
Artificial Intelligence 173 (2009) 45–79
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Reasoning about coalitional games

Thomas Ågotnes a,∗, Wiebe van der Hoek b, Michael Wooldridge b

a Department of Computer Engineering, Bergen University College, Norway
b Department of Computer Science, University of Liverpool, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 September 2007
Received in revised form 6 August 2008
Accepted 10 August 2008
Available online 23 August 2008

Keywords:
Multi-agent systems
Knowledge representation
Coalitional games
Modal logic

We develop, investigate, and compare two logic-based knowledge representation formalisms
for reasoning about coalitional games. The main constructs of Coalitional Game Logic
(cgl) are expressions for representing the ability of coalitions, which may be combined
with expressions for representing the preferences that agents have over outcomes. Modal
Coalitional Game Logic (mcgl) is a normal modal logic, in which the main construct is
a modality for expressing the preferences of groups of agents. For both frameworks, we
give complete axiomatisations, and show how they can be used to characterise solution
concepts for coalitional games. We show that, while cgl is more expressive than mcgl, the
former can only be used to reason about coalitional games with finitely many outcomes,
while mcgl can be used to reason also about games with infinitely many outcomes, and
is in addition more succinct. We characterise the computational complexity of satisfiability
for cgl, and give a tableaux-based decision procedure.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Coalitional games are games in which agents can potentially benefit by cooperating [24, pp. 257–298]. Such games provide
a natural and compelling model through which to understand cooperative action, and have been widely studied in the
context of both natural and artificial multi-agent systems. In the game theory literature, two basic questions are asked in
the context of coalitional games: Which coalitions will form? and How will the benefits of cooperation be shared within a coalition?
With respect to the first question, solution concepts such as the core have been proposed, which try to capture the idea of
rational participation in a coalition [24, p. 258]. With respect to the second question, solution concepts such as the Shapley
value have been proposed, which attempt to define a “fair” distribution of the benefits of cooperation to agents within a
coalition [24, p. 291].

In the context of multi-agent systems and artificial intelligence, the use of coalitional game models and cooperative solu-
tion concepts raises a number of important issues. Perhaps the most fundamental issues are those of representing coalitional
games, and reasoning with such representations. A number of researchers have developed models for coalitional games, and,
given such models, have investigated the complexity of associated solution concepts, e.g., [10,12,13,20,23,40,41]. However,
very little work has considered the kinds of logical, declarative representation schemes that are commonly used in the
knowledge representation community [38]. There is good reason to suppose that such logic-based representations will be
of value in reasoning about coalition games. For example, they can be used together with tools and techniques developed
in AI and computer science [39]:

• As query languages, for expressing properties ϕ of coalitional games. Checking whether a game has property ϕ reduces
to the model checking problem.

* Corresponding author.
E-mail addresses: tag@hib.no (T. Ågotnes), wiebe@csc.liv.ac.uk (W. van der Hoek), mjw@liv.ac.uk (M. Wooldridge).
0004-3702/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2008.08.004

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:tag@hib.no
mailto:wiebe@csc.liv.ac.uk
mailto:mjw@liv.ac.uk
http://dx.doi.org/10.1016/j.artint.2008.08.004

46 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
• For directly reasoning about coalitional games via theorem proving.
• For expressing desirable properties ϕ of a coalitional game we want to synthesise. This corresponds to a constructive

proof of satisfiability for ϕ .

Moreover, logical representation schemes are frequently succinct, compared to the alternatives. Logical representations of
coalitional games might also be of value in game theory itself, as they open the door for automated reasoning tools such as
theorem provers.

Our aim in this paper is thus to develop and study logic-based knowledge representation formalisms for coalitional
games (more precisely, coalitional games without transferable payoffs [24, p. 268]). We develop two logical languages that
are interpreted directly as statements of such games. We study the axiomatisation and computational complexity of these
logical languages, and demonstrate how they can be used to characterise and reason about coalitional games:

• First, we develop a Coalitional Game Logic (cgl). Syntactically, cgl contains modal cooperation expressions of the form
〈C〉ϕ , meaning that coalition C can achieve an outcome satisfying ϕ . In addition, cgl includes operators that make it
possible to explicitly represent an agent’s preferences over outcomes. The inclusion of an explicit mechanism for rep-
resenting preferences makes cgl very different to cooperation logics such as atl [3] and Coalition Logic [27], which
otherwise might, at first sight, seem to be similar to cgl. However, the differences go much deeper than just introduc-
ing a way of representing preferences: we show in Section 5 that cgl is fundamentally incomparable to these logics.
Note that we interpret formulae of cgl directly with respect to coalitional games without transferable payoff, thereby
establishing an explicit link between formulae of the logic and properties of coalitional games.

• Second, we develop a Modal Coalitional Game Logic (mcgl), a normal modal logic interpreted directly in coalitional games
by using the preference relations in coalitional games as modal accessibility relations.

Both logics can be used to characterise and reason about many important properties of coalitional games, such as non-
emptiness of the core. They differ, however, in that cgl can only express such properties under the assumption that the
possible outcomes of the games are finite, while mcgl does not have this restriction. On the other hand, if we make the
finiteness assumption, cgl is more expressive than mcgl, while the latter can often express interesting properties such as
non-emptiness of the core much more succinctly.

The remainder of this article is organised as follows. In the next section, we discuss related work, and introduce the
basic mathematical framework of coalitional games and solution concepts for such games. cgl is introduced in Section 3.
Following a presentation of the syntax and semantics of the logic, we give a number of technical results relating to it, as
follows. First, we prove that the logic is expressively complete with respect to finite coalitional games without transferable
payoff, in the sense that for any two different finite coalitional games, there exists a formula of cgl that will be true in one
game and false in the other. We then give an axiomatisation of cgl, and show that it is sound and complete with respect to
finite coalitional games. With respect to model checking and satisfiability, we show that while model checking for the logic
is tractable, the satisfiability problem for cgl is np-complete. We present a tableau-based decision procedure for the logic,
and to illustrate the use of the logic, we show how to axiomatically characterise a number of well-known solution concepts
for coalitional games, including, for example, non-emptiness of the core of finite coalitional games. Finally, we give some
examples of formal deductions in the logic. In Section 4 we introduce mcgl. After presenting the syntax and semantics, we
present an axiomatisation, and prove that it is sound and complete with respect to all coalitional games. We illustrate the
logic by expressing properties such as non-emptiness of the core of general (not necessarily finite) coalitional games, and
by formally deriving some properties of coalitional games as theorems within the proof system. Finally, in Section 5, we
compare cgl and mcgl, first to each other, and then to Coalition Logic, and we conclude in Section 6.

2. Background

Originally developed within the game theory community [4,15,22], models of cooperative or coalitional games entered
multi-agent systems and artificial intelligence research in the 1990s. Initial research focused on approaches to coalition
formation. For example, Shehory and Kraus developed algorithms for coalition formation, in which agents were modelled
as having different capabilities, and were assumed to benevolently desire some overall task to be accomplished, where this
task had some complex (plan-like) structure [30–32]. Sandholm considered the closely-related problem of coalition structure
generation, i.e., the problem of partitioning an overall set of agents into mutually disjoint coalitions, so that social welfare
(the sum of individual coalition values) is maximised [29].

More recently, the issue of representing coalitional games, and the complexity of computing with these representations,
has received attention. The issue of representation—which is of course central to the field of artificial intelligence—is of
particular importance in the context of coalitional games, as the obvious representations for them have completely unreal-
istic space requirements (see, e.g., the discussion in [40, pp. 34–41]). Some effort has therefore been devoted to developing
succinct representations for coalitional games. There are roughly two main lines of attack with respect to the problem of
representing coalitional games, as follows.

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 47
• First, one can try to find some representation scheme that is guaranteed to be succinct (i.e., will lead to representations
that are of size polynomial in the number of agents), but which are incomplete, by which we mean that there will
be some coalitional games that simply cannot be captured within the representation. Such a representation will be of
interest if it can represent games in the domain of interest to us. An example is the “induced subgraph” representation
of Deng and Papadimitriou [12].

• Second, one can try to find a representation that is complete but not guaranteed to be succinct. That is, although the
representation might be of exponential size in the worst case, it will be useful if it can be used to represent succinctly
games in the domain of interest to us. An example is the “marginal contribution nets” representation of Ieong and
Shoham [20].

Given a specific representation scheme, it is possible to ask concrete questions about, for example, the complexity of
computing solution concepts. Deng and Papadimitriou were perhaps the first to investigate the complexity of cooperative
solution concepts, for several representations of coalitional games [12]; this led to work by Conitzer and Sandholm [8–10],
Ieong and Shoham [20], Wooldridge and Dunne [40,41], and Elkind et al. [13]. A survey of related results in this area is [5].

Although logic-based approaches to knowledge representation are widely used in artificial intelligence, there has been
little work on logic-based approaches to representing coalitional games.1 There are many arguments in favour of a logic-
based approach to knowledge representation for coalitional games.2 For example, such languages can be used as expressive,
general, semantically well-defined query languages for model checkers and the like [28,39]. Alternatively, and adopting a
more traditional ai approach, such formalisms can be used to explicitly model an agent’s environment, and the agent can
then use theorem proving to make decisions about what action to perform (e.g., whether to join a particular coalition). And
finally, of course, logical representations are very often succinct, and so a logic of coalitional games might be of interest
as a succinct representation scheme for coalitional games. Perhaps surprisingly, little work has attempted to use logic as a
succinct representation scheme for coalitional games. Ieong and Shoham’s marginal contribution nets use a logic-based rule
notation to represent the characteristic function of a coalitional game [20]. Wooldridge and Dunne proposed a propositional
logic representation for their “Qualitative Coalitional Games”, explicitly arguing that this representation would be more
succinct in many cases of interest than an explicit representation [40]. However, in both of these cases, logic was used as
part of the underlying coalitional game model, rather than as a tool for representing properties of coalitional games overall.

Given these concerns, the existing formalisms most closely related to our interests are Alternating-time Temporal Logic
(atl) [3] and Coalition Logic (cl) [27], which can be regarded as a strict fragment of atl. In both of these formalisms, the
main construct is an expression of the form 〈C〉ϕ , with the intended meaning that coalition C has the ability to achieve ϕ .
Such coalition logics have proved to have many important applications, for example in the specification and verification
of social choice mechanisms [26], and for knowledge representation in multi-agent systems where one seeks to represent
the strategic structure of multi-agent environments [34]. The semantic structures underpinning coalition logic are effectivity
functions, which have been studied in the social choice literature [1]. But, while Coalition Logic, atl, and their many vari-
ants have proved to be intuitive, powerful, and practical tools for understanding the properties of game-like multi-agent
systems [39], they have several limitations for reasoning about coalitional games. In particular, they do not provide any
mechanism for representing and reasoning about the preferences of agents, which is of course a fundamental requirement
for modelling rational action. (We investigate the potential use of Coalition Logic for coalitional games in detail in Section 5.)

2.1. Coalitional games

We here provide a summary of the relevant necessary definitions and concepts from cooperative game theory, but we
refer the interested reader to, e.g., [24] for more detail and discussion. A coalitional game (without transferable payoff) is an
(m + 3)-tuple [24, p. 268]:

Γ = 〈N,Ω, V ,�1, . . . ,�m〉
where:

• N = {1, . . . ,m} is a non-empty set of players (or agents);
• Ω is a non-empty set of outcomes;
• V : (2N \ ∅) → 2Ω is the characteristic function of Γ , which for every non-empty coalition C defines the choices V (C)

available to C , so that ω ∈ V (C) means C can choose outcome ω; and
• �i ⊆ Ω × Ω is a complete, reflexive, and transitive preference relation, for each agent i ∈ N .

We let ω �i ω
′ denote the fact that ω is strictly preferred over ω′ by agent i (i.e., ω �i ω

′ but not ω′ �i ω). We sometimes
refer to the set N , of all agents, as the grand coalition.

1 In contrast, a number of researchers have investigated logics for representing and reasoning about non-cooperative games: see, e.g., [17] for one example
of such work, and [37] for a detailed survey.

2 We will not restate all the well-known arguments in favour of logic for knowledge representation—see, e.g., [38] for detailed discussions.

48 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
The definition above is a very general definition of coalitional games. It gives no indication of what the outcomes Ω are,
or where the preference relations �i come from. There are several points to note here:

• The first is that readers familiar with temporal logic [14] or state transition systems may be tempted to interpret out-
comes Ω as possible system states; and readers familiar with Alternating-time Temporal Logic [3] or Coalition Logic [27]
may be tempted to interpret V as an effectivity function [1]. However, this is not the intended interpretation. Indeed,
we show in Section 5.2 that there is no direct mapping between the state-based models of [27] and coalitional games by
interpreting outcomes Ω as states and V as an effectivity function. For example, it is perfectly consistent in a coalitional
game that, at the same time, disjoint coalitions have the abilities to choose different outcomes.

• The second point to note is that a more common but less general definition of coalitional game is that of a coalitional
game with transferable payoff, formalised as a pair 〈N, v〉 consisting of the set of players N together with a function
v : 2N → R associating a real number v(C) with every group of players C . The intended interpretation of a game 〈N, v〉
is that v(C) represents the payoff, or utility, that C could obtain should they choose to cooperate. It is easy to see
that coalitional games without transferable utility are more general than coalitional games with transferable utility: we
simply interpret V (C) as being the set of possible distributions of payoff v(C) to members of C .3

Henceforth, we use the term “coalitional game” to refer to the more general concept of a coalitional game without transfer-
able utility, as defined above. A finite coalitional game is a coalitional game with a finite set of outcomes.

Example 1 (Dinner Game4). Three agents must decide to go out for either Indian (I), Chinese (C) or Japanese (J) food. The
majority will go where the majority decides: if all three agents decide to go for Indian they will do that; if two of the agents
wants to go for Chinese the two agents will do that and the third agent will stay at home. To simplify the presentation in
this example, we will define the preferences of agents by way of utilities: for every agent i we assume a utility function
ui : Ω → R, so that ui(ω) denotes the utility agent i gets from outcome ω. These utility functions then induce preference
relations in the obvious way.

The utilities of the agents with respect to the outcome I , C , and J are as follows:

• u1(I) = u2(C) = u3(J) = 4,
• u1(C) = u2(J) = u3(I) = 2,
• u1(J) = u2(I) = u3(C) = 0,
• each agent gets an additional unit of utility for each other agent that joins him,
• an agent who stays at home has a utility of 0.

The situation can be modelled by the following coalitional game:

• N = {1,2,3},
• Ω = {I12, I13, I23, C12, C13, C23, J12, J13, J23, I123, C123, J123}. I12 is the outcome where the majority 1,2 goes out for

Indian; C123 where all agents go for Chinese, etc.,
• ◦ V (1) = V (2) = V (3) = ∅,

◦ V (1,2) = {I12, C12, J12},
◦ V (1,3) = {I13, C13, J13},
◦ V (2,3) = {I23, C23, J23},
◦ V (1,2,3) = {I123, C123, J123}

• I123 �1 I12 �1 I13 �1 C123 �1 C12 �1 C13 �1 J123 �1 J12 �1 J13 �1 I23 �1 C23 �1 J23. Similarly for agents 2 and 3.

The following is a variant of the three-player majority game with an infinite set of outcomes.

Example 2 (Cake Game). Three agents must decide how to divide a cake amongst them. Any majority can decide a division
of the cake amongst themselves. We assume that each agent only cares about the amount of cake she gets: the more cake
the better. The situation can be modelled by the following coalitional game:

• N = {1,2,3},
• Ω = R

3,
• V (1) = V (2) = V (3) = ∅,
• V (C) = {〈x1, x2, x3〉:

∑
i∈C xi = 1,∀i∈N\C xi = 0},

• 〈x1, x2, x3〉 �i 〈y1, y2, y3〉 iff xi � yi .

3 Of course, Ω will be infinite in this case.
4 Based on an example given by Vincent Conitzer.

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 49
2.2. Solution concepts for coalitional games

Game theory defines and studies different concepts related to coalitional games, in particular solution concepts such as,
e.g., the core. It is desirable that formal logics for coalitional games, such as those introduced in the next two sections,
are able to express and reason about such concepts. We discuss here three solution concepts from the theory of coalitional
games, viz. the core [15], stable sets [22] and the bargaining set [4]. Our formulation of these solution concepts follows that
of [24]; there the two latter solution concepts are however defined only for games with real numbered payoffs and trans-
ferable utility and below we translate the definitions to the more general games with preference relations over general
outcomes and non-transferable utility.

A C-feasible outcome is an outcome which can be chosen by the coalition C ; thus ω is C-feasible if ω ∈ V (C). A feasible
outcome is a N-feasible outcome, where N is the grand coalition. Thus, for example, the set {I123, C123, J123} represents the
feasible outcomes for the Dinner Game (Example 1).

The first solution concept we consider is the core: the core of a game is a (possibly empty) set of outcomes.

Definition 1 (Core). The core of a coalitional game is the set of feasible outcomes ω for which there exists no coalition C
and C-feasible outcome ω′ such that ω′ �i ω for all i ∈ C .

An important property of a coalitional game is whether the core is empty or not. In the Dinner Game (Example 1) the
core is empty: for example, if the three agents choose to go for Japanese food together, agents 1 and 2 would benefit from
going for Chinese on their own instead. Similarly, the core of the Cake Game (Example 2) is empty. If the core of a game
is empty, then the grand coalition is unstable, since by definition it means that some coalition could benefit by defecting
from the grand coalition. Thus, the question “is the grand coalition stable” reduces to the question “is the core non-empty”.
Intuitively, if the core is non-empty, then we can think of the members of the core as being candidates for an outcome that
the grand coalition might choose.5

Like the core, a stable set is a set of outcomes. A coalitional game may have several stable sets, but need not necessarily
have any. We characterise stable sets in terms of imputations and objections. Because we will discuss a different objection
concept in the context of the bargaining set below, we will here use the term s-objection (stable set objection) to avoid con-
fusion. An imputation is a feasible outcome that for each agent i is as least as good as any outcome the singleton coalition
{i} can choose on his own. For example, in the Dinner Game (Example 1) the set of imputations is the set of all feasible
outcomes {I123, C123, J123}. Also for the Cake Game (Example 2) all feasible outcomes are imputations. An imputation ω is a
C-s-objection to an imputation ω′ if every agent in C strictly prefers ω over ω′ and the coalition C can choose an outcome
which for every agent in C is as least as good as ω. The imputation ω is an s-objection to ω′ if ω is a C-s-objection to ω′
for some coalition C .

Definition 2 (Stable Set). A set of imputations Y is a stable set if it satisfies:

Internal stability If ω ∈ Y , there is no s-objection to ω in Y .
External stability If ω is an imputation and ω /∈ Y , there is an s-objection to ω in Y .

In the Dinner Game (Example 1), the set of all imputations {I123, C123, J123} is a stable set. An example of a stable set
for the Cake Game (Example 2) is {(1

2 , 1
2 ,0), (1

2 ,0, 1
2), (0, 1

2 , 1
2)}.

Finally, we focus on the notion of a bargaining set of a coalitional game which is, like a stable set, a set of imputations,
but, unlike a stable set, is unique and always exists. The bargaining set of a game can be defined in terms of objections and
counterobjections, but the former concept is not the same as in the definition of stable sets. Let ω be an imputation:

b-objection: A pair consisting of a coalition C and a C-feasible outcome ω′ is a b-objection of an agent i ∈ C against an
agent j /∈ C to ω if every agent in C strictly prefers ω′ over ω.

b-counterobjection: A pair consisting of a coalition D and a D-feasible outcome v is a b-counterobjection to an b-objection
(ω′, C) of i against j to ω, if D includes j but not i, every agent in D \ C thinks v is as least as good as ω and
every agent in D ∩ C thinks v is as least as good as ω′ .

We can now formulate the bargaining set.

Definition 3 (Bargaining Set). The bargaining set of a coalitional game is the set of all imputations ω such that there exists
a b-counterobjection to every b-objection of any player i against any player j to ω.

5 The theory of the core does not dictate which should be chosen, however, and the fact that there may be many elements in the core is frequently
considered to be a limitation of the core as a solution concept. The Shapley value (which was developed primarily for coalitional games with transferable
utility), has an advantage over the core in this respect, since it is unique [24, p. 293].

50 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
For example, the bargaining set of the Cake Game (Example 2) is {(1
3 , 1

3 , 1
3)}.

3. A logic for finite coalitional games

We now define Coalitional Game Logic (cgl): a formalism for reasoning about coalitional games, which can express all
interesting properties of finite coalitional games. We first define the syntax and the semantics of the logic. We then study
its expressive power; axiomatisation; computational properties; and give a decision procedure for satisfiability. Finally we
use the logic to characterise the solution concepts discussed above.

3.1. CGL: Syntax and semantics

In the language of cgl, we are able to explicitly refer to agents in N , coalitions in 2N , and outcomes in Ω . The language
must therefore contain symbols standing for elements of each of these domains. We let ΣN be a set of symbols for agents,
ΣC be a set of symbols for coalitions, and ΣΩ be a set of symbols for outcomes, and let Σ = ΣN ∪ ΣC ∪ ΣΩ . Given these
atomic building blocks, the language of cgl is defined in two parts.

• First, given a set of outcome symbols ΣΩ , we have an outcome language Lo , defined by the grammar ϕo , below, which
expresses the properties of outcomes. The outcome symbols themselves are the main constructs of this language; a for-
mula such as ω1 ∨ ω2 (where ω1,ω2 ∈ ΣΩ) means that the outcome corresponds to either ω1 or ω2.

