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The Shapley value is a key solution concept for coalitional games in general and voting
games in particular. Its main advantage is that it provides a unique and fair solution, but
its main drawback is the complexity of computing it (e.g., for voting games this complexity
is #p-complete). However, given the importance of the Shapley value and voting games,
a number of approximation methods have been developed to overcome this complexity.
Among these, Owen’s multi-linear extension method is the most time efficient, being linear
in the number of players. Now, in addition to speed, the other key criterion for an
approximation algorithm is its approximation error. On this dimension, the multi-linear
extension method is less impressive. Against this background, this paper presents a new
approximation algorithm, based on randomization, for computing the Shapley value of
voting games. This method has time complexity linear in the number of players, but has an
approximation error that is, on average, lower than Owen’s. In addition to this comparative
study, we empirically evaluate the error for our method and show how the different
parameters of the voting game affect it. Specifically, we show the following effects. First, as
the number of players in a voting game increases, the average percentage error decreases.
Second, as the quota increases, the average percentage error decreases. Third, the error
is different for players with different weights; players with weight closer to the mean
weight have a lower error than those with weight further away. We then extend our
approximation to the more general k-majority voting games and show that, for n players,
the method has time complexity O(k2n) and the upper bound on its approximation error
is O(k2/

√
n).

 2008 Elsevier B.V. All rights reserved.

1. Introduction

Coalition formation is a key form of interaction in multi-agent systems. It is the process of bringing together two or
more agents so as to achieve goals that individuals on their own cannot, or to achieve them more efficiently [2,18,22,23].
Often, in such situations, there is more than one possible coalition and a player’s payoff depends on which one he joins.
Given this, there are two key problems in this area. First, to ensure that none of the parties in a coalition has any incentive
to break away from it and join another coalition. Second, to determine how the players split the gains from cooperation
between themselves.

In this context, cooperative game theory deals with the problem of coalition formation and offers a number of solution
concepts that possess desirable properties like stability, fair division of joint gains, and uniqueness [23,27]. Cooperative game
theory differs from its non-cooperative counterpart, in that, it allows the players to form binding agreements, and so there is
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often an incentive to work together to receive the largest total payoff. Also, unlike non-cooperative game theory, cooperative
games are not specified through a description of the strategic environment (including the order of the players’ moves and
the set of actions at each move) and the resulting payoffs. Instead, cooperative game theory reduces this collection of data
to the coalitional form, where each coalition is represented by a single real number. In short, there are no actions, moves, or
individual payoffs. The chief advantage of this approach, at least in multiple agent environments, is its practical usefulness.
Specifically, it allows the abstraction of dealing with groups, rather than the individuals, and so much larger problems can
be handled.

In more detail, cooperative game theory offers a number of solution concepts (such as the core, kernel, and Shap-
ley value [23]) and a number of multi-agent systems researchers have used and extended these to facilitate automated
coalition formation [26,31,33,34]. In so doing, a key challenge, from the multi-agent systems perspective, is to study the
computational aspects of the solutions that game theory provides. This is important because many of these solutions are
computationally hard to find and so of limited use in building actual systems. For example, computing the core is often
np-complete [10], while computing the Shapley value is often #p-complete [12].

To this end, this paper is concerned with efficiently computing the Shapley value [32]. In more detail, a player’s Shapley
value reflects how much that player contributes to a coalition—that is, how much value the agent adds to a coalition. An
agent who never adds much has a small Shapley value, while an agent that always makes a significant contribution has a
high Shapley value. Now, the main advantage of the Shapley value, over solution concepts such as the core and the kernel, is
that it provides a solution that is both unique and fair. The former is desirable because it leaves no ambiguity; there is only
one possible solution for a game and so the players know what they will gain from playing it. The latter property relates to
how the gains from cooperation are split between coalition members. In this case, a player’s Shapley value is proportional
to the contribution he makes as a member of a coalition; the greater the contribution, the higher its value. Thus, from a
player’s perspective, both uniqueness and fairness are desirable properties.

However, while uniqueness and fairness are both desirable properties, the Shapley value has one major drawback: for
many coalitional games, it cannot be determined in polynomial time. One of the most common coalitional games is the
voting game (which is a means for the players to reach a consensus) and for this game, finding the Shapley value is #p-
complete [12] (meaning that it is as hard as counting satisfying assignments of propositional logic formulae [25, p. 442]).
Since #p-completeness subsumes np-completeness, this implies that computing the Shapley value for the voting game will
be intractable in general. In other words, it is practically infeasible to try to compute the exact Shapley value. However, the
voting game has practical relevance not only in the context of multi-agent systems [28,34], but also in human settings, as it
is an important means of reaching consensus between multiple parties.

Against this background, a number of approximation methods have been developed in order to overcome the problem of
computational hardness of finding the exact Shapley value (see Section 3 for details). These methods vary in terms of their
time complexities. Among these, however, Owen’s multi-linear extension method [24] for a weighted voting game is one of
the most time efficient, requiring time linear in the number of players. However, the accuracy with which it approximates
the real value can be an issue in some cases (the method works well for those games for which all the players have
small weights). To combat this, this paper presents a new approximation algorithm for computing the Shapley value for a
weighted voting game. Our method is based on the technique of randomization and has time complexity that is linear in
the number of players, but has a lower approximation error than Owen’s method. In addition to this comparative study, we
empirically evaluate the error for our method in a range of environments and show how the different parameters of the
voting game affect the error. We then extend our approximation method (for a weighted voting game) to the more general
k-majority voting games. For this, we show that for n players, the time complexity of our extended method is O(k2n) and
the upper bound on its approximation error is O(k2/

√
n).

By undertaking this work, this paper makes a number of important contributions to the state of the art. First, and most
importantly, it presents a new computationally efficient approximation algorithm for the Shapley value for weighted vot-
ing games. The proposed method has linear time complexity, and is better than Owen’s method in terms of its error of
approximation. Second, we extend our approximation method for a weighted voting game to the more general k-majority
voting games. This is the first such method for this game. Finally, we provide a comprehensive error analysis of our approx-
imation method. As mentioned earlier, we not only consider the worst case and obtain the upper bound on the error, but
we also consider a general case and show how the different parameters of the voting game affect this error. This analysis
distinguishes our work from the existing literature on approximation methods in that these have no error analysis1 (neither
for the worst, nor the general case). Nevertheless, we believe such analysis is essential because it enables us to present a
complete picture of our method’s performance in terms of how far the approximation can be from the exact Shapley value
and how the different parameters of the voting game affect it.

The remainder of the paper is organized as follows. Section 2 defines the Shapley value more formally and details
voting games studied in this paper. Section 3 discusses related literature. In Section 4, we present our method for finding
the approximate Shapley value and analyze its approximation error in Section 5. In Section 6, we experimentally evaluate
our method’s approximation error and compare it with that of Owen’s method. Section 7 concludes. Appendix A gives

1 Error bounds for approximate coalition structure generation have been studied in [30], but there has been no such study in the context of finding the
approximate Shapley value.
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a summary of notation employed throughout the paper. Appendices B to F provide proofs of theorems. Appendices G and H
give details on the results and data used for our experiments.

2. Background

We begin by introducing coalitional games and the Shapley value. We then define a weighted voting game and, its
generalized form of a weighted k-majority game.

2.1. Coalitional games and the Shapley value

A coalition game is where groups of players (‘coalitions’) may enforce cooperative behavior between their members.
Hence, the game is a competition between coalitions of players, rather than between individual players (cf. non-cooperative
game theory). Now, depending on how the players measure utility, coalitional game theory is split into two parts. If the
players measure utility or the payoff in the same units and there is a means of exchange of utility, such as side payments,
we say the game has transferable utility; otherwise it has non-transferable utility. More formally, a coalitional game with
transferable utility, 〈N, v〉, consists of [23]:

(1) a finite set, N = {1,2, . . . ,n}, of players and
(2) a function, v , that associates with every non-empty subset S of N (i.e., a coalition) a real number v(S) that indicates

the worth of S .

For each coalition S , v(S) is the total payoff that is available for division among the members of S . Note that, viewed in this
abstract way, a coalitional game gives no indication of how a coalition’s value might or should be divided amongst coalition
members. Coalitional games with non-transferable payoffs differ from those with transferable payoffs in that they associate
with each coalition, a set of payoff vectors that is not necessarily the set of all possible divisions of some fixed amount. The
focus of this paper is on weighted voting games (described in Section 2.2) which have transferable payoffs.

