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In the Complete Set Partitioning problem we are given a finite set of elements where every 
subset is associated with a value, and the goal is to partition this set into disjoint subsets 
so as to maximise the sum of subset values. This abstract problem captures the Coalition 
Structure Generation problem in cooperative games in characteristic function form, where 
each subset, or coalition, of agents can make a profit when working together, and the 
goal is to partition the set of agents into coalitions to maximise the total profit. It also 
captures the special case of the Winner Determination problem in combinatorial auctions, 
where bidders place bids on every possible bundle of goods, and the goal is to find an 
allocation of goods to bidders that maximises the profit of the auctioneer.
The main contribution of this article is an extensive theoretical analysis of the search space 
of the Complete Set Partitioning problem, which reveals that two fundamentally different 
exact algorithms can be significantly improved upon in terms of actual runtime. These are 
(1) a dynamic programming algorithm called “DP” [48,36] and (2) a tree-search algorithm 
called “IP” [32]. We start by drawing a link between DP and a certain graph describing 
the structure of the search space. This link reveals that many of DP’s operations are in 
fact redundant. Consequently, we develop ODP—an optimal version of DP that avoids all
of its redundant operations. Since ODP and IP are based on different design paradigms, 
each has its own strengths and weaknesses compared to the other. Thus, one has to 
trade off the advantages of one algorithm for the advantages of the other. This raises 
the following question: Is this trade-off inevitable? To answer this question, we develop 
a new representation of the search space, which links both algorithms, and allows for 
contrasting the workings of the two. This reveals that ODP and IP can actually be combined, 
leading to the development of ODP-IP—a hybrid algorithm that avoids the limitations of its 
constituent parts, while retaining and significantly improving upon the advantages of each 
part.
We benchmark our algorithm against that of Björklund et al. (2009) [8], which runs in 
O (2n) time given n agents. We observe that the algorithm of Björklund et al. relies on 
performing arithmetic operations with very large integers, and assumes that any such 
operation has unit cost. In practice, however, working with large integers on a modern 
PC is costly. Consequently, when implemented, our O (3n) algorithm outperforms that of 

* Corresponding author.
E-mail address: trahwan@gmail.com (T. Rahwan).

1 Tomasz Michalak and Talal Rahwan contributed equally to this article.

http://dx.doi.org/10.1016/j.artint.2015.09.006
0004-3702/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2015.09.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:trahwan@gmail.com
http://dx.doi.org/10.1016/j.artint.2015.09.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2015.09.006&domain=pdf


T. Michalak et al. / Artificial Intelligence 230 (2016) 14–50 15

Björklund et al. by several orders of magnitude on every problem instance, making ours 
the fastest exact algorithm for complete set partitioning to date in practice.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Complete Set Partitioning problem models the setting where every subset of a finite set is associated with a (positive 
or negative) real value, and the goal is to partition the set into pairwise disjoint subsets so as to maximise the sum of 
the subset values.2 This problem captures a number of important applications. For instance, early papers on its algorithmic 
complexity were motivated by the structuring of corporate tax in the United States [20–22] (see Section 7 for details). 
More recently, Complete Set Partitioning has been studied in the context of combinatorial auctions [36,18], where there 
are multiple different items for sale, each bidder can place a bid on every subset of items, and the auctioneer’s goal is to 
allocate the items to the bidders (and charge each bidder what she bid for the set of items she received) so as to maximise 
the total profit. It also plays an important role in the analysis of cooperation in multi-agent systems. Indeed, one of the most 
important aspects of such systems is the agents’ ability to interact with one another in order to improve their performance 
and compensate for each other’s deficiencies. One means of interaction that has been extensively studied in the literature 
is to form a coalition, i.e., a group of agents that agree to coordinate their activities (and possibly agree on how the reward 
from cooperation should be divided among them) in order to achieve a certain objective. The settings where the total worth 
of a coalition is determined solely by the identities of its members (and not by other co-existing coalitions) can be modelled
by characteristic function games. In such games, we are given a set of agents, denoted by A, and the value of every subset, 
or coalition, of agents is specified by a characteristic function v : 2A → R. To optimise the social welfare, we need to find 
a partition of agents into coalitions (a coalition structure) that maximises the sum of the values of the coalitions in the 
partition. A wide range of potential applications of coalition formation have been considered in the literature. For instance, 
by forming coalitions, autonomous sensors can improve their surveillance of certain areas [13], green-energy generators can 
reduce their uncertainty regarding their expected energy output [7], cognitive radio networks can increase their throughput 
[16], and buyers can obtain cheaper prices through bulk purchasing [19]; see the work of Sandholm et al. [38] and Rahwan 
et al. [35] for further examples.