• Second, given a set of agent symbols ΣN and a set of coalition symbols ΣC , we have a cooperation language Lc , for
expressing the properties of coalitional cooperation, and the preferences that agents have over possible outcomes. This
language is generated by the grammar ϕc below. Lc has two main constructs. First, ω1 �i ω2 (where ω1,ω2 ∈ ΣΩ ,
i ∈ ΣN) expresses the fact that agent i either prefers outcome ω1 over outcome ω2, or is indifferent between the two.
Second, 〈C〉ϕ (where C ∈ ΣC) says that C can choose an outcome in which the formula ϕ will be true.6

Formally, the grammar of cgl is defined as follows:

ϕo ::= σω | ¬ϕo | ϕo ∨ ϕo

ϕc ::= (σω �σi σω′) | 〈σC 〉ϕo | ¬ϕc | ϕc ∨ ϕc

where σi ∈ ΣN is an agent symbol, σC ∈ ΣC is a coalition symbol, and σω,σω′ ∈ ΣΩ are outcome symbols.
To simplify our subsequent presentation, we exploit the direct correspondence between symbols for outcomes/agents/

coalitions and the outcomes/agents/coalitions that appear in games. Let C = 2N \ ∅ denote the set of non-empty coalitions,
henceforth simply called coalitions. In this paper, we will henceforth assume a one-to-one correspondence between ΣΩ and
Ω , between ΣN and N and between ΣC and the set of coalitions C . So we assume that ΣΩ = {σω: ω ∈ Ω}, ΣN = {σi: i ∈ N}
and ΣC = {σC : C ∈ C}. The languages are parameterised by the sets ΣΩ,ΣN ,ΣC , i.e., as a consequence of the assumption,
by some set N of agents and set Ω of outcomes. In the following, we assume that these two parameters—and thus the
languages—are fixed.

The language of Coalitional Game Logic is Lc ; it expresses statements about coalitional games. An Lc formula γ is
interpreted in a coalitional game Γ as follows, where Γ |� γ means that γ is true in Γ . As mentioned it is assumed
that the agents N and outcomes Ω are fixed, so when we talk about coalitional games in the context of cgl we implicitly
mean coalitional games over agents N and outcomes Ω . Said in another way, the formulae of the language are defined as
statements about games with a certain set of agents and a certain set of outcomes, and formally interpreted in such games.

First, we define the satisfaction of an Lo formula α in an outcome ω of a coalitional game Γ over N and Ω , written
Γ,ω |� α:

Γ,ω |� σω′ iff ω = ω′

Γ,ω |� ¬ϕ iff not Γ,ω |� ϕ

Γ,ω |� ϕ ∨ ψ iff Γ,ω |� ϕ or Γ,ω |� ψ

Satisfaction of γ ∈ Lc in Γ is then defined as follows:

Γ |� (σω1 �σi σω2) iff (ω1 �i ω2)

Γ |� 〈σC 〉ϕ iff ∃ω ∈ V (C) such that Γ,ω |� ϕ

Γ |� ¬ϕ iff not Γ |� ϕ

Γ |� ϕ ∨ ψ iff Γ |� ϕ or Γ |� ψ

6 This construct may seem syntactically similar to counterparts in ATL and Coalition Logic, but it here means something fundamentally different. We
discuss this formally, and in detail, in Section 5.

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 51
When Γ |� ϕ for every Γ over N and Ω , we write |� ϕ and say that ϕ is valid.
To simplify the text that follows, we abuse notation somewhat, and write ω for both an outcome (a semantic construct)

and the corresponding symbol σω in the language (a syntactic construct). Similarly, we will write i instead of σi for agents
in the language, and C instead of σC for coalitions. So, we will just write 〈C〉ω for 〈σC 〉σω , although the reader should be
aware of the distinction between our object language Lc and the objects that live in the semantics: outcomes, agents and
their preferences, and coalitions.

We will use the usual derived propositional connectives: � is the usual constant for truth, ϕ ∧ψ stands for ¬(¬ϕ ∨¬ψ),
ϕ → ψ for ¬ϕ ∨ ψ and ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ), as well as ϕ�ψ for (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ) (exclusive or) and [C]ϕ for
¬〈C〉¬ϕ . We also write (ω1 �i ω2) to abbreviate (ω1 �i ω2) ∧ ¬(ω2 �i ω1) and ω1 =i ω2 to abbreviate (ω1 �i ω2) ∧ (ω2 �i
ω1).

Note that 〈C〉� is true iff C can at least bring about something: V (C) �= ∅. [C]ϕ means that ¬〈C〉¬ϕ , i.e., every choice of
C must involve ϕ . As an example, suppose Ω = {ω1,ω2,ω3,ω4} and V (C) = {ω1,ω2}. Then the following formula is true:

〈C〉ω1 ∧ 〈C〉(ω1 ∨ ω3) ∧ ¬〈C〉ω3 ∧ [C](ω1 ∨ ω2) ∧ ¬[C](ω1 ∨ ω3)

Note that if ω1 �= ω2, then we can have 〈C〉ω1 ∧ 〈C〉ω2, but the formula 〈C〉(ω1 ∧ ω2) can never be true.

Example 3. Let Γ be the Dinner Game from Example 1. We have the following:

• Γ |� 〈1,2〉I12 ∧ [1]¬I12. Agents 1 and 2 can choose to go for Indian together, but 1 cannot choose on his own that they
go together.

• Γ |� ∧
ω∈Ω ¬〈1〉ω. Agent 1 cannot choose any outcome on his own.

• Γ |� ∨
ω∈Ω(〈1,2,3〉ω∧ω �1 C12). The agents can together choose something which for 1 is better than going for Indian

together with 2.
• Γ |� ¬〈1,3〉C123 ∧∨

ω∈Ω(ω �1 C123 ∧ω �3 C123). Agents 1 and 3 cannot choose that all agents go for Chinese, but they
can choose something which is strictly better for both of them (e.g., going for Indian on their own).

• Γ |� ∧
ω∈Ω ¬ω �1 I123. Agent 1 prefers nothing better than having Indian with his two friends.

• Γ |� ∨
ω∈Ω(〈2,3〉ω ∧ I123 �1 ω). Agents 2 and 3 can choose some option which for 1 is worse than all three agents

going for Indian.

Let us, for any coalition C and finite set of outcome symbols Δ, suggestively write 〈[C]〉Δ for
∧

δ∈Δ〈C〉δ ∧ [C]∨δ∈Δ δ.7

A formula of this form is said to fully describe C ’s choices. It is easy to see that we have the following. Let Δ ⊆ Ω be finite.

Γ |� 〈[C]〉Δ iff V (C) = Δ

A conjunction
∧

δ∈∅ ϕ is, by convention, equal to �, in the same way that
∨

δ∈∅ ϕ equals ⊥, so that, indeed, we get
Γ |� 〈[C]〉∅ iff Γ |� [C]⊥ iff Γ |� ¬〈C〉� iff V (C) = ∅.

Exclusive disjunctions ϕ�ψ will play an important role in the proofs which follow. Note that the negation ¬(ϕ�ψ) is
the same as (¬ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ). Moreover, if Φ is a set of formulas, then we define �ϕ∈Φϕ to be true iff exactly one of
the ϕ ’s is true. Formally, for any set Φ = {ϕ1, . . . , ϕk},8

�ϕ∈Φϕ ≡
(∨

i�k

ϕi ∧
∧

j �=i, j�k

¬ϕ j

)

Note that Γ |� [C](ωi ∨ ω j) ↔ [C](ωi�ω j) when i �= j: using the definition of [C] and contraposition this is the same
as Γ |� 〈C〉¬(ωi�ω j) ↔ 〈C〉¬(ωi ∨ ω j). Now, syntactically, 〈C〉¬(ωi�ω j) is equivalent to 〈C〉((ωi ∧ ω j) ∨ ¬(ωi ∨ ω j)). But,
inspecting the truth-definition of 〈C〉, this is again equivalent to 〈C〉¬(ωi ∨ ω j) since the Lo formula ωi ∧ ω j is never true.

So, which properties of a coalitional game can be expressed with our cooperation language? The answer, given by the
following theorem, is “all”, when we restrict the possible outcomes of a game to a finite set.

Theorem 1. The logic cgl is expressively complete with respect to finite coalitional games. That is, for any two finite coalitional games
Γ1 , Γ2 over N and Ω such that Γ1 �= Γ2 , there exists a cgl formula ζ such that Γ1 |� ζ and Γ2 �|� ζ .

Proof. Our proof is constructive. Given a finite game Γ , we define a formula ζΓ that completely characterises Γ . ζΓ is
constructed from two conjuncts, ΠΓ , which characterises the preference relations of Γ , and ΞΓ , which characterises the
cooperative properties of Γ . Let C = 2N \ ∅ collect all non-empty coalitions from N .

ζΓ ≡ ΠΓ ∧ ΞΓ , ΠΓ ≡
∧
i∈N

(∧
ω,ω′∈Ω
ω�iω

′

(ω �i ω
′) ∧

∧
ω,ω′∈Ω
ω ��iω

′

¬(ω �i ω
′)
)

, ΞΓ ≡
(∧

C∈C

(∧
ω∈V (C)

〈C〉ω
)

∧ [C]
(∨

ω∈V (C)

ω

))

7 Note that the 〈[C]〉 modality plays the same role w.r.t. [C] as Levesque’s [21] only knowing operator plays w.r.t. the traditional belief operator.
8 Note that �p,q,r is not the same as p�(q�r)!

52 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
Table 1
The logic cgl

Taut � ϕ where ϕ is an instance of a prop. tautology

Lin � (ω1 �i ω2) ∨ (ω2 �i ω1)

Ref � (ω �i ω)

Trans � (ω1 �i ω2) ∧ (ω2 �i ω3) → (ω1 �i ω3)

K � [C](ϕ → ψ) → (([C]ϕ) → ([C]ψ))

Func � [C](�ω∈Ωω)

Nec �c ϕo ⇒ � [C]ϕo

MP � ϕ,� ϕ → ψ ⇒ � ψ

By construction, for any Γ1, we have Γ1 |� ζΓ1 . Moreover, for any coalitional game Γ2 �= Γ1, we have that Γ2 �|� ζΓ1 . �
Given a formula ϕ , let coal(ϕ) denote the set of coalitions named in ϕ; let ag(ϕ) denote the set of agents named in

cooperation expressions or preference expressions in ϕ; and let out(ϕ) be the set of outcomes named in ϕ .

3.2. Axioms and completeness

We now present an axiomatic system in the language Lc , and prove its soundness and completeness with respect to the
class of all finite coalitional games without transferable payoff.

From now on we assume that Ω is finite.
Table 1 summarises the axioms and rules of our logic cgl. Formally, cgl is the set of all Lc-formulas derivable under �.

In the axioms, �c denotes derivability of classical logic, and ϕo ∈ Lo,ϕ,ψ ∈ Lc . The axiom Taut and rule MP guarantee that
we extend classical logic. On top of that, the axiom K and rule Nec determine [C] to be a normal necessity operator. Then,
Lin, Ref , and Trans determine the preference of each i to be complete, reflexive and transitive, respectively. The only specific
cooperation axiom, Func, says that whatever a coalition in the end will chose, it must be a unique alternative from Ω .

We now continue by proving results about the cgl proof system, including its completeness. Examples of derivations can
be found in Section 3.6.

The following lemma tells us that in the scope of modal operators, disjunctions over different outcomes behave the same
as exclusive disjunctions over outcomes. Note that this is in general not true for arbitrary disjunctions: 〈C〉(ω1 ∨ ω1) is not
the same as 〈C〉(ω1�ω1); the latter is equivalent to 〈C〉⊥.

Lemma 1. Let ∅ �= C ⊆ N and Δ ⊆ Ω .

(1) The following are equivalent, in cgl: (i) 〈C〉�, (ii) 〈C〉∨
ω∈Ω ω, and (iii) 〈C〉 �ω∈Ω ω.

(2) In the scope of 〈C〉 and [C] when exchanging arbitrary occurrences of �ω∈Δω with that of
∨

ω∈Δ ω in a formula ϕ , the result is
equivalent to ϕ .

(3) � ∧
ω∈Δ ¬〈C〉ω → (〈C〉� → ∨

ω∈Ω\Δ〈C〉ω).
(4) � (

∧
δ∈Δ ¬〈C〉δ) ↔ [C]∨δ′∈Ω\Δ δ′ .

Proof.

(1) Since �ω∈Ωω ⇒ ∨
ω∈Ω ω ⇒ �, and the 〈C〉 is a normal diamond operator, we have (iii) ⇒ (ii) ⇒ (i). By Func, we

have (i) ⇒ (iii).
(2) With induction over ϕ . The only interesting case ϕ = 〈C〉ψ follows from the previous item.
(3) From axiom Func follows � 〈C〉� → 〈C〉 �ω∈Ω ω. By item 1, we have � 〈C〉� → 〈C〉∨

ω∈Ω ω. Since 〈C〉 is a normal
diamond, we have � 〈C〉� → ∨

ω∈Ω 〈C〉ω. Applying Taut to this and the assumption
∧

ω∈Δ ¬〈C〉ω, gives the desired
property.

(4) Follows directly from Func, modal reasoning and the previous item. �
Lemma 2.

(1) C �= ∅ be a coalition. Then � ∨
Δ⊆Ω 〈[C]〉Δ.

(2) Let C �= ∅ be a coalition. Then � �Δ⊆Ω 〈[C]〉Δ.
(3) � ∧

C∈C
∨

Δ⊆Ω 〈[C]〉Δ.
(4) � ∧

C∈C �Δ⊆Ω 〈[C]〉Δ.
(5) � ∨

〈ΔC : C∈C〉⊆Ω |C|
∧

C∈C 〈[C]〉ΔC

(the disjunction is over the set of possible tuples consisting of one set of outcomes ΔC for each coalition C ∈ C).

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 53
Proof.

(1) Note that 〈C〉ω is just an atom in the coalitional language. Let M = {1, . . . ,n}. Then, even by propositional reasoning,
� ∨

I∪ J=M, I∩ J=∅(
∧

i∈I 〈C〉ωi ∧ ∧
j∈ J ¬〈C〉ω j). Now, take a fixed I and J with I ∩ J = ∅ and I ∪ J = M . If I = ∅, then∧

i∈I 〈C〉ωi ∧∧
j∈ J ¬〈C〉ω j equals

∧
ω∈Ω ¬〈C〉ω, which is equivalent to 〈[C]〉∅. With Lemma 1 item 4, we have, for fixed

I and J , each disjunct in this is equivalent to 〈[C]〉ΔI , with ΔI = {ωi: i ∈ I}.
(2) Note that, using the notation of the previous item, we even have

� �I∪ J=M, I∩ J=∅
(∧

i∈I

〈C〉ωi ∧
∧
j∈ J

¬〈C〉ω j

)

From this the statement follows directly.
(3) This is immediate from item 1: if for an arbitrary C we have � 〈[C]〉ϕC , then also � ∧

C⊆Z 〈[C]〉ϕC , for any Z ∈ C .
(4) Follows from item 2 in the same way as 3 follows from 1.
(5) This follows immediately from item 1 and propositional reasoning: note that for every two coalitions C1 and C2 we

derive � ∨
Δ1⊆Ω 〈[C1]〉Δ1 ∧ ∨

Δ2⊆Ω 〈[C2]〉Δ2, and use (p ∨ q) ∧ r ≡ (p ∧ r) ∨ (q ∧ r). �
Definition 4.

(1) For any agent i, we say that a formula is a preference literal for i if it is either ω �i ω′ or ¬(ω �i ω′), for some ω
and ω′ . We say that πi fully describes i’s preferences, if πi is of the form

∧
ω,ω′∈Ω(¬)(ω �i ω′). We then say that

π ∈ PossPref (i).
(2) Given that we have m agents, a conjunction Π = (π1 ∧ · · · ∧ πm), (where each πi fully describes i’s preferences) is

said to fully describe the preferences of all the agents. From now on, we let K denote the set of all possible such
conjunctions Π .

(3) Recall that 〈[C]〉Δ, where C is a coalition and Δ is a set of (atoms for) outcomes ω1, . . . ,ωu , is said to fully describe
C ’s choices. Now let C = 2N \ ∅, and let, for each C ∈ C , ΔC be a set of outcomes. Then

∧
C∈C 〈[C]〉ΔC is said to fully

describe all of N ’s choices. (Similarly for subsets of N .) We often will denote such a full description by Ξ .

Lemma 3.

(1) Let Π1,Π2, . . . ,Πd be all full descriptions of N’s preferences. Then: � ∨
k�d Πk.

(2) Let Π1,Π2, . . . ,Πd be all full descriptions of N’s preferences. Moreover, let C = 2N \ ∅ and let(∧
C∈C

〈[C]〉ΔC

)
1
, . . . ,

(∧
C∈C

〈[C]〉ΔC

)
z

enumerate all possible full descriptions of all choices of all coalitions (note that z = (2n)m). From now on, we will let T denote the
set of all such descriptions. Then:

�
∨

k�d,t�z

(
Πk ∧

∧
C∈C

〈[C]〉ΔC

)
t

Theorem 2. Let ϕ be a formula of the cooperation language. Let T and K be as in Definition 4 and Lemma 3.

(1) Let N be the set of agents, Ω the set of outcomes, and let C = 2N \ ∅. Then ϕ is equivalent to a formula of the form

∨
k∈K ,t∈T

(
Πk ∧

(∧
C∈C

〈[C]〉ΔC

)
t

)

where each Πk = (π1 ∧ · · · ∧ πm) fully describes N’s preferences, i.e., each πi fully describes i’s preferences, and each
(
∧

C∈C 〈[C]〉ΔC)t describes fully what N can choose.
(2) The same holds if we take Ω = out(ϕ), N = ag(ϕ) and we let C range over all coal(ϕ).

Complex as it may appear, our normal form is nothing more than an enumeration of possible full preferences combined
with full descriptions of choices. The range of these possibilities is determined by the index sets K and T , which act like
constraints: the smaller those index sets, the smaller the possible models for the formula. As a reading guide, note that∨

k∈{1,2}, t∈{a,b}
(Ak ∧ Bt)

equals (A1 ∧ Ba) ∨ (A1 ∧ Bb) ∨ (A2 ∧ Ba) ∨ (A2 ∧ Bb).

54 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
Proof. Note that the theorem is semantically obvious, the point is that we should be able to syntactically prove it from the
axioms given. This is done by induction over ϕ .

Suppose ϕ = ω1 �k ω2. Let us say that a πk is k-compatible with (ω1 �k ω2) if the latter occurs as a conjunct in πk . We
then write (ω1 �k ω2) ∈ πk . Then, ϕ is (in propositional logic) equivalent to∨

πi∈PossPref (i) (i �=k), (ω1�kω2)∈πk

(π1 ∧ · · · ∧ πk ∧ · · · ∧ πm)

This if of the form
∨

k∈K Πk . Since by Lemma 2, item 5 we have that � is equivalent to
∨

ΔC ⊆Ω,C∈C
∧

C∈C 〈[C]〉ΔC we see
that ϕ is equivalent to∨

k∈K

Πk ∧
∨

ΔC ⊆Ω, C∈C

∧
C∈C

〈[C]〉ΔC

which, by propositional reasoning, is equivalent to∨
k∈K ,ΔC ⊆Ω, C∈C

Πk ∧
∧
C∈C

〈[C]〉ΔC

Suppose ϕ = 〈E〉ϕ0. Formula ϕ0 regards outcomes, and is equivalent to a disjunction
∨

α where each α is of the form

α = (
(¬)ω1 ∧ (¬)ω2 ∧ · · · ∧ (¬)ωn

)
Using rule Nec and axiom K , we derive � 〈E〉ϕ0 ↔ 〈E〉∨

α. Using that 〈·〉 is a diamond, we then obtain that

� 〈E〉ϕ0 ↔
∨

〈E〉α
Now we use axiom Func to get rid of every α that contains more than one positive literal ωi : let β range over all the those
α’s with at most one positive literal. Then � 〈E〉ϕ0 ↔ ∨〈E〉β . Now, again in propositional logic, note that every disjunction∨

i∈M ψi is equivalent to

∨
I∪ J=M, I∩ J=∅

(∧
i∈I

ψi ∧
∧
j∈ J

¬ψ j

)

In our case, letting the β ’s range over β1, . . . , βM ,

� 〈E〉ϕ0 ↔
∨

I∪ J=M, I∩ J=∅

(∧
i∈I

〈E〉βi ∧
∧
j∈ J

¬〈E〉β j

)

But, for every fixed I, J ⊆ M , (
∧

i∈I 〈E〉βi ∧∧
j∈ J ¬〈E〉β j) is equivalent to 〈[E]〉ΔI , with ΔI = {ωi: i ∈ I}. Hence, we find that

� 〈E〉ϕ0 ↔ ∨
I⊆M〈[E]〉ΔI . This only limits the abilities of C , and not those of the others: using Lemma 2 item 5 once again:

∨
I⊆M

〈[E]〉ΔI ↔
∨

I⊆M, D �=E,ΔD ⊆Ω

〈[E]〉ΔI ∧
∧
D∈C

〈[D]〉ΔD

of which the r.h.s. is of the form
∨

C∈C,t∈T (〈[C]〉ΔC)t , for some index set T . Since � is provably equivalent with
∨

k∈K Πk
(where now K gives all possible full preference descriptions), the result follows.