In a voting game, the players will only join a coalition if they expect to gain from it. Here, the players are allowed
to form binding agreements, and so there is often an incentive to work together to receive the largest total payoff. The
problem then is how to split the total payoff between the players. In this context, Shapley [32] constructed a solution using
an axiomatic approach. In particular, he defined a value for games to be a function that assigns to a game 〈N, v〉, a number
ϕi(N, v) for each i in N . This function satisfies three axioms [29,32]:

(1) Symmetry: The names of the players play no role in determining the value. That is, two players who are identical with
respect to what they contribute to a coalition should have the same Shapley value.

(2) Carrier: The sum of ϕi(N, v) for all players i in any carrier C equals v(C). Here carrier C is simply a subset of N such
that v(S) = v(S ∩ C) for any subset of players S ⊂ N .

(3) Additivity: This specifies how the values of different games must be related to one another. It requires that for any
games ϕi(N, v) and ϕi(N, v ′), ϕi(N, v) + ϕi(N, v ′) = ϕi(N, v + v ′) for all i in N .

Shapley showed that there is a unique function that satisfies these three axioms. This value gives a fair division of the gains
of cooperation between the members of a coalition. Thus, one can think of the Shapley value as a measure of the utility of
risk neutral players in a game [29].

Having given these intuitions, we now turn to their formalization. Specifically, we first introduce notation and then define
the Shapley value. Let S denote the set N − {i} and f i : S→ 2N−{i} be a random variable that takes its values in the set of
all subsets of N − {i}, and has the probability distribution function (g) defined as:

g
(
f i(S) = S

)
= |S|!(n− |S|− 1)!

n! .

The random variable f i is interpreted as the random choice of a coalition that player i joins. Then, a player’s Shapley value
is defined in terms of its marginal contribution. Thus, the marginal contribution of player i to coalition S with i /∈ S is a
function "i v that is defined as follows:

"i v(S) = v
(
S ∪ {i}

)
− v(S). (1)

This means a player’s marginal contribution to a coalition S is the increase in the value of S as a result of i joining it.
A player’s Shapley value is defined in terms of its marginal contribution as follows [29,32]:

Definition 1. The Shapley value (ϕi) of the game 〈N, v〉 for player i is the average of its marginal contribution to all possible
coalitions:

ϕi =
∑

S⊂N

|S|!(n− |S|− 1)!
n! ×"i v(S). (2)
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The Shapley value may be interpreted as follows. Suppose that all the players are arranged in some order, all orderings
being equally likely. Then ϕi(N, v) is the expected marginal contribution, over all orderings, of player i to the set of players
who precede him.

Now, the method for finding a player’s Shapley value depends on the definition of the value function (v). This function is
different for different games, but here we focus specifically on the voting game because the computation of its Shapley value
is computationally hard. Furthermore, voting games are an important way of modeling situations where there are multiple
agents, different agents have different preferences, and they want to reach a consensus. For these games, the Shapley value
gives an indication of how much influence each agent has on reaching a consensus.

2.2. Weighted voting games

Let n be a set of players that may, for example, represent shareholders in a company or members in a parliament.
A weighted voting game [23] is then a game G = 〈N, v〉 in which:

v(S) =
{
1 if w(S) ! q,
0 otherwise

for some q ∈R+ and wi ∈R+ , where:

w(S) =
∑

i∈S
wi

for any coalition S . Thus, wi is the number of votes that player i has and q is the number of votes needed to win the game
(i.e., the quota).

For this game (denoted 〈q; w1, . . . , wn〉), a player’s marginal contribution is either zero or one. This is because the value
of a coalition is either zero or one. A coalition with value zero is called a “losing coalition” and with value one a “winning
coalition”. If a player’s entry to a coalition changes it from losing to winning, then the player’s marginal contribution for
that coalition is one; otherwise it is zero. A coalition S is said to be a swing for player i if S is losing but S ∪ {i} is winning.

A well known example of weighted voting is the Electoral College of the United States, where the players are the 50
states plus the District of Columbia; each player casts a number of votes equal to the number of that state’s representatives
plus senators. Another example is a company of shareholders where each shareholder casts a number of votes proportional
to the number of shares he owns.

Speaking more broadly, however, a weighted voting game is just a special case of a more general setting called a k-ma-
jority game (for k = 1, we have the weighted voting game). This general version is defined as follows.

2.3. k-majority games

For the set N of n players, a weighted k-majority game (v1 ∧ · · · ∧ vk) is a situation in which vt = [qt; wt
1, . . . , w

t
n] for

1 " t " k are weighted voting games and

(v1 ∧ · · ·∧ vk)(S) =
{
1 if wt(S) ! qt for 1 " t " k,
0 otherwise,

where wt(S) = ∑
i∈S w

t
i .

The k-majority game finds application, for example, in the European Union enlargement. The Council of ministers of the
European Union represents the national governments of the member states. The Council uses a voting system of qualified
majority to pass new legislation. The Nice European Council established two decision rules for the European Union enlarged
to 27 countries. One of these two rules is a weighted triple majority game v1 ∧ v2 ∧ v3 described in the following example
(taken from [5]):

Example 1. Each member state represented in the future Council is considered an individual player. The players in the Coun-
cil of the European Union enlarged to 27 countries are: {Germany, United Kingdom, France, Italy, Spain, Poland, Romania,
The Netherlands, Greece, Czech Republic, Belgium, Hungary, Portugal, Sweden, Bulgaria, Austria, Slovak Republic, Denmark,
Finland, Ireland, Lithuania, Latvia, Slovenia, Estonia, Cyprus, Luxembourg, Malta}. The decision rule is a weighted triple ma-
jority game v1 ∧ v2 ∧ v3, where the three weighted voting games corresponding to votes, countries, and population are the
following:

v1 = {255;29,29,29,29,27,27,14,13,12,12,12,12,12,10,10,10,7,7,7,7,7,4,4,4,4,4,3},
v2 = {14;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
v3 = {620;170,123,122,120,82,80,47,33,22,21,21,21,21,18,17,17,11,11,11,8,8,5,4,3,2,1,1}.

The game v3 is defined by assigning to each country, a number of votes equal to the rate per thousand of its population
over the total population and the quota represents 62% of the total population. So a vote will be favorable if it counts on
the support of 14 countries with at least 255 votes, and at least 62% of the population.
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Although voting games have so far mostly been used in human contexts, they are now being increasingly studied in the
context of multi-agent systems [28,31,34]. In systems composed of autonomous agents, each agent has a range of problem
solving capabilities and resources at its disposal. While such agents are typically self interested, often there are benefits to
be obtained from pooling resources. In such cases, the agents need to cooperate and coordinate their activities to achieve
joint goals. Since the individual agents are autonomous, different agents may have different preferences over these joint
goals. In such scenarios, voting is an effective mechanism for the agents to reach consensus on what goals to achieve. Given
this, in what follows, we will analyze voting games in the abstract without reference to their different contexts.

3. Related work

For a weighted voting game, a number of methods have been proposed for finding the Shapley value. These methods can
be divided into two types. The first compute the exact value. The second compute the approximate value. These methods vary
in their approach and in their computing requirements. None is universally ideal. Given this, in what follows, we discuss
the main methods in each category and highlight their main advantages and limitations.

3.1. Exact methods

The following are the four main methods that can be classified as exact:

(1) Direct enumeration.
(2) Generating functions [8,21,35].
(3) Conitzer and Sandholm’s method [9].
(4) Ieong and Shoham’s method [16,17].

In more detail, the direct enumeration method directly applies Eq. (2) to compute the Shapley value for player i. The
algorithm for doing this is described in Table 1. Since the number of subsets of the set (N = {1,2, . . . ,n}) of players is 2n ,
evaluating the Shapley value for player i has time complexity O(2n). The disadvantage of this method is that it has expo-
nential time complexity, but its advantage is that it is a simple algorithm and it can reasonably be applied for finding the
exact value for games with a small number of players.

The generating functions method [20,21] was proposed by Mann and Shapley. This finds the exact Shapley value in terms
of the coefficients of a polynomial generated by a function (see [38] for details on generating functions). The disadvantage
of this method is that it uses a substantial amount of memory, but its advantage is that it has polynomial time complexity—
O(Cn2)—where C is the number of possible vote totals [6]. For games where every player has the same weight, there
are n + 1 possible vote totals. For games where each player has a unique weight, the number of possible vote totals may
be 2n . Therefore, this method is practical for games in which many players have the same weights. Methods based on
generating functions have also been proposed in [1,8,35]. Generally speaking, these methods also trade-off memory space
for computation time and so cannot easily scale to larger numbers of agents.

Conitzer et al. [9] use a method to find the exact value. However, their method can be used only if a characteristic
function game is represented in a specific decomposed form. Also, this method has exponential time complexity and so it
does not scale well.