In this article, our main goal is to improve our understanding of the complete set partitioning problem and to develop 
exact algorithms for this problem. Observe that the input to the complete set partitioning problem is a list of 2n − 1 real 
values (where n is the size of the ground set), and every algorithm that is guaranteed to find an optimal solution on 
every instance of this problem has to inspect all of these values. Thus, the running time of every exact algorithm is at least 
exponential in n, and in some of the applications we have discussed (such as combinatorial auctions or multi-agent systems) 
the value of n can be quite large. Therefore, an important goal is to design an algorithm that can find an optimal partition 
as efficiently as possible, both in the worst case and on average (for realistic value distributions).

The main techniques used in exact algorithms for solving computationally hard problems are: (1) dynamic programming, 
(2) tree search, (3) data preprocessing, and (4) local search [47]. With respect to our problem, we focus on two exact 
algorithms, which are based on techniques (1) and (2), respectively. Specifically:

• DP: This algorithm was originally proposed by Yeh [48] to solve the complete set partitioning problem, and was re-
discovered by Rothkopf et al. [36], who used it to solve the winner determination problem in combinatorial auctions. 
This algorithm is based on dynamic programming: to find an optimal partition of the set of agents A, we start by com-
puting an optimal partition of every subset C ⊆ A with |C | = 2, then use those to compute an optimal partition of every 
C ⊆ A with |C | = 3, and so on, until an optimal partition of A is found.

• IP: This algorithm, which was proposed by Rahwan et al. [32] for the coalition structure generation problem, is based 
on a representation of the search space that groups partitions into disjoint subspaces based on the sizes of the subsets 
within each partition. With this representation, it is possible to compute upper and lower bounds on the quality of 
the best solution in each subspace. By comparing the bounds for different subspaces, it is possible to identify, and thus 
focus on, the promising subspaces. For every such subspace, the algorithm constructs multiple search trees, where every 
node represents a subset, and every path (from a root node to a leaf node) represents a partition. Every such tree is 
traversed in a depth-first manner. To speed up the search, IP applies a branch-and-bound technique to identify and 
avoid branches that have no potential of containing an optimal solution.

The above two algorithms are based on fundamentally different design paradigms, so it is not surprising that they exhibit 
quite different computational behaviour. More specifically, in what follows, we provide a comparison of these algorithms 
from three different perspectives:

2 One can also consider the minimisation variant of this problem, where the goal is to minimise the sum of subset values; however, since we allow both 
positive and negative subset values, these two variants of the problem are equivalent, so we focus of the maximisation problem.
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• Worst case performance: The time required to exhaustively enumerate all partitions of an n-element set is !(nn/2)
[38]. Such enumeration, however, involves repeating certain operations multiple times. As mentioned earlier, DP avoids 
such repetition by storing partial solutions in memory, thereby lowering the required time to O (3n). On the other hand, 
the techniques used by IP to speed up the search cannot ensure that the worst-case time drops below nn/2. This is 
because the effectiveness of IP is strongly influenced by the proportion of the search space that it identifies as being 
unpromising. This proportion, in turn, depends on the values of the subsets. It is possible to define a class of problem 
instances for which IP searches the entire space exhaustively (e.g., one in which every set {a1, . . . , as} with s ∈ {1, . . . , n}
has a value of 1, and every other set has a value of 0).

• Average performance: When tested on popular value distributions, IP has been shown to be faster than DP, by several 
orders of magnitude for some distributions [32]. This is because, in practice, IP is able to identify many (if not the vast 
majority of) subspaces and/or branches of the search trees as being unpromising. DP, on the other hand, is not capable 
of any such shortcuts.

• Returning solutions anytime: IP has the advantage of being an anytime algorithm: it returns a valid solution very 
quickly, and then improves on the quality of its solution over time, while establishing progressively-better guarantees 
on solution quality. DP, on the other hand, is not an anytime algorithm; it can only return a solution once it has 
successfully terminated. Being anytime is important since the size of the search space grows exponentially with the 
number of elements to be partitioned, and hence there might not always be sufficient time to run the algorithm to 
completion. Moreover, being anytime makes the algorithm more robust against failure; if the execution is stopped 
before the algorithm would normally have terminated, then it can still provide a solution that is better than the initial 
one, and the quality of this solution improves over time.

