiation participants will act rationally.
The particular negotiation setting we consider—introduced by Sandholm [13]—relates to
the reallocation of resources amongst agents. The idea is that, starting from some initial
allocation, agents can negotiate to transfer resources between themselves to their mutual
benefit. At each stage of negotiation, agents make deals by transferring resources to other
agents, and receiving resources in return. The feasibility question in this setting may be
informally understood as follows.

Given someinitial allocation P* of resourcesto agents, and some potential final alloca-
tion P?, isthere a sequence of dealsthat will be individual rational to all involved, such
that at the end of this sequence of deals, the allocation P? will be realised?

It could be argued that a positive answer to this question does not imply that negotiation
will be successful, as it merely implies the existence of an individual rational sequence of
dealsto get from P* to P’. The agentsin question may have their own (perhapsirrational)
reasons for rejecting some dealsin this sequence. Moreover, unlessthe feasibility checking
process is constructive, the agents may not be able to find the desired sequence of deals.
A negative answer, however, surely rules out any chance of getting from P* to P’: for
every possible sequence of dealsrealising this reall ocation, some agent would suffer in the
course of itsimplementation, and would therefore reject it.

Our main result is to show that this problem—and a number of natural variations of
it—is NP-hard. We aso investigate the complexity of a number of related problems: for
example, we show that the problem of determining whether a particular allocation is Pareto
Optimal is co-NP-complete.

2. Preliminary definitions
The scenario that we are concerned with is encapsulated in the following definition.

Definition 1. A resource allocation setting is defined by atriple (A, R, U) where
A={A1, Az, ..., Ank R=A{r1,r2,....rm}

are, respectively, aset of (at least two) agents and a collection of (non-shareable) resources.
A utility function, u, isamapping from subsets of R to rational values. Each agent A; € A
has associated with it a particular utility function u;, so that U is (u1,u2,...,u,). An
allocation P of R to A isapartition (Py, P>, ..., P,) of R. The utility function, u;, is
monotone if u; (S) < u; (T) whenever S C T. The value u; (P;) is caled the utility of the
resources assigned to A;.

Starting from someinitial allocation— Po—individual agents negotiatein an attempt to
improve the utility of their holding. A number of interpretations have been proposed in
order to define what constitutes a ‘sensible’ transfer of resource from both an individual
agent’s viewpoint and from the perspective of the overall alocation. Thusin negotiating a
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changefromanallocation P; to Q; (with P;, Q; € R and P; # Q;) therearethree possible
outcomes for the agent A;:

— u; (P;) <u;(Q;) A; valuesthe allocation Q; as superior to P;;
— u;(P) =u;(Q;) A; isindifferent between P; and Q;; and
—u;(P;) >u;(Q;) A; isworse off after the exchange.

In a setting in which agents are self-interested, in order for an agent to accept an exchange
with the last outcome, the notion of a pay-off function is used: in order to accept the new
allocation, A; receives some payment sufficient to compensate for the resulting loss in
utility. Of course, such compensation must be made by other agents in the system who in
providing it do not wish to pay in excess of any gain in resource. In defining notions of
‘pay-off’, theinterpretation isthat in any transaction each agent A; makesapayment, r;: if
m; < Othen A; isgiven —; inreturn for accepting acontract; if 7; > 0then A; contributes
7r; to the amount to be distributed among those agents whose pay-off is negative. Formally,
such anotion of ‘sensible transfer’ is captured by the concept of individual rationality.

Definition 2. Let (A, R, U) be aresource allocation setting. A deal isapair (P, Q) where
P=(Py,...,P,)and Q = (01, ..., Q) aredigtinct partitions of R. Weuse § to denotean
arbitrary deal. The effect of implementing thedeal (P, Q) isthat the all ocation of resources
specified by P isreplaced with that specified by Q.

A ded (P, Q) is said to be individually rational (IR) if there is a pay-off vector = =
(1, 2, ..., 7y, Satisfying,

(a Z?:l m; = 0.

(b) u;(Q;) —u;(P;) > m;, for each agent A;, except that 7; isallowedtobe O if P, = Q;,
i.e., should thedeal (P, Q) leave the agent A; with no changeinitsresourcethenitis
not required that A; be rewarded (have ; < 0).

Definition 2 captures one view of a deal being ‘sensible’ with respect to the perspec-
tive of single agents. We require also concepts of ‘global’ optimality. We consider two
commonly used versions of this: Pareto Optimality and (Utilitarian) Social Welfare.

Definition 3. Let P bean allocation of R among .A. The utilitarian social welfare resulting
from P, denoted o, (P), isgivenby > ; u; (P;).
The allocation P is Pareto optimal if for all alocations Q differing from P, it holds

(\/[ui(Q» > u,-(Pn]) = (\/[u,-(Ql-) < ui(Pi)]). (1)
i=1 i=1

Thus a Pareto optimal alocation is one in which no agent can attain better than its
current utility except at the cost of leaving some agent worse off.
We make frequent use of the following result throughout the remainder of the paper.

Fact 4[7]. Adeal (P, Q) isIRifand onlyif 6,(Q) > o, (P).
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In atypical application it is unlikely that an initial allocation Py to A will either max-
imise social welfare or be Pareto optimal, thus the agents involved seek to find a sequence
of dealsthat will terminate in an optimal alocation. Given the setting it is clearly the case
that there are allocations Popt and Qopt With the properties that o, (Popt) maximises social
welfare and for which Qo is Pareto optimal—of course, Popt and Qopt may not be unique.
If the object is to maximise social welfare then clearly the deal (Po, Popt) Will achieve this
in a single round. It is unreasonable, however, to view such a dea as a viable solution:
although always IR (if it represents a strict increase of social welfare) it is questionable
whether it could be identified as the first and only deal required. The total number of pos-
sible allocations is n™, and so for moderately large numbers of resources (m) there are
too many feasibly to enumerate (even when n = 2). In addition, it may not be possible to
implement the optimising contract in a single transaction even if only two agents are in-
volved: the environment in which the trading process is implemented may not be suited to
handling transactions in which large numbers of resources are involved; similarly, the pro-
tocol used for negotiation and contract description may not allow arbitrarily large numbers
of resources to be dealt with.

In order to develop arealistic framework for negotiation, Sandholm [13] (using Smith’'s
Contract-Net model [16]), presents a number of classes of contract type. In this article we
are concerned with the following of these.

Definition 5[13]. Let § = (P, Q) beadeal involving an allocation of R among .A. We say
that § isacluster contract (C-contract) if there are distinct agents A; and A ; for which,

(Cl) Pr=Qifandonlyifk ¢ {i, j}.
(C2) Thereisaunigque (non-empty) set S for which Q; = P, U S and Q; = P; \ S (with
Sng)or Qj:PjUS&ﬂd Qi =P\ S (withS C P).

Thusa C-contract involves one agent transferring a subset of its allocation to another agent
(without receiving any subset of resources in return).