Suppose ϕ is of the form ϕ1 ∨ ϕ2. We can assume that ϕi ≡ ∨
ki∈Ki ,ti∈Ti

(Πki ∧ Ξti), then

ϕ ≡
∨

k∈K1∪K2, t∈T1∪T2

(Πk ∧ Ξt)

which is of the required form.
Let ϕ = ¬ϕ1. Then ϕ1 = ∨

k∈K ,t∈T (Πk ∧ Ξt), for some index sets K and T . From Lemma 3, item 2, we know that
� ∨

k�d,t�z(Πk ∧Ξt). In words: we know that a big disjunction is valid, but also that ϕ excludes some of them. Then, using
propositional reasoning again, we obtain:

ϕ ≡
∨

k�d,k/∈K , t�z, t /∈T

(Πk ∧ Ξt) �

Theorem 3 (Completeness). We have, for all ϕ ∈ Lc : |� ϕ ⇒ � ϕ .

Proof. Suppose �� ϕ , i.e., ¬ϕ is consistent. We know that

� ¬ϕ ↔
∨ (

Πk ∧
(∧

〈[C]〉ΔC

)
t

)

k∈K , t∈T C∈C

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 55
for some index sets K and T . Call the right-hand side of this equivalence ϕ′ . Let X be a maximal consistent set around ϕ′ .
By virtue of maximal consistent sets, we know that for some k and t , ϕ′′ = (Πk ∧ (

∧
C∈C 〈[C]〉ΔC)t) ∈ X . But now we can

read off the finite game Γ = 〈N,Ω, V ,�1, . . . ,�m〉 from ϕ′′ immediately:

(1) N and Ω are already given;
(2) let V (C) = Δ, where 〈[C]〉Δ is part of ϕ′;
(3) every �i relation is immediately read off from the component πi for Πk in ϕ′′ .

Now, it is easy to see, for every sub-formula ψ of ϕ′′:

Γ |� ψ ⇔ ψ ∈ X �
3.3. Model checking and the complexity of satisfiability

It is easy to see that the model checking problem for cgl (i.e., the problem of determining, for any given game Γ and ϕ ,
whether or not Γ |� ϕ [7]) may be solved in deterministic polynomial time: an obvious recursive algorithm for this problem
can be directly extracted from the semantic rules of the language.

The satisfiability problem is the problem of checking whether or not, for any given ϕ there exists a game Γ such that
Γ |� ϕ . For most modal logics, the corresponding satisfiability problem has a trivial np-hard lower bound, since such logics
subsume propositional logic, for which satisfiability is the defining np-complete problem [6, p. 374]. However, our logic is
specialised for reasoning about coalitional games, and it is not so obvious that it subsumes propositional logic, since we do
not have primitive propositions. We must therefore prove np-hardness from first principles.

For the proof, we need a few additional constructions. A partial coalitional game is a structure 〈N,Ω, V ,�1, . . . ,�m〉
where all the components are as in regular coalitional games, except that V is a partial function, i.e., it is not required to
be defined for every possible coalition. Given a partial game Γ = 〈N,Ω, V ,�1, . . . ,�m〉, we can use the semantic rules for
cgl to interpret some formulae (although because V is not defined for all coalitions, we cannot necessarily interpret all
formulae over N,Ω). Where Γ is a partial game and ϕ is a formula, let us write Γ |�p ϕ to mean that (i) it is possible to
evaluate ϕ with respect to Γ , and (ii) ϕ is true under this evaluation. Now, we can prove the following.

Lemma 4. A cgl formula ϕ is satisfiable iff there exists a partial game Γ = 〈N,Ω, V ,�1, . . . ,�m〉 such that:

(1) N = ag(ϕ),
(2) |Ω| = |out(ϕ)| + 1 and out(ϕ) ⊆ Ω ,
(3) domV = coal(ϕ), and
(4) Γ |�p ϕ .

Proof. The right-to-left direction is obvious, so consider the left-to-right direction, and let Γ = 〈N,Ω, V ,�1, . . . ,�m〉 be a
game such that Γ |� ϕ . Let A = Ω \ out(ϕ), i.e., A is the set of outcomes in Γ not named in ϕ . Let ω∗ be an outcome such
that ω∗ /∈ Ω , and define a partial game Γ ∗ = 〈N∗,Ω∗, V ∗,�∗

1, . . . ,�∗
o〉 as follows:

• N∗ = ag(ϕ);
• Ω∗ = out(ϕ) ∪ {ω∗};
• The relation �∗

i is obtained by first restricting �i to out(ϕ), and then defining ω∗ �i ω for all ω ∈ out(ϕ);
• V ∗ is the partial function such that V ∗ is only defined for coalitions named in ϕ (i.e., C ∈ domV ∗ iff C ∈ coal(ϕ));

• V ∗(C) =
{

V (C) if V (C) ⊆ out(ϕ)

(V (C) \ A) ∪ {ω∗} otherwise.

Notice that Γ ∗ satisfies conditions (1)–(3) of the lemma. We now prove that Γ ∗ satisfies condition (4). More precisely, we
show that for all sub-formulae ψ of ϕ: Γ |� ψ iff Γ ∗ |� ψ . The inductive base is where ϕ = (ω1 �i ω2), and is obvious,
since i ∈ ag(ϕ) and {ω1,ω2} ⊆ out(ϕ), and hence ω1 �∗

i ω2 iff ω1 �i ω2.
For the inductive assumption, assume the result is proved for all sub-formulae; in the inductive step, the significant case

is where ϕ = 〈C〉ψ . If Γ |� 〈C〉ψ then ∃ω ∈ V (C) such that Γ,ω |� ψ . There are two possibilities: either ω ∈ out(ϕ) (in
which case V ∗(C) = V (C), and the result is obvious), or else ω /∈ out(ϕ). In the latter case, V ∗(C) = (V (C) \ A) ∪ {ω∗}; we
claim that Γ ∗,ω∗ |� ψ . To see this, assume w.l.o.g. that ψ is in Conjunctive Normal Form. Now, since ω /∈ out(ϕ), then no
positive literals can be satisfied by Γ,ω: only negative literals. But such literals must also be satisfied by Γ ∗,ω∗ , and so
Γ ∗,ω∗ |� ψ .

The case for Γ �|� 〈C〉ψ implies Γ ∗ �|� 〈C〉ψ is similar. �
Given this, we can prove:

Theorem 4. The satisfiability problem for cgl formulae is np-complete, even for cgl formulae ϕ such that |ag(ϕ)| = 1.

56 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
Proof. For membership of np, we know that ϕ is satisfiable iff it has a “certificate” for this in the form of a partial game
Γ as in Lemma 4. This partial game is of size linear in the size of the formula ϕ . Since we can check whether Γ |�p ϕ in
polynomial time, we conclude that cgl satisfiability is in np.

For np-hardness, we reduce sat, the problem of determining whether a formula ϕ(x1, . . . , xk) of propositional logic,
over Boolean variables x1, . . . , xk , has a satisfying assignment [25]. The basic idea is to map variables xi to outcomes ωi ,
to introduce an additional outcome ω⊥ to correspond to the truth value “false”, so that (ωx �1 ω⊥) will mean “x takes
the value ‘true’ ”. Formally, let ϕ# denote the cgl formula obtained from the propositional logic formula ϕ by systematically
replacing every Boolean variable p by the corresponding cgl expression (ωp �1 ω⊥). Now, we claim that ϕ# is cgl satisfiable
iff the input sat instance ϕ is a satisfiable formula of propositional logic.

For the ⇒ direction, assume ϕ# is cgl satisfiable, and consider the associated preference relation �1 in any Γ such that
Γ |� ϕ . From this relation, extract a valuation ξ for the variables x1, . . . , xk as follows: each variable xi is true under ξ if
ωxi �1 ω⊥ , and false otherwise. The interpretation ξ is consistent, since we cannot have both ωxi �1 ω⊥ and ω⊥ �1 ωxi .
The interpretation ξ satisfies ϕ by a trivial induction on the structure of ϕ .

For ⇐, assume ϕ is a satisfiable formula of propositional logic, and let ξ be a valuation that satisfies ϕ . Then we can
reconstruct a game Γξ such that Γξ |� ϕ#, as follows. Γξ contains a single agent, (agent 1), and an outcome ωxi for each
variable xi appearing in ϕ . We also define an additional outcome ω⊥ . The preference relation �i is then defined as follows:

• For each Boolean variable p such that p is true under ξ , define ωp �i ω⊥ .
• For each pair of Boolean variables p1, p2 such that p1 and p2 are both true or both false under ξ , define ωp1 =i ωp2 .
• For each Boolean variable p such that p is false under ξ , define ω⊥ �i ωp .
• For each pair of Boolean variables p1, p2 such that p1 is true (respectively, false) and p2 is false (respectively, true)

under ξ , define ωp1 �i ωp2 (respectively, ωp2 �i ωp1).

An induction on ϕ# proves that Γξ |� ϕ#. �
3.4. A decision procedure for satisfiability

Although Theorem 4 classifies the complexity of the satisfiability problem for cgl, it does not give us a direct decision
procedure for establishing satisfiability. Now, the nature of np-completeness immediately indicates one possible decision
procedure: iterate through all possible partial models for the formula, checking each one in turn to see whether it satisfies
the input formula. However, such an approach would surely be completely impracticable. In this section, we present an
algorithm for satisfiability checking that was specifically developed for cgl. This approach is based on the method of analytic
tableaux. The basic idea of such methods is to use the structure of a formula to guide the search for a satisfying model;
while in the worst case tableaux methods do no better than naive search, in many cases they prove highly efficient. Tableaux
methods have been widely applied for satisfiability checking in both classical and non-classical logics (see, e.g., [19,33]), and
in particular have proven to be very effective in practice for modal and temporal logics [18].

To introduce the decision procedure, we need some subsidiary definitions and assumptions. First, throughout the pro-
cedure, we assume that double negations (¬¬) are eliminated whenever they occur by the standard logical equivalence
ϕ ↔ ¬¬ϕ . Second, we will assume that bi-conditionals have been eliminated by expanding them according to their defini-
tion, leaving only the classical operators ∨,∧,→, and ¬ in a formula.

Now, we say an α-formula of Lo or Lc is one in which the outermost logical operators of the formula define a conjunc-
tion, while a β-formula is one where the outermost logical operators define a disjunction. Given an α-formula ϕ , we denote
the conjuncts of this formula by α1(ϕ) and α2(ϕ), respectively, and we similarly assume β1(ϕ) and β2(ϕ) give the disjuncts
of β-formula ϕ . The following table defines the functions αi and βi (see, e.g., [33, p. 21]).

ϕ α1(ϕ) α2(ϕ) ϕ β1(ϕ) β2(ϕ)

ψ ∧ χ ψ χ ¬(ψ ∧ χ) ¬ψ ¬χ
¬(ψ ∨ χ) ¬ψ ¬χ ψ ∨ χ ψ χ
¬(ψ → χ) ψ ¬χ ψ → χ ¬ψ χ

If S is a set of Lo or Lc formulae, then we say that S is:

• α-closed if for every ϕ ∈ S , if ϕ is an α-formula then both α1(ϕ) ∈ S and α2(ϕ) ∈ S;
• β-closed if for every ϕ ∈ S , if ϕ is a β-formula then either β1(ϕ) ∈ S or β2(ϕ) ∈ S;
• proper if whenever ϕ ∈ S , we have ¬ϕ /∈ S , and improper otherwise.

Phase 1: Decomposing the Lc formula
We can now present the first stage of the satisfiability checking algorithm. The basic idea is to systematically decompose

an Lc formula using α- and β-functions, in much the same way as classical tableaux [33]. In the classical case, the process
results in a set of sets of propositional literals; each such set represents one way that the original formula could be satisfied,

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 57
and each such set of literals is itself easily checked for satisfiability. In our case, we do not end up with sets of propositional
literals, but with sets of preference literals and coalition literals; nevertheless, each such set represents one possible way
the original input formula might be satisfied. Later stages check these sets for satisfiability, dealing with preference literals
and coalition literals.

We will say a root is a set of Lc formulae together with a labelling, which tells us for every member of the set whether
the formula is treated or untreated. A pre-tableaux is a set of roots.

Given an input formula ϕ ∈ Lc , we start with a pre-tableaux R ′ = {{ϕ}} in which ϕ is untreated. We then iteratively
repeat the following steps:

(1) If R ′ contains a root S such that S is improper, then delete S from R .
(2) If R ′ contains a root S with an untreated α-formula ϕ , then:

(a) create a new root S ′ from S , with S ′ = S ∪ {α1(ϕ),α2(ϕ)} where ϕ is now labelled as “treated” and α1(ϕ) and
α2(ϕ) are labelled as “untreated”;

(b) remove S from R ′ and add S ′ to R ′ .
(3) If R ′ contains a root S with an untreated β-formula ϕ , then:

(a) create a new root S1, set S1 := S ∪ {β1(ϕ)} with ϕ now labelled as “treated” and β1(ϕ) as “untreated”;
(b) create a new root S2, set S2 := S ∪ {β2(ϕ)} with ϕ now labelled as “treated” and β2(ϕ) as “untreated”;
(c) remove S from R ′ and add S1 and S2 to R ′ .

(4) If R ′ contains no roots to which the above rules can be applied, then quit.

Let R ′(ϕ) be the set of roots obtained by applying the above procedure to input cgl formula ϕ . No member of R ′(ϕ)

will contain any untreated α- or β-formula. It is easy to see that, for any S ∈ R ′(ϕ), the only untreated formulae will be of
the form:

• preference literals: (ω �i ω
′) or ¬(ω �i ω

′);
• coalition literals: 〈C〉ψ or ¬〈C〉ψ .

Essentially, the next two phases of the procedure deal with these two classes of formulae.

Phase 2: Dealing with preference literals
The second stage of the decision procedure deals with preference literals. The idea is simply to eliminate any roots

that correspond to inherently contradictory sets of preference literals. Given a set S of Lc formula, we denote by prlit(S)

the set of preference literals it contains. Now, clearly, prlit(S) will induce a collection of preference relations, one for each
agent named in an atom in prlit(S). At this stage what we simply need to check is that the relations induced in this way
are indeed preference relations: they are complete, reflexive, and transitive. To do this we use a closure procedure. The
idea of the closure procedure is to take a set of preference literals, and then from this generate sets of preference literals
corresponding to every possible preference ordering. For prlit(S) to be satisfiable, it must be consistent with some such set.
We generate the closure in two parts: the first deals with the requirement that preference relations must be complete, the
second deals with reflexivity and transitivity.

The completeness requirement on preference relations dictates that, for every agent i and every pair of outcomes ω,ω′
we have either (ω �i ω

′) or (ω′ �i ω). Thus, we start by generating the set of all such combinations. The algorithm for this
is as follows:

(1) Y := {∅}
(2) for each i ∈ ag(ϕ) do

for each ω,ω′ ∈ out(ϕ) do
for each Z ∈ Y do

Z1 := Z ∪ {(ω �i ω
′)}

Z2 := Z ∪ {(ω′ �i ω)}
Y := (Y \ Z) ∪ {Z1, Z2}.

Let Y (ϕ) denote the set of sets of preference literals obtained from cgl formula ϕ by this process. Next, we replace each
root S ∈ R ′(ϕ) with S combined with every combination of sets of preference literals in Y (ϕ). The idea is that, if a root
S ∈ R ′(ϕ) is satisfiable, then it will be compatible with at least one of the sets in Y (ϕ).

(1) R ′′(ϕ) := ∅
(2) for each S ∈ R ′(ϕ) do

for each X ∈ Y (ϕ) do
R ′′(ϕ) := R ′′(ϕ) ∪ {S ∪ X}.

Finally, we exhaustively apply the following rules to R ′′(ϕ), until no new applications of these rules are possible.

58 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
(1) for each S ∈ R ′′(ϕ) do
for each i ∈ ag(ϕ) and ω ∈ out(ϕ)

S := S ∪ {(ω �i ω)}
for each i ∈ ag(ϕ), (ω3 �i ω2) ∈ prlit(S), (ω2 �i ω1) ∈ prlit(S)

S := S ∪ {(ω3 �i ω1)}.

Intuitively, the first step corresponds to generating the reflexive closure of the preference relations, while the second step
corresponds to taking the transitive closure. Where X is a set of preference literals, then we say X is closed for preference
literals iff:

(1) for every pair of outcomes ω,ω′ named in X , and every agent i named in X , either (ω �i ω
′) or (ω′ �i ω);

(2) for every outcome ω named in X , and every agent i named in X , (ω �i ω) ∈ X ;
(3) for every agent i named in X , if (ω �i ω

′) ∈ X and (ω′ �i ω
′′) ∈ X then (ω �i ω

′′) ∈ X .

Now, the point about closure for preference literals is the following.

Lemma 5. Let X be a set of preference literals. Then the cgl formula
∧

ρ∈X ρ is cgl satisfiable iff there exists a set X ′ of cgl formulae
such that X ′ is proper and closed for preference literals, and X ⊆ X ′ .

So, to conclude the second stage of the decision procedure, we delete from R ′′(ϕ) any set S that is no longer proper as a
result of the closure procedure. Let R(ϕ) be the structure obtained from R ′′(ϕ) by applying the closure procedure and then
deleting from it any roots that are no longer proper.

It should be clear that what we are doing in the above procedure is taking each root S , and then systematically trying to
find an extension of S that is proper and closed for preference literals. The search is systematic in the sense that it considers
all possible alternatives.

Phase 3: Creating branches from choices
We now move into the third stage of the procedure, where we deal with modal literals. At this point, our structures

become richer, not simply having roots, but branches, where each branch will correspond to a choice of a set of agents. To see
how this stage works, consider that an existential cooperation modality 〈C〉ψ asserts the existence of a choice for coalition C
(they have a choice satisfying ψ), while a universal modality, of the form ¬〈C〉ψ , asserts a constraint on the choices
of C : every choice they have satisfies ¬ψ . This stage of the procedure thus attempts to construct choices corresponding to
each existential modality, where these choices must respect the constraints imposed by the relevant universal cooperation
modalities.

Some more definitions are needed. An outcome literal is either an outcome symbol ω or the negation of such a symbol,
¬ω. We say an Lo formula ψ is outcome-satisfiable if for some Γ,ω we have Γ,ω |� ψ . We say a set of outcome formulae
Y is outcome-proper if it is proper and moreover for no ω1 and ω2 is it the case that both ω1 ∈ Y and ω2 ∈ Y . The key
point about outcome-proper sets of outcome literals is the following readily proved result.

Lemma 6. Let Y be a set of outcome literals. Then the outcome formula
∧

μ∈Y μ is outcome-satisfiable iff it is outcome-proper.

A tableau, Υ , is a set of pairs (S, B), where S ⊆ Lc and B ⊆ 2ag(ϕ) × 2Lo is a set of branches; S will be a root of R(ϕ),
while B will be a set of choices corresponding to the modal formulae in S .

Given a structure R(ϕ) as generated from a cgl formula ϕ by the above procedure, we create a tableau Υ ′(ϕ) using the
following procedure.

(1) initialise Υ ′(ϕ) to be empty;
(2) for each S ∈ R(ϕ), add a pair, (S, B S) to Υ ′(ϕ), where B S is constructed as follows:

(a) initialise B S to ∅,
(b) for each coalition C ∈ coal(ϕ), and for each formula 〈C〉ψ ∈ S , let

B S = B S ∪ (
C, {ψ,¬χ : ¬〈C〉χ ∈ S})

We now apply α- and β-rules as introduced earlier in each branch of Υ ′(ϕ). Now, however, we delete any branches obtained
that are not outcome-proper. (Intuitively, a branch corresponds to a choice of a coalition, and a choice is a single member
of Ω .) Let Υ (ϕ) be the tableau obtained from Υ ′(ϕ) by deleting outcome-improper branches.

Phase 4: Checking the tableau
We say a tableau Υ is finished for the cgl formula ϕ iff:

(1) For some (S, B) ∈ Υ , ϕ ∈ S .

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 59
(2) For each (S, B) ∈ Υ , S is:
(a) proper;
(b) α-closed;
(c) β-closed.

(3) For each (S, B) ∈ Υ , S is closed with respect to preference literals.
(4) For each (S, B) ∈ Υ , and for each (C, Y) ∈ B , Y is:

(a) α-closed;
(b) β-closed;
(c) outcome-proper.

(5) For each (S, B) ∈ Υ , if 〈C〉ψ ∈ S then there exists a branch (C, Y) ∈ B such that ψ ∈ Y .
(6) For each (S, B) ∈ Υ , if ¬〈C〉ψ ∈ S then for each branch (C, Y) ∈ B , ¬ψ ∈ Y .

The key point about finished tableaux is the following.

Theorem 5. A cgl formula ϕ is satisfiable iff there exists a finished tableaux for ϕ .

Proof. (⇒) Assume ϕ is satisfiable, and let Γ be the witness to this. Then we can immediately construct a finished tableau
ΥΓ for ϕ from Γ . (⇐) Assume Υ is a finished tableau for ϕ . Then we can immediately “read off” from Υ a partial game
ΓΥ that satisfies ϕ . �

So, given a cgl formula ϕ , which we want to test for satisfiability, our decision procedure is then as follows:

(1) Generate the tableau Υ (ϕ) using the procedure described above.
(2) Check that the tableau Υ (ϕ) generated in this way is finished; if so, announce “ϕ is satisfiable”, otherwise announce

“ϕ is unsatisfiable”.