Finally, the method proposed by Ieong et al. [16,17] assumes that the Shapley value of a component of a given coalitional
game is given by an oracle. Then, on the basis of this assumption, it aggregates these values to find the value for the overall
game. The advantage of this method is that it has polynomial time complexity. However, its disadvantage is that it can be
used only if the coalitional game is represented as a “marginal contribution net”.

To summarize, all the above methods give the exact Shapley value, but they each have disadvantages; including requiring
exponential time (as in the case with direct enumeration and, in some cases, with Mann and Shapley’s), a large memory
space (as in the case of Mann and Shapley), or a specific representation2 for the voting game (as is the case with Conitzer
et al. and Ieong et al.). In order to overcome these problems, a number of approximation methods were developed.

Table 1
Direct enumeration algorithm to find the Shapley value for player i

DE-ShapleyValue
1. For each S ⊂ N do the following

For i from 1 to n do the following
If i ∈ N − S and q− wi ! w(S) < q then ϕi← ϕi + |S|!(n− |S|− 1)!/n!

2. Return ϕi

2 Note that transforming a voting game into these specific forms requires additional computational time.
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3.2. Approximation methods

The methods that have been proposed to approximate the Shapley value are as follows:

(1) Monte Carlo simulation method [20].
(2) Multi-linear extension (MLE) method [24].
(3) Modified MLE method [19].
(4) Random permutation method [39].

The earliest approximation method was proposed by Mann and Shapley [20]. This method is based on Monte Carlo simu-
lation and estimates the Shapley value from a random sample of coalitions. This is done as follows. Suppose a coalition S
is selected by randomly sampling the players. Define a random variable X for each player. This X is one for player i if it is
the swing player for the coalition, and zero otherwise. Then, the expectation of X is

E[X] = E
[ |S|!(n− 1− |S|)!X

n!

]
= ϕi

and the variance is

Var(X) = Var
[ |S|!(n− 1− |S|)!X

n!

]
= ϕi(1− ϕi).

Now take a sequence of m independent drawings, X1, . . . , Xm , with corresponding coalition sizes |S1|, . . . , |Sm|. Then, the
estimated Shapley value (ϕ̂i) for i is:

ϕ̂i =
1
m

m∑

j=1

|S j|!(n− |S j |− 1)!
n! X j

with variance Var(ϕ̂i) = ϕi(1−ϕi)/m. The variance decreases as m increases. The disadvantage of this method is that it does
not give details of how the samples are to be drawn, which has a significant impact on the method’s effectiveness. Given
this, it is hard to assess the accuracy of this method. However, the advantage is its linear time complexity.

For the sampling approach, Bachrach and Rosenschein provide an analysis of the error bounds and minimum number of
samples required to achieve a given accuracy [4]. In more detail, they give randomized approximation methods for power
indices such as the Shapley value, which can be used for any simple coalitional game. They show that their approximation
methods approach the optimal, and give lower bounds for both deterministic and randomized approaches to computing
power indices.

The MLE approximation method proposed by Owen [24] works as follows. Consider player i. Let Ti be a coalition such
that Ti is losing, but Ti ∪ {i} is winning. Then, as per Eq. (2), i’s Shapley value is:

ϕi =
∑

Ti

|Ti |!(n− |Ti |− 1)!
n! . (3)

Eq. (3) for the Shapley value can be rewritten by noting that the term inside the summation is a beta function:

B(t + 1,n− t) = t!(n− t − 1)!
n! =

1∫

0

xt(1− x)n−t−1 dx, (4)

where t = |Ti | is the number of players in Ti . The integrand on the right-hand side of Eq. (4), xt(1− x)n−t−1, can be inter-
preted as the probability that the random subset Ti appears, when x is the probability that any member joins Ti , assumed
constant and independent for all players j, j ∈ N − {i}. Summing this expression over all swings gives the probability of a
swing for i. Call this probability f i(x):

f i(x) =
∑

Ti

xt(1− x)n−t−1. (5)

Integrating x out of Eq. (4) gives the Shapley value, because substituting Eq. (4) in Eq. (3) gives:

ϕi =
∑

Ti

1∫

0

xt(1− x)n−t−1 dx =
1∫

0

(∑

Ti

xt(1− x)n−t−1
)
dx =

1∫

0

f i(x)dx. (6)

Thus, the Shapley value can be evaluated by integrating f i(x). But as per Eq. (5), this requires evaluating a function whose
size doubles every time a new player is added. Obviously, this method has exponential time complexity. In order to over-
come this problem, Owen approximated f i(x) as follows. Assuming that each player votes in the same way as i with
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probability x, independently of others, a random variable vi(x) is defined that counts the number of votes cast by others on
the same side as i. Its mean (µ̄i) and variance (ν̄i) are:

µ̄i(x) = E
(
vi(x)

)
= xw

(
N − {i}

)
= xw(N)− xwi (7)

and

ν̄i(x) = Var
(
vi(x)

)
= x(1− x)h

(
N − {i}

)

= x(1− x)h(N)− x(1− x)w2
i , (8)

where h(T ) = ∑
i∈T w2

i is the sum of squared weights.
In large games with many small weights and no large weights, vi(x) will be approximately normally distributed, and the

desired swing probability:

f i(x) = Pr
[
q− wi " vi(x) < q

]
(9)

can be obtained approximately using the normal distribution function N (.) as follows:

f i(x)≈N
(
q− µ̄i(x)

ν̄i(x)

)
−N

(
q− µ̄i(x)− wi

ν̄i(x)

)
. (10)

The advantage of this method is its linear time complexity.
The modified MLE method [19] is an extension of the above described MLE method that trades-off computational time

in order to improve the error of approximation. In more detail, the modified MLE method combines the essential features
of direct enumeration and MLE in order to improve the accuracy of the MLE method. Specifically, the players are divided
into two subsets: major players with large weights L = {1,2, . . . , l}, and minor players N − L. This combined method treats
the major players using enumeration as in the direct approach, but treats minor players using Owen’s MLE approximation
technique. Large values of l will improve accuracy, but will also increase computation time. The advantage of this method
is that it generates a better approximation than Owen’s MLE method, but its disadvantage is that it has exponential time
complexity: O(2l).

Finally, an approximation method was proposed by Zlotkin and Rosenschein [39]. This is a random permutationmechanism
where the players choose a random permutation and form the full coalition, one player after another, according to the
chosen permutation. Here each player gets a utility equal to its contribution to the coalition at the time of joining it. If
each permutation has equal chance of being chosen, then this mechanism gives each player an expected utility equal to
its Shapley value. This method requires the players to agree on an all-or-nothing deal. The advantage of this method is its
linear time complexity. However, for weighted voting games, getting the players to agree on an all-or-nothing deal may be
an issue because, for these games, there is only one swing player for each possible coalition. So only one player gets a utility
of one and all others get zero utility.

In summary, the existing literature on methods for finding the Shapley value have two key drawbacks. First, it only de-
scribes methods for finding an approximate Shapley value, but there is no associated error analysis available. Second, none
of these methods can easily be extended to the generalized k-majority game. In order to overcome these drawbacks, we
present new approximation methods for both weighted voting games and k-majority games. These methods are computa-
tionally efficient and have polynomial time complexity. Furthermore, we provide a comprehensive error analysis in terms of
their worst and average case performance.

4. A newmethod for the approximate Shapley value

This section details the main contribution of the paper, namely a new method for finding the approximate Shapley value.
As already stated, our approach is based on randomized algorithms, which are one of the most commonly used approaches
for finding approximate solutions to problems whose exact solutions are hard to compute. In short, these algorithms trade-
off accuracy for computational time. More specifically, a randomized algorithm is one that, during some of its steps, makes
random choices [3]. Moreover, since such algorithms generate approximate solutions, their performance is typically evalu-
ated in terms of two criteria [3]: their time complexity and their error of approximation (i.e., the difference between the
exact solution and its approximation).

Against this background, we present a new randomized algorithm for finding the approximate Shapley value for a
weighted voting game. We then extend this method to k-majority games. Finally, we evaluate the approximation error
for these algorithms; both theoretically to obtain an upper bound (in Section 5) and experimentally in order to obtain a
more typical average case (in Section 6).

4.1. For a weighted voting game

The intuition behind the proposed method is as follows. As per Definition 1, in order to find a player’s Shapley value,
we first need to find its marginal contribution to all possible coalitions. For n players, there are 2n−1 possible coalitions.
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Finding a player’s marginal contribution to each of these 2n−1 possible coalitions is computationally infeasible. So we do
not attempt to find the marginal contribution to each possible coalition. Rather, we consider n random coalitions. The first
coalition is of size one, the second is of size two, and so on. We find a player’s approximate marginal contribution to each of
these n coalitions. The average of all these marginal contributions gives the player’s approximate Shapley value. Theorem 1
characterizes a player’s approximate marginal contribution to a random coalition of size X , and Theorem 2 characterizes its
approximate Shapley value.