The definition of C-contract permitsan arbitrarily large number of resourcesto betrans-
ferred from one agent to another in a single deal. For the class of contracts of interest in
our subsequent results, we wish to impose a bound on the maximum number of resources
that can be moved in one deal. We thus introduce the notion of C (k)-contracts.

Definition 6. For a resource alocation setting (A, R, U) and value k < m = |R|, we say
that § isak-bounded cluster contract, (C (k)-contract) if § isa C-contract in which S—the
set of resources transferred—contains at most & elements. When k = 1, we use the term
one contract (O-contract): the name given to such dealsin [13].

We recall that a C (k)-contract (P, Q) will be IR if and only if 6,,(Q) > o, (P).

A sequence of deals A = (81, 82, ..., &) for which §; = (Q;_1, Q;) iscaled a contract
path realising the deal (Qo, Q;). The length of a contract path is the total number of deals
comprising it. Given apredicate @ over deals, we say that a contract path A isa @-path if
@ (8;) istrue of every deal §; within A.



P.E. Dunneet al. / Artificial Intelligence 164 (2005) 23-46 27

Our main results concern @-paths where @ (8) isthe predicate which istrue if and only
if § isanindividually rational C (k)-contract. Inthecaseof k = 1,i.e., IR O-contracts, such
paths are attractive from an implementation viewpoint since these only involve agent-to-
agent negotiation concerning asingle resource at atime. In addition, starting from a given
allocation, the number of O-contracts that are consistent with it is exactly m(n — 1), as
opposed to n™ possible alocations. Thus heuristic methods may be able to find improved
allocations by exploring the search space through O-contracts alone.

Appealing asthe latter approach is, there are, nevertheless, problems associated with it.
The following results were established by Sandholm [13].

Fact 7. Let Py beany initial allocation of R to A and P, be any other allocation.

(@) Thedeal (Pg, P;) can always be realised by a contract path in which every deal is an
O-contract.

(b) There are resource allocation settings, (A, R,U) within which there are IR deals
(Po, Py) that cannot be realised by any IR C-contract path.

We note that Fact 7(b) holds even if we are concerned with settings involving only two
agents and the allocation P, concerned is one that maximises social welfare.

In total, IR C-contracts (and thereby also the more restricted IR C(k) and IR O-
contracts) in themselves may not suffice to form an IR contract-path realising a specific
dedl.

In this paper we are concerned with the following decision problem:

Definition 8. The decision problem IR-k-path (IR¥) is given by

Instance: A 5-tuple (A, R, U, PS, Py inwhich (A, R, U) isaresource alocation setting,
P® and P areallocations of R to A inwhich o, (P®) > 0,(PY).

Question: Isthere an IR C (k)-contract path that realisesthe deal (P*, P')?

It is important to note that the value k& (which restricts the number of resourcesin a
cluster contract), does not form part of an instance of IR*.

In keeping with the use of the term O-contract for C (1)-contract, we denote the decision
problem IR by IRO.

The main results of this article concern 1R* when k is constant and I1RF when the cluster
size (k) is a predefined function of the number of resources. Specificaly we prove the
following:

(@ IR is NP-hard for al constant values of k. This holds even when (A, R, ) is a set-
ting comprising two agents. The special case IRO remains NP-hard when both utility
functions are monotone.

(b) For k:N — N, satisfying k(m) < m/3, IRK™ is Np-hard, again even in the case of
resource allocation settings involving exactly two agents.

(c) 1R™/2 is NP-hard, again even in the case of resource allocation settings involving ex-
actly two agents.
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Our proofs of these results are given in Theorems 12—15.

We first note that the result of Theorem 15 does not imply (from the proof presented)
either of the preceding theorems. It may seem to be the case that, when i < k, a lower
bound on the complexity of IRF implies asimilar lower bound on the complexity of IR" by
virtue of the fact that within any resource allocation setting, all IR C (h)-contracts are also
IR C (k)-contracts. As we shall, however, illustrate in proving (c), it is not necessarily the
case that we can deduce IR" to be NP-hard from a proof that IR"*¥ is so: in order for this
to hold, the construction used in demonstrating the latter must be such that any positive
instances formed by the reduction to IR"*+* admit IR C (h)-contract paths. In the case of
Theorem 14, while it is the case that our proof subsumes the result of Theorem 12, the
construction for the latter case is rather lessinvolved and has the additional advantage that
the extension to monatone utility functions with 1RO follows easily. For this reason, we
have presented separate proofs of these results.

Before proceeding, we address oneissue that israised by Fact 7. Consider the following
argument deriving from this fact.

(a) Everydeal (Py, P;) can berealised by a sequence of O-contracts.

(b) Thereare IR dealswhich cannot be realised by a sequence of IR C-contracts.

(c) Therefore, toimplement any IR deal (Po, P;) why not use an O-contract path some of
whose constituent deals may fail to be IR?

In other words, why might it be necessary for every deal to be IR?

One answer to this question is offered by the scenario, outlined in [4], that we now
describe. We observe that the issue underlying this argument is relevant with respect to
any class of restricted contract types, i.e., the fact that O-contracts are referred to is purely
for illustrative purposes. For simplicity, let us assume that we have a resource allocation
setting (A, R, U) involving exactly two agents {A1, A2}. These negotiate an allocation of
R working with the following protocaol.

A redllocation of resources is agreed over a sequence of stages. Each stage consists
of Aj issuing aproposal to Az of the form (buy, r, p), offering to purchase r from A»
for apayment of p; or (sdll, r, p), offering to transfer r to A2 inreturn for apayment p.
The response from A5 issimply accept (following which the exchange isimplemented)
or reject. A final allocation isfixed either when A; is‘satisfied’ or as soon as A2 rejects
any offer.

This is, of course, a very simple negotiation setting; however, consider its operation
when A1 wishes to bring about an allocation P, and can thus devise a plan—a sequence of
O-contracts—to realise this from an initial allocation Po.

While A> could be better off if P, isrealised, it may be the case that the only propos-
als A, will accept are those under which it does not lose, i.e., A2 isnot prepared to suffer
a short-term loss even if it is suggested that a long-term gain will result. Thus if some
agents are sceptical about the bona fides of others then they will be inclined to accept only
deals from which they can perceive an immediate benefit, i.e., those which are individually
rational.
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There are severa reasons why an agent may embrace such attitudes within the schema
outlined: once adeal has been implemented A, may lose utility but no further proposalsare
madeby A1 sothat itslossis‘ permanent’. We note that even if we enrich the basic protocol
so that A1 can describe P; to Ao before any formal exchange of resources takes place, if
(Po, P;) isimplemented by an O-contract path (via the sequence of stages outlined), A»
may dtill reject offers under which it suffers a loss, since it is unwilling to rely on the
subsequent O-contracts that would ameliorate its loss actually being proposed.