The above comparison shows that each algorithm has its relative strengths and weaknesses compared to the other. In 
other words, there is a trade-off between the advantages of one algorithm and the advantages of the other. This raises the 
following question: Is this trade-off inevitable?

Against this background, the main contributions of this article are three-fold:

• Analysing the search space: We provide a theoretical analysis of the search space, which reveals how two fundamentally 
different exact algorithms can be combined and significantly improved upon in terms of actual runtime. This, in turn, 
contributes towards a better understanding of the set partitioning problem itself, and a better understanding of the 
complementarities that evidently exist between two algorithm-design paradigms, namely Dynamic Programming and 
Depth-First Search.

• Developing ODP: We draw a link between the workings of DP and the coalition structure graph—a graphical represen-
tation of the search space due to Sandholm et al. [38], where every node represents a partition. This link provides an 
intuitive interpretation of DP’s operations: the algorithm evaluates all the movements along the edges of the aforemen-
tioned graph, and stores the most beneficial movements in a table. Then, starting from the node where all items are 
in one set, DP makes a series of movements until it reaches an optimal node. This visualisation suggests that certain 
movements are not needed to reach an optimal node. We formalise this observation and use it to design our Optimal 
Dynamic Programming (ODP) algorithm, which performs only one third of DP’s operations, without losing the guarantee 
of finding a best partition. ODP is optimal in that it avoids all redundant operations without losing the guarantee of 
finding an optimal solution.

• Developing ODP-IP: As we will show, ODP and IP approach the optimisation problem in different ways. Nevertheless, 
instead of viewing these as two alternative choices, we develop a new search-space representation that draws a link be-
tween the two algorithms, and reveals the potential of combining them into a single, superior algorithm. Building upon 
this analysis, we refine both algorithms, and use the refined versions as building blocks to construct a hybrid approach, 
called ODP-IP. The ODP-IP algorithm runs its two constituent algorithms in parallel, and uses the information provided 
by ODP to speed up IP’s search. This approach results in an algorithm that has the best features of its components: it 
runs in O (3n) just like ODP, and returns solutions anytime, with progressively-better guarantees, just like IP. Better still, 
when tested on a wide variety of value distributions, ODP-IP is empirically shown to significantly outperform both ODP 
and IP in all cases.3

Importantly, we benchmarked our algorithms against the primary alternative proposed in the literature, namely the 
inclusion–exclusion algorithm of Björklund et al. [8], which is an exact dynamic-programming algorithm for set partitioning 
that is built around the inclusion–exclusion principle. From a theoretical perspective, this is the state-of-the-art algorithm 
in terms of worst-case complexity; it runs in O (2n) time. However, when implementing it, we found that it requires mul-
tiplying numbers that consist of hundreds of digits, which tends to be costly in practice. As a consequence, in our tests 
the runtime of this algorithm grows at a rate of O (6n) rather than O (2n). For instance, given 15 agents, the algorithm 

3 Note that ODP and IP can only use a single processor each, while ODP-IP uses two processors running in parallel. While this alone can make ODP-IP 
twice as fast (assuming no overheads), our empirical evaluation shows that ODP-IP can be faster by one or two orders of magnitude, e.g., given 25 agents. 
This implies that the majority of the performance gain comes from the synergies between the two components, ODP and IP.
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requires more than five months to terminate, while our algorithm for the worst-case problem instance takes 0.01 second (see 
Section 6.3 for more details). Thus, ours is the fastest exact algorithm for complete set partitioning to date.

The open-source Java implementation of all the algorithms discussed or developed in this article (namely, IP, DP, ODP, 
ODP-IP, as well as the inclusion–exclusion algorithm by Björklund et al. [8]) is publicly available at the following link: 
https :/ /github .com /trahwan /ODP-IP _and _InclusionExclusion.

The remainder of this article is structured as follows. Section 2 formalises the complete set partitioning problem. Sec-
tion 3 provides detailed descriptions of IP and DP. Section 4 presents ODP—our optimal version of DP, while Section 5
presents our hybrid algorithm, ODP-IP. The two new algorithms are then evaluated in Section 6. The related literature is dis-
cussed in Section 7. Section 8 concludes the article and outlines future work. Appendix A provides a summary of the main 
notation used throughout the article. Appendix C and Appendix D contain the omitted proofs, while Appendix E discusses a 
certain aspect of ODP-IP in detail.