In what follows, ϕi (ϕ̄i) denotes the exact (approximate) Shapley value for player i for a weighted voting game. Also, the
approximate marginal contribution of player i to a random coalition of size X is denoted E"X

i .

Theorem 1. For an n player weighted voting game with mean weight µ and variance ν , player i’s approximate marginal contribution
(E"X

i ) to a random coalition of size X (1 " X " n) is:

E"X
i = 1√

(2πν/X)

b∫

a

e−X (x−µ)2
2ν dx, (11)

where a = (q− wi)/X, b = (q− ε)/X, and wi is player i’s weight.

Proof. To find a player’s approximate marginal contribution to a random coalition, we use the following rule from sampling
theory. Let the players’ weights in N be denoted w1, w2, . . . , wn . Irrespective of how these weights are distributed, let the
mean weight be µ and the variance ν . From this set (N) if we randomly draw a sample coalition, then the mean of the
players’ weights in the sample coalition is given by the following rule [15]:

R1: If w1, w2, . . . , wX is a random sample of size X drawn from ‘any distribution’ with mean µ and variance ν , then the
sample mean (i.e., 1

X

∑X
i=1 wi) has an approximate Normal distribution, N , with mean µ and variance ν

X (the larger the
X the better the approximation3).

From Section 2.2, we know that for a weighted voting game, the marginal contribution of player i to a random coalition
of size X is one if the total weight of the X players in the coalition is greater than or equal to q− wi but less than q− ε
(where ε is an infinitesimally small quantity). Otherwise, its marginal contribution is zero. Thus, the approximate marginal
contribution of player i to a random coalition is the area under the curve defined by N (µ, ν

X ) in the interval [a,b] where
a = (q− wi)/X and b = (q− ε)/X . This area is shown as the region B in Fig. 1 (the dotted line in the figure is µ—the mean
of the weights for a coalition of size X ). If the mean weight in a coalition of size X is a, then the sum of weights of the
coalition is q − wi . Likewise, if the mean weight of a coalition of size X is b, then the sum of weights of the coalition is
q− ε . Hence, i’s approximate marginal contribution to X is:

E"X
i = 1√

(2πν/X)

b∫

a

e−X (x−µ)2
2ν dx. !

Note that, in order to find E"X
i , we do not actually draw sample coalitions. Rather, we use rule R1 to find the probability

distribution (i.e., normal), the mean (i.e., µ), and the error (i.e., ν/X ) in the approximate weight in a random coalition of

Fig. 1. A normal distribution for the players’ weights in a coalition of size X .

3 Also, for large X , any measurement done on a sample drawn with replacement is the same as that for a sample drawn without replacement [15].
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size X . The advantage of not having to draw samples will be explained in detail after presenting our method for finding an
approximate Shapley value.

We now formulate the approximate Shapley value of player i in terms of its marginal contribution. This is done in
Theorem 2.

Theorem 2. For an n player weighted voting game, player i’s approximate Shapley value is:

ϕ̄i =
1
n

n∑

X=1

E"X−1
i , (12)

where E"X
i is as defined in Theorem 1.

Proof. Consider player i. In order to find i’s Shapley value, we must consider all possible ways in which i can join in a
coalition. For a game of n players, i can join a coalition as the Xth member where 1 " X " n. If i joins as the Xth member,
there are X−1 players that precede it. Then i joins and then the remaining n− X players join in. From Section 2.2, we know
that the value of a coalition for a weighted voting game depends on the sum of weights of the players in the coalition. In
other words, this value does not depend on the order in which the players joined the coalition. It follows that i’s marginal
contribution to the coalition of X − 1 players that precede it depends on the weights of these players and not on the order
in which they formed a coalition. Also, according to rule R1, the approximate weight in a random coalition of size X − 1
depends on the coalition size X − 1 and not on the actual players in it. Consequently, E"X−1

i also depends only on X .
Now, there are P (n − 1, X − 1) possible coalitions of X − 1 players (where P (n − 1, X − 1) denotes the number of

permutations of X − 1 players drawn from the set of n− 1 players excluding player i) that precede i. Also, the remaining
n− X players that join after i can do so in (n− X)! ways. Thus, there are P (n−1, X−1)× (n− X)! possible coalitions where
i joins as the Xth member. Since i’s approximate marginal contribution to a random coalition of size X − 1 is E"X−1

i , its
total marginal contribution to all possible coalitions where i joins a the Xth member is P (n−1, X−1)(n− X)!E"X−1

i . Given
this, i’s approximate total marginal contribution to all possible coalitions (i.e., for all possible values of X ) is

∑n
X=1 P (n− 1,

X − 1)(n − X)!E"X−1
i . It follows that i’s approximate Shapley value, which is its average marginal contribution to all n!

possible coalitions (see Definition 1) is:

ϕ̄i =
1
n!

n∑

X=1

P (n− 1, X − 1)(n− X)!E"X−1
i = (n− 1)!

n!
n∑

X=1

E"X−1
i = 1

n

n∑

X=1

E"X−1
i . !

Having got the approximate Shapley value, we are now ready to present this computation in Algorithm 1. In more
detail, Step 1 does the initialization. In Step 2, we vary X between 0 and n − 1 and repeatedly do the following. Player
i’s approximate marginal contribution to a random coalition of size X is found in Step 4. Step 5 finds the sum of these n
marginal contributions. The average of these marginal contributions is found in Step 7—and this is an approximate Shapley
value for player i.

The key advantages of the method used in Algorithm 1 are as follows. First, it does not require making measurements
on randomly drawn samples. This is because our method is based on R1 which gives an approximate distribution for the
weights in a random coalition. Contrast our method with that of Mann and Shapley [20,21] which estimates an approximate
Shapley value by making measurements on randomly drawn samples. The key disadvantage of actually drawing samples is
that the estimate depends on how the samples are drawn; if we change the way in which samples are drawn, then the
estimate changes. The method we propose is independent of any such details because it does not require the actual drawing
of samples. The second advantage of our method is that it only requires the number of players, the quota, the mean weights,
and the variance in the weights—the weights of the individual players are not needed. The third advantage of our method
is that it can easily be extended to k-majority games. Having detailed the algorithm, we now consider its complexity.

n: Number of players
q: Quota for the game
µ: Mean weight of the players in N
ν: Variance in the weights of the players in N
wi : Player i’s weight

1: Ti⇐ 0
2: for X = 0 to n− 1 do
3: a⇐ (q− wi)/X; b⇐ (q− ε)/X

4: E"X
i ⇐ 1√

2Πν/X

∫ b
a e−X (x−µ)2

2ν dx

5: Ti⇐ Ti + E"X
i

6: end for
7: ϕ̄i⇐ Ti/n
8: return ϕ̄i

Algorithm 1. ShapleyValueWVG(n, q, µ, ν , wi ).
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Theorem 3. For a game of n players, the time complexity of computing a player’s approximate Shapley value (ϕ̄i) using Algorithm 1 is
O(n).

Proof. From Eq. (11), we know that E"X
i can be found in constant time. As per Eq. (12), E"X−1

i must be computed n
times. This is done in the for loop of Step 2 in Algorithm 1. Since this for loop is repeated n times, the time complexity of
computing a player’s approximate Shapley value (ϕ̄i) using Algorithm 1 is O(n). !

4.2. For a k-majority game

We now extend the method described in Algorithm 1 to k-majority games. The intuition behind the proposed method is
as follows. As described in Section 2.3, a k-majority game is defined in terms of k weighted voting games vg (1 " g " k). So
we first find a player’s approximate marginal contribution to vg (1 " g " k). Given these k marginal contributions, we find
the marginal contribution and then the Shapley value for a k-majority game. Before doing so, we introduce some notation.

For game vg , let µg denote the mean weight of the players, ν g the variance in their weights, and qg the quota. For
game vg and player i, let PLgi (S X ) denote the probability that the coalition S X is losing but S X ∪ {i} is winning. And, for
game vg , let PWg

i (S X ) denote the probability that the coalition S X ∪ {i} is winning. Also, for a k-majority game, let kE"X
i

denote the approximate marginal contribution of player i to a random coalition S X of size X . Finally, let ϕk
i (ϕ̄k

i ) denote the
exact (approximate) Shapley value for player i for a k-majority game.

Theorem 4 characterizes a player’s approximate marginal contribution, and Theorem 5 a player’s approximate Shapley
value.