Although the position taken by A2 in the setting just described may appear unduly cau-
tious, we would claim that it clearly reflects actual behaviour in certain arenas. In contexts
other than automated allocation and negotiation models in multiagent systems, there are
many examples of actions by individual s where promised long-term gains are insufficient
to engender the acceptance of short term loss, e.g., ‘ chain letter’ schemes although having
anatural lifetime bounded by the size of the population in which they circulate, typically
break down before this is reached. Despite the possibility of significant gain after a tem-
porary loss, recipients may be disinclined to invest the expense requested to propagate the
chain: such behaviour is not seen as overly sceptical and cautious. In the same way, the
‘rational’ response to the widespread e-mail fraud by which one is asked to furnish bank
account details and working capital in order to facilitate the release of significant fundsin
return for a percentage of these, istoignorethe request. Asafina example, it isconsidered
standard practice to delete without reading, unexpected e-mail attachments regardless of
what incentives to open such may be promised by the accompanying message text.

In summary, the critical question underpinning such views is this: in a reallocation of
resources conducted over a sequence of stages, should either agent suffer alossin utility
why should they have any ‘confidence’ that this loss will eventually be reversed? It is
inevitable, in view of Fact 7(b) that there will sometimes be IR dealswhich, if implemented
by a sequence of unrestricted O-contracts, will lead to such aloss for one agent.

In the scenario we have described, an agent A1 wishing to realise an IR deal (Pg, P;)
with an extremely cautious agent A, faces the following dilemma: whether to formulate a
plan to redise ( Py, P;), 0., anh O-contract path, regardless of whether this path is IR; or
whether to try and redlise (P, P;) by an IR O-contract path. In favour of the first option
is the fact that such a plan can always be formulated; a problem will be, however, that
the plan may never be implemented in full: A2 may reject deals under which it suffers a
loss or A1 may suffer aloss which is never put right. The second alternative—construct
an IR O-contract path—has in its favour the fact that neither agent has a rational motive
to refrain from making or accepting offers until the allocation P, has been effected. The
drawback, however, isthat it may not be possible to construct such a plan.

Nevertheless, it would seem reasonable for A1, before resorting to adopting an arbitrary
O-contract path, at least to determineif some IR O-contract path (or, more generally, some
IR C (k)-contract path) does exist. One consequence of our resultsisthat such an approach
isunlikely to be computationally feasible.

1 We note that even if A1 attempts to construct an ordering under which any ‘irrational’ deal reduces the value
of its own holding, there is one problem: A, may reject subsequent offers after the ‘irrational’ dealsso that A1 is
worse off.
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The next section of this article presents these results with conclusions and open ques-
tionsraised in the final section.

3. Complexity results

Before proceeding with our results we describe our representation for typical instances
in which resource alocation settings (A, R, U) feature. The key issue here concerns the
collection of utility functions &/ and how these should be encoded. A form in which the
value attached to each subset of R is explicitly provided will result in an instance occu-
pying space exponential in [R| and would not be considered reasonable in practice. On
the other hand, using some encoding of ¢/ as a set of Turing machine programs, M say, it
becomes necessary to assume certain propertiesin interpreting their computational behav-
iour, e.g., that the value of u; (S) asreturned by the program M; is defined from the content
of M;’stape after exactly some specified number of moves such as |R| since without such
it would not be possible to establish membership in NP (or, indeed, any other complexity
class).

Ideally, we wish arepresentation, p(x), of the utility function « : 2% — Q to satisfy the
following informally phrased criteria:

(@ p(u) is‘concise’ in the sense that the length, e.g., number of bits, used by p(u) to
describe the utility function u within an instance is ‘comparable’ with the time taken
by an optimal program that computes the value of u(S).

(b) p(u)is‘verifiable,i.e., given somebinary word, w, thereis an efficient algorithm that
can check whether w correspondsto p (u) for some u.

(©) p(u) is'effective’, i.e., given § C R, thevalue u(S) can be efficiently computed from
the description p ().

Itis, infact, possibletoidentify arepresentation form that satisfiesal three of these criteria
we represent each member of ¢/ in a manner that does not require explicit enumeration
of each subset of R and alows (a) to be met; uses a ‘program’ form whose syntactic
correctness can be efficiently verified, hence satisfying (b); and for which termination in
time linear in the program length is guaranteed, so meeting the condition set by (c). The
class of programs employed are the so-called straight-line programs, which have a natural
correspondence with combinational logic networks[3].

Definition 9. An (m, s)-combinational network C isadirected acyclic graph in which there
arem input nodes, Z,,, labelled (z1, z2, . .., zn) al of which have in-degree 0. In addition,
C has s output nodes, called the result vector. These are labelled (#;_1, t;—2, . .., fo), and
have out-degree 0. Every other node of C hasin-degree at most 2 and out-degree at least 1.
Each non-input node (gate) is associated with a Boolean operation of at most two argu-
ments.2 We use |C| to denote the number of gate nodesin C. Any Boolean instantiation

2 In practice, we can restrict the Boolean operations employed to those of binary conjunction (A), binary dis-
junction (V) and unary negation (—).
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of the input nodes to @ € (0, 1) naturally induces a Boolean value at each gate of C: if
h is a gate associated with the operation 6, and (g1, k), (g2, h) are edges of C then the
value h(a) is g1(a)fg2(a). Hence a induces some s-tuple (¢;,_1 (), ..., fo(x)) € (0, 1)* at
the result vector. For the (m, s)-combinational network C and « € (0, 1)™, this s-tupleis
denoted by C(«).

Although often considered as a model of parallel computation, (m, s)-combinational
networks yield a simple form of sequential program—straight-line programs—as follows.
Let C be an (m, s)-combinational network to be transformed to a straight-line program,
SLP(C), that will contain exactly m + |C| lines. Since C is directed and acyclic it may be
topologically sorted, i.e., each gate, g, given a unique integer label 7(g) with 1 < t(g) <
|C| sothat if (g, k) isan edge of C then t(g) < t(h). Thelinel; of SLP(C) evaluates the
input z; if 1< i < m and the gate for which 7(g) =i — m if i > m. The gate labelling
means that when g with inputs g1 and g is evaluated at /,,, - (o) Since g; is either an input
node or another gate its value will have been determined at /; with j <m 4 7(g).

Definition 10. Let R be as previously with |R| = m, and u a mapping from subsets of
R to rationa values, i.e., a utility function. The (m, s)-network C* is said to realise the
utility function u if: for every S C R with g the instantiation of Z,, by z; = 1 if and only
if r; € S,itholds

u(S) = Val(Cl;l(Ols))

where for B = (Bs—1, Bs—2. - .., o) € (0, 1)*, val(B) is the whole number® whose s-bit
binary expansionis g, i.e,

s—1
val(B)=) i 2,
i=0
where g; istreated as the appropriate integer value from {0, 1}.

These ideas alow any utility function u; in U/ to be encoded using an appropriate
(m, s;)-combinational network, C in such a way that u;(S) can be evaluated in time
linear in the number of nodes in C¥) by determining the value of each gate under the
related instantiation «g and then dividing this value by m.