2. Preliminaries

In this section, we formally introduce the key definitions and notation used throughout the article. In what follows, we 
use the language of cooperative game theory, i.e., we talk about the coalition structure generation problem rather than the 
complete set partitioning problem. The reason for this is twofold. First, much of the recent work on this topic was done 
within the multi-agent research community, which views this problem from the coalition structure generation perspective, 
so adopting the language of cooperative games facilitates the comparison with prior work. The second reason is purely 
linguistic: when speaking about coalition structure generation, we refer to subsets of agents as “coalitions”, and thus avoid 
the overuse of the term “set”.

An instance of the Coalition Structure Generation problem is given by a finite set A = {a1, a2, . . . , an} and a function v that 
assigns a real value to every non-empty subset of A. We refer to every non-empty subset of A as a coalition. We denote by 
C A the set of coalitions over A, i.e., C A = {C : C ⊆ A, C ̸= ∅}; we have 

∣∣C A
∣∣ = 2n − 1. For any two coalitions C1, C2 ∈ C A , we 

write C1 < C2 when C1 precedes C2 lexicographically, e.g., we write {a1, a3, a9} < {a1, a4, a5} and {a4} < {a4, a5}.
An exhaustive partition of all the agents in a given set C ⊆ A into disjoint coalitions is called a coalition structure over C . 

Formally, a coalition structure is defined as follows.

Definition 1. Given a subset C ⊆ A, a coalition structure over C is a collection of coalitions CS = {C1, . . . , C|CS|} that satisfies 
the following conditions: 

⋃|CS|
j=1 C j = C , and for all i, j ∈ {1, . . . , |CS|} such that i ̸= j it holds that Ci ∩ C j = ∅.

For each C ⊆ A, we will denote by "C the set of all coalition structures over C . Furthermore, given a coalition structure 
CS ∈ "C , we will refer to the sum of the values of all coalitions in CS as the value of CS, and denote it by V (CS). Formally, 
V (CS) = ∑

C ′∈CS v(C ′). We are now ready to state our optimisation problem formally.

Definition 2. The coalition structure generation problem is to find an optimal coalition structure CS∗ ∈ "A , i.e., an (arbitrary) 
element of the set

arg max
CS∈"A

V (CS).

Given a coalition C ⊆ A, we denote by f (C) the value of an optimal partition of C , i.e., f (C) = V (CS), where CS ∈
arg maxCS∈"C V (CS).

The coalition structure generation problem is computationally challenging, as the number of possible coalition structures 
over n players, which is known as the n-th Bell number Bn [6], satisfies αnn/2 ≤ Bn ≤ nn for some positive constant α (see, 
e.g., the work of Sandholm et al. [38] for proofs of these bounds, and the book of de Bruijn [10] for an asymptotically tight 
bound). Moreover, it is NP-hard to find an optimal coalition structure given oracle access to the characteristic function [38].

Since every coalition structure represents a possible solution to the coalition structure generation problem, the terms 
“coalition structure” and “solution” will be used interchangeably. Furthermore, the set of possible coalition structures will 
often be referred to as the “search space”.

3. The IP algorithm vs. the DP algorithm

In this section we provide a detailed description of the main exact algorithms in the literature: (1) IP—the anytime, 
depth-first search algorithm by Rahwan et al. [30], and (2) DP—the dynamic programming algorithm by Yeh [48].

3.1. The IP algorithm

The IP algorithm is based on the integer partition-based representation [29] of the space of possible coalition structures. 
This representation divides the space into disjoint subspaces that are each represented by an integer partition of n. Recall 

https://github.com/trahwan/ODP-IP_and_InclusionExclusion
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Fig. 1. A four-agent example of the integer partition-based representation, where A = {a1,a2,a3,a4}.

that an integer partition of n is a multiset of positive integers, or parts, whose sum (with multiplicities) is equal to n [1]. 
We denote the set of all integer partitions of n by In . For instance, I4 = {{4}, {1, 3}, {2, 2}, {1, 1, 2}, {1, 1, 1, 1}}. In the IP 
algorithm, every integer partition I ∈ In corresponds to a subspace "A

I ⊆ "A consisting of all coalition structures in which 
the sizes of the coalitions match the parts of I . For instance, "{a1,a2,a3,a4}

{1,1,2} is the subspace consisting of all coalition structures 
over {a1, a2, a3, a4} that contain two coalitions of size 1 and one coalition of size 2. A four-agent example is shown in Fig. 1.