Theorem 4. For an n player k-majority game with mean weight µg and variance ν g (1 " g " k), player i’s approximate marginal
contribution (kE"X

i ) to a random coalition S X of size X is:

kE"X
i =

k−1∑

j=0

( j∏

g=1

(
1− PLgi (S X )

)
× PL j+1

i (S X )×
k∏

f = j+2

PW f
i (S X )

)

, (13)

where

PLgi (S X ) = 1√
(2πν g/X)

(qg−ε)/X∫

(qg−wg
i )/X

e−X (x−µg )2

2νg dx (14)

and

PWg
i (S X ) = 1√

(2πν g/X)

∞∫

(qg−wg
i )/X

e−X (x−µg )2

2νg dx. (15)

Proof. Consider player i. From Section 2.3, we know that the approximate marginal contribution of player i to a coalition
S X for the game v1 ∧ · · ·∧ vk is 1 if the following conditions hold:

(1) there is at least one game vg (1 " g " k) for which i is the swing player, and
(2) for each game vg (1 " g " k), the value of S X ∪ {i} is 1.

We find the probabilities PLgi and PWg
i using the sampling rule R1. As per this rule, PLgi (S X ) is the area under the normal

distribution N(µg,ν g/X) between the limits (qg − wg
i )/X and (qg − ε)/X :

PLgi (S X ) = 1√
(2πν g/X)

(qg−ε)/X∫

(qg−wg
i )/X

e−X (x−µg )2

2νg dx. (16)

And PWg
i (S X ) is the area under the normal distribution N(µg,ν g/X) between the limits (qg − wg

i )/X and ∞:

PWg
i (S X ) = 1√

(2πν g/X)

∞∫

(qg−wg
i )/X

e−X (x−µg )2

2νg dx. (17)
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Given Eqs. (16) and (17), we find kE"X
i by considering all possible ways in which i can be swing player. For 0 " j " k− 1,

the probability that i is not swing player for games 1 to j, it is swing player for game j + 1, and may or may not be swing
player for games j + 2 to k is:

j∏

g=1

(
1− PLgi (S X )

)
× PL j+1

i (S X )×
k∏

f = j+2

PW f
i (S X ).

By summing the above expression over all possible j (i.e., between zero and k− 1) we get i’s approximate marginal contri-
bution given in Eq. (13). !

We now formulate an approximate Shapley value for player i in terms of its marginal contribution. This is done in
Theorem 5.

Theorem 5. For an n player k-majority game with mean weight µg and variance ν g (1 " g " k), player i’s approximate Shapley value
is:

ϕ̄k
i = 1

n

n∑

X=1

kE"X−1
i , (18)

where kE"X
i is as defined in Theorem 4.

Proof. As Theorem 2. !

The steps for computing ϕ̄k
i are detailed in Algorithm 2. The time complexity of this method is formulated in Theorem 6.

Theorem 6. The time complexity of Algorithm 2 isO(k2n).

Proof. The time to execute the for loop in Step 4 of Algorithm 2 is O(k2). Since this for loop is within the for loop of Step 2
(which is executed n times), the time complexity of Algorithm 2 is O(k2n). !

As already noted, the quality of an approximation method is evaluated on the basis of both its running time and its
approximation error. To this end, we will now provide a comprehensive error analysis. This is done in three steps. First, we

k: The number of weighted voting games
n: Number of players
q: A k-element vector containing the quotas for the games
µ: A k-element vector containing the mean weight of the players for the k games
ν: A k-element vector containing the variance in the weights of the players for the k games
wi : A k-element vector containing player i’s weight for the k games

1: Ti ⇐ 0;
2: for X = 0 to n− 1 do
3: sum ⇐ 0
4: for j = 0 to k− 1 do
5: prod ⇐ 1
6: for g = 1 to j do
7: a⇐ (qg − wg

i )/X ; b⇐ (qg − ε)/X

8: prod ⇐ prod ×
(
1− 1√

2
∏

ν g/X

∫ b
a e−X (x−µg )2

2νg dx
)

9: end for
10: a⇐ (q j+1 − w j+1

i )/X ; b⇐ (q j+1 − ε)/X

11: prod ⇐ prod × 1√
2
∏

ν j+1/X

∫ b
a e
−X (x−µ j+1 )2

2ν j+1 dx

12: for f = j + 2 to k do
13: a⇐ (q f − w f

i )/X ; b⇐∞
14: prod ⇐ prod × 1√

2
∏

ν f /X

∫ b
a e
−X (x−µ f )2

2ν f dx

15: end for
16: sum ⇐ sum + prod
17: end for
18: kE"X

i ⇐ sum
19: Ti ⇐ Ti + E"X

i
20: end for
21: ϕ̄k

i ⇐ Ti/n
22: return ϕ̄k

i

Algorithm 2. ShapleyValue-KMG(k, n, q, µ, ν , wi ).
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analytically find the upper bound on the error. This upper bound gives an indication of how our method performs in the
worst case. Second, we provide an experimental analysis of the error in the general case. Third, we experimentally compare
the error for our method with that for Owen’s. In the following section, we first derive the formulae for error and carry out
its worst case analysis for the methods proposed in Algorithms 1 and 2.

5. Worst case analysis of the approximation error

We first formalize the idea of error and then derive the formula for measuring it. The concept of error relates to an
approximate measurement made of a quantity which has an exact value [7,36]. Obviously, it cannot be determined exactly
how far off an approximation is from the exact value; if this could be done, it would be possible to just give the more
accurate, corrected value. Thus, error has to do with uncertainty (i.e., variance or standard error) in measurements that
nothing can be done about. If a measurement is repeated, the values obtained may differ and none of the results can be
preferred over the others. However, although it is not possible to do anything about such an error, it can be characterized
in terms of two essential components [7,36]:

(1) a numerical value giving the best “estimate” possible of the quantity measured, and
(2) an error, i.e., the degree of uncertainty or variance associated with this estimated value.

For example, if the approximate measurement of a given quantity is x and the approximation error is e(x), the quantity
would lie in the interval x± e(x). For sampling based experiments, approximation error is defined as follows [36]:

Definition 2. The approximation error (i.e., sampling error) in a set of measurements on random samples is the standard
deviation for the set of measurements divided by the square root of the number of measurements.

Since the exact value that corresponds to an approximation lies in the range x±e(x), the term standard error is analogous
to the algorithmic term absolute error which is defined as follows [3]:

Definition 3. The absolute error of an approximation is the absolute difference between the approximate and its exact
counterpart.

The following section defines this error and uses it to evaluate the performance of the proposed randomized method.
We first find this error for a weighted voting game and the k-majority game. Then we find the upper bound on these errors.

5.1. Absolute error

We first consider our approximation method for the weighted voting game. The error for this method depends on the
error in the approximation rule R1 defined in the proof for Theorem 1. This error is defined as follows [7,36]:

Definition 4. For rule R1, the absolute error (e(σ X )) in a player’s weight in a coalition S X of size X is:

e(σ X ) =
√

(ν/X)/
√

(X) =
√

(ν)/X . (19)

On the basis of Definition 4, we find the absolute error in a player’s approximate marginal contribution (e(E"X
i )) and its

approximate Shapley value (e(ϕ̄i)).

Theorem 7. For an n player weighted voting game with mean weight µ and variance ν , the absolute error in E("X
i ) with respect to

its exact counterpart (denoted "X
i ) is:

e
(
E"X

i

)
= abs

(
E("X

i )−"X
i

)
= 1√

(2πν/X)
×

( a∫

a−e(σ X )

e
−X(x−µ)2

2ν dx+
b+e(σ X )∫

b

e
−X(x−µ)2

2ν dx

)

, (20)

where a = (q− wi)/X and b = (q− ε)/X.

Proof. See Appendix B. !

On the basis of the e(E"X
i ), Theorem 8 characterizes the absolute error in the Shapley value for player i.
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Theorem 8. For an n player weighted voting game, if ϕ̄i denotes player i’s approximate Shapley value that corresponds to the exact ϕi ,
then the absolute error of ϕ̄i with respect to ϕi is:

e(ϕ̄i) = abs(ϕi − ϕ̄i) = 1
n

n∑

X=1

e
(
E"X−1

i

)
. (21)

Proof. See Appendix C. !