That the procedure is correct and is guaranteed to terminate is immediate from construction.

3.5. Characterising coalitional games

We characterise the three solution concepts from the theory of coalitional games discussed in Section 2.1.
We write CM(ω) to mean that ω is in the core.

CM(ω) ≡ 〈N〉ω ∧ ¬
[∨

C⊆N

∨
ω′∈Ω

(〈C〉ω′) ∧
∧
i∈C

(ω′ �i ω)

]

CNE will then mean that the core is non-empty:

CNE ≡
∨
ω∈Ω

CM(ω)

Theorem 6. The core of a finite coalitional game Γ over N and Ω is non-empty iff Γ |� CNE.

Moving on to stable sets, the cgl formula IMP(ω) is true whenever ω is an imputation:

IMP(ω) ≡ 〈N〉ω ∧
∧

ω′∈Ω

∧
i∈N

(〈{i}〉ω′ → ω �i ω
′)

Next, OBJ(ω,ω′, C) expresses that outcome ω is an C-s-objection to outcome ω′ , when both ω and ω′ are imputations:

OBJ(ω,ω′, C) ≡
(∧

i∈C

ω �i ω
′
)

∧
∨

ω′′∈Ω

(
〈C〉ω′′ ∧

∧
i∈C

ω′′ �i ω

)

Given a set of outcomes Y ⊆ Ω , the cgl formula STABLE(Y) expresses the fact that Y is a stable set:

STABLE(Y) ≡∧
ω∈Y

IMP(ω)

∧
(∧

ω∈Y

∧
C⊆N

∧
ω′∈Y

¬OBJ(ω′,ω, C)

)

∧
(∧

ω∈Ω\Y

IMP(ω) →
(∨

C⊆N

∨
ω′∈Y

OBJ(ω′,ω, C)

))

60 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
Theorem 7. Y is a stable set of a finite coalitional game Γ over N and Ω iff Γ |� STABLE(Y).

Proof. Given a finite coalitional game, let I denote the set of all imputations. First, we argue that IMP(ω) and OBJ(ω,ω′, C)

have the correct meaning. Every ω ∈ Y is an imputation iff ω ∈ V (N) (feasibility) and ω �i ω
′ for all i and ω′ ∈ V ({i}) which

is exactly when IMP(ω) holds. If ω,ω′ ∈ I and C ⊆ N , ω is a C-s-objection to ω′ iff ω �i ω′ for every i ∈ C and there is a
ω′′ ∈ V (C) such that ω′′ �i ω for every i ∈ C , which is exactly when OBJ(ω,ω′, C) holds.

For the main proof, let Y ⊆ Ω . If there is an ω in Y which is not an imputation, Y is not a stable set and IMP(ω) is not
true and we are done, so assume that Y is a set of imputations. Let

Ŷ = {ω ∈ I : there is no s-objection to ω in Y }
It is easy to see that Y is a stable set iff Y = Ŷ . We argue that the second and third main conjuncts of the formula
STABLE(Y) is true whenever Y ⊆ Ŷ and Ŷ ⊆ Y hold, respectively, and the theorem follows (the first conjunct is true under
the assumption that Y are imputations). The second conjunct is true exactly when for every member of Y there is no C-
s-objection to ω in Y for any C , which is exactly when Y ⊆ Ŷ holds. The third conjunct is true iff every imputation which
is not in Y has an s-objection in Y or, contrapositively, that every imputation which does not have an s-objection in Y is
included in Y which is the same as Ŷ ⊆ Y . �

Existence of a stable set can then be expressed as:

ES ≡
∨

Y ⊆Ω

STABLE(Y)

Corollary 1. A finite coalitional game Γ over N and Ω has a stable set iff Γ |� ES.

Finally, we consider the bargaining set. The cgl formula OBJB(ω′, C,ω) means that (ω′, C) is an b-objection of any i ∈ C
against any j /∈ C to ω.

OBJB(ω′, C,ω) ≡ 〈C〉ω′ ∧
∧
k∈C

ω′ �k ω

ECO(ω′, C, i, j,ω) means that there exists a b-counterobjection to the b-objection (ω′, C) of i against j to ω.

ECO(ω′, C, i, j,ω) ≡
∨
v∈Ω

∨
D ′⊆N\{i}

(
〈D ′ ∪ { j}〉v ∧

((∧
k∈(D ′∪{ j})\C

v �k ω

)
∧

(∧
k∈(D ′∪{ j})∩C

v �k ω′
)))

INBARG(ω) means that outcome ω ∈ Ω is in the bargaining set:

INBARG(ω) ≡ IMP(ω) ∧
∧

C⊆N

∧
i∈C

∧
j∈N\C

∧
ω′∈Ω

[
OBJB(ω′, C,ω) → ECO(ω′, C, i, j,ω)

]

Theorem 8. ω is a member of the bargaining set of a finite coalitional game Γ over N and Ω iff Γ |� INBARG(ω).

Proof. It is easy to see that when ω is an imputation, C is a coalition, i ∈ C , j /∈ C and ω′ an outcome, Γ |� OBJB(ω′, C,ω)

iff (ω′, C) is an b-objection of i against j to ω. To see that there exist a b-counterobjection to the b-objection (ω′, C)

of i against j to ω iff Γ |� ECO(ω′, C, i, j,ω), observe that (v, D) is a b-counterobjection iff the disjunct given by v and
D ′ = D \ { j} is true. The theorem follows immediately. �

We can now define BS(Y), Y ⊆ Ω , to express the fact that Y is the bargaining set.

BS(Y) ≡
∧
ω∈Y

INBARG(ω) ∧
∧

ω∈Ω\Y

¬INBARG(ω)

Corollary 2. Y is the bargaining set of a finite coalitional game Γ over N and Ω iff Γ |� BS(Y).

3.6. Proof examples

We briefly illustrate the proof system by formally deducing some well known properties of coalitional games.

Example 4.

(1) Every member of the core is an imputation:

CM(ω) → IMP(ω)

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 61
Let i ∈ N , ω′ ∈ Ω

1 CM(ω) → (〈i〉ω′ → ¬ω′ �i ω) Taut
2 (CM(ω) ∧ 〈i〉ω′) → ¬(ω′ �i ω ∧ ¬ω �i ω′) 1, Taut
3 (CM(ω) ∧ 〈i〉ω′) → (ω′ �i ω → ω �i ω′) 2, Taut
4 ¬ω′ �i ω → ω �i ω′ Lin, Taut
5 CM(ω) ∧ 〈i〉ω′ → ω �i ω′ 3, 4, Taut
6 CM(ω) → (〈i〉ω′ → ω �i ω′) 5, Taut
7 CM(ω) → ∧

ω′∈Ω

∧
i∈N (〈i〉ω′ → ω �i ω′) Rep. 1–6 for any ω′ ∈ Ω , i ∈ N , Taut

8 CM(ω) → 〈N〉ω Taut
9 CM(ω) → IMP(ω) 7, 8, Taut

Fig. 1. Every member of the core is an imputation: a deductive proof.

Let ω′ ∈ Y and C ⊆ N

Let ω′′ ∈ Ω

1 (CM(ω) ∧ 〈C〉ω′′) → ∨
i∈C ¬ω′′ �i ω Taut

2 OBJ(ω′,ω, C) → ∧
i∈C ω′ �i ω Taut

Let i ∈ C

3 (ω′ �i ω ∧ ω′′ �i ω′) → ω′′ �i ω Trans + Taut

4 (ω′′ �i ω′ ∧ ω �i ω′′) → ω �i ω′ Trans

5 (¬ω �i ω′ ∧ ω′′ �i ω′) → ¬ω �i ω′′ 4, Taut

6 (ω′ �i ω ∧ ω′′ �i ω′) → ¬ω �i ω′′ 5, Taut

7 (ω′ �i ω ∧ ω′′ �i ω′) → ω′′ �i ω 3, 6, Taut

8 (¬ω′′ �i ω ∧ ω′ �i ω) → ¬ω′′ �i ω′ 7, Taut

9 (
∨

i∈C ¬ω′′ �i ω ∧ ∧
i∈C ω′ �i ω) → ∨

i∈C ¬ω′′ �i ω′ Rep. 3–8 for any i ∈ C

10 (CM(ω) ∧ 〈C〉ω′′ ∧ OBJ(ω′,ω, C)) → ∨
i∈C ¬ω′′ �i ω′ 1, 2, 9, Taut

11 (OBJ(ω′,ω, C) ∧ CM(ω)) → (〈C〉ω′′ → ∨
i∈C ¬ω′′ �i ω′) 10, Taut

12 (OBJ(ω′,ω, C) ∧ CM(ω)) → ∧
ω′′∈Ω(〈C〉ω′′ → ∨

i∈C ¬ω′′ �i ω′) Rep. 1–11 for any ω′′ ∈ Ω

13 (OBJ(ω′,ω, C) ∧ CM(ω)) → ¬∨
ω′′∈Ω(〈C〉ω′′ ∧ ∧

i∈C ω′′ �i ω′) 12, Taut

14 OBJ(ω′,ω, C) → ∨
ω′′∈Ω(〈C〉ω′′ ∧ ∧

i∈C ω′′ �i ω′) Def. of OBJ(·), Taut

15 (OBJ(ω′,ω, C) ∧ CM(ω)) → ⊥ 13, 14, Taut

16 CM(ω) → ¬OBJ(ω′,ω, C) 15, Taut

17 CM(ω) → ¬∨
C⊆N

∨
ω′∈Y OBJ(ω′,ω, C) Rep. 1–16 for any ω′ ∈ Y , C ⊆ N

18 CM(ω) → IMP(ω) The first part

19 CM(ω) → ¬(IMP(ω) → ∨
C⊆N

∨
ω′∈Y OBJ(ω′,ω, C)) 17, 18, Taut

20 CM(ω) → ¬∧
ω∈Ω\Y (IMP(ω) → ∨

C⊆N

∨
ω′∈Y OBJ(ω′,ω, C)) 19, ω ∈ Ω \ Y , Taut

21 CM(ω) → ¬STABLE(Y) 20, Taut

Fig. 2. The core is a subset of any stable set: a deductive proof.

(2) The core is a subset of any stable set:

CM(ω) → ¬STABLE(Y) whenever ω /∈ Y

Proof. The first part of the proof is shown in Fig. 1, the second in Fig. 2. �
4. A modal logic for coalitional games

In this section we study the logic of coalitional games from an alternative perspective: modal logic. We introduce Modal
Coalitional Game Logic (mcgl), a modal logic interpreted in coalitional games. The language is similar to the language of
cgl—in particular one of the main constructs of the language is an operator 〈C〉 for each coalition. The meaning of this
operator is however radically different.

After we have introduced the language and its interpretation, introduced an axiomatic system, and shown that the system
is sound and complete, we show how the logic can be used to express concepts like the core for general (not necessarily
finite) coalitional games. The relationship between cgl and mcgl is studied in detail in Section 5.

4.1. mcgl: Syntax and semantics

The language of mcgl is interpreted as statements about an outcome in a coalitional game. One of the main constructs is
modalities 〈C〉 for each coalition C . A formula of the form 〈C〉ϕ is intended to mean that C prefers ϕ . In more detail, 〈C〉ϕ ,
interpreted in outcome ω of coalitional game Γ , is intended to mean that there exists an outcome ω′ (possibly different
from ω), which is weakly preferred over ω by each agent in C and in which ϕ is true. Similar modalities are used by [16]
in the context of non-cooperative game theory. Another main construct is atomic propositions of the form pC , where C is

62 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
a coalition. pC is intended to mean that coalition C can choose the current outcome, i.e., that the outcome is C-feasible.
So, for example, 〈C〉pC means that there exists a C-feasible outcome which is weakly preferred over the current outcome
by each member of C . There are also operators 〈C s〉 standing for strict, rather than weak, preference. Furthermore, there
are converse operators 〈Cc〉 and 〈C sc〉; 〈Cc〉ϕ (〈C sc〉ϕ) is intended to mean that there is an outcome over which the current
outcome is weakly (strictly) preferred and in which ϕ is true. Finally, there is an operator 〈D〉 such that 〈D〉ϕ is intended
to mean that ϕ is true in some outcome different from the current one. In addition to the atomic propositions pC for each
coalition C , the language is parameterised by a set Θ ′ of general primitive atomic proposition symbols. These stand for
arbitrary propositions which can be true or false statements about an outcome in a game.

Let N be a set of agents, and let C = 2N \ ∅ be the coalitions (we henceforth assume that a coalition is never empty).
The language if Modal Coalitional Game Logic (mcgl), denoted LM(N, {pC : C ∈ C} ∪ Θ ′), where Θ ′ is a countably infinite set
of primitive propositions, is defined as follows. Let

Θ = Θ ′ ∪ {pC : C ∈ C}
be the atomic propositions in the language. The language is defined by the following grammar:

ϕ ::= p | 〈i〉ϕ | 〈is〉ϕ | 〈C〉ϕ | 〈C s〉ϕ | 〈D〉ϕ | 〈ic〉ϕ | 〈isc〉ϕ | 〈Cc〉ϕ | 〈C sc〉ϕ | ¬ϕ | ϕ1 ∧ ϕ2

where p ∈ Θ , C ∈ C , i ∈ N . Derived: [·], [·s], [D], [·c], [·sc] are the duals of 〈·〉, 〈·s〉, 〈D〉, 〈·c〉, 〈·sc〉, respectively.
The following definitions will be useful:

Ξ = {i, C, is, C s, ic, Cc, isc, C sc}
Ξ+D = Ξ ∪ {D}
Diamonds = {〈ξ〉: ξ ∈ Ξ+D}
Boxes = {[ξ]: ξ ∈ Ξ+D}

Let Γ = (N,Ω, V ,�1, . . . ,�m) be a coalitional game, and let π be a valuation of Θ ′ in Ω , i.e., π(p) ⊆ Ω for each p ∈ Θ ′ .
The fact that a formula ϕ is satisfied by the combination of Γ , π and an outcome w ∈ Ω , denoted Γ,π, w |� ϕ , is defined
recursively as follows:

• Γ,π, w |� pC iff w ∈ V (C),
• Γ,π, w |� p iff w ∈ π(p), when p ∈ Θ ′ ,
• Γ,π, w |� 〈i〉ϕ iff there is a v such that v �i w and Γ,π, v |� ϕ ,
• Γ,π, w |� 〈is〉ϕ iff there is a v such that v �i w and not w �i v and Γ,π, v |� ϕ ,
• Γ,π, w |� 〈C〉ϕ iff there is a v such that for every i ∈ C , v �i w , and Γ,π, v |� ϕ ,
• Γ,π, w |� 〈C s〉ϕ iff there is a v such that for every i ∈ C , v �i w and not w �i v , and Γ,π, v |� ϕ ,
• Γ,π, w |� 〈D〉ϕ iff Γ,π, v |� ϕ for some v �= w ,
• Γ,π, w |� 〈ic〉ϕ iff there is a v such that w �i v and Γ,π, v |� ϕ ,
• Γ,π, w |� 〈isc〉ϕ iff there is a v such that w �i v and not v �i w and Γ,π, v |� ϕ ,
• Γ,π, w |� 〈Cc〉ϕ iff there is a v such that for every i ∈ C , w �i v , and Γ,π, v |� ϕ ,
• Γ,π, w |� 〈C sc〉ϕ iff there is a v such that for every i ∈ C , w �i v and not v �i w , and Γ,π, v |� ϕ .

We write Γ, w |� ϕ for the fact that Γ,π, w |� ϕ for arbitrary π . Note that when ϕ have no occurrences of any p ∈ Θ ′ ,
Γ, w |� ϕ iff Γ,π, w |� ϕ for any π . Furthermore, we write Γ |� ϕ whenever Γ, w |� ϕ for any w . Thus, we have an
interpretation of our formulae as statements about outcomes in coalitional games, and about coalitional games themselves,
respectively.

Example 5. Let Γ be the Dinner Game from Example 1. We have the following (ref. also Example 3):

• Γ, I12 |� p{1,2} ∧ ¬p1. Agents 1 and 2 can choose to go for Indian together, but 1 cannot choose on his own that they
go together.

• Γ, I123 |� ¬p1 ∧ ¬〈D〉p1. Agent 1 cannot choose any outcome on his own.
• Γ, I12 |� 〈1s〉p{1,2,3} . The agents can choose something which for 1 is better than going for Indian together with 2.
• Γ, C123 |� (¬p{1,3}) ∧ 〈{1,3}s〉p{1,3} . Agents 1 and 3 cannot choose that all agents go for Chinese, but they can choose

something which is strictly better for both of them (e.g., going for Indian on their own).
• Γ, I123 |� [1s]⊥. Agent 1 prefers nothing better than having Indian with his two friends.
• Γ, I123 |� 〈1sc〉p{2,3} . If the three agents go for Indian, there is some option which is worse for 1 which 2 and 3 could

choose.

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 63
Table 2
The logic mcgl

Taut ϕ where ϕ is an instance of a prop. tautology

K (�) �(p → q) → (�p → �q) � ∈ Boxes
T [i]p → p
4 [i]p → [i][i]p

Converse1(ξ) p → [ξ]〈ξ c〉p ξ ∈ Ξ

Converse2(ξ) p → [ξ c]〈ξ〉p ξ ∈ Ξ

Trichotomy (p ∧ [i]q) → [D](q ∨ p ∨ 〈i〉p)

D1 p → [D]〈D〉p symmetry
D2 �1 · · ·�k p → (p ∨ 〈D〉p) �i ∈ Diamonds

Strict1 p ∧ 〈i〉(q ∧ [i]¬p) → 〈is〉q
Strict2 (p ∧ [D]¬p ∧ 〈is〉q) → 〈i〉(q ∧ ¬〈i〉p)

Strict3 〈is〉p → 〈D〉p

Intersect1 ((p ∧ [D]¬p) ∨ 〈D〉(p ∧ [D]¬p)) → (
∧

i∈C 〈i〉p → 〈C〉p)

Intersect2 ((p ∧ [D]¬p) ∨ 〈D〉(p ∧ [D]¬p)) → (
∧

i∈C 〈is〉p → 〈C s〉p)

Intersect3 〈C〉p → 〈i〉p i ∈ C
Intersect4 〈C s〉p → 〈is〉p i ∈ C

Nec(�) � ϕ ⇒ � �ϕ � ∈ Boxes
USub � ϕ ⇒ � ψ

where ψ is the result of uniformly replacing atomic
propositions in ϕ with arbitrary formulae

D-rule � (p ∧ ¬〈D〉p) → θ ⇒ � θ p not in θ

MP � ϕ,� ϕ → ψ ⇒ � ψ

4.2. Axiomatisation

In this section we construct a sound and complete axiomatisation by viewing the logic as a normal modal logic. In
particular, the basic accessibility relations in this logic are the individual preference relations �i .

Let MCGL be the axiomatic system defined in Table 2.
Let us briefly reflect upon the axioms. Axiom K (�) and rules Nec(�) and USub say that the logic is a normal modal

logic. T and 4 say that each �i is a pre-order. By Trichonomy, relation �i moreover satisfies completeness. The Converse1(ξ)

and Converse2(ξ) axioms ensure that the relation denoted by the 〈ξ c〉 modality is the converse of the relation denoted by
the 〈ξ〉 modality. The axioms for the D-operator, as well as the D-rule are relatively standard in modal logic (see [6]). The
D-rule facilitates us to prove that � 〈is〉p → 〈i〉p, as one would, based on semantic considerations, expect. Also, our D2
axiom generalises what is called pseudo-transitivity in [6], which is 〈D〉〈D〉p → (p ∨ 〈D〉p). The axioms Strict1, Strict2 and
Strict3 together ensure that the relation denoted by the 〈is〉 modality is the strict version of �i . Note that this implies that
the former is irreflexive. Finally, taking Intersectk for k = 1,3 guarantees that the relation denoted by the 〈C〉 modality is
the intersection over all i ∈ C of all �i , and for k = 2,4 it ensures that the relation denoted by the 〈C s〉 modality is the
intersection over all i ∈ C of the strict version of �i .

Examples of deductions in MCGL can be found in Section 4.4. The remainder of this section is concerned with proving
that MCGL is sound and complete with respect to all coalitional games. The main result is found in Corollary 3.

4.2.1. Soundness and completeness
To make it more convenient to use standard modal logic tools, we will here interpret the logical language explicitly in a

certain class of Kripke structures rather than in coalitional games. We show that MCGL is sound and complete with respect
to this class, and it follows that it is sound and complete with respect to all coalitional games since these Kripke structures
can be seen as coalitional games (Corollary 3 below).

Given a set of agents N and primitive propositions Θ ′ , a model is a tuple:

M = (
W , {Ri: i ∈ N}, {Rs

i : i ∈ N}, {RC : C ∈ C}, {Rs
C : C ∈ C}, D, {Rc

i : i ∈ N}, {Rsc
i : i ∈ N}, {Rc

C : C ∈ C}, {Rsc
C : C ∈ C},π)

where π is a valuation of Θ = Θ ′ ∪ {pC : C ∈ C} and

REFL ∀i∈N Ri is reflexive
TRANS ∀i∈N Ri is transitive
COMPL ∀i∈N Ri is complete
STRICT ∀i∈N Rs

i wu iff both Ri wu and not Riuw
DIFF D = {(w, u): w �= u}.
INTERSECTION ∀C∈C RC = ⋂

i∈C Ri
INTERSECTION-STRICT ∀C∈C Rs

C = ⋂
i∈C Rs

i
CONVERSE R w v iff Rc v w , for each relation R ∈ {Ri, Rs, RC , Rs , D}
i C

64 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
Defined this way, our representation of a model contain a lot of redundant information, but this definition makes it easy to
use standard modal logic tools directly.