We give some concrete examples of this approach in the proof of Theorem 11. These
are primarily intended to illustrate its feasibility and, having presented these, we will not
complicate subsequent proofs with similarly detailed constructions. Regarding such con-
structions with respect to (a) of the representation criteria given, we note as a consequence
of the simulations presented in [8,15] (see, e.g., Dunne [3, pp. 28-36]), that any deter-
ministic agorithm with worst-case run-tine, 7'(n) can be trandated into a combinational

3 Although this definition assumes utility functions to have non-negative values, were it the case that some
function with u(S) < 0 was to be represented we can achieve this by using an additiona output bit, ¢+ to flag
whether val (C («)) should be treated as positive (t+ = 0) or negative (1+ = 1).
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network of size T (n)log T (n). It follows that from a high-level algorithmic description of
how u; is computed, an appropriate combinational network can be built.

The decision problem IR* concerns the existence of a suitable contract path from one
allocation to another having greater social welfare. For completeness, it is useful to present
three results concerning the existence of resource allocations meeting particular criteria.
These problems are respectively,

Welfare Improvement (wi)
Instance: A tuple (A, R,U, P) where A, R, and U/ are as before, and P isan alocation.
Question: Istherean alocation Q for which o, (Q) > 0,(P)?

Welfare Optimisation (wO)

Instance: A tuple (A, R,U, K) where A, R, and U are as before, and K is a rationa
number.

Question: Istherean alocation P for which o, (P) > K?

Pareto Optimal (PO)
Instance: A tuple (A, R,U, P) asfor wi.
Question: Isthe allocation P Pareto optimal?

Kraus [9, p. 43] proves NP-hardness of a weaker form of the problem wo, whereby in
addition to the total social welfare having to attain some specified val ue the allocation must
be such that each agent accrues some designated guaranteed utility.

Theorem 11. Even if | A| = 2 and the utility functions are monotone

(&) w1 isNP-complete.
(b) wo isNP-complete.
(c) PO isco-NP-complete.

Proof. Wefirst demonstrate that the three problems are in the classes stated, recalling that
the utility functions/ are encoded by (1, s;)-combinational networks C*) as described in
Definition 10. For (@), given an instance (A, R, U, P) of wi simply non-deterministically

guess an allocation Q = (Q1, ..., Q,) and compute
n [(c® )
o)=Yy e |R(|aQ'))

i=1

accepting if this exceeds o, (P). For (b) a similar approach is used with an instance ac-
cepted if the guessed alocation Q has 0, (Q) > K. Findly, for (c) we may use a CO-NP
agorithm to check that for al alocations Q the Pareto Optimality condition given in Def-
inition 3(1) holds.

We now prove NP-hardness for wi, wo and co-NP-hardness for Po.
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For part (a) we use a reduction from 3-SAT, instances of which are propositional for-
mulae @ (X,) in conjunctive normal form with each clause of @ defined by exactly three
literals. Let

m n
(X)) =/\Ci=\Gi1VyiaVyi3)
i=1 i=1
be an instance of this problem, where y; ; issome literal x; or —xy.
Given @ (X,,) we construct an instance ({A1, A2}, R, (u1, u2), P) inwhich

(a) R= {xlvx27-~~7xn’_‘xl,~-,_‘xn,Cl, ""Cm}a
(by P=(J;R).

For W aset of literals, i.e.,
W C{x1,x2, ..., Xy, =X1, X2, ..., ~Xp}
we say that W isuseful for @ (X,,) if it satisfies both of the conditions below

(1) Foreach 1<k < n, W contains at most one of the literals x;, —xy.
(2) Thepartia instantiation of X, under which each y € W isassigned true, i.e,,

o 1 ifandonlyif x; e W,
=10 ifandonlyif —x; € W,
satisfies @ (X,,). Notethat if neither x; € W nor —x; € W then this partia instantiation
does not assign any valueto x;.

Now with § C R, let Lits(S) bethe set
Lits(S) =S N {x1,x2, ..., X0, 7X1, ..., =X}
The utility functions (u1, u2) are now given by,

0 it S =0,
uy(S) = | BELif Lits(S) is useful,
S5 if Lits(S) is not useful,
2 if =R,
1o(S) = 1 1+ 5 if Lits(R \ S) is useful,
1+ SELif Lits(R \ S) isnot useful.

Both of these are monotone. Furthermore given @(X,) we may construct the com-
binational networks CY and €@ as follows. Let the inputs for each network be
(z1, - .., Z2n+m) With z; set to represent the presence of x; (if i < n), the presence of —x;_,
(if n <i < 2n) and the presence of C;_, if (2n <i < 2n +m).

For C'V' we simply use a combinational network that computes the binary representa-
tion of Useful(Z5,) + Zizf{’" zi Where

n m
Useful (Zon) = N\ (=2 V ~zu1i) A J\ GiaVzi2Vzia).
i=1 i=1
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Here, z; ; is the variable from {z1, ..., zo,} matching the literal y; ; of clause C;. Thus,
given S a subset of the literals over X,,, the term (—z; Vv —z,4;) in the corresponding
instantiation induced over Zo, will evaluateto T if and only if at most one of the literals
{xi, —x;} occursin S. Similarly, for each clause C; = (y; 1V yi.2 V yi.3) defining @ (X,,) S
contains at least oneliteral from C; if and only if theterm (z;.1 Vv zi 2 Vv z; 3) evaluatesto T
for the instantiation of Z,,, defined from S.

The summation to compute the binary representation of the number of bits set to 1
within Z2,4,, can be carried out using the using the schema of Muller and Preparata [11],
see, e.g., [3, pp. 112-114]. The whole number val (C1(«s)) computed will be | S|, i.e., the
number of variablessetto 1in ag, if S isempty or not useful; and | S| + 1if S isuseful.

For @, acombinational network computes the binary representation of

2n+m—1 2n+m 2n+m
Z 1+ /\ Zi + Z zi +Useful(—z1, ..., =20, 2241, - - -, —2Z20)-
i=1 i=1 i=1

For S € R, thiswill return val(C@ («ayg)) as

h+2m=2n+m—-1+1+2n+m+0 whenS=R,
2n+m+|S|=2n+m—14+0+1(S+1 whenLits(R\ S) isuseful,
2n+m+|S|—1=2n+m—1+0+1S]+0 whenLits(R\ S) isnot useful.

Itisclearly the case that these descriptions can be constructed in polynomial-time from the
formula® (X,,).

Now, noting that o, ((4; R)) = 2, we claim that there is an allocation, Q, having
0,(Q) > 2if and only if @(X,,) issatisfiable. To see this consider any non-empty S C R
and the allocation (S, R \ S) to (A1, A2). We have,

[S]+1 [R\S| i i
= 1 if Lits(S) isuseful,
O'u(<S,R\S>) — ) 2ntm 2n+m S(S)

[S] [R\S|-1 ;
T 1+ 5, gt otherwise.

In the former case we get, 0,((S, R \ S)) =2+ 1/(2n + m) and, in the latter, o, ({(S,
R\ S)) =2-1/(2n +m). Thusthe alocation (¢, R) iswelfareimprovableif and only if
thereisan allocation S to A4 for which Lits(S) is useful: a condition that requires Lits(S)
to induce a satisfying instantiation of @ (X,,), completing the proof that wi is NP-hard.