Given Theorem 8, the percentage error, PEi , in player i’s Shapley value for a weighted voting game is:

PEi = 100× e(ϕ̄i)/ϕi . (22)

On the basis of Theorem 8, we now obtain the error for our approximation method for a k-majority game. Let e(σ X
g )

be the error in the approximate weight of players in S X for game g . Let e(PLgi (S X )) and e(PWg
i (S X )) denote the errors in

PLgi (S X ) and PWg
i (S X ), respectively.4 These two errors are obtained in the same way as we obtained e(E"X

i ) in Theorem 7.
Thus, we have:

e
(
PLgi (S X )

)
= 1√

(2πν g/X)

( (qg−wg
i )/X∫

(qg−wg
i )/X−e(σ X

g )

e−X (x−µg )2

2νg dx+
(qg−ε)/X+e(σ X

g )∫

(qg−ε)/X

e−X (x−µg )2

2νg dx

)

(23)

and

e
(
PWg

i (S X )
)
= 1√

(2πν g/X)
×

(qg−wg
i )/X∫

(qg−wg
i )/X−e(σ X

g )

e−X (x−µg )2

2νg dx. (24)

For a k-majority game, let e(kE"X
i ) denote the absolute error in i’s marginal contribution to a random coalition S X , and let

e(ϕ̄k
i ) denote the absolute error in i’s Shapley value.

Theorem 9. For an n player k-majority game, if ϕ̄k
i denotes player i’s approximate Shapley value that corresponds to the exact (ϕk

i ),
then the absolute error of ϕ̄k

i with respect to ϕk
i is:

e
(
ϕ̄k
i

)
= abs

(
ϕk
i − ϕ̄k

i

)
= 1

n

n∑

X=1

e
(
kE"X−1

i

)
. (25)

Proof. See Appendix D. !

Having formulated e(ϕ̄i) and e(ϕ̄k
i ), we now find the upper bound on these absolute errors.

5.2. Upper bound for weighted voting game

Theorem 10 characterizes the upper bound for e(ϕ̄i).

Theorem 10. For a weighted voting game of n players, the upper bound for the absolute error in the approximate Shapley value (e(ϕ̄i))
isO(1/

√
n). Also, as n→∞, e(ϕ̄i)→ 0.

Proof. See Appendix E. !

Theorem 10 shows that, as n increases, the upper bound on the error decreases (Fig. 2 shows how 1/
√
n varies with n).

This happens because as n increases, the error in Eq. (19) decreases and, consequently, the error in the Shapley value
decreases with n.5

4 See Eqs. (16) and (17) for a definition of PLgi (S X ) and PWg
i (S X ).

5 Note that we have found the bound for the absolute error for the Shapley value and this bound decreases with n. Here, it is interesting to note that a
related concept for characterizing the quality of an approximation is performance ratio. Roughly speaking, this is the ratio of an approximate solution and
its exact counterpart [3]. The problem of approximating the Shapley value such that the approximation ratio is bounded by a constant is intractable unless
P = NP [13]. In future, it would be interesting to obtain a similar result for the absolute error as well.
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Fig. 2. Approximating sum (
∑n

X=1
1√
X
) with definite integral.

5.3. Upper bound for k-majority games

On the basis of Theorem 10, we get the upper bound for the error for our randomized method for k-majority games.

Theorem 11. For an n player k-majority game, the upper bound for e(ϕ̄k
i ) isO(k2/

√
n). Also, as n→∞, e(ϕ̄k

i )→ 0.

Proof. See Appendix F. !

Here the error increases in k because, as per the method described in Section 4.2, we make k approximate measurements
on a random coalition of size X (1 " X " n). For a weighted voting game, k = 1 (see Section 4.1), so we make a single
approximate measurement on a coalition of size X . As k increases, the number of approximate measurements also increases
and so does the error.

6. Experimental analysis of approximation error

For a weighted voting game, Theorem 10 gives the error in the worst case. However, in general, the error may well be
less than this upper bound. Hence, we now focus on the general case and conduct an empirical analysis of the error for our
approximation method. There are two objectives to this analysis:

(1) To compare the error for our method with that of Owen’s.
(2) To analyze the effect of the parameters of a voting game on the error for our method.

We describe the former analysis in Section 6.2 and the latter in Section 6.3. For both, we focus on weighted voting
games and not k-majority games. There are two reasons for this. First, from Section 5, we know the effect of k on the
approximation error; e(ϕ̄k

i ) increases with k. This is because e(kE"X
i ) increases in k (see Eq. (D.1)). Given this, we now

want to find how the parameters n, q, and µ affect the percentage error P Ei (see Eq. (22)). The second reason for our focus
on weighted voting games is that there are no pre-existing approximation methods for k-majority games. Hence, we can
only compare the performance of these existing methods with our method for weighted voting games.

Given this, Section 6.1 describes the notation and experimental setting for the results presented in Sections 6.2 and 6.3.

6.1. Experimental setting

We evaluate the approximation error for a range of voting games. Let G denote the set of all the games we consider.
These are defined as follows. Recall that a weighted voting game is defined in terms of the parameters n, q, and wi
(1 " i " n). Also, recall that, for a given game, µ and ν denote the mean weight and the variance in weights, respectively.
Given this, in what follows, we consider a range of games by varying n, q, and µ such that the variance, ν , is always close
to 1. In more detail, we vary the number of players between n = 20 (since approximation methods do not produce good
results for games with a smaller number of players and, in any case, they are not necessary in such cases) and n = 70
(since the method in [21] becomes extremely slow for games with a larger number of players). For 20" n " 70, the players’
weights are generated randomly in such a way that the variance in the weights is always between ν = 1 and ν = 1.5.
Keeping the variance in this range, for each n, we generate a range of games by varying the mean weight between µ = 20
and µ = 100. Thus, in all, we consider 54 different cases (varying n between 20 and 70 in increments of 10, and for each n
varying the mean weight between 20 and 100 in increments of 10).
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The players’ weights for the range of games for each of the 54 cases are shown in Figs. H.1 to H.6 in Appendix H. For
instance, Fig. H.1(a) shows the player’s weights for a range of games with µ = 21.1 and ν = 1. Likewise, for other figures in
the appendix. For each of these 54 cases, we consider different games by varying the quota between q > nµ/2 (i.e., a half
majority weighted voting game) and q > 2nµ/3 (i.e., a two thirds majority weighted voting game). Thus, we have a set of
games for each of the 54 cases and G denotes the union of the sets of games for all the 54 cases).

We now introduce some notation for describing our experimental results. Recall that ϕi denotes player i’s exact Shapley
value. As before, for player i, let ϕ̄i , e(ϕi), and PEi denote the approximate Shapley value, the absolute error of approxima-
tion, and the percentage error respectively for our method. Analogously, let ϕ̄O

i , eO (ϕi), and PEO
i denote the approximate

Shapley value, the absolute error, and the percentage error respectively for Owen’s method. Then we have:

eO (ϕi) = abs
(
ϕi − ϕ̄O

i

)
and (26)

PEO
i = eO (ϕi)× 100/ϕi . (27)

For a game G ∈ G , the average percentage error across all the players for our method is:

APEG = 1
n

n∑

i=1

PEi . (28)

For Owen’s method, APEO
G is defined analogously.

6.2. Comparison with Owen’s method

Recall that Owen’s method is defined in terms of a random variable given in Eqs. (7) and (8), while our method is
defined in terms of a random variable given by the rule R1. Here we want to determine how this difference in the methods
affects their performance in terms of their approximation errors.

For each game, G ∈ G , we compare the exact Shapley value for each player with its approximate Shapley value generated
by our method and by Owen’s MLE method. For each game, we find the percentage error in the Shapley value for each
player. Then, for each game, we find the average percentage error across all the players. Finally, for each n, we find the
average percentage error across all the games.

Having outlined the experimental setting and process, we now turn to the actual results. For all G ∈ G , APEG and APEO
G

are shown in Appendix G. This appendix is comprised of 6 figures: G.1 to G.6. Each of these 6 figures is, in turn, comprised
of 9 tables. Thus, in all there are 54 tables in Appendix G which correspond to the 54 cases mentioned Section 6.1. Each
row of each table represents a game. Thus, G is the set of all the rows (i.e., games) in all the tables of Appendix G. The
results of these 54 cases are shown Figs. G.1 to G.6 of Appendix G. The players’ weights for each of the 54 cases are shown
in Figs. H.1 to H.6 in Appendix H. Thus, the player’s weights for Fig. G.1 are as given in Fig. H.1, for Fig. G.2 in Fig. H.2, and
so on. For each game in Appendix G, the quota is given in the first column of the table, µ and ν are given at the top of
the table, n is given at the bottom of the figure, and the players’ weights are given in Appendix H. Note that, the games
represented in a given table differ only in terms of their quotas. But the players’ weights, n, µ, and ν are the same for all
the games in a given table. In more detail, for each table in Appendix G, there is a corresponding graph in Appendix H that
shows the players’ weights. For instance, for all the games in G.1, the players’ weights are as shown in H.1. Likewise, for the
tables in G.2 to G.6, the players’ weights are shown in H.2 to H.6, respectively.