For the truth-definition, it is convenient to use the following notation.

Definition 5. For a diamond like 〈C s〉, we call C s its parameter. We use ξ for an arbitrary parameter. The set of parameters
is Ξ . For every parameter ξ ∈ Ξ , we define its associated relation Rel(ξ) in a straightforward way, and, conversely, given
an accessibility relation R , we define its parameter Par(R), such that Rel(Par(R)) is the identity function on accessibility
relations, and Par(Rel(ξ)) being the identity function on parameters.

Rel(i) = Ri Par(Ri) = i
Rel(C) = RC Par(RC) = C
Rel(D) = D Par(D) = D

Rel(ξ s) = Rel(ξ)s Par(Rs) = Par(R)s ξ ∈ {i, C}
Rel(ξ c) = Rel(ξ)c Par(Rc) = Par(R)c ξ ∈ {i, C}
Rel(ξ sc) = Rel(ξ)sc Par(Rsc) = Par(R)sc ξ ∈ {i, C}

The interpretation of a formula in a state w of a model M is defined as follows (Boolean connectives as usual), where
we use the same satisfaction symbol |� we used for the interpretation in games without risk of confusion:

• M, w |� p iff w ∈ π(p),
• M, w |� 〈ξ〉ϕ iff there is a v such that Rel(ξ)w v and M, v |� ϕ , for all ξ ∈ Ξ .

A frame is a tuple F = (W , {Ri: i ∈ N}). A model M is based on a frame F if it is the result of extending the frame with
some valuation function, i.e., M = (F ,π) for some π . M |� ϕ means that M, w |� ϕ for any state w in M , F |� ϕ means
that M |� ϕ for any model M based on the frame F . Let us call the set of all models just defined MC G L. Then |� ϕ is
shorthand for MC G L |� ϕ , which in its turn means that for any model M ∈ MC G L, we have M |� ϕ .

The models carry a lot of dependencies between different accessibility relations. It is now the challenge of the soundness
and completeness proof that we can characterise these dependencies in our object language.

Theorem 9 (Soundness). MCGL is sound w.r.t. the models: ∀ϕ: MCGL � ϕ ⇒ MC G L |� ϕ .

Proof. First, consider T richotomy. Let M, w |� p ∧ [i]q. Now take a world u �= w , we have to show that q ∨ p ∨ 〈i〉p is
true in u. Since Ri is complete, we either have Ri wu (in which case M, u |� q) or else Riuw (which gives M, u |� 〈i〉p).
Next, consider Strict1. Suppose M, w |� p ∧ 〈i〉(q ∧ [i]¬p). Then for some u, we have M, u |� q and Ri wu but not Riuw . By
STRICT, then Rs

i wu, and hence M, w |� 〈is〉q. For Strict2, suppose M, w |� (p ∧ [D]¬p ∧ 〈is〉q). This implies that w is the
only p-world and also that for some u with Ri wu, M, u |� q. By STRICT, this means that we have Ri wu but not Riuw .
Hence, in u, we also have ¬〈i〉p. For Strict3, suppose M, w |� 〈is〉p. There is a u such that Rs

i wu and M, u |� p. Since Rs
i

is strict, it is impossible that w = u. Thus M, w |� 〈D〉p. Consider the intersection axioms. It is obvious that Intersect3 and
Intersect4 are valid. For the two others, note that ((p ∧ [D]¬p)∨ 〈D〉(p ∧ [D]¬p)) is true in a world w if and only if there is
a unique world in which p is true. Let us abbreviate it to 〈∃!〉p. Then Intersect1 becomes 〈∃!〉p → (

∧
i∈C 〈i〉p → 〈C〉p). Now

suppose M, w |� 〈∃!〉p. Furthermore, suppose M, w |� ∧
i∈C 〈i〉p. This implies that there are worlds ui for which Ri wui and

M, ui |� p (i ∈ C). Since there is a unique p-world, all ui must be the same. By INTERSECTION, we have M, w |� 〈C〉p. The
argument for Intersect2 is similar. As for the D-rule, it pays off to consider the contrapositive: suppose that θ is not valid,
i.e., ¬θ is satisfiable. This means that for some M and w , we have M, w |� ¬θ . Since p does not occur in θ , ¬θ remains
true in M, w if we change the valuation only for p, in fact it is not hard to see that we can change it in such a way that we
obtain a model M ′ for which M ′, w |� p ∧ [D]¬p ∧ ¬θ . We leave validity of the other axioms, and preservation of validity
of the rules, to the reader. �

The rest of this section is devoted to completeness of MCGL. Completeness of a logic LOG with respect to a semantics
S E M amounts to showing that for any ϕ , if S E M |� ϕ , then LOG � ϕ . Using contraposition, this is the same as proving
that for any LOG-consistent formula ϕ , there is some S E M model M with a state s such that M, s |� ϕ . A common
approach to prove the latter is by constructing a canonical model can(M), in which the states can(W) are all maximal
LOG-consistent sets, and for any � in the language with associated relation R , one defines this can(R) to hold between
two m.c. sets, i.e., can(R)ΣΔ iff for any δ, if δ ∈ Δ, then �δ ∈ Σ , or, alternatively, for any δ, if �δ ∈ Σ , then δ ∈ Δ. By
construction, one obtains can(M),Φ |� ϕ for any ϕ ∈ Φ , which demonstrates satisfiability of ϕ . However, to show that ϕ is
S E M-satisfiable, one has to show that can(M) is indeed a S E M-model.

If the latter is not the case, one might still obtain completeness, in an indirect way. One way to proceed would be to
massage the canonical model can(M) into a model M ′ that still satisfies ϕ at s, but that is now a member of S E M. This

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 65
would typically work if S E M has some property P that is not modally definable, and for which no canonical formula
exists. The latter means that can(M) will not have property P , but the first might facilitate transforming can(M) into M ′
that does have the property P , while M ′ having the same validities as can(M). An example of such a property P would
be INTERSECTION, say that R3 = R1 ∩ R2 (cf. [35]). The axiom A : �3 p → (�1 p ∧ �2 p) ensures that R3 ⊆ (R1 ∩ R2), but
equality here is not definable, and indeed, the canonical model of the logic K + A does not satisfy it. However, one may
apply a copying technique in the canonical model as follows: for every two states s and t such that R1st, R2st, but not R3st ,
replace t by two copies t1, t2, and put R1st1 and R2st2. In the resulting model, exactly the same formulas are true, and also
R3 = R1 ∩ R2 holds (see [35]).

However, if there are other relations or properties that need to be maintained or achieved at the same time, such a
manipulation of the canonical model can become extremely difficult. For an example of this, we refer to [36], where the
canonical model for a system with individual knowledge (with relation Ri), Everybody’s knowledge (with R E , the union of
the Ri ’s), Common knowledge (RC , the transitive closure of R E) and Distributed Knowledge (R D , the intersection of the
Ri ’s) neither satisfies the desired property for RC , nor for R D , and, although there are well-known techniques to solve the
problem for RC and for R D individually, those techniques applied here fix the problem for one relation, while ruining it for
the other.

Rather than starting with the big canonical model for a logical system and then unravel it, duplicate worlds, or look at
sub-models, [6] presents a ‘step by step’ technique, which we will follow here for our completeness proof. This technique
is extremely useful in case one can go “back-and-forth” in a model, i.e., having a relation that allows one to look in both
directions of the Kripke model. We will now first briefly sketch the procedure before the proof is given in detail below. Take
a consistent formula ϕ . Following [6], we build a network N to satisfy it. Such a network is a set of states with relations
between them, but we start small, building up the network gradually. As a start, we add ϕ to some type Λ(s) (such a type
collects all the formulas that should be true at s) of an initial state in an initial network N1. But if ϕ implies some 〈ξ〉ψ
formula, this N1 is not good enough of course, our network has a defect, and we need to extend the network with a node
t with ψ ∈ Λ(t) and mark, using a labelling d, that s and t are Rel(ξ) related. So, if some Ni has a defect, we either add a
node, or an edge, or a formula to some type, to obtain a network N j (j > i) that does not have the defect. Special attention
has to be paid to the D-operator: in the end, we have to make sure that the arcs in N that are labelled with D , can be
interpreted as inequality. In particular, D must not be reflexive, and it must be ‘almost universal’: hold between any two
different nodes. To this end, we make sure that the network that we build is named: for every node s that we allow in Ni ,
we make sure that there is some formula ψ ∧ ¬〈D〉ψ ∈ Λ(s) in some network N j (j > i). The network that we are after is
N = ⋃

i Ni .
So don’t we need the canonical model can(M) for MCGL at all? We do: in the network N , every edge has a unique

label, and this will never be sufficient to get all the properties of MC G L. For instance, if Rsst , then also Dst should
hold. So, the network can be considered as a graph where all arcs are added only for the reason to make diamond for-
mulas true: we did not bother about keeping track of dependencies between arcs. All types in N can be shown to be
m.c. sets. Those types now happen to represent exactly the information that we need: for the model M that we need to
demonstrate the satisfiability of ϕ , we take the restriction of the canonical model can(M) for MCGL to all the types of
N . In other words, we keep the states from N , but replace the labelled arcs with the canonical relations can(R). This
guarantees for instance, that if we had s and t that were only related through Rs

i in N , in the model M , we also im-
pose can(Rs

i)st , but we also obtain Dst , can(Ri)st , can(Rsc
i)ts and can(Rc

i)ts. Details are found in the proof of the following
theorem.

Theorem 10 (Completeness). MCGL is complete w. r. t. the models: ∀ϕ: MC G L |� ϕ ⇒ MCGL � ϕ .

Proof. A network is a tuple N = (N, E,d, r,Λ), where (N, E) is a finite, undirected, connected and acyclic graph, d maps
each edge {s, t} ∈ E to a relation in the set {Ri, Rs

i , RC , Rs
C , D: i ∈ N, C ∈ C}, r maps each edge {s, t} ∈ E to either s or t , and

Λ labels each node in N with a finite set of formulae in LM(N,Θ).
Given a graph and a node s, let E(s) denote the set of nodes adjacent to s. Let:

〈st〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈i〉 d({s, t}) = Ri and r({s, t}) = s
〈ic〉 d({s, t}) = Ri and r({s, t}) = t
〈is〉 d({s, t}) = Rs

i and r({s, t}) = s
〈isc〉 d({s, t}) = Rs

i and r({s, t}) = t
〈C〉 d({s, t}) = RC and r({s, t}) = s
〈Cc〉 d({s, t}) = RC and r({s, t}) = t
〈C s〉 d({s, t}) = Rs

C and r({s, t}) = s
〈C sc〉 d({s, t}) = Rs

C and r({s, t}) = t
〈D〉 d({s, t}) = D and r({s, t}) = s
〈D〉 d({s, t}) = D and r({s, t}) = t

Let:

66 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
Δ(N , s) =
∧

Λ(s) ∧
∧

v∈E(s)

〈sv〉Φ(N , v, s)

Φ(N , t, s) =
∧

Λ(t) ∧
∧

s �=v∈E(t)

〈tv〉Φ(N , v, t)

Note that Δ(N , s) is a (finite) formula for any (finite and acyclic) network.
We argue that Δ(N , s) is consistent iff Δ(N , t) is consistent, for any two nodes in any network N . We show

this for any (s, t) ∈ E; the property follows for arbitrary s, t ∈ N by induction on the length of the least path from
s to t (N is connected). Let (s, t) ∈ E , and first assume that d({s, t}) = Ri and r({s, t}) = s. We have that Δ(N , s) =∧

Λ(s) ∧ ∧
t �=v∈E(s)〈sv〉Φ(N , v, s) ∧ 〈st〉Φ(N , t, s) = 〈i〉Φ(N , t, s) ∧ Φ(N , s, t). Likewise, we have that Δ(N , t) = ∧

Λ(t) ∧∧
s �=v∈E(t)〈tv〉Φ(N , v, t) ∧ 〈ts〉Φ(N , s, t) = 〈ic〉Φ(N , s, t) ∧ Φ(N , t, s). Axioms Converse1(is) and Converse2(is) ensure that

〈i〉α ∧ β is consistent iff 〈ic〉β ∧ α is consistent, for any α,β . The argument in the case that r({s, t}) = t is symmetric,
and the other cases d({s, t}) ∈ {Rs

i , RC , Rs
C , D} are similar (in the case of the 〈D〉 operator, the axiom D1 is used instead

of Converse1 and Converse2). Thus, Δ(N , s) is consistent iff Δ(N , t) is consistent. We say that a network N is coherent if
Δ(N , s) is consistent for any node in the network.

Possible defects are the following:

D1(s,ϕ) where s is a node and ϕ a formula, and ϕ /∈ Λ(s) and ¬ϕ /∈ Λ(s),
D2(s) there is no formula ϕ such that ϕ ∧ ¬〈D〉ϕ ∈ Λ(s),
D3(s, 〈ξ〉ϕ) (ξ ∈ {i, C, is, C s, D}) where s is a node and 〈ξ〉ϕ ∈ Λ(s) and for all (s, t) ∈ E such that d({s, t}) = Rel(ξ) and

r({s, t}) = s it is the case that ϕ /∈ Λ(t),
D4(s, 〈ξ c〉ϕ) (ξ ∈ {i, C, is, C s}) where s is a node and 〈ξ c〉ϕ ∈ Λ(s) and for all (s, t) ∈ E such that d({s, t}) = Rel(ξ) and

r({s, t}) = t it is the case that ϕ /∈ Λ(t).

A network N ′ = (N ′, E ′,d′, r′,Λ′) extends a network N = (N, E,d, r,Λ) if N ⊆ N ′ , Λ(s) ⊆ Λ′(s) for each s ∈ N , and E ′,d′, r′
are E,d, r, respectively, restricted to N .

We now show that for any defect in a coherent network N , there is a coherent network N ′ extending N lacking that
effect. Let Y be a countably infinite set; we will use the elements of Y as states when we need to add new states to the
networks in order to repair defect D3.

D1(s,ϕ) Since Δ(N , s) is consistent, either Δ(N , s) ∧ ϕ or Δ(N , s) ∧ ¬ϕ is consistent. W.l.o.g. assume the first. Let N ′ be
identical to N , except that Λ′(s) = Λ(s) ∪ {ϕ} (Λ′(t) = Λ(t) for t �= s). Clearly, N ′ is a network, it extends N , and
it lacks the defect D1(s,ϕ). It is easy to see that Δ(N ′, s) = Δ(N , s) ∧ ϕ which is consistent, so N ′ is coherent.

D2(s) Let p be an atomic proposition in Θ not occurring in Δ(N , s) (it exists since Θ = Θ ′ ∪ {pC : C ∈ C} is infinite—Θ ′
was assumed to be countably infinite). The following is an alternative statement of the D-rule:

If Φ is consistent and does not contain p
⇓

(p ∧ ¬〈D〉p) ∧ Φ is consistent

Since Δ(N , s) is consistent, it follows that Δ(N , s) ∧ (p ∧ ¬〈D〉p) is consistent. We define N ′ as in the D1 case,
by setting Λ′(s) = Λ(s) ∪ {p ∧ ¬〈D〉p}. N ′ is a coherent network extending N and lacking the D2(s) defect, by
the same argument as in the D1 case.

D3(s, 〈ξ〉ϕ) We define N ′ as follows:
• N ′ = N ∪ {t} for some t ∈ Y \ N ,
• E ′ = E ∪ {{s, t}},
• d′ = d ∪ {{s, t} #→ Rel(ξ)},
• r′ = r ∪ {{s, t} #→ s},
• Λ′ = Λ ∪ {t #→ {ϕ}}.
Clearly, N ′ is a network extending N lacking the D4(s, 〈ξ〉ϕ) defect. It is easy to see that Δ(N ′, s) = Δ(N , s) ∧
〈ξ〉ϕ . But since 〈ξ〉ϕ ∈ Λ(s), it already is a conjunct of Δ(N , s). Thus, N ′ is coherent.

D4(s, 〈ξ c〉ϕ) We define N ′ as follows:
• N ′ = N ∪ {t} for some t ∈ Y \ N ,
• E ′ = E ∪ {{s, t}},
• d′ = d ∪ {{s, t} #→ Rel(ξ)},
• r′ = r ∪ {{s, t} #→ t},
• Λ′ = Λ ∪ {t #→ {ϕ}}.
Clearly, N ′ is a network extending N lacking the D3(s, 〈ξ c〉ϕ) defect. It is easy to see that Δ(N ′, s) = Δ(N , s) ∧
〈ξ c〉ϕ . But since 〈ξ c〉ϕ ∈ Λ(s), it already is a conjunct of Δ(N , s). Thus, N ′ is coherent.

Now, let ϕ̂ ∈ LM(N,Θ) be a consistent formula—we are going to show that it is satisfiable.

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 67
Fix an enumeration of possible defects of a network whose nodes are included in the set Y , i.e., an enumeration of the
set {D1(s,ϕ), D2(s), D3(s, 〈D〉ϕ), D3(s, 〈ξ〉ϕ), D4(s, 〈ξ c〉ϕ): ξ ∈ {i, C, is, C s: i ∈ N, C ∈ C},ϕ ∈ LM(N,Θ), s ∈ Y }. We define a
network Ni = (Ni, Ei,di, ri,Λi) for each natural number i as follows.

• N0 has a single node y ∈ Y labelled with {ϕ̂}. Clearly, N0 is coherent.
• When n > 0, Nn+1 is the (coherent) network obtained by repairing the least (according to the enumeration) defect, by

the rules given above.

Note that N j extends Ni when i < j. Also observe that a repaired defect will never be reintroduced, i.e., if Nn+1 is obtained
from Nn by repairing defect D, then for every m � n + 1 the network Nm lacks the defect D. Importantly, it follows that for
any i, for any defect of Ni there is a j > i such that N j lacks that defect.

Let N = (N, E,d, r,Λ) be defined as follows: N = ⋃
i∈N

Ni ; E = ⋃
i∈N

Ei ; d = ⋃
i∈N

di ; r = ⋃
i∈N

ri ; and Λ(s) =⋃{Λi(s): i ∈ N, s ∈ Ni}.
We argue that for any s ∈ N , Λ(s) is a maximal consistent set (MCS) in the language LM(N,Θ). For maximality, assume

that there is an s ∈ N and formula ϕ ∈ LM(N,Θ) such that ϕ,¬ϕ /∈ Λ(s). Let i be such that s ∈ Ni . Clearly, ϕ,¬ϕ /∈ Λi(s).
But then the network Ni has the defect D1(s,ϕ). By the earlier argument, this defect will have been repaired in some N j
with j > i, i.e., ϕ ∈ Λ j(s) or ¬ϕ ∈ Λ j(s). But then ϕ ∈ Λ(s) or ¬ϕ ∈ Λ(s). Assume that Λ(s) is not consistent. Then there
are ϕ1, . . . , ϕk ∈ Λ(s) such that ϕ1 ∧ · · · ∧ ϕk is inconsistent. By construction, there is a j such that ϕ1, . . . , ϕk ∈ Λ j(s). But
then Δ(Nk, s) is inconsistent, contradicting the coherency of Nk . Thus, each Λ(s) is an MCS. Let

W = {
Λ(s): s ∈ N

}
We will now define a sub-model of the canonical model of the logic, by restricting the states to the MCSs W .

Let can(M) = (can(W), {can(Ri): i ∈ N}, {can(Rs
i): i ∈ N}, {can(RC): C ∈ C}, {can(Rs

C): C ∈ C}, can(D), {can(Rc
i): i ∈

N}, {can(Rsc
i): i ∈ N}, {can(Rc

C): C ∈ C}, {can(Rsc
C): C ∈ C}, can(π)) be the canonical model for MCGL: can(W) is the set

of all MCSs over the language LM(N,Θ); can(R)w v iff ψ ∈ v implies that �ψ ∈ w for any ψ and any relation can(R)

with corresponding diamond �; can(π)(p) = {w ∈ can(W): p ∈ w} for each p ∈ Θ .9 Let M = (W , {Ri: i ∈ N}, {Rs
i : i ∈

N}, {RC : C ∈ C}, {Rs
C : C ∈ C}, D, {Rc

i : i ∈ N}, {Rsc
i : i ∈ N}, {Rc

C : C ∈ C}, {Rsc
C : C ∈ C},π) be the model obtained by replacing

can(W) with W as defined above in can(M), as well as restricting each relation to W and restricting the valuation π to W .
We argue that for any � ∈ {〈i〉, 〈is〉, 〈C〉, 〈C s〉, 〈D〉, 〈ic〉, 〈isc〉, 〈Cc〉, 〈C sc〉: i ∈ N, C ∈ C}, we have that

∀(ψ ∈ LM(N,Θ)∀(Γ ∈ W)
(�ψ ∈ Γ ⇒ ∃(Δ ∈ W)Γ can(R)Δ and ψ ∈ Δ

)
where can(R) is the canonical relation interpreting the diamond �. We show this for � = 〈i〉; the argument is analogous
in the other cases (including the converses). Let Γ ∈ W and let 〈i〉ψ ∈ Γ . Let s ∈ N be such that Γ = Λ(s), and let i be
such that 〈i〉ψ ∈ Λi(s). By the construction there is a j � i and a t ∈ N j such that {s, t} ∈ E j , d({s, t}) = Ri , r({s, t}) = s,
and ψ ∈ Λ j(t). Thus, ψ ∈ Λ(t). By taking Δ = Λ(t), it now remains to show that Λ(s)can(Ri)Λ(t). Assume otherwise, i.e.,
that there is a γ ∈ Λ(t) such that 〈i〉γ /∈ Λ(s). Then ¬〈i〉γ ∈ Λ(s). Let k be such that γ ∈ Λk(t), ¬〈i〉γ ∈ Λk(s), {s, t} ∈ Ek ,
dk({s, t}) = Ri and rk({s, t}) = s. In the construction of Δ(Nk, s), 〈st〉 = 〈i〉, and thus includes 〈i〉γ as a conjunct. But Δ(Nk, s)
also contains ¬〈i〉γ as a conjunct. This contradicts the coherence of Nk , and shows that the assumption was wrong.