For part (b) we simply form the instance, ({A1, A2}, R, (u1, uz), K) with R, (u1, u2)
asinpart (&) and K =2+ 1/(2n + m).

For part (c), athough continuing to employ a reduction from 3-sSAT, we restrict in-
stances of this to formulae that contain exactly n clauses, a variant shown to be NP-
complete in [5, Theorem 2(b)]. We use R and (u1,up) as previousy, but set P =
(P1, P2) = {{C1,...,Cu}, {x1, ..., x4, —x1,...,—x,}). Inthiscasewe have u1(P1) = 1/3
and uz(P2) =1+ (2n—1)/(3n), sothat o, (P) = 2— 1/(3n). We claim that this allocation
is Pareto optimal if and only if @ (X,,) is unsatisfiable. First suppose @ (X,,) is unsatisfi-
able. Certainly for any alocation Q = (S, R \ S) differing from (Py, P»), it must be the
casethat S = @ or Lits(S) is not useful. In the former case,

1
u1(P) =0<ur(P) = 3
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so that the Pareto Optimality condition of Definition 3(1) holds for (P17, P») with respect
to (4, R).
If S isnon-empty then

1
ou((SR\S) =ua($) +uz(R\ §) =2 =

and so does not increase socia welfare. It follows that, in this case,

([u1(S) > ur(PD)] Vv [u2(R\ S) > u2(P2)])
=
([u2(S) <ur(P)] Vv [u2(R\ S) < u2(P2)]).

Hence if @(X,) is unsatisfiable then P is Pareto optimal. On the other hand suppose
@ (X,) is satisfiable. We can then demonstrate that P is not Pareto optimal by consid-
ering any set of literals {y1, ..., y,} whoseinstantiation to true satisfies @ . With such a set
consider the allocation

0=(01.02) =y, --. ¥} {=¥1. -, =9ns C1, ., Ca).
Certainly Lits(Q1) is useful, therefore

n+1
u1(Q1) = =, ui(P1),

2
uz(Q2) =1+ 3~ uz(Pp).

We deduce that the allocation P isPareto optimal if and only if @ (X,,) isunsatisfiable. O

We now proceed with the main results of this paper, showing that deciding if an individ-
ually rational C (k)-contract path exists between two allocations, is NP-hard for all constant
values of k and when k& can be a predefined function of the size of the resource set. In all
cases the results hold in setting involving exactly two agents.

Theorem 12. For all constant, &, IR* is NP-hard.

Corollary 13. IR0 is NP-hard in resource allocation settings for which all utility functions
are monotone.

Theorem 14. For k:N — N satisfying k(m) < m /3, IRK®™ is Np-hard.
Theorem 15. IR™/2 is NP-hard.

We have commented earlier on the relationship between these results and our reasons
for presenting the proofs separately.

Before continuing it is noted that, in contrast to the complexity classifications for the
three problems reviewed in Theorem 11, we do not present upper bounds for any of the
cases considered: we prove NP-hardness but not NP-completeness, i.e., do not present al-
gorithms establishing membership in NP.
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Some comments on this point are in order, particularly since there may appear to be
an ‘obvious’ NP algorithm available, namely: guess a sequence of C (k)-contracts to re-
alise (P*, P') and check whether this defines an IR C(k)-contract path. This algorithm,
however, may not be implementable* with an NP computation. For example, in the case
of O-contracts, there may be a unique IR O-contract path realising the dedl (P*, P') but
containing exponentially many (in m) O-contracts: such paths fail to provide the polyno-
mial length certificate required for membership in NP. Constructions, in instances where
only two agents are involved, are given in [4, Theorems 3, 4], for both unrestricted and
monotone utility functions. Although not presented explicitly in [4], it is easy to extend
these to IR C (k)-contracts for any constant k. Of course the ‘obvious agorithm we have
outlined will be realisable in NP for resource alocation settings that satisfy certain cri-
teria. One such criterion is that the number of distinct values which o, (P) can take is
polynomially-bounded in m: i.e., if |[{w: 3 analocation P for which o, (P) = w}| < mP.
In such settings, no IR contract-path can contain more than m? deals. Thus, if instances of
IR® are restricted to those for which o,, has this property, then the corresponding decision
problem isin NP. While this may seem to be arather trivial example, we mention it since,
aswill be clear from the constructions presented in the proofs, the resource allocation set-
tings formed have precisely this property: the number of distinct values that o, (P) may
take is O(m). We can therefore deduce that, with such arestriction applying, the resulting
decision problem is NP-complete. The question of upper bounds on the complexity of 1R
when arbitrary resource allocation settings may form part of an instance, remains, however,
an open issue.

We now proceed with the proofs of Theorems 12 and 14.

Proof of Theorem 12. Given an instance & (X,,) of 3-SAT, we form an instance Tg =
(A, R,U, P*, Py of IR* for which thereisan IR C (k)-contract path realising (P*, P?) if
and only if @ (X,,) issatisfiable. Without loss of generality, it may be assumed that n > 2k
(recalling that k is constant). We use

A={A1, Az},

R={x1,X2,...,Xp, 7 X1, ..., " Xp},
P* =(0; {x1, ..., Xp, —x1, ..., 2},
Pl ={{x1, ..., %0, =X1, ..., "X} 0),
uz(8) =S|

In order to define the utility function, u1 we need to extend our definition of a set of
literals S being useful. We say that S is an effective set of literalsfor @ (X,,) if both of the
following hold.

(@) Foreach1<i <n, S containsat most one of the literals x;, —x;.

4 Our use of ‘may not’, as opposed to the more emphatic ‘cannot’, is intended: there is a rather subtle (and,
at present, unresolved) technical complication that precludes the latter form. We discuss this issue further in
Section 4.1 below.
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(b) If ¥g isthe sub-formula(defined on at most n — | S| variables) that resultsfrom & (X,,)
by applying the partial instantiation of X,, under which each y € S is assigned true®
then ¥y is satisfiable.

We note that every useful set S for @ (X,,) is aso an effective set, however, the converse
does not hold in general.
Given the definition of an effective set of literals, we now define

21S| if|S|<n—kor|S|>n,
u1(S) =14 2|S| ifn—k <|S| <nandS iseffectivefor @ (X,,),
S| ifn—k<|S|<nandSisnot effectivefor @ (X,,).

The key feature of this definition concerns how efficiently u1(S) can be represented: cer-
tainly whenever |S| <n—k or |S| > n thisiseasy. Similarly, for | S| outsidethisrange, itis
straightforward to determine whether S containsaliteral y and itsnegation —y. Thisleaves
thecase: n — k < |S| < n wherefor each y, S contains at most one of theliterals {y, —y}.
For this, whether u1(S) is 2| S| or | S| depends on the induced subformula ¥g from @ and
whether thisis satisfiable. From our definition, ¥ is defined over at most £ — 1 variables,
and was induced from an instance of 3-sSAT. It follows therefore that ¥ is a CNF formula
on k — 1 variables each of whose distinct clauses contains between 0 and 3 literals. Since
k is constant, we can construct a suitable combinational network to recognise satisfiable
CNF of this form and with the size of this network being constant (albeit a constant value
which may be exponential in k). For example with k£ = 2, the unsatisfiable cNF formulae
on asingle variable z are those containing an empty clause or containing both (z) and (—z)
as clauses.