Using this representation, it is possible to compute upper and lower bounds on the value of the best coalition structure 
that can be found in each subspace. To this end, for every coalition size s ∈ {1, 2, . . . , n}, let C A

s denote the set of all possible 
coalitions of size s. Furthermore, let Maxs and Avgs be the maximum and average values of the coalitions in C A

s , respectively. 
Rahwan et al. [32] prove that, by computing Avgs for all s ∈ {1, 2, . . . , n}, it is possible to compute the average value of the 
coalition structures in each subspace "A

I , I ∈ In , as follows.

Theorem 3. (See Rahwan et al. [32].) For every I ∈ In, let I(i) be the multiplicity of i in I . Then
∑

CS∈"A
I

V (CS)
∣∣"A

I

∣∣ =
∑

i∈I

I(i) · Avgi .

Since the value of the best coalition structure in "A
I is at least the average value of the coalition structures in "A

I , 
we obtain the following lower bound on the value of the best coalition structure in "A

I : LBI = ∑
i∈I I(i)Avgi . By replacing 

Avgi with Maxi in this expression, we obtain an upper bound UBI on the value of the best coalition structure in "A
I : 

UBI = ∑
i∈I I(i)Maxi . Using these bounds, the algorithm computes an upper bound UB∗ = maxI∈In UBI and a lower bound 

LB∗ = maxI∈In LBI on the value of an optimal coalition structure CS∗ . Knowing UB∗ enables us to bound the quality of 
CS∗∗—the best coalition structure found by the algorithm at a given point in time; we set β = UB∗/V (CS∗∗).4 On the other 
hand, computing LB∗ is useful for identifying subspaces that have no potential of containing an optimal coalition structure: 
these are subspaces "A

I with UBI < LB∗ . These subspaces are pruned from the search space. As for the remaining subspaces, 
the algorithm searches them one at a time. During this search, if a solution is found whose value is greater than V (CS∗∗), 
then the algorithm updates CS∗∗ by setting it to the newly found solution. If LB∗ < V (CS∗∗), the algorithm also updates LB∗

by setting it to V (CS∗∗), and repeats the attempt of pruning unpromising subspaces, i.e., those whose upper bounds are 
smaller than the updated LB∗ . The order in which the subspaces are searched is always based on the upper bounds: out of 
all the remaining subspaces, the one with the highest upper bound is searched first. Next, we explain how a subspace is 
searched.

The process of searching a subspace, say "A
I , where I = {i1, . . . , ik}, is carried out in a depth-first manner: the algorithm 

iterates over the coalitions in C A
i1

and, for every coalition C1 ∈ C A
i1

that the algorithm encounters, it iterates over the coali-

tions in C A
i2

that do not overlap with C1. Similarly, for every coalition C2 ∈ C A
i2

that the algorithm encounters, it iterates over 
the coalitions in C A

i3
that do not overlap with C1 ∪ C2, and so on. This process is repeated until the last set, C A

ik
, is reached. 

In this way, by the time the algorithm picks the last coalition Ck ∈ C A
ik

, it has selected a combination of k − 1 coalitions 
that, together with Ck , form a coalition structure in "A

I . The algorithm repeats this process so that, eventually, every coali-
tion structure in "A

I is examined. Here, it should be noted that a straightforward repetition of the aforementioned process 
would not be efficient, because some of the coalition structures will be examined multiple times. For instance, every coali-
tion structure {C1, C2, C3} ∈ "A

{2,2,3} will be examined twice, once as {C1, C2, C3} and once as {C2, C1, C3}, because in this 
example we have |C1| = |C2|. Rahwan et al. [32] explain how IP avoids such redundant operations.

To speed up the search, IP applies a branch-and-bound technique at every depth d < k. Specifically, after fixing d coalitions 
C1 ∈ C A

i1
, . . . , Cd ∈ C A

id
, and before iterating over the relevant coalitions in C A

id+1
, . . . , C A

ik
, it checks whether

d∑

j=1

v(C j) +
k∑

j=d+1

Maxi j < V (CS∗∗). (1)

4 This bound is meaningful only if the values of all coalitions are non-negative. However, it is only used to estimate the quality of the current solution 
when the algorithm is terminated prematurely, and the algorithm works correctly even if the characteristic function can take negative values.
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Fig. 2. An illustration of IP’s branch-and-bound technique when searching "A
{1,3,4} . Here, the algorithm recognises that the coalition structures containing 

Cx or C y, Ci cannot be optimal, and so IP does not proceed deeper into the search tree.