A truth lemma can now be shown:

M,Γ |� ψ ⇔ ψ ∈ Γ

for any Γ ∈ W and any ψ ∈ LM(N,Θ). The proof is by induction over ψ .
Since ϕ̂ ∈ Λ0(y), ϕ̂ is thus satisfied by M . It remains to be shown that M has all the properties we require of a model:

REFL,TRANS Reflexivity and transitivity of can(Ri) is ensured by axioms T and 4. can(Ri) is still reflexive and transitive
when restricted to W .

CONVERSE We must show that for any w, v ∈ W , Ri w v iff Rc
i v w . Let Ri w v , and assume that ψ ∈ w . Then 〈ic〉ψ ∈ v by

axiom Converse1(i), showing that Rc
i v w . Conversely, let Rc

i v w and assume that ψ ∈ v . Then 〈i〉 ∈ w by axiom
Converse2(i), showing that Ri w v . Similar reasoning goes for the other relations and their converses.

DIFF First, let w �= v for some w, v ∈ W . We must show that (w, v) ∈ can(D), i.e., that for any ψ ∈ v , 〈D〉ψ ∈ w . Let
ψ ∈ v . Since w �= v (and w, v are MCSs), there exists a γ ∈ v such that ¬γ ∈ w . Thus, γ ∧ψ ∈ v and ¬(γ ∧ψ) ∈ w .
Since w, v ∈ W and N is connected, there is a path of nodes r0 · · · rk (k � 1) such that r0, . . . , rk ∈ N and (ri, ri+1) ∈
E for each i ∈ [0,k−1]. It follows that 〈r0r1〉 · · · 〈rk−1rk〉(γ ∧ψ) ∈ w , because otherwise ¬〈r0r1〉 · · · 〈rk−1rk〉(γ ∧ψ) ∈
w and Δ(N , w) would be inconsistent and N incoherent. By axiom D2 it follows that 〈D〉(γ ∧ ψ) ∈ w , and thus
that 〈D〉ψ ∈ w .

Second, let (w, v) ∈ can(D) for w, v ∈ W . We must show that w �= v . Assume otherwise; w = v . By the elimi-
nation of the D2(w)-defect, there is a formula ϕ such that ϕ ∧ ¬〈D〉ϕ ∈ w . But by the fact that (w, w) ∈ can(D)

the fact that ϕ ∈ w implies that 〈D〉ϕ ∈ w , which is a contradiction.

9 Note that MCGL is a normal modal logic.

68 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
COMPL It follows immediately from DIFF that M is named, i.e., that for every state w in M there is a formula ϕw such that
M, w |� ϕw , and for any w �= v , M, v �|� ϕ: since N does not have any D2(w) defect, every state w ∈ W contains
a formula of the form ϕw ∧ ¬〈D〉ϕw . By DIFF, no other state contains the same formula.

Assume that COMPL does not hold, i.e., that there are states w, u ∈ W such that w �= u, ¬Riuw and ¬Ri wu.
Suppose M, u |� 〈ic〉ϕw . Then there exists a v such that Rc

i uv and M, v |� ϕw . But that means that v = w , and
Rc

i uw . By CONVERSE, that means that Ri wu, but that contradicts the assumption. Thus, M, u �|� 〈ic〉ϕw . We then
have that M, u �|� (ϕw ∨ 〈ic〉ϕw ∨ 〈i〉ϕw) and, since w �= u, that M, w �|� [D]((ϕw ∨ 〈ic〉ϕw ∨ 〈i〉ϕw). We also have
that M, w |� (ϕw ∧ [i]〈ic〉ϕw)—but that contradicts the Trichotomy axiom. Thus, COMPL must hold.

STRICT As in the COMPL case, we use the fact that M is named and let ϕw be the formula uniquely true in w .
Assume that STRICT does not hold. This means that there are w and u for which either (i) not Rs

i wu and
(Ri wu ∧ ¬Riuw) or (ii) Rs

i wu but not (Ri wu ∧ ¬Riuw). In the first case, w �= u. We have that M, w |� (ϕw ∧
〈i〉(ϕu ∧[i]¬ϕw)). But we also have that M, w �|� 〈is〉ϕu , contradicting axiom Strict1. Suppose we are in case (ii): we
have Rs

i wu and also (not Ri wu or Riuw). First, suppose w = u. M, w |� 〈is〉ϕw , but M, w �|� 〈D〉ϕw , contradicting
axiom Strict3. Thus, it must be the case that w �= u. We have either (a) Rs

i wu and not Ri wu, or (b) Rs
i wu and

Ri wu and Riuw . In both cases, uniformly substituting ϕw for p, and ϕu for q, in axiom Strict2, shows that Strict2
does not hold in w . Thus, STRICT must hold.

INTERSECTION As in the COMPL case, we use the fact that M is named and let ϕw be the formula uniquely true in w .
Assume that INTERSECTION does not hold. This means that there are w and u for which either (i) RC wu and

not (
⋂

i∈C Ri)wu, or (ii) not RC wu and (
⋂

i∈C Ri)wu. Consider case (i). Then there is a i ∈ C such that ¬Ri wu, and
thus we have that M, w |� 〈C〉ϕu but M, w �|� 〈i〉ϕu , contradicting axiom Intersect3. Consider case (ii). Note that
((p ∧ [D]¬p) ∨ 〈D〉(p ∧ [D]¬p)) is true in a world w if and only if there is a unique world in which p is true. Let
us abbreviate it to 〈∃!〉p. We have that M, w |� 〈∃!〉ϕu , that M, w |� ∧

i∈C 〈i〉ϕu , but M, w �|� 〈C〉ϕu , contradicting
axiom Intersect1.

INTERSECTION-STRICT As the INTERSECTION case, using axioms Intersect2 and Intersect4. �
Corollary 3. MCGL is sound and complete with respect to the class of all coalitional games.

Proof. First we define mappings between models and games. Given a game Γ = (N,Ω, V ,�1, . . . ,�m) and an interpre-
tation π ′ of Θ ′ in Ω , we define a model f (Γ,π) = M = (W , {Ri: i ∈ N}, {Rs

i : i ∈ N}, {RC : C ∈ C}, {Rs
C : C ∈ C}, D,π) by

taking W = Ω , Ri =�i , defining w ∈ π(pC) iff w ∈ V (C) and π(p) = π ′(p) when p ∈ Θ ′ , and letting the remaining rela-
tions in M be defined by the semantic restrictions on models. Conversely, given a model M , we define g(M) = (Γ,π ′) as
follows: Ω = W , w ∈ V (C) iff w ∈ π(pC), �i = Ri and w ∈ π ′(p) iff w ∈ π(p). Clearly, Γ,π, w |� ϕ iff f (Γ,π ′), w |� ϕ ,
and g(M), w |� ϕ iff M, w |� ϕ , for any formula ϕ .

For soundness, let � ϕ . By soundness w. r. t. models (Theorem 9), f (Γ,π ′), w |� ϕ for any Γ,π ′ , so Γ,π ′, w |� ϕ . For
completeness, assume that ϕ is consistent. By completeness w.r.t. models (Theorem 10), M, w |� ϕ for some M, w . Then
also g(M), w |� ϕ . �
4.3. Expressing game properties

The fact that an outcome w of a coalitional game Γ is in the core of Γ , can be expressed as follows.

MCM ≡ pN ∧
∧

C⊆N

[C s]¬pC

Theorem 11. (Γ,ω) |� MCM iff ω is in the core of Γ .

Proof. (Γ,ω) |� MCM iff ω ∈ V (N) and for every coalition C and every outcome ω′ such that (ω,ω′) ∈�i for every i ∈ C ,
ω′ /∈ V (C). This holds iff ω is in the core of Γ . �

We can now express the fact that the core is non-empty:

MCNE ≡ MCM ∨ 〈D〉MCM

Theorem 12. (Γ,ω) |� MCNE iff Γ |� MCNE iff the core of Γ is non-empty.

Proof. The core of Γ is non-empty iff either ω is in the core, or v is in the core for some v �= ω. In the first case,
(Γ,ω) |� MCM; in the second case (Γ,ω) |� 〈D〉MCM. �

Imputations can be characterised as follows.

MIMP ≡ pN ∧
∧
i∈N

[C s]¬pi

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 69
Proposition 1. (Γ,ω) |� MIMP iff ω is an imputation in Γ .

Compare MCM and MIMP—the logical characterisation highlights the similarities and differences between the core and
imputation concepts.

Moving on to stable sets, we first characterise the existence of objections to some imputation. The following formula
expresses a more general property, namely that there exists a C-s-objection which satisfies some formula α.

MOBJ(C,α) ≡ MIMP ∧ 〈C s〉(MIMP ∧ α ∧ 〈C〉pC)

Proposition 2. Let C be a coalition and α a formula. (Γ,ω) |� MOBJ(C,α) iff ω is an imputation and there exists a C-s-objection ω′
to ω such that (Γ,ω′) |� α.

Proof. Assume that ω is an imputation (the other case is trivial). (Γ,ω) |� MOBJ(C,α) iff there is an imputation ω′ such
that every i ∈ C strictly prefers ω′ over ω, and there is an outcome ω′′ such that every i ∈ C weakly prefers ω′′ over ω′ ,
(Γ,ω′′) |� α and ω′′ ∈ V (C). �

Of course, now MOBJ(C,�) (for some tautology �) is true in imputation ω iff there exists a C-s-objection to ω.
Characterising stable sets and the bargaining set in mcgl is not as straightforward. Formulae are interpreted in single

outcomes, and unlike in cgl we cannot name outcomes in formulae. But a set of outcomes is precisely what is denoted by a
formula: let ϕΓ = {ω: Γ,ω |� ϕ} be the extension of formula ϕ in game Γ . For example, we have that MC MΓ is the core
of Γ . We can characterise stable sets in the following sense: we can describe exactly the formulae whose extensions are
stable sets.

Theorem 13. Let γ be a formula.

Γ |� (γ → MIMP) ∧
(
γ → ¬

∨
C∈C

MOBJ(C, γ)

)
∧

(
¬γ →

∨
C∈C

MOBJ(C, γ)

)

iff γ Γ is a stable set in Γ .

Proof. Let ξ be the formula on the right hand side of |�. Γ |� ξ iff for every ω: (i) if ω ∈ γ Γ then ω is an imputation;
(ii) if ω ∈ γ Γ then there is no C-s-objection to ω for any C , which is a member of γ Γ and (iii) if ω �∈ γ Γ then there is a
C-s-objection to ω for some C , which is a member of γ Γ . This holds iff γ Γ is a stable set. �

However, note that the theorem above does not guarantee that given a stable set Y there necessarily exists a formula γ
such that γ Γ = Y .

4.4. Proof examples

We here illustrate the proof theory of mcgl. Before we formally prove some well known properties of coalitional games
in Example 6, we discuss some general proof theoretic principles.

Definition 6. Given the operator 〈D〉, we can define universal ‘everywhere’ and ‘somewhere’ operators A and E , respectively:

1. Aϕ := ϕ ∧ [D]ϕ ,
2. Eϕ := ϕ ∨ 〈D〉ϕ .

Clearly, Aϕ is equivalent to ¬E¬ϕ , and Eϕ equals ¬A¬ϕ .

Lemma 7. The following is a useful modal principle.

� 〈i〉(〈i〉p ∧ [i]q) → 〈i〉(p ∧ [i]q)

Proof. Let ML denote basic Modal Logic properties.

〈i〉(〈i〉p ∧ [i]q) ⇒ (Axiom 4)

〈i〉(〈i〉p ∧ [i][i]q) ⇒ (ML: (�r ∧ �s) → �(r ∧ s))

〈i〉(〈i〉(p ∧ [i]q)) ⇒ (Dual Axiom 4: (〈i〉〈i〉s → 〈i〉s))

〈i〉(p ∧ [i]q) �

70 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
The following lemma summarises some useful mcgl properties. Lemma 8.1 expresses that if agent i strictly prefers
outcome y over x, while he also prefers z over y, then he strictly prefers z over x. To prove this, we need the axioms Strict1
and Strict2. Then item 3 of the same lemma says that a similar kind of transitivity holds for the coalitional preferences.
But the reader should be aware that the relation for C s is not the strict version of the relations for C ; rather, it is the
intersection of the strict relations for i, with i ∈ C . It is in fact not hard to show that the axiom corresponding to Strict1 is
not valid for C s: we do this in item 2. Items 4, 5 and 6 are easy consequences of the definition of E , A and MOBJ(C, ·).

Lemma 8. The following are some properties of mcgl.

(1) � 〈is〉〈i〉r → 〈is〉r,
(2) �|� p ∧ 〈C〉(q ∧ [C]¬p) → 〈C s〉q,
(3) � 〈C s〉〈C〉r → 〈C s〉r,
(4) � A(p → q) → (�p → �q), with � ∈ Diamonds,
(5) � A(p → q) → (MOBJ(C, p) → MOBJ(C,q)),
(6) A is a box operator, in particular, it satisfies Nec and K .

Proof.

(1) A derivation is the following.

1 (p ∧ [D]¬p) → (〈is〉〈i〉r → 〈i〉(〈i〉r ∧ [i]¬p)) Strict2
2 (p ∧ [D]¬p) → (〈is〉〈i〉r → 〈i〉(r ∧ [i]¬p)) 1, Lemma 7
3 (p ∧ [D]¬p) → (〈is〉〈i〉r → (p ∧ 〈i〉(r ∧ [i]¬p))) 2,Taut
4 (p ∧ [D]¬p) → (〈is〉〈i〉r → 〈is〉r) 3, Strict1
5 〈is〉〈i〉r → 〈is〉r 4, D-rule

(2) Let R1, the preferences of 1, be the reflexive transitive closure of {(x, y), (y, z)} and similarly for R2 ⊇ {(x, y), (y, x),
(y, z)}. Let p be true in x only, and q true in y only. Let C = {1,2}. Let this be the full description of model M , in
particular, x, y and z are all alternatives. Then we have that RC is the reflexive transitive closure of {(x, y), (y, z)}
whereas the relation for C s is {(y, z)}. Then M, x |� p ∧〈C〉(q ∧[C]¬p) while at the same time M, x |� ¬〈C s〉q. Note that
indeed, the strict version of RC = {(x, y), (y, z)} is not the same as the intersection of the individual strict relations
Rs

C = {(y, z)}.
(3) We use the following result for logics which contain 〈D〉 and a number of other modalities with their converse [11,

Lemma 3.3.31]. Let Op (‘only here, p’) be defined as p ∧ [D]¬p. The D-rule says that if one can derive θ , which does
not involve p, from the assumption that Op, then one can derive θ . The following result generalises this by lifting the
assumption Op here, locally to assuming Op in an arbitrary state, or outcome. �
Definition 7. (See [11, pp. 31, 37].) We write ψ � ϕ for ‘ψ occurs as a sub-formula in ϕ ’. We do not identify different
occurrences of ψ in ϕ . Define the function Paste(ν,ψ,ϕ) (paste ν (the name) next to the occurrence of ψ in ϕ) by
induction on ϕ , treating ψ as an atomic symbol in ϕ . Let 〈X〉 be a modal diamond operator.

Paste(ν,ψ, p) = p if ψ �= p

Paste(ν,ψ,ψ) = ν ∧ ψ

Paste(ν,ψ,¬ϕ) = ¬ϕ

Paste(ν,ψ,ϕ ∧ χ) = Paste(ν,ψ,ϕ) ∧ Paste(ν,ψ,χ)

Paste(ν,ψ, 〈X〉ϕ) = 〈X〉Paste(ν,ψ,ϕ)

As an example, Paste(Op, r ∧ ¬q, r ∧ 〈i〉(r ∧ ¬q)) = Paste(Op, r ∧ ¬q, r) ∧ Paste(Op, r ∧ ¬q, 〈i〉(r ∧ ¬q)) = r ∧
〈i〉Paste(Op, r ∧ ¬q, (r ∧ ¬q) = r ∧ 〈i〉(Op ∧ r ∧ ¬q).

Before commenting on this definition, we formulate a lemma.

Lemma 9 (Pasting Lemma). Suppose we have a logic with the 〈D〉 operator, and for which for every operator, the converse is also
present. Assume Op has no proposition letters in common with ϕ and θ . For any sub-formula occurrence ψ � ϕ we have

If � Paste(Op,ψ,ϕ) → θ then � ϕ → θ

Proof. See [11, p. 37], where the only operators used indeed have a converse. �

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 71
1 〈C s〉〈C〉(p ∧ [D]¬p ∧ r) → ∧
i∈C 〈is〉〈i〉(p ∧ [D]¬p ∧ r) Intersect3, Intersect4

2
∧

i∈C 〈is〉〈i〉(p ∧ [D]¬p ∧ r) → ∧
i∈C 〈is〉(p ∧ [D]¬p ∧ r) Lemma 8.1

3 (p ∧ [D]¬p ∧ r) → ((p ∧ r) ∧ [D]¬(p ∧ r)) Nec, K ,� ¬p → ¬(p ∧ q)

4 〈C s〉〈C〉(p ∧ [D]¬p ∧ r) → ∧
i∈C 〈is〉((p ∧ r) ∧ [D]¬(p ∧ r)) 1, 2, 3, ML

5 〈is〉((p ∧ r) ∧ [D]¬(p ∧ r)) → 〈D〉((p ∧ r) ∧ [D]¬(p ∧ r)) Strict3

6 〈D〉((p ∧ r) ∧ [D]¬(p ∧ r)) → ∧
i∈C 〈is〉(p ∧ r) → 〈C s〉(p ∧ r) Intersect2

7 〈C s〉〈C〉(p ∧ [D]¬p ∧ r) → 〈C s〉(p ∧ r) 4, 5, 6

8 〈C s〉((p ∧ r) ∧ [D]¬(p ∧ r)) → 〈C s〉r ML

9 〈C s〉〈C〉(p ∧ [D]¬p ∧ r) → 〈C s〉r 7, 8

Fig. 3. A deductive proof of (1).

A few remarks are in place here. First of all, note that Paste(·, ·, ·) is only defined for atoms, conjunction, negation and
Diamond formulas, and for cases where the sub-formula occurrence ψ is exactly ϕ . Also note, that in the latter case,
the Pasting Lemma is just the D-rule. For Diamond formulas of the form 〈X〉ϕ , the lemma basically lets one assume
〈X〉(ν ∧ ϕ), which has the role of ‘assume there is an accessible state in which ϕ holds, and assume p is only true
there’. This is like giving a temporary name for that state. If we can derive a ‘p-free’ θ from that assumption, then θ

was derivable from 〈X〉ϕ already.
Now we can also explain why the definition of Paste(ν,ψ,¬ϕ) should not enter a recursive call: suppose we would
have defined a function Paste∗(·, ·, ·) and define Paste∗(ν,ψ,¬ϕ) = ¬Paste∗(ν,ψ,ϕ). Then one easily shows that
Paste∗(Op,q, [X]q), or, equivalently Paste∗(Op,q,¬〈X〉¬q) would be equal to [X](Op ∧q) (where 〈X〉 is some Diamond
operator). But the latter says: Suppose that all X-successors satisfy q and that they all have the same unique name p.
From that, it would of course follow that there can be at most one such a successor, in other words, we have �
Paste∗(Op,q, [X]q) → (〈X〉r → [X]r), but we do not have � 〈X〉r → [X]r, i.e., the Pasting Lemma would not hold for
this Paste∗(·, ·, ·).
Finally note, that the Pasting Lemma only lets us replace one occurrence of ψ by ν: this is also sensible, since without
this constraint we would obtain Paste∗(Op,q, 〈X〉(q ∧ r)∧〈X〉(q ∧ s)) = 〈X〉(Op ∧q ∧ r)∧〈X〉(Op ∧q ∧ s), and this again,
would identify two successor states (by saying they have the same unique name): we have � Paste∗(Op,q, 〈X〉(q ∧ r) ∧
〈X〉(q ∧ s)) → 〈X〉(s ∧ r), and would the Pasting Lemma hold for Paste∗(·, ·, ·), we would conclude � (〈X〉(q ∧ r)∧〈X〉(q ∧
s) → 〈X〉(r ∧ s), which is obviously undesirable.
Note that in our logic mcgl every operator has a converse (D is its own converse). In other words, we can apply the
pasting lemma. To do this in order to prove � 〈C s〉〈C〉r → 〈C s〉r, fix the following parameters in the pasting lemma:

Op = Op

ψ = r

ϕ = 〈C s〉〈C〉r
θ = 〈C s〉r

According to the lemma, in order to prove � 〈C s〉〈C〉r → 〈C s〉r, it is sufficient to prove

� Paste(Op, r, 〈C s〉〈C〉r) → 〈C s〉r)
Using the definition of Paste(·, ·, ·) and of Op, this boils down to proving

� 〈C s〉〈C〉(p ∧ [D]¬p ∧ r) → 〈C s〉r (1)

A proof is given in Fig. 3.
(4) It is a general modal principle that �(p → q) → (�p → �q), so it suffices to prove that � A(p → q) → �(p → q).