Thistechnical detail dealt with, we can proceed with the argument that & (X,,) is satis-
fiableif and only if T isapositive instance of IRX.

First suppose that @ (X,,) is satisfiable and let {y1,..., y,} be a set of » literas the
instantiation of each to true will satisfy @ (X,,). Consider the sequence of 2n O-contracts,
A= (81,82, ...,82,),inwhich§; = (PU—D pDy pO = psand p") s

{<{y1,...,yr};R\{yl,.-.,yr}> if r <n,
({ylv"'vyl’h_'yla"‘s_'yrfl'l}; R\{YL~~w)7n7_‘ylw-~v_')’r7n}) Ifr>n
The O-contract path described by A realises (P*, P'). Furthermore each §; is|R:

o (PO =2(i—)+@n—i+D=2n+i—1,
ou(POY=2i + (2n—i)=2n+i,

andforeachn — k + 1 <i < n, theset of literals Pl(’) held by A1 is effective from the fact
that {y1, ..., y»} induces a satisfying instantiation for @ (X,,).

Onthe other hand, supposethat A = (81, 82, ..., 8,) withs; = (P¢—D p@Dy pO — ps
and P = P’ isan IR C (k)-contract path. Since at most k literals feature in any deal, in
order to progress from P®), in which A; holds no literals, to P in which A; holds 2n

5le, W isformed from the set of clausesin @ by removing any clause C = y v D and replacing C = —y v D
with D wheny € S.
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literals, it must be the case that at some point, §; = (P~ Py wehave |P{ V| <n—k
andn —k < |Pl(’)] < n. Letting djess) denote the value |Pl(’_l)| — (n — k) and d(more) the
valuen —k — |P1(l)| 0 that 0 < d(less) < d(more) < k for thisdeal §;,

0u(PU™) =31 — k — dgess),
{ 3n —k+dmore  if P iseffective,

ou(PV) = .
if Pl(’) is not effective.

Thus if Pl(i) is not an effective set then the deal §; is not IR: §essy < k — 1, and so,
o, (P D)y > 3n — 2k + 1 > 2n. We deduce that the existence of an IR C (k)-contract
path impliesthat @ (X,,) issatisfiable. O

In the special case when k = 1, i.e., the decision problem 1RO, we have the result of
Corollary 13.

Proof of Corollary 13. Using the reduction from 3-saT to IR from the proof of Theo-
rem 12 the utility function u; is clearly monotone but the function u1 is not. If, however,
we modify the definition of «; to become

2|S] if S| #n,
u1(S)y=1 2n if |S|=nand S isuseful,
2n—1 if |S|=nand S isnot useful,

then not only does the argument of Theorem 12 continue to hold but the utility function 1
isnow monotone. O

Our final result dealswith the case of IR C (k(im))-contract paths. Thusthe number of re-
sources that could be transferred in asingle deal is not bounded by some constant value, as
inthe case of O-contractsor C (k)-contractsin general, but is now limited by somefunction
of the total number of resources within the setting. For example, suppose k(m) = |/m]:
given A ={A1, A2}, U = (u1, up), intheresource alocation setting (A, {r1, r2, r3, r4}, U),
a C(k(m))-contract can move up to two resources between agents in asingle deal. In the
same setting, but with |R| = 16, C (k(m))-contracts can now transfer up to 4 resources in
asingle deal.

The fact that the bound on the number of resources allowed to featurein asingle deal is
no longer constant, means that the reduction employed in proving Theorem 12 cannot be
applied in general: we need to be able to specify the utility function u; in such away that
from agiven instance of 3-SAT an appropriate polynomial-size representation of 1 can be
built. In these proofs, we used the fact that & is constant to demonstrate that testing if a set
of literalsiseffectivefor @ (X,,) can be carried out by testing satisfiability of cCNF formulae
defined on at most k — 1 variables, and thus a ‘ compact’ description of u1 was possible.
Although this construction can be effected by a polynomial-time reduction provided that
k(m) = O(logm)—since u1 need recognise only polynomially many (in m) cases—the
same device, however, cannot be used for functions such as k(m) = | /m| sincetesting if
S is effective requires testing satisfiability of cNF formulae defined on /n variables.
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In order to deal with this complication we need to modify our construction.

Proof of Theorem 14. We employ areduction from 3-SAT restricted to instancesin which
the number of clausesis exactly n asin the proof of Theorem 11(c). Let

n n
D(X,) = /\ Ci= /\ Vi1V yi2 VvV yi3).
i=1 i=1

We construct Te = (A, R, U, P*, P') aninstance of IR" asfollows.

A = {Alits, Adise},
R={x1,..., %0, X1, ...,7%,,C1,...,Cp},

P =({C1, ..., Caki {x1, ... Xp, =1, .o g},
Pl = ({xl, ce X, X, X {C Cn}>.

It remains to define the utility functions uits and ugse for each agent. If we consider any
subset S of R, thenthisconsistsof asubset of {x1, ..., x,, —x1, ..., —=x,} (literals) together
with a subset of {C1, ..., C,} (clauses). For a given alocation we use Yjjis to denote the
subset of literals held by Ajits. Similarly Ygse, Clits, Ceise Will describe respectively: the
set of literals held by Agse, Of clauses held by Ajiis and clauses held by Aqs. The idea
underlying the construction of these is that moving literals from Agse t0 Ajits by C(n)-
contracts, will only be IR if at some stage those literals held by Ajiis define a satisfying
instantiation of @ (X,,) (by choosing valuesfor the variables which make the corresponding
literals true).

0 if Yiits| < n and Yiiis is not useful for A e, C-
if [Yiits| = n and Yjjts is not useful for @ (X,,),
uiits(Yits U Clits) = It Yiigs| = lits (Xn)
0 if |Yiits] > n and Cjits # 9,
[Yiits] ~ otherwise,
0 if [Yiits| < n and Yjjts is not useful
for Ac;ecyeCi
Ucse(Yelse UCse) = { 0 if |Yiits| =n and Yjits is not useful for D(X,),
0 if [ Yits| > n and Ciits # 9,

|Case| Otherwise.

We note that |R| = 3r so our bound on cluster size allows at most n elements from R to
featurein asingle deal.

We claim that @ (X,,) is satisfiable if and only if there is an IR C(n)-contract path
realising the deal (P*, P!).

First supposethat @ (X)) issatisfiableand let (y1, ..., y,) beaset of literalstheinstanti-
ation of each to true satisfies @ (X,,). Consider the sequence of O-contracts, (81, ..., d,) in
which §; = (P¢—D, Pp®yand PO = ps, p() = P! resulting from the algorithm below.