Now, if inequality (1) holds, every coalition structure containing C1, . . . , Cd can be skipped during the search, because its 
value cannot be greater than V (CS∗∗)—the value of the best coalition structure found by the algorithm so far. Fig. 2 provides 
an illustration of how IP searches "A

{1,3,4} given 8 agents.
As mentioned earlier, before IP can use the branch-and-bound technique, it needs to compute Maxi and Avgi for all 

i ∈ {1, . . . , n}. To do so, the algorithm iterates over the values of all coalitions, in order to compute the average and maximum 
values for coalitions of every size. One way to perform this iteration is to first go through all coalitions of size 1 (to compute 
Max1 and Avg1), then through all coalitions of size 2 (to compute Max2 and Avg2), then size 3 and so on. However, to allow 
for certain subspaces to be searched during the iteration process, IP goes through the coalitions in a different order. More 
specifically, it iterates over all coalitions of size s ∈ {1, . . . , ⌊n/2⌋} in lexicographic order, while simultaneously iterating over 
all coalitions of size n − s in anti-lexicographic order.5 With this order, the i-th coalition of size s and the i-th coalition of 
size n − s form a coalition structure in "A

{s,n−s} . By going through every such pair, IP examines every coalition structure in 
"A

{s,n−s} . By the end of this process, every subspace "A
I with |I| = 2 is searched.

The IP algorithm runs in O (nn) time, and in the worst case it can end up constructing every possible coalition structure. 
In practice, however, IP has been shown to run significantly faster than DP given popular coalition-value distributions. 
Furthermore, the bound that IP generates, i.e., β = UB∗/V (CS∗∗), has been shown to improve rapidly during the search 
process, e.g., reaching 90% when less than a 10−9 fraction of the search space for 25 agents has been searched (given 
certain value distributions).

3.2. The DP algorithm

The DP algorithm is based on the following theorem.

Theorem 4. (See Yeh [48].) Given a coalition C ⊆ A, the value of an optimal partition of C can be computed recursively as follows:

f (C) =
{

v(C) if |C | = 1
max

{
v(C) , max{C ′,C ′′}∈"C

(
f (C ′) + f (C ′′)

)}
otherwise.

(2)

The pseudocode of DP is given in Algorithm 1. For every coalition C ⊆ A, the algorithm computes f (C) as well as t(C)—a 
variable that provides an indication of the optimal partition of C . Once f (C) and t(C) are computed for every C ⊆ A, an 
optimal coalition structure CS∗ is computed recursively. A four-agent example is illustrated in Fig. 3.

DP requires storing a total of 2n+1 values, namely f (C) and t(C) for every C ⊆ A. This memory requirement is not 
burdensome since we are dealing with the complete set partitioning problem, and the input to this problem contains 2n

values already. In other words, we implicitly assume there is O (2n) available space.
The running time of DP has been shown to be O (3n) [48]. This is significantly less than !(nn/2)—the time required to 

exhaustively enumerate all coalition structures. However, the disadvantage is that DP provides no interim solution before 
completion, meaning that it is not possible to trade computation time for solution quality.

5 Such iteration can be carried out efficiently, e.g., using the techniques of Rahwan and Jennings [26].
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ALGORITHM 1: The DP algorithm.

Input: v(C) for all C ⊆ A.
Output: an optimal coalition structure CS∗ .

1 foreach C ⊆ A : |C | = 1 do // for every coalition of size 1
2 f (C) ← v(C)

3 t(C) ← {C}
4 foreach s = 2 to n do
5 foreach C ⊆ A : |C | = s do // for every coalition of size s
6 f (C) ← v(C)

7 t(C) ← {C} // start by considering the case where C is not split
8 foreach {C ′, C ′′} ∈ "C do // for every possible way of splitting C in two
9 if f (C) < f (C ′) + f (C ′′) then

10 f (C) ← f (C ′) + f (C ′′) // to ensure that f (C) = max{C ′,C ′′}∈"C
(

f (C ′) + f (C ′′)
)

11 t(C) ← {C ′, C ′′} // to ensure that t(C) ∈ arg max{C ′,C ′′}∈"C
(

f (C ′) + f (C ′′)
)

// the algorithm has computed t(C) and f (C) for every C ⊆ A; the remaining lines compute CS∗

12 CS∗ ← {A}
13 foreach C ∈ CS∗ do
14 if t(C) ̸= {C} then // i.e., if {C} is not an optimal partition of C
15 CS∗ ← (CS