1 ¬�(p → q) → �(p ∧ ¬q) ML
2 �(p ∧ ¬q) → ((p ∧ ¬q) ∨ 〈D〉(p ∧ ¬q)) D2
3 ((p ∧ ¬q) ∨ 〈D〉(p ∧ ¬q)) → E¬(p → q) Taut,Def E
4 E¬(p → q) → ¬A(p → q) Aϕ = ¬E¬ϕ
5 A(p → q) → �(p → q) 1–4,Taut

(5) This follows immediately from the definition of MOBJ(C,α) and item 4.
(6) Immediate from the definition of A and the fact that [D] is a normal box operator. �

We now illustrate the formal derivation of some well-known properties of coalitional games.
Let ST (p) denote that p marks a stable set: ST(p) = A(st(p)) where

st(p) := (p → MIMP) ∧
(

p →
∧
C∈C

¬MOBJ(C, p)

)
∧

(
¬p →

∨
C∈C

MOBJ(C, p)

)

72 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
1a (p → MIMP) Assumption st(p)

1b (p → ∧
C∈C ¬MOBJ(C, p)) Assumption st(p)

1c (¬p → ∨
C∈C MOBJ(C, p)) Assumption st(p)

2 pN ∧ ∧
C⊆N [C s]¬pC Assumption MCM

3 MOBJ(C, p) → 〈C s〉(MIMP ∧ p ∧ 〈C〉pC) Definition MOBJ(C, p)

4 MOBJ(C, p) → 〈C s〉〈C〉pC 3, ML

5 MOBJ(C, p) → 〈C s〉pC 4, Lemma 8.1

6 MOBJ(C, p) → (〈C s〉pC ∧ [C s]¬pC) 2, 5

7 (〈C s〉pC ∧ [C s]¬pC) → ⊥ ML :� (�ϕ ∧ �¬ϕ) → ⊥
8 ¬p → ⊥ 1c, 6, 7

9 p 8, Taut

Fig. 4. Deductive proof for Example 6.1.

1a A(p → MIMP) Assumption ST(p)

1b A(p → ¬∨
C∈C MOBJ(C, p)) Assumption ST(p)

1c A(¬p → ∨
C∈C MOBJ(C, p)) Assumption ST(p)

2a A(q → MIMP) Assumption ST(q)

2b A(q → ¬∨
C∈C MOBJ(C,q)) Assumption ST(q)

2c A(¬q → ∨
C∈C MOBJ(C,q)) Assumption ST(q)

3 A(p → q) Assumption

4 E(q ∧ ¬p) → (q ∧ ¬p) ∨ 〈D〉(q ∧ ¬p) Def E

5 (q ∧ ¬p) → (
∨

C⊆N MOBJ(C, p) ∧ ¬∨
C⊆N MOBJ(C,q)) 1c, 2b

6 (q ∧ ¬p) → (
∨

C⊆N MOBJ(C,q) ∧ ¬∨
C⊆N MOBJ(C,q)) 3, 5, Lemma 8.5

7 (q ∧ ¬p) → ⊥ 6, ML

8 〈D〉(q ∧ ¬p) → 〈D〉(∨C⊆N MOBJ(C, p) ∧ ¬∨
C⊆N MOBJ(C,q)) 1c, 2b, Lemma 8.4

9 〈D〉(q ∧ ¬p) → 〈D〉(∨C⊆N MOBJ(C,q) ∧ ¬∨
C⊆N MOBJ(C,q)) 3, 8, Lemma 8.5

10 〈D〉(q ∧ ¬p) → ⊥ 9, ML

11 ¬E(q ∧ ¬p) 4, 7, 9

12 A(q → p) 11, DefnA, E

Fig. 5. Deductive proof for Example 6.2.

1 ST(MCM) → (ST(p) → A(MCM → p)) item 1 of this lemma

2 ST(MCM) → (ST(p) → (A(MCM → p) → A(p → MCM))) item 2 of this lemma

3 ST(MCM) → (ST(p) → (A(MCM → p) ∧ A(p → MCM))) 1, 2, Taut, MP

4 A(MCM → p) ∧ A(p → MCM) ↔ A(MCM ↔ p) Lemma 8.6

5 ST(MCM) → (ST(p) → A(MCM ↔ p)) 3, 4, ML

Fig. 6. Deductive proof for Example 6.3.

Example 6. The following properties concerning the core and stable sets are now derivable:

(1) The core is a subset of any stable set. In our object language, this is written as:

ST(p) → A(MCM → p)

(2) No stable set is a proper subset of any other. This is represented as:(
ST(p) ∧ ST(q)

) → (
A(p → q) → A(q → p)

)
(3) If the core is a stable set then it is the only stable set. We represent this as:

ST(MCM) → (
ST(p) → A(MCM ↔ p)

)

Proof.

(1) We will show � st(p) → (MCM → p); we then can use Lemma 8.6 to conclude � ST(p) → A(MCM → p). We prove
implications ϕ → ψ by using assumptions, proving ψ from the assumption ϕ . Note that such assumptions do not state
that Aϕ is derivable, and hence Nec cannot be applied to them. A proof is given in Fig. 4. In the proof, note that 1a, 1b,
and 1c together directly follow from assumption st(p), and 2 denotes MCM. The goal is to derive p from them.

(2) See Fig. 5. Again, we use assumptions. (Note that A(ϕ ∧ ψ) is equivalent to Aϕ ∧ Aψ .)
(3) A proof is given in Fig. 6. �

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 73
5. Logical comparisons

In this section we compare the two logics cgl and mcgl introduced in Sections 3 and 4 respectively, first to each other
and then to Coalition Logic.

5.1. cgl vs. mcgl

We have introduced two logics, cgl and mcgl, both interpreted in coalitional games. We know that the former is very
expressive when it comes to finite games, while the latter can express many interesting properties also of games with
infinitely many outcomes. In this section, we make the relationship between the two logics more precise.

First, observe that, while formulae of both logics express properties of coalitional games, an mcgl formula is interpreted
as a property of a given outcome of a game. A cgl formula, on the other hand, is interpreted as a general property of the
game. Of course the cgl outcome language Lo is also interpreted “locally” in a given outcome, but it is not so interesting to
compare Lo to the mcgl language because the former is not very expressive. However, the main cgl (cooperation) language
Lc allows us to refer to particular outcomes in a formula, so a property of a given outcome can be written in cgl as a
property of a game by referring to the outcome in the formula. cgl can express any property of finite games (Theorem 1),
so it must be able to express any property mcgl can express about a particular outcome in such a game. While we already
know that this holds, an actual mapping from the mcgl language to the cgl language might be of interest. We now provide
such a mapping. Assume that Γ is a finite coalitional game. Given an mcgl formula ϕ and an outcome ω of Γ , we define a
cgl formula fΓ (ϕ,ω). The idea is that ω has the (mcgl) property ϕ in the game Γ iff Γ has the (cgl) property fΓ (ϕ,ω).
Let:

• fΓ (p,ω) = ⊥ (when p ∈ Θ ′);
• fΓ (pC ,ω) = 〈C〉ω;
• fΓ (〈i〉ϕ,ω) = ∨

ω′∈Ω(ω′ �i ω ∧ fΓ (ϕ,ω′));
• fΓ (〈is〉ϕ,ω) = ∨

ω′∈Ω(ω′ �i ω ∧ ¬(ω �i ω
′) ∧ fΓ (ϕ,ω′));

• fΓ (〈C〉ϕ,ω) = ∨
ω′∈Ω(

∧
i∈C (ω′ �i ω) ∧ fΓ (ϕ,ω′));

• fΓ (〈C s〉ϕ,ω) = ∨
ω′∈Ω(

∧
i∈C (ω′ �i ω ∧ ¬(ω �i ω

′)) ∧ fΓ (ϕ,ω′));
• fΓ (〈D〉ϕ,ω) = ∨

ω′∈Ω\{ω} fΓ (ϕ,ω′);
• fΓ (〈ic〉ϕ,ω) = ∨

ω′∈Ω(ω �i ω
′ ∧ fΓ (ϕ,ω′));

• fΓ (〈isc〉ϕ,ω) = ∨
ω′∈Ω(ω �i ω

′ ∧ ¬(ω′ �i ω) ∧ fΓ (ϕ,ω′));
• fΓ (〈Cc〉ϕ,ω) = ∨

ω′∈Ω(
∧

i∈C (ω �i ω
′) ∧ fΓ (ϕ,ω′));

• fΓ (〈C sc〉ϕ,ω) = ∨
ω′∈Ω(

∧
i∈C (ω �i ω

′ ∧ ¬(ω′ �i ω)) ∧ fΓ (ϕ,ω′));
• f (¬ϕ,ω) = ¬ f (ϕ,ω);
• f (ϕ1 ∧ ϕ2,ω) = f (ϕ1,ω) ∧ f (ϕ2,ω).

We will henceforth sometimes use |�cgl and |�mcgl to denote the |� relation in cgl and mcgl, respectively, in case
confusion can occur.

Lemma 10. For any finite coalitional game Γ , outcome ω of Γ and mcgl formula ϕ:

Γ,ω |�mcgl ϕ iff Γ |�cgl fΓ (ϕ,ω)

Proof. The proof is by induction on the structure of ϕ . For the first base case, Γ,ω |�mcgl p iff Γ,π,ω |�mcgl p for every π ,
which is never true. It is also not true that Γ |�cgl ⊥. For the second base case, Γ,ω |�mcgl pC iff ω ∈ V (C) iff Γ |�cgl 〈C〉ω.
Consider the inductive step. Γ,ω |�mcgl 〈i〉ϕ iff there is a ω′ such that ω′ �i w and Γ,ω′ |�mcgl ϕ iff, by the induction
hypothesis, there is a ω′ such that (Γ |�cgl ω′ �i ω and Γ |�cgl fΓ (ϕ,ω′)) iff Γ |�cgl

∨
ω′∈Ω(ω′ �i ω ∧ fΓ (ϕ,ω′)). The

argument is similar for the other cases. �
As an example, let ω be an outcome of a finite coalitional game Γ , and consider the property “ω is in the core of Γ ”. We

have seen that this property can be expressed in mcgl by the formula MCM (p. 68). We leave it to the reader to check that
fΓ (MCM,ω) is equal to the cgl formula CM(ω) (p. 59). Furthermore, fΓ (MCNE,ω) is equivalent to CNE, both expressing
the fact that the core of Γ is non-empty (note that fΓ (MCNE,ω) does not depend on ω).

It is obvious that, for finite games, cgl is strictly more expressive than mcgl. For example, truth of a mcgl formula is
invariant under “renaming” of outcomes, i.e., changing the names of the outcomes in Ω does not change the truth value of
a formula in that game, but this is not the case for cgl.

Moving on to infinite games, it is no longer the case that cgl is strictly more expressive than mcgl.

Proposition 3. There is an mcgl formula ϕ′ , such that for any cgl formula ϕ there exist coalitional games Γ,Γ ′ , both having an
outcome ω, such that

Γ,ω |�mcgl ϕ
′ and Γ ′,ω �|�mcgl ϕ

′

74 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
but

Γ |�cgl ϕ iff Γ ′ |�cgl ϕ

Proof. Take

ϕ′ = 〈{i}〉p{i}
i.e., the property of a given outcome ω that there exist a ω′ ∈ V ({i}) such that ω′ �i ω. This property is expressible for
finite games by the cgl formula

∨
ω′∈Ω(〈{i}〉ω′ ∧ ω′ �i ω). However, given an arbitrary cgl formula we now construct two

infinite games, one which has the property and one which does not, which are indiscernible by the cgl formula. Note that
in cgl (unlike in mcgl), the logical language is parameterised by a set of outcomes, and formulae are interpreted by games
over the same set of outcomes. Thus, we fix a set of outcomes Ω , and we assume that Ω is infinite. We assume that Ω

contains an outcome ω. Let ϕ be a cgl formula over Ω . Let ω′ �= ω be an outcome in Ω not mentioned (as a symbol in the
outcome language) in ϕ . Such an outcome exists, since there are assumed to be infinitely many outcomes, and only finitely
many can occur in ϕ . Let Γ ′ = 〈N ′,Ω, V ′,�′

1, . . . ,�′
m〉 be a game such that V ′({i}) = {ω′} (V ′(C) arbitrary for other C) and

�′
i be such that (� j arbitrary for j �= i):

(a) ω �′
i ω

′ (ω is strictly better than ω′ for i),
(b) if ω �′

i ω
′′ then ω′′ = ω or ω′′ = ω′ (for i, other than ω′ there are no outcomes less than or equal to ω).

Clearly, such a preference relation exists. Observe that Γ ′,ω �|�mcgl ϕ
′ . We now define Γ from Γ ′ by making i indifferent

between ω and ω′ . Let Γ = 〈N,Ω, V ,�1, . . . ,�m〉 such that N ′ = N , V = V ′ , � j =�′
j for j �= i and

�i =�′
i ∪{

(ω′,ω)
}

It must be shown that �i is indeed a preference relation. Reflexivity and completeness are straightforward. For transitivity,
assume that (ω1,ω2), (ω2,ω3) ∈�i ; we must show that (ω1,ω3) ∈�i . First, consider the case when (ω1,ω2) = (ω′,ω)

(i.e., the new pair we added to the preference relation). We then have that (ω,ω3) ∈�i . Since ω �= ω′ , we have that
(ω,ω3) �= (ω′,ω) and thus that (ω,ω3) ∈�′

i . By (b) we have that either ω3 = ω, in which case (ω1,ω3) = (ω′,ω) is in
�i by construction, or ω3 = ω′ in which case (ω1,ω3) = (ω′,ω′) is in �i by reflexivity. Second, consider the case when
(ω2,ω3) = (ω′,ω). Then ω1 �i ω

′ . In the case that ω1 = ω, (ω1,ω3) = (ω,ω) and we are done due to reflexivity, so assume
that ω1 �= ω. If it were not the case that ω1 �i ω3, then ω3 �i ω1 by completeness, and thus ω �i ω1. Since ω3 = ω �=
ω′ , we have that (ω3,ω1) �= (ω′,ω), so (ω3,ω1) ∈�′

i . By (b), ω1 = ω′ , but then we have that ω1 �i ω3 by construction,
contradicting the assumption. Finally, consider the case when neither (ω1,ω2) = (ω′,ω) nor (ω2,ω3) = (ω′,ω). In this
case, ω1 �′

i ω2 and ω2 �′
i ω3, ω1 �′

i ω3 by transitivity of �′
i , and thus ω1 �i ω3. Thus, �i is transitive, and a preference

relation. Observe that Γ,ω |�mcgl ϕ
′ .

It remains to be shown that Γ |�cgl ϕ iff Γ ′ |�cgl ϕ . First, we show that for any ω′′ ∈ Ω , Γ,ω′′ |�cgl ψ iff Γ ′,ω′′ |�cgl ψ ,
for any outcome language sub-formula ψ of ϕ . For the base case ψ = ω′′′ . Γ,ω′′ |�cgl ω

′′′ iff ω′′ = ω′′′ iff Γ ′,ω′′ |�cgl ω
′′′ .

The inductive step is straightforward. We now show that for every sub-formula ψ of ϕ , we have that Γ |�cgl ψ iff Γ ′ |�cgl
ψ . For the base case, ψ = ω1 � j ω2. For j �= i we are done immediately, so let j = i. Γ ′ |�cgl ψ iff ω1 �′

i ω2 iff, since
(ω1,ω2) �= (ω′,ω) (it was assumed that ω′ is not mentioned in ϕ and ψ is a sub-formula of ϕ), ω1 �i ω2 iff Γ |�cgl ψ . For
the inductive step, let ψ = 〈C〉γ . Γ ′ |�cgl ψ iff there is an ω′′ ∈ V ′(C) such that Γ ′,ω′′ |�cgl γ iff there is an ω′′ ∈ V (C) such
that Γ,ω′′ |�cgl γ iff Γ |�cgl ψ . The other cases in the inductive step are straightforward. �

Proposition 3 shows that mcgl can express properties of infinite games which cannot be expressed in cgl. An example
of such a property (used in the proof of the proposition) is that for a given outcome ω there exist an ω′ ∈ V ({i}) such that
ω′ �i ω. Another, related, example is the expression of the property of ω being in the core. The cgl formula CM(ω) only
expresses this property under the assumption of a finite set of outcomes; the mcgl formula MCM is true in an outcome
of a game iff the outcome is in the core, regardless of whether the set of outcomes is finite or not. Of course, mcgl is not
strictly more expressive, since, e.g., cgl (still) can refer to particular outcomes directly.

In addition to the ability to express properties such as core membership and core emptiness of infinite games, mcgl

has another main advantage over cgl: succinctness. While mcgl cannot express everything cgl can express, the properties
it can express can often be expressed much more succinctly (even for finite games). Again, consider the expressions of
non-emptiness of the core, CNE and MCNE for cgl and mcgl, respectively. CNE will typically be a much longer expression,
and its size increases quadratically with the number of outcomes in the game while the size of MCNE does not depend on
the number of outcomes at all.

5.2. Coalition logic

As we noted in Section 2.1, it may be rather tempting to believe that the outcomes of coalitional games can be inter-
preted as states, and that the characteristic function can be interpreted as an effectivity function, and that as a consequence
Coalition Logic (cl) [27] could be interpreted directly in coalitional games. In this section, we compare the semantics of cl

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 75
on the one hand and cgl on the other, and show that in fact there is a fundamental difference between the two approaches.
We also do the same for mcgl.

We first give a very brief review of some of the concepts of cl. A coalition model for agents N over a set of atomic
propositions Φ0 is a triple M = (S, E,π), where S is a non-empty set of states, π : Φ0 → 2S an assignment and E gives a
function of type 2N → 22S

for each state s ∈ S . It is required that each E(s) is a playable effectivity function, satisfying the
following conditions:

(i) ∀C⊆N∅ /∈ E(s)(C),
(ii) ∀C⊆N S ∈ E(s)(C),

(iii) for any X , if S \ X /∈ E(s)(N \ C) then X ∈ E(s)(C) (N-maximality),
(iv) for all X ⊆ X ′ ⊆ S and all C , if X ∈ E(s)(C) then X ′ ∈ E(s)(C) (outcome monotonicity),
(v) if C1 ∩ C2 = ∅, X1 ∈ E(s)(C1) and X2 ∈ E(s)(C2), then X1 ∩ X2 ∈ E(s)(C1 ∪ C2) (superadditivity).

Formulae of coalition logic, and their satisfaction in states s of coalition models M , are defined as follows10:

M, s |� p iff p ∈ Φ0 and s ∈ π(p)

M, s |� ¬ψ iff M, s �|� ψ

M, s |� ψ1 ∨ ψ2 iff M, s |� ψ1 or M, s |� ψ2

M, s |� 〈C〉ψ iff ψM ∈ E(s)(C)

where

ψM = {s ∈ S: M, s |� ψ}
A formula ϕ is valid, |� ϕ , if it satisfied by every state in every coalition model.

5.2.1. cgl vs. cl

If we take the set of atomic propositions to be Φ0 = Ω ∪ {ω �i ω′: ω,ω′ ∈ Ω, i ∈ N}, then we can read every formula
in Lo ∪ Lc as a formula of coalition logic. Thus we can interpret Lc formulae in both a game Γ and in a pointed coalition
model (M, s), and a Lo formula in both a pointed game (Γ,ω) and in a pointed model (M, s). Coalitional games and
coalition models have many similarities. The former have “outcomes” while the latter have “states”. An interesting question
is: given a coalitional game Γ , does there exist an equivalent coalition model M with states corresponding to the outcomes
of Γ , maybe in addition to a designated “initial” state t? Equivalence here means that Γ and the pointed coalition model
(M, t) agree on Lc formulae and (Γ,ω) and (M,ω) agree on Lo formulae for any outcome ω. We can say that Γ and M
then are outcome-equivalent.

In other words, a coalitional game Γ and a coalition model M , defined over atomic propositions Φ0 above and having
states Ω ∪ {t}, are outcome-equivalent iff for any ϕ1 ∈ Lc , any ϕ0 ∈ Lo and any ω ∈ Ω , we have both:

(a) Γ |� ϕ1 iff M, t |� ϕ1, and
(b) Γ,ω |� ϕ0 iff M,ω |� ϕ0.

A natural question then is: given a game, does there exist an outcome-equivalent coalition model?
The answer, given by the following theorem, is “no”, except for certain very special classes of games. The latter is the

class of games where V (C) = {ω} for all coalitions C �= N , for some fixed outcome ω ∈ Ω . To give them a name, we will call
such games limited games, since, first, most games are not of this kind and, second, they are not very interesting. The only
coalition in a limited game which possibly can select an outcome different from the fixed outcome ω is the grand coalition.