D i:=1 :=1
(2) PY isformed by moving the literal y; from Ygee (in PY~D) to Yiits.
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3 j=j+L
(3.1) Let{Dy,..., D} betheclauses currently in Cjits in which y; occurs.
(3.2) Thenext p O-contractsmoveeach D € (D1, ..., D,} from Ciits t0 Cqise.

B3 ji=j+pii=i+1
(4) If i <n repeat from step (2).
(5) Thefina n O-contractstransfer each literal —y; from Yq g t0 Yijts.

To seethat this procedure constructs an IR O-contract path realising (P*, P") it sufficesto
note that in the allocation P,

wits(Yiig U Citg) = %],

Mclse(Yc(| élls)e) =] Cige|-
Furthermore with each deal either the number of literalsin Yjjis increases by exactly one or
the number of clausesin Cqse increases by exactly one.

Thus, if @ (X,,) issatisfiable then thisinstance Ty of IR" isaccepted.

For the converse implication, suppose A isa IR C(n)-contract path realising the deal
(PS,P"): A=(81,82,....8i,....8,) with§; = (=D p@) PO =ps p0)= P! and
PO~ (10 U Clg T UCl) o

Noting that au(PS) =0, consider the first deal §; = (P, P®) in A for which the
following are true: CIIts Y+ gand Cl(i’t)s = (. Certainly there must be such a deal since the
first condition istrue of P* while the second holds for P?. Consider the various possibili-
ties:

1
@ Y™ >n.
If such acase wereto occur then “llts(Ynts b UCIIts 1)) =0and udse( 1) U Cclse

0:in P Ajits holds a non-empty set to clauses together with more than n literas.
This contradicts the assumption that A is IR since it leads to au(P(O)) =0, (P-D =
0. We note that we cannot have i = 1 because of the premise |YIItS 1)| >n.

() Vs 71 <n.
Smce 8; isatransfer of resources from Ajjts t0 Agse, We have Ylfg C YIIts - if the set
YIlts ) is not useful for @(X,) then this would give o, (P®) = o, (P*) (since both
contributing utllltleswould be 0). This contradicts the assumption that A isIR, hence

in this case YIItS ) must be useful and thus @ is satisfiable. O

by —

In our fina result we show that the bound on cluster size may be increased to m/2.
The argument used in the proof differs in one significant aspect from those presented in
Theorem 12 and Theorem 14: it does not allow alower bound on the complexity of 1rR”/2~4
(d > 0) to be deduced.

Proof of Theorem 15. We again use a reduction from 3-sSAT, but without the restrictions
on the number of clauses in instances employed in Theorem 14. Given @ (X,,) an instance
of 3-sAT, theinstance Ty of IR™/2 has,
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A={A1, Az},
R=A{x1,...,%Xn, 7X1, ..., " Xn},

P’ = ((Zi; {x1,...,%n, —|x1,...,—-xn}>,
P! =({x1,...,xn, =X, ..., X ) (7)).

The utility functions, (11, u2) being

0 if|S|<n,

0 if|S]=mnand S isnot useful for @ (X,,),
n if|S]=nand S isuseful for @ (X,,),

|S| if |S| > n,

u1(S) =

us(S) = 0.

Noting that |R| = 2n, we claim that & (X,) is satisfiable if and only if there is an IR
C (n)-contract path realising (P*, P'), i.e., Ty isapositive instance of IR".

Supposethat @ (X,,) issatisfiable. Let {y1, y2, ..., y»} beaset of n literals the instanti-
ation of each to true will satisfy @ (X,,). Consider the sequence of C (n)-contracts, (81, 2)
below in which Y/’ﬁ isthe subset of R held by A; after §;.

i v Y ur(YD)  up(Yh)
0 ] {y1,..-, YTV Y0} 0 0
1 .-, yn} {=y1, ..., —¥n} n 0
2 {n..., Vs TVL s —yn} @ 2n 0

This sequenceis IR and realisesthe deal (P*, P') asrequired.

Conversely, suppose that A is a IR C(n)-contract path realising the deal (P*, P):
A= (81,80,...,8,...,8;) with &; = (PU=D p@y pO = ps p0) = pt Noting that
0. (P@) =0, inorder for 51 to be IR, we must have o, (P1) > 0. This, however, can only
happen if | Y1| > n, and since 81 isa C (n)-contract, it therefore followsthat | Y| = n. Such
an allocation to A1, however, will only yield u1(Y{) > 0if the set Y is useful for @ (X,,),
i.e,if @(X,) issaisfiable. O

4. Further work and development

Our results presented over Theorems 12—15 above, have been concentrated on lower
bounds on computational complexity. In total for a range of values of cluster size, the
problem of deciding whether a particular resource allocation setting admits a rational
C (k)-contract path between two specified allocations appears unlikely to admits afeasible
algorithmic solution, even if the settings of interest comprise only two agents.

In this section we briefly consider approaches and open problems directed towards more
positive results. Our review comprises two subsections, the first of which deals with a
somewhat abstruse technical point alluded to earlier; the second outlining algorithmic ap-
proaches that might be used in tackling formulations of 1RO as an ‘optimisation’ problem.
Readers who are more interested in the algorithmic aspects may wish to proceed directly
to the second subsection.
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4.1. Upper boundson IRO

We first consider the issue raised earlier, namely whether IRF € NP. The results of [4,
Theorems 3, 4], whereby positive instances of 1RO in two agent settings are constructed in
which the unique witnessing IR O-contract path has length exponential in m, may appear
to disqualify the obvious ‘guess and verify’ algorithm from being realisable in NP. This
reasoning, however, does not take into account the fact that an instance of 1RO contains not
only the elements (A, R, P*, P') but also an encoding of the collection of utility functions
U. While the constructions from [4] are exponentially long in terms of the former, it isfar
from clear whether these paths are also exponential in the length of an optimal straight-
line programs for /. It is this issue that raises the principal difficulty in inferring that the
obvious algorithm cannot be realised in NP as a consequence of [4]. The concerns of [4]
arein establishing ‘extremal’ properties, thusthe utility functions constructed to these ends
are highly artificial in nature: in particular, the question of optimal straight-line programs
is not addressed (since this is not relevant in the context). In total, the following question
is unresolved:

Question 1. Is there a polynomial-bound, ¢() with which: if T = (A, R, U, P*, P") is
a positive instance of 1RO encoded, using the approach described above, in |T| bits, then
thereisalways some IR O-contract path realising (P*, P') whoselengthisat most g (|T])?

A negative answer would indicate that the obvious algorithm could not be implemented
in NP: aresult that would not rule out the possibility of IRO € NP, but it would indicate that
such an upper bound requires a structure other than a witnessing contract-path to serve as
the polynomial-length certificate.