Consider the table in G.1(a) by way of explanation. For this table, n = 20, µ = 21.1, ν = 1, and the players’ weights are
as shown in Fig. H.1(a) in Appendix H. For these fixed values of n, µ, ν , and weights, the quota is varied between 220
and 320. Likewise for each of the remaining figures in Appendix G. The last two columns of each table in Appendix G show
a comparison of errors APEG and APEO

G . For each n, we find the average percentage error (for our method) across all the
games in G:

APEn = 1
|Gn|

∑

G∈Gn

APEG , (29)

where Gn ⊂ G denotes the set of games in G with n players. For Owen’s method, APEO
n is defined analogously. For different

n, a comparison of APEn and APEO
n is shown in Fig. 3. Recall that for our experiments, we vary the quota between q > nµ/2

(i.e., a half majority weighted voting game) and q > 2nµ/3 (i.e., a two thirds majority weighted voting game). Thus, for
a given n and a given µ, the percentage error shown in Fig. 3 is the average taken over this range of quotas. As seen in
the figure, for each n and each µ, the error for our method is no worse than that for Owen’s. These results show that, in
comparison to Owen’s method, our’s performs better in terms of approximation error.

6.3. Effect of the voting game parameters

We analyze the effect of ν , n, q, and wi on the approximation error for our method. The effect of ν on PEi is evident from
Eq. (22). As per this equation, PEi depends on the absolute error e(ϕ̄i). The error e(ϕ̄i) depends on e(E"X

i ) (see Theorem 8),
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Fig. 3. A comparison of the average percentage error (for our method and Owen’s) across all games with n players.

which, in turn, depends on e(σ X ) (see Eq. (19)). As ν increases, e(σ X ) increases. As a result, e(ϕ̄i), and consequently PEi
increases.

Now consider the effect of n on approximation error. The error in the weights of a random coalition of size X (i.e., e(σ X )
given in Eq. (19)) decreases in X and so does the error e(E"X

i ) (see Eq. (20)). Consequently PEi decreases in n.
The effect of the other parameters (i.e., q and wi) are not so immediately obvious from this equation for e(ϕ̄i). Hence,

for these, we conduct an experimental analysis.

• Effect of q. Recall from Section 4.1, that a = (q− wi)/X and b = (q− ε)X . Thus, as q increases, both a and b increase.
The error e(E"X

i ) is either the area of A or the area of C in Fig. 1. As q increases, the three regions marked A, B , and
C move to the right. As a result, e(E"X

i ) may increase or decrease depending on the coalition size X . Whether e(E"X
i )

increases or decreases is not obvious from Eq. (20). Thus, we conduct an experimental analysis to determine the effect
of q on PEi . The setting for these experiments is as follows. We fix n and ν , and vary µ between 20 and 100. For each µ,
we consider a range of games with different q. Specifically, we vary q between nµ/2 (i.e., a half majority voting game)
and 2nµ/3 (i.e., a two thirds majority voting game). For each game, we determine PEi (where 1 " i " n) and the average
percentage error 1

n

∑n
1PEi . We then split the set of all games into 1 " j " 4 classes with class j containing those games

for which the quota lies in the range nµ/2 + nµ( j − 1)/24 to nµ/2 + nµ j/24. We then find the average percentage
error for the games in each class. We then repeated the above experiments for different n in the range 20 " n " 70.
The effect of quota on the average percentage error was found to be the same for all n: the error decreased with q.
The results of these experiments for n = 50 (corresponding to the data in the tables shown in Fig. G.4) are plotted in
Fig. 4(a).

• Effect of wi . Consider Eq. (20), for which the limits of integration depend on e(σ X ). These limits are a = (q − wi)/X
and b = (q − ε)/X . As wi increases, a decreases but b remains unchanged. Also as wi increases, the area of region C
(see Fig. 1) remains unchanged, the area of region B increases, and the area of region A may increase or decrease. The
relation between this change in the areas A and B is again not obvious from the equations. Hence, we computed e(ϕ̄i)
for each voting game G ∈ G . For each game, the error PEi was found to increase with abs(µ− wi). Consequently, for
a given n, APEn also increases with abs(µ− wi). The results of experiments for n = 30, µ = 22.33, and ν = 0.96 are
plotted in Fig. 4(b). For these fixed values of n, µ, and ν , and a range of different quotas, the figure shows how PEi
varies with wi .

This analysis gives us the following key insights. First, as the number of players (n) increases, the average percentage
error decreases. Second, as the quota (q) increases, the average percentage error decreases. Third, the error is different for
players with different weights; players with weight closer to the mean weight (µ) have a lower error than those with
weight further away from µ.
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Fig. 4. The effect of the parameters of a voting game on the average percentage error.

7. Conclusions and future work

The main advantage of the Shapley value as a solution concept in cooperative games is that it provides a solution
that is both unique and fair. However the problem of finding this value for the voting game is #p-complete. In order to
overcome this computational complexity, we presented a new approximation algorithm for computing the Shapley value for
a weighted voting game. Like the current state of the art, our method has linear time complexity, but it is better in terms of
its approximation error. We also empirically evaluated the error for our method and showed how the different parameters
of a voting game affect it. Specifically, we showed the following effects. First, as the number of players in a voting game
increases, the average percentage error across the players decreases. Second, as the quota increases, the average percentage
error decreases. Third, the error is different for players with different weights; players with weight closer to the mean
weight have a lower error than those with weight further away. We then extended our approximation method to the more
general k-majority voting game and showed that, for n players, the method has time complexity O(k2n) and the upper
bound on its approximation error is O(k2/

√
n).

The results are important because by devising a computationally efficient approximation method, that has a high degree
of accuracy, we make it more attractive to use the Shapley value as the basis for computing solutions in a range of practical
contexts. In particular, coalition formation techniques lie at the heart of virtual organizations, collective robotics, and agent
teams. Thus, by providing such an algorithm, we start to open up the possibility of applying the principle approaches of
cooperative game theory to such practical problems.

There are several interesting directions for future work. First, this work extended our approximation method for weighted
voting games [14] to k-majority games. In future, we would like to generalize our method so that it works not just for the
voting game, but also for other coalitional games. Second, although we found the upper bound on the approximation error
for our method, it would be interesting to determine whether or not it is possible to find an approximate Shapley value
in linear time, but with a better error bound. Third, the accuracy of our approximation method can be improved at the
expense of computation time (using an approach similar to the MLE extension method). Thus, we would like to investigate
how much time needs to be traded off in order to arrive at a more accurate result and whether an agent could make this
trade-off at run-time in order to reflect its current goals and available resources.
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Appendix A. A summary of notation

N The set of players
n Number of players in N
N−i The set of players excluding player i
q Quota for a game
S A subset of N
S The set N − {i} where i ∈ N
s Number of players in S
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v(S) The value of coalition S
wi The weight of player i
w(S) The weight of coalition S
"i v(S) The marginal contribution of player i to coalition S
ϕi The exact Shapley value for player i for a weighted voting game
Ti A coalition such that Ti is losing but Ti ∪ {i} is winning
t The number of players in Ti
µ The mean weight of players
ν The variance in players’ weights
E"X

i The approximate marginal contribution of player i to coalition X for a weighted voting game
kE"X

i The approximate marginal contribution of player i to coalition X for a k-majority game
ϕk
i The exact Shapley value for player i for a k-majority game

ϕ̄i Approximate Shapley value (for player i) generated by the proposed method for a weighted voting game
ϕ̄k
i Approximate Shapley value (for player i) generated by the proposed method for a k-majority game

PLgi (S X ) For game vg and player i, the probability that the coalition S X is losing but S X ∪ {i} is winning
PWg

i (S X ) For game vg , the probability that the coalition S X ∪ {i} is winning
e(σ X ) Absolute error in the sum of weights of a random coalition S X of size X
e(E"X

i ) Absolute error in i’s marginal contribution to coalition S X for a weighted voting game
e(kE"X

i ) Absolute error in i’s marginal contribution to coalition S X for a k-majority game
ϕ̄O
i Player i’s approximate Shapley value generated by Owen’s method for a weighted voting game

e(ϕi) Absolute error in i’s approximate Shapley value generated by the proposed method for a weighted voting game
eO (ϕi) Absolute error in i’s approximate Shapley value generated by Owen’s method for a weighted voting game
PEi Percentage error in i’s approximate Shapley value generated by the proposed method for a weighted voting game
PEO

i Percentage error in i’s approximate Shapley value generated by Owen’s method for a weighted voting game
G The set of all games on which the experiments are conducted
G An element of the set G
APEG Average percentage error in the approximate Shapley value generated by the proposed method for a weighted

voting game; the average is taken over all the players in N for the game G
APEO

G Average percentage error in the approximate Shapley value generated by Owen’s method for a weighted voting
game; the average is taken over all the players in N for the game G