Theorem 14. No non-limited coalitional game with more than one player has an outcome-equivalent coalition model.

Proof. Let Γ = 〈N,Ω, V ,�1, . . . ,�m〉 be a coalitional game with more than one player, and assume that M = (S, E,π) with
S = Ω ∪ {t} is a coalition model outcome-equivalent to Γ . We argue, by using the properties (i)–(v) of a playable effectivity
function given above, that Γ must be limited. First, observe that for any Lo formula ϕ and coalition C �= ∅, Γ |� 〈C〉ϕ iff,
by (a), M, t |� 〈C〉ϕ , i.e.

ϕM ∈ E(t)(C) ⇔ ∃ω∈V (C)Γ,ω |� ϕ (2)

for any ϕ ∈ L0, C ⊆ N , C �= ∅.
Observe that V (C) �= ∅ for any coalition C �= ∅. This follows from (ii) and (2): S = �M ∈ E(t)(C), where � is some

tautology in the L0 language (e.g., ω′ ∨ ¬ω′), so ∃ω∈V (C)Γ,ω |� �, which ensures that V (C) is non-empty.

10 Pauly [27] uses [C] where we use 〈C〉; here we use the latter notation for easier comparison.

76 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
We show that for any coalition C �= ∅ and any ω ∈ Ω

ω ∈ V (C) ⇔ {ω} ∈ E(t)(C) (3)

For the direction to the right, assume that ω ∈ V (C). Γ,ω |� ω (note the dual role of ω as both an outcome and a formula),
so ωM ∈ E(t)(C) by (2). By (b), M,ω |� ω, so ω ∈ ωM . If ω′ ∈ ωM , then M,ω′ |� ω, Γ,ω′ |� ω by (b) and ω′ = ω. Thus,
{ω} = ωM ∈ E(t)(C). For the direction to the left, let {ω} ∈ E(t)(C). Since, again, ωM = {ω}, by (2) there is a ω′ ∈ V (C) such
that Γ,ω′ |� ω. This is only the case when ω = ω′ ∈ V (C).

For any non-empty disjoint coalitions C1 and C2:

(
ω1 ∈ V (C1) and ω2 ∈ V (C2)

) ⇒ ω1 = ω2 (4)

V (C1) = V (C2) (5)∣∣V (C1)
∣∣ = 1 (6)

We prove (4)–(6):

(4) Assume otherwise, that ω1 ∈ V (C1) and ω2 ∈ V (C2) and ω1 �= ω2. By (3), {ω1} ∈ E(t)(C1) and {ω2} ∈ E(t)(C2), and by
superadditivity it must be the case that ∅ = {ω1} ∩ {ω2} ∈ E(t)(C1 ∪ C2), but this contradicts (i). Thus, (4) must hold.

(5) Assume that ω ∈ V (C1); we show that ω ∈ V (C2). Since V (C2) is non-empty, let ω′ ∈ V (C2). By (4), ω′ = ω. Thus
ω ∈ V (C2). By a symmetric argument, ω ∈ V (C2) implies that ω ∈ V (C1).

(6) Since V (C1) is non-empty, there is an ω1 ∈ V (C1). If ω2 ∈ V (C1), then ω2 ∈ V (C2) by (5) and ω1 = ω2 by (4). Thus,
V (C1) = {ω1}.

Let a,b ∈ N such that a �= b (existence is ensured by the assumption of more than one player). By (5) and (6) there is an
ω1 such that V ({a}) = V ({b}) = {ω1}. For any d ∈ N such that d �= a and d �= b, {a} and {d} are disjoint and we again get
that V ({d}) = V ({a}) = {ω1}. Thus, V ({d}) = {ω1} for any d ∈ N . Let C ⊂ N be a coalition different from the grand coalition.
There is a d ∈ N such that C and {d} are disjoint, so by (5) V (C) = V ({d}) = {ω1}, which shows that Γ is limited. �

Thus, in general, a coalitional game is not simply a coalition model with outcomes as states. Even though the language
of Coalition Logic is similar to the language of cgl, it follows from Theorem 14 that we cannot use the semantic rules of
Coalition Logic directly to say whether a formula is true or not in a coalitional game. The main reason is that a difference
between outcomes in coalitional games and states in coalition models is that an outcome is local to the coalition which
chooses it, while states are global. As a consequence, while it is perfectly possible in a coalitional game that both a coalition
C can choose outcome ω (ω ∈ V (C)) and a coalition C ′ , C ′ and C disjoint, can choose outcome ω′ (ω′ ∈ V (C ′)) when ω′ �= ω,
it is not possible in a coalition model that both C is effective for {ω} and C ′ is effective for {ω′}. The proof of Theorem 14
shows that in general there is no playable effectivity function corresponding, in the sense of (3), to a characteristic function.

When it comes to logical properties of the two logics, in the form of valid formulae, it is straightforward to see that the
logics differ. To compare validities, we must take the set of atomic propositions Φ0 for cl as defined above, and it is the
formulae in Lc which are relevant since they are formulae of both logics (Lo are formulae of cl in this case, but not of cgl).

Theorem 15. There are formulae ϕ,ψ ∈ Lc such that (here we use subscripts on the satisfiability relations with the obvious meaning):

(1) |�CL ϕ but �|�CGL ϕ ,
(2) |�CGL ψ but �|�CL ψ .

Proof. Let C1 ∩ C2 = ∅ and ω1 �= ω2 ∈ Ω . Take ϕ = (〈C1〉ω1 ∧〈C2〉ω2) → (ω1 ∧ω2). This formula (superadditivity) is valid in
cl, but not in cgl. To see the latter, observe that in fact ¬〈C〉(ω1 ∧ω2) is valid in cgl for any C when ω1 �= ω2 (and there are
obviously games where the antecedent of ϕ holds). This immediately gives us the second claim: take ψ = ¬〈C〉(ω1 ∧ ω2).
ψ is not valid in cl. Another example is to take ϕ = 〈C1〉ω → 〈C2〉ω, where C1 ⊆ C2 (coalition monotonicity). �

In other words, the axiomatisation of cgl is indeed different from that of cl.

5.2.2. mcgl vs. cl

The languages of cl and mcgl are similar, too. Under the surface of the syntactic similarities, however, is a bigger
conceptual difference than between cl and cgl. In the two latter logics, the meaning of an expression of the form 〈C〉ϕ is
related to what the coalition C can achieve or make come about. The intended meaning of 〈C〉ϕ in mcgl is fundamentally
different: it means that C prefers ϕ . One could nevertheless ask whether a coalition model could “emulate” a coalition
model under this interpretation, and we now discuss that question.

The language of cl can be seen as a subset of the mcgl language. To compare the two types of models we need the
same language. Thus, we fix the set of agents N , and we consider the restricted mcgl language L− defined by the following
grammar: ϕ ::= pC | 〈C〉ϕ | ¬ϕ | ϕ1 ∧ ϕ2, C ∈ C . By taking Φ0 = {pC : C ∈ C} in cl and Θ ′ = ∅ in mcgl, L− is the same as

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 77
the language of cl when the latter is restricted such that expressions of the form 〈∅〉ϕ are not allowed. In a sense, L− is
the least common denominator between the two respective languages.

We thus say that a coalitional game Γ and a coalition model M are equivalent if they are defined over the same set N
of agents, Φ0 = {pC : C ∈ C}, Θ ′ = ∅, S = Ω , and for every ϕ ∈ L− ,

Γ,ω |� ϕ iff M,ω |� ϕ

for every ω ∈ Ω .
The following Theorem 16 shows, in a similar way to Theorem 14, that except for very trivial games, mcgl properties of

coalitional games do not correspond to cl properties of coalition models.
Two coalitional games Γ1,Γ2 are logically equivalent (w.r.t. L−) if they have the same set of agents and the same set of

outcomes Ω and it is the case that for any formula ϕ ∈ L− , Γ1,ω |� ϕ iff Γ2,ω |� ϕ .

Theorem 16. If a coalitional game Γ is equivalent to a coalition model M, then Γ is logically equivalent to a game Γ ′ in which all
agents have the same preference relation.

Proof. Assume that Γ,ω |� ϕ iff M,ω |� ϕ , for any ω and ϕ ∈ L− . Let ω be an outcome. Let C ′ ∈ C , and let C ⊆ C ′ .
Playable effectivity functions are coalition-monotone: we have that E(ω)(C) ⊆ E(ω)(C ′) ([27], Lemma 3.1). This means that
M,ω |� 〈C〉ϕ → 〈C ′〉ϕ , and thus that Γ,ω |� 〈C〉ϕ → 〈C ′〉ϕ , for any ϕ . It is easy to see that Γ,ω |� 〈C ′〉ϕ → 〈C〉ϕ for any ϕ ,
from the semantics of mcgl. Thus, we have that

Γ,ω |� 〈C〉ϕ iff Γ,ω |� 〈C ′〉ϕ (7)

for any ω, any ϕ , and any C ⊆ C ′ .
Let Γ ′ be like Γ , except that �′

i =�1 for every i ∈ N (all agents have the same preferences). We argue that Γ and Γ ′
are logically equivalent w.r.t. L− . This can be shown by structural induction over ϕ: the pC ,¬,∧ cases are straightforward,
so it suffices to show that

Γ,ω |� 〈C〉ψ iff Γ ′,ω |� 〈C〉ψ
for any C and ω and ψ under the induction hypothesis. Γ,ω |� 〈C〉ψ iff, by (7), Γ,ω |� 〈N〉ψ iff, again by (7), Γ,ω |� 〈{1}〉ψ
iff there is a ω′ ∈ Ω such that ω′ �1 ω and Γ,ω′ |� ψ . By the induction hypothesis and the facts that ω′ �1 ω iff ω′ �′

i ω
for any i and �′

i =�′
j for any i, j, this holds iff Γ ′,ω |� 〈C〉ψ . Thus, Γ is logically equivalent to Γ ′ . �

Again, it is easy to see that the two logics differ on the level of validities (in the language L−).

Theorem 17. There are formulae ϕ,ψ ∈ L− such that (here we use subscripts on the satisfiability relations with the obvious meaning):

(1) |�CL ϕ but �|�MCGL ϕ ,
(2) |�MCGL ψ but �|�CL ψ .

Proof. Let C ⊆ C ′ . Take ψ = 〈C ′〉γ → 〈C〉γ for some arbitrary γ . It is easy to see that ψ is valid in mcgl (if everyone in C ′
prefers γ then everyone in C prefers γ) but not in cl (a coalition can typically achieve more than its proper subsets). Take
ϕ to be the converse; ϕ = 〈C〉γ → 〈C ′〉γ . ϕ is valid in cl (coalition monotonicity), but it is easy to see that it is not valid
in mcgl. �
6. Discussion and future work

In summary, we have introduced two different logics for representing and reasoning about coalitional games without
transferable payoffs. We presented Coalitional Game Logic (cgl), gave a complete axiomatisation for it, showed it was
expressively complete with respect to finite coalitional games, showed that the satisfiability problem was np-complete, gave
a decision procedure for the logic, showed how the logic could be used to capture a range of solution concepts for finite
coalitional games, and finally, showed formally why the logic was fundamentally different to existing cooperation logics.
We presented Modal Coalitional Game Logic (mcgl), used it to characterise solution concepts for general (not necessarily
finite) coalitional games, and gave a complete axiomatisation of it. cgl is formally more expressive than mcgl, but can only
be used to express properties such as non-emptiness of the core for games with finitely many outcomes. mcgl can on the
other hand express such properties also of games with infinitely many outcomes, and in addition more succinctly.

Logics for reasoning about properties of coalitions in general and cooperation between agents in particular have received
much attention lately, the most prominent frameworks being Pauly’s Coalition Logic (cl) and Alur, Henzinger and Kupfer-
man’s atl. By using standard tools and techniques developed in AI and computer science, we can employ such logics for,
e.g., model checking, automated theorem proving and automated synthesis of models. The key construct of cl/atl is of the
form 〈C〉ϕ , where C is a coalition, with the intended meaning that C can achieve ϕ . Syntactically, such logics resemble cgl

in particular, and so it is natural to ask whether we could just use cl/atl to represent properties of coalitional games. What

78 T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79
are the practical differences between the logics we have developed in this paper and cl—what, if anything, can be done
with the former that cannot be done with the latter? For example, can we express properties such as non-emptiness of the
core in cl? Let us give some answers. The results of Section 5.2 imply that we cannot directly use cl/atl for this purpose
and, more importantly, that cl/atl and cgl are fundamentally different logics, with quite different validities. In contrast, cgl

can be directly and transparently used for this purpose, since it is interpreted over coalitional games. We showed that, mcgl,
too, is fundamentally different from cl/atl.

In future work, the computational complexity of mcgl should be studied. In our complexity analysis for cgl we assumed
an explicit representation for games. In some circumstances this assumption might not be practical, and more succinct
representations of games must be used. Several succinct representations of coalitional games have been studied in the
literature [8,9,20], and in future work the complexity of model checking against such representations should be studied.
This is particularly relevant for games with an infinite set of outcomes, which obviously must be finitely represented. One
particular class of games that have an infinite set of outcomes when modelled as games without transferable utilities is of
course the class of games with transferable utilities. Model checking cgl and mcgl directly against succinct representations
of TU games (such as marginal contribution nets [20]) is one particularly interesting possibility. Also very interesting for
future work is to find restricted classes of games that are tractable with respect to satisfiability checking (for both cgl and
mcgl).

It would also be interesting to consider the logical characterisation of other solution concepts for coalitional games [24].
The Shapley value, in particular, would be interesting to analyse. A key issue would be how to capture the additivity axiom
of the Shapley value, since this seems to require quantifying over games. Perhaps the obvious line of attack would be to
consider NTU versions of the Shapley value—several have been proposed in the literature.

Acknowledgements

The research reported in this paper started when the first author was visiting the Department of Computer Science,
University of Liverpool, supported by grant 166525/V30 from the Research Council of Norway. We thank the reviewers for
their helpful suggestions, which have enabled us to substantially improve the paper. Note that parts of Section 3 were
previously presented in the conference paper [2].

References

[1] J. Abdou, H. Keiding, Effectivity Functions in Social Choice Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
[2] T. Ågotnes, W. van der Hoek, M. Wooldridge, On the logic of coalitional games, in: Proceedings of the Fifth International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS-2006), Hakodate, Japan, 2006.
[3] R. Alur, T.A. Henzinger, O. Kupferman, Alternating-time temporal logic, Journal of the ACM 49 (5) (September 2002) 672–713.
[4] R.J. Aumann, M. Maschler, The bargaining set for cooperative games, in: Advances in Game Theory, Annals of Mathematics Studies 52 (1964) 443–467.
[5] J. Bilbao, J. Fernández, J. López, Complexity in cooperative game theory, Manuscript.
[6] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, Cambridge, England, 2001.
[7] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press, Cambridge, MA, 2000.
[8] V. Conitzer, T. Sandholm, Complexity of determining nonemptiness of the core, in: Proceedings of the Eighteenth International Joint Conference on

Artificial Intelligence (IJCAI-03), Acapulco, Mexico, 2003, pp. 613–618.
[9] V. Conitzer, T. Sandholm, Computing Shapley values, manipulating value division schemes, and checking core membership in multi-issue domains. in:

Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-2004), San Jose, CA, 2004, pp. 219–225.
[10] V. Conitzer, T. Sandholm, Complexity of constructing solutions in the core based on synergies among coalitions, Artificial Intelligence 170 (2006)

607–619.
[11] M. de Rijke, Extended modal logic, PhD thesis, University of Amsterdam, 1993.
[12] X. Deng, C.H. Papadimitriou, On the complexity of cooperative solution concepts, Mathematics of Operations Research 19 (2) (1994) 257–266.
[13] E. Elkind, L. Goldberg, P. Goldberg, M. Wooldridge, Computational complexity of weighted threshold games, in: Proceedings of the Twenty-Second AAAI

Conference on Artificial Intelligence (AAAI-2007), Vancouver, British Columbia, Canada, 2007.
[14] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics,

Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990, pp. 996–1072.
[15] D.B. Gillies, Solutions to general non-zero-sum games, in: Contribution to the Theory of Games, IV, Annals of Mathematics Studies 40 (1959) 47–85.
[16] P. Harrenstein, Logic in conflict, PhD thesis, Utrecht University, 2004.
[17] P. Harrenstein, W. van der Hoek, J.-J. Meyer, C. Witteven, A modal characterization of Nash equilibrium, Fundamenta Informaticae 57 (2–4) (2003)

281–321.
[18] I. Horrocks, U. Hustadt, U. Sattler, R. Schmidt, Computational modal logic, in: P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic,

Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 2007, pp. 181–245.
[19] G.E. Hughes, M.J. Cresswell, Introduction to Modal Logic, Methuen and Co., Ltd., 1968.
[20] S. Ieong, Y. Shoham, Marginal contribution nets: A compact representation scheme for coalitional games, in: Proceedings of the Sixth ACM Conference

on Electronic Commerce (EC’05), Vancouver, Canada, 2005.
[21] H.J. Levesque, All I know: a study in autoepistemic logic, Artificial Intelligence 42 (2–3) (March 1990) 263–309.
[22] J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behaviour, Princeton University Press, Princeton, NJ, 1944.
[23] N. Ohta, A. Iwasaki, M. Yokoo, K. Maruono, V. Conitzer, T. Sandholm, A compact representation scheme for coalitional games in open anonymous

environments, in: Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-2006), Boston, MA, 2006.
[24] M.J. Osborne, A. Rubinstein, A Course in Game Theory, The MIT Press, Cambridge, MA, 1994.
[25] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[26] M. Pauly, Logic for social software, PhD thesis, University of Amsterdam, 2001. ILLC Dissertation Series 2001-10.
[27] M. Pauly, A modal logic for coalitional power in games, Journal of Logic and Computation 12 (1) (2002) 149–166.

T. Ågotnes et al. / Artificial Intelligence 173 (2009) 45–79 79
[28] M. Pauly, M. Wooldridge, Logic for mechanism design—a manifesto, in: Proceedings of the 2003 Workshop on Game Theory and Decision Theory in
Agent Systems (GTDT-2003), Melbourne, Australia, 2003.

[29] T. Sandholm, Distributed rational decision making, in: G. Weiß (Ed.), Multiagent Systems, The MIT Press, Cambridge, MA, 1999, pp. 201–258.
[30] O. Shehory, S. Kraus, Coalition formation among autonomous agents: Strategies and complexity, in: C. Castelfranchi, J.-P. Müller (Eds.), From Reaction

to Cognition—Fifth European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW-93, in: LNAI, vol. 957, Springer-Verlag,
Berlin, Germany, 1995, pp. 56–72.

[31] O. Shehory, S. Kraus, Task allocation via coalition formation among autonomous agents, in: Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95), Montréal, Québec, Canada, August 1995, pp. 655–661.

[32] O. Shehory, S. Kraus, Methods for task allocation via agent coalition formation, Artificial Intelligence 101 (1–2) (1998) 165–200.
[33] R.M. Smullyan, First-Order Logic, Springer-Verlag, Berlin, Germany, 1968.
[34] W. van der Hoek, W. Jamroga, M. Wooldridge, A logic for strategic reasoning, in: Proceedings of the Fourth International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS-2005), Utrecht, The Netherlands, 2005, pp. 157–164.
[35] W. van der Hoek, J.-J. Meyer, Making some issues of implicit knowledge explicit, International Journal of Foundations of Computer Science 3 (2) (1992)

193–224.
[36] W. van der Hoek, J.-J. Meyer, A complete epistemic logic for multiple agents—combining distributed and common knowledge, in: Epistemic Logic and

the Theory of Games and Decisions, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997, pp. 35–68.
[37] W. van der Hoek, M. Pauly, Modal logic for games and information, in: P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic, Elsevier

Science Publishers B.V., Amsterdam, The Netherlands, 2006, pp. 1077–1148.
[38] F. van Harmelen, V. Lifschitz, B. Porter, Handbook of Knowledge Representation, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 2007.
[39] M. Wooldridge, T. Ågotnes, P.E. Dunne, W. van der Hoek, Logic for automated mechanism design—a progress report, in: Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence (AAAI-2007), Vancouver, British Columbia, Canada, 2007.
[40] M. Wooldridge, P.E. Dunne, On the computational complexity of qualitative coalitional games, Artificial Intelligence 158 (1) (2004) 27–73.
[41] M. Wooldridge, P.E. Dunne, On the computational complexity of coalitional resource games, Artificial Intelligence 170 (10) (2006) 853–871.

	Reasoning about coalitional games
	Introduction
	Background
	Coalitional games
	Solution concepts for coalitional games

	A logic for finite coalitional games
	CGL: Syntax and semantics
	Axioms and completeness
	Model checking and the complexity of satisfiability
	A decision procedure for satisfiability
	Phase 1: Decomposing the Lc formula
	Phase 2: Dealing with preference literals
	Phase 3: Creating branches from choices
	Phase 4: Checking the tableau

	Characterising coalitional games
	Proof examples

	A modal logic for coalitional games
	mcgl: Syntax and semantics
	Axiomatisation
	Soundness and completeness

	Expressing game properties
	Proof examples

	Logical comparisons
	cgl vs. mcgl
	Coalition logic
	cgl vs. cl
	mcgl vs. cl

	Discussion and future work
	Acknowledgements
	References