A positive answer to Question 1 is likely to be extremely hard to obtain: although we
have remarked on the *artificial’ nature of the utility functionsin [4] these are, nonethel ess,
well-defined. In consequence, apositive answer would imply that any straight-line program
realising these functions has exponential length: to date the largest lower bound proved for
an-argument function within this model is 3n givenin [1], [3, pp. 91-99].

4.2. Formulating IRO as an optimisation problem

We have considered properties of C (k)-contract paths from the perspective of deciding
if paths meeting particular criteriaexist: in these terms our results indicate that feasible al-
gorithmsare unlikely to be found. One possibility isto identify ‘ special cases’ which admit
tractable decision processes, e.g., recent work reported in [6] considers a class of resource
allocation settings motivated from a ‘task allocation’ context: the resource set is viewed as
aset of m locations, C with d; ; describing the ‘cost’” of moving between ¢; and c;; the
utility that each agent assigns to any subset S of C isthe total cost of aminimal spanning
tree of S. There are aso a number of related problems for which possible approximation
techniques may be constructed. We consider one such problems in this section and outline

a‘greedy’ approach for it.
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We begin by observing that if P* and P! aredistinct allocations with o, (P?) > o, (P*)
then the length of any O-contract (whether or not such isindividually rational) is at least

Diff(P*, P)= Y " |{reR: re P andr ¢ P/}|.
AieA

That is, the total number of resources in R which have to reallocated from their original
owner in P’ to a new owner in P’. Recognising that it may not be possible to identify
an IR O-contract path of length Diff (P*, P’) to realise (P*, P') motivates the problem of
finding an O-contract path that achieves this minimal length and has the fewest number of
irrational deals among such paths. More formally,

Definition 16. The problem Minimal Irrationality (M1) takes as an instance a resource
alocation setting (A, R,U) and alocations P, P’ of R to A. The value returned by
MI(A, R, U, PS, P")is

min{k: 3 an O-contract path, A = (81, ..., §,), of length Diff (P°, P")
realising (P*, P") and on which there are at most k dedls, §;,
that are not individually rational}.

Itis, of course, an immediate consequence of Theorem 12 and Corollary 13 that the de-
cision problemform of M1 (in which the upper bound on the number of permitted irrational
deals, k, occurs as part of an instance) is NP-complete: use the bound & = 0 and the reduc-
tion of Corollary 13 noting that if the deal (P*, P') can be realised by an IR O-contract
path of length Diff (P, P") if and only if the cNF from which the instance is formed is
satisfiable.

Suppose we regard M1 as a (partial) function® whose domain comprises resource allo-
cation settings T = (A, R, U) and pairs of allocations (P*, P') as given in Definition 16,
and whose range is N. We may re-interpret the result of [13] given in Fact 7 as indicat-
ing: MI(T, (P*, P")) < Diff (P*, P"), i.e., there is dways some O-contract path of length
Diff (P*, P") available; and, there are instances for which MI(T', (P, P')) > 0, i.e., there
deals which cannot be realised by any IR O-contract path. In total, [13] gives

Y(T, P*, P"): mI(T, (P*, P")) < Diff (P°, P"),
AT, P°, Py (T, (P°, P")) > 1.
Itisatrivial matter to obtain exact bounds improving these to
Y(T, P*, P"): mI(T, (P*, P")) < Diff(P°, P") —
AT, P, P'y: mi(T, (P*, P')) > Diff (P, P") —

For the upper bound simply note that since o, (P") > o (P*) there must be at least one
IR O-contract on any O-contract path of minimal length realising (P*, P’). For the lower

6 ‘partial’ sinceit is convenient to regard its value as undefined when o, (P") < oy, (P%).
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bound, use any (T, P*, P') under which o, (P") =1 and 0,,(P) = 0 for al allocations P
differing from P*.

While the behaviour of mI(T, (P*, P')) from ageneral perspective is of some interest,
e.g., studies of itsvalue ‘on average’, such investigations are outside the scope of this note.
Our main interest here will beto outline a heuristic aimed at constructing O-contract paths
which attain the optimal value.

To simplify the presentation we shall assume that exactly two agents are involved, not-
ing that the devel opment to more than two is straightforward. We present the algorithm and
then discuss the thinking underpinning it

Input: ({A1, A2}, R, {u1, up}, P*, P")

returns O-contract path of length Diff (P*, P') realising (P*, P')

Q:=P%i:=1

while Q # P! loop
Choose p € 01\ P{ U 02\ P} suchthat the alocation V formed by moving p from
A1t0 Az (if p € Q1) or from Az to A; (if p € Q2) hasthe following properties:

Ploy, (V) > 0, (Q).

P20, (V) — 0,(Q) isminimal among possible choices that satisfy P1.

P31f no choiceof p e 01\ P{ U 02\ P that satisfies P1is possible, i.e.,
VVao,(V) <o0,(Q) then choose any V for which thevalue o, (Q) — o, (V) is
maximised.

8i:=(Q,V);

output é;;

Q:=V;i=i+1,
end loop

It is not difficult to see that the sequence, (41, ..., &), that is output by this algorithm de-
scribes an O-contract path of length » = Diff (P*, P"): some deal is chosen via (P1-P3);
this deal is an O-contract; and, since the choice made is in terms of the current alloca
tion (Q) with respect to the final allocation (P?), it followsthat » = Diff (P, P").

The motivation for the algorithm is the following: given that o, (P") > o, (P*) and that
the O-contract path to be formed must have minimal length, i.e., Diff (P, P?), the aim
is to implement as many ‘small increases in o, within a minimal length path. Of course
it may happen that a point, Q, is reached where every successor O-contract will result
in o, not being increased. Rather than attempt to minimise any loss, the algorithm does
the opposite: P3 implements the deal which maximises the loss of welfare. The idea being
that the remaining O-contracts (particularly as the subsequent increments in o, are kept
minimal) will be ‘more likely’ to be IR as aresullt.

We outline this approach merely to indicate that there may be reasonable approxima-
tion techniques for the class of problems which have been our principa interest. We will
not present a detailed analysis of this algorithm’s performance: such studies—both exper-
imental and analytic—of this method and severa variations are the topic of continuing
work.
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5. Conclusion

We have considered a number of decision problems that naturally arise from the mul-
tiagent contract negotiation models promoted by (among others) [7,13]. In summary, if
contracts are restricted to those in which alimited number of resources can be transferred
from one agent to another and are required to be rational (in the sense of strictly improving
overall worth of an allocation), then not only isit the case that a suitable contract-path to an
optimal alocation may fail to exist (as aready shown in [13]), but even deciding if a path
from a given allocation to a specified more beneficial alocation is possible, isintractable.
There are a number of directions in which the results above could be developed. The re-
quirement for individuals dealsin a contract-path to be IR could be relaxed so that alimited
number of ‘irrational’ deals are permitted, provided that the allocation eventually reached
improves upon the initial allocation. Alternatively, we could consider contracts in which
deals permitting an exchange of resources between two agents are alowed—the so-called
swap or S-contracts of [13]. We conjecture, however, that even these degrees of freedom
will continue to yield decision questions that are intractable.
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