APEn Average percentage error in the approximate Shapley value generated by the proposed method for a weighted
voting game; the average is taken over all the players over all the games in G for which there are n players

APEO
n Average percentage error in the approximate Shapley value generated by Owen’s method for a weighted voting

game; the average is taken over all the players over all the games in G for which there are n players

Appendix B. Proof of Theorem 7

The error (e(E"X
i )) is obtained by propagating the error in Eq. (19) to the error in a player’s approximate marginal

contribution given in Eq. (11). In this equation, a and b are the lower and upper limits for the approximate mean of the
players’ weights for a coalition of size X . Since the error in this mean is e(σ X ), the actual values of a and b lie in the
intervals a ± e(σ X ) and b ± e(σ X ), respectively. Hence, the error in Eq. (11) is either the probability that the mean weight
lies between the limits a− e(σ X ) and a (i.e., the area under the curve defined by N (µ, ν

X ) between a− e(σ X ) and a, which
is the region A in Fig. 1) or the probability that the mean weight lies between the limits b and b + e(σ X ) (i.e., the area
under the curve defined by N (µ, ν

X ) between b and b + e(σ X ), which is the region C in Fig. 1).
The area of region A in Fig. 1 is:

1√
(2πν/X)

×
a∫

a−e(σ X )

e−X (x−µ)2
2ν dx

and that of C is:

1√
(2πν/X)

×
b+e(σ X )∫

b

e−X (x−µ)2
2ν dx.

More specifically, the error e(E"X
i ) is at most the sum of the two areas A and C .
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Appendix C. Proof of Theorem 8

We obtain the error e(ϕ̄i) by propagating the error e(E"X−1
i ) to all coalitions between size X = 1 to X = n. This is

done using the following error propagation rules [36]. Let x and y be two random variables with errors e(x) and e(y),
respectively. Then, from [36] we have the following propagation rules:

R2 The error in the random variable z = x+ y is:

e(z) = e(x) + e(y).

R3 If z = kx where the constant k has no error, then the error in z is:

e(z) = |k|e(x).
R4 The error in the random variable z = x× y is:

e(z) = e(x) + e(y).

Note that for X = 1 (i.e., player i is the first member of a coalition), e(E"X−1
i ) = 0 since we know that a one player

coalition can never win and i’s marginal contribution to such a coalition is therefore known to be zero. Also, recall from
Theorem 2, that a player’s approximate Shapley value is the average of its approximate marginal contributions to coalitions
of size 1 " X " n. Hence, as per rules R2, R3, and R4, the absolute error (e(ϕ̄i)) is the average of the approximation errors
e(E"X−1

i ) for all coalitions between the sizes X = 1 and X = n.

Appendix D. Proof of Theorem 9

We obtain the error e(ϕ̄k
i ) by propagating the error e(kE"X−1

i ) to all coalitions between size X = 1 to X = n. The error
e(kE"X

i ) is obtained using the error propagation rules R2, R3 and R4:

e
(
kE"X

i

)
=

k−1∑

j=0

( j∑

g=1

(
e
(
P Lgi (S X )

))
+ e

(
P L j+1

i (S X )
)
+

k∑

f = j+2

e
(
PW f

i (S X )
)
)

. (D.1)

Given Eq. (D.1) and the fact that player i’s approximate Shapley value is the average of its approximate marginal contribution
to coalitions between size X = 1 and X = n, we get

e
(
ϕ̄k
i

)
= 1

n

n∑

X=1

e
(
kE"X−1

i

)
.

Appendix E. Proof of Theorem 10

We find a bound for the error in Shapley value by finding a bound for Eq. (20). A bound for Eq. (20) is found by first

finding a bound for 1√
(2πν/X)

×
∫ a
a−e(σ X ) e

−X (x−µ)2
2ν dx and then for 1√

(2πν/X)
×

∫ b+e(σ X )
b e−X (x−µ)2

2ν dx and then summing them

both. In order to obtain a bound on 1√
(2πν/X)

×
∫ a
a−e(σ X ) e

−X (x−µ)2
2ν dx we use the following rule from [37]:

On some interval [ā, b̄], suppose that functions f̄ and ḡ are integrable, ḡ never changes sign, and m " f̄ (x) " M . Then

m

b̄∫

ā

ḡ(x)dx "
b̄∫

ā

f̄ (x)ḡ(x)dx " M

b̄∫

ā

ḡ(x)dx.

We use this result to find the bound for e(ϕ̄i) as follows. Let h = e(σ X ), ḡ(x) = 1, f̄ (x) = e−X (x−µ)2
2ν , ā = a − h, and b̄ = a.

This gives
∫ a
a−h ḡ(x)dx = h, m = e−X (a−µ)2

2ν , and M = e−X (a−h−µ)2
2ν . Then using the above rule from [37], we get:

a∫

a−e(σ X )

e−X (x−µ)2
2ν dx " he−X (a−h−µ)2

2ν . (E.1)
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Since the upper bound for e−X (a−h−µ)2
2ν is 1, we get:

a∫

a−e(σ X )

e−X (x−µ)2
2ν dx " h " e(σ X ). (E.2)

Also, from Eq. (19), we know that e(σ X ) =√(ν/X)/
√

(X). Hence, Eq. (E.2) can be rewritten as:

a∫

a−e(σ X )

e−X (x−µ)2
2ν dx "

√
(ν)/X . (E.3)

It follows that

1√
(2πν/X)

a∫

a−e(σ X )

e−X (x−µ)2
2ν dx " 1√

(2π X)
. (E.4)

In the same way we get

1√
(2πν/X)

×
b+e(σ X )∫

b

e−X (x−µ)2
2ν dx " 1√

(2π X)
. (E.5)

From Eqs. (20), (E.4), and (E.5) we get:

e
(
E"X

i

)
" 2√

(2π X)
. (E.6)

Recall that e(E"X−1
i ) = 0 for X = 1. Given this and Eqs. (21) and (E.6), we get the bound for the error in Shapley value

as:

e(ϕ̄i) " 1
n

n−1∑

X=1

2√
(2π X)

" 2

n
√

(2π)

n−1∑

X=1

1√
(X)

. (E.7)

Approximating summation with definite integral [11], we get the bound for
∑n

X=1
1√
X

as follows (see Fig. 2):

n∑

X=1

1√
X

"
n∫

0

1√
x
dx " 2

√
n. (E.8)

Substituting Eq. (E.8) in Eq. (E.7), we get:

e(ϕ̄i) " 2

√
2
nπ

. (E.9)

In other words, e(ϕ̄i) =O(1/
√
n). Also, from Eq. (E.9), it follows that as n→∞, e(ϕ̄i)→ 0.
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Appendix F. Proof of Theorem 11

From Eqs. (23), (E.4), and (E.5), we get

e
(
P Lgi (S X )

)
" 2√

(2π X)
.

And from Eqs. (24), (E.4), and (E.5), we get

e
(
PW g(S X )

)
" 1√

(2π X)
.

Substituting these two inequalities in Eq. (D.1), we get:

e
(
kE"X

i

)
" 2k2√

(2π X)
. (F.1)

Substituting Eq. (F.1) in Eq. (25), we get:

e
(
ϕ̄k
i

)
" 2k2

√
2
nπ

. (F.2)

Therefore, e(ϕ̄k
i ) =O(k2/

√
n). It also follows that as n→∞, e(ϕ̄k

i )→ 0.

Appendix G. Experimental results

Results of experiments: a comparison of the error for our method and that for Owen’s for the 54 cases mentioned in
Section 6.2.

Fig. G.1. A comparison of the average percentage errors for games with 20 players.
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Fig. G.2. A comparison of the average percentage errors for games with n = 30 players.

Fig. G.3. A comparison of the average percentage error for games with n = 40 players.
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Fig. G.4. A comparison of the average percentage errors for games with n = 50 players.

Fig. G.5. A comparison of the average percentage errors for games with n = 60 players.
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Fig. G.6. A comparison of the average percentage errors for games with n = 70 players.

Appendix H. Players’ weights for the games

Data for experiments: the players’ weights for the 54 cases mentioned in Section 6.2. This is data for the results given in
Appendix G.

Fig. H.1. Players’ weights for n = 20 players.
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Fig. H.2. Players’ weights for n = 30 players.

Fig. H.3. Players’ weights for n = 40 players.

Fig. H.4. Players’ weights for n = 50 players.
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Fig. H.5. Players’ weights for n = 60 players.

Fig. H.6. Players’ weights for n = 70 players.
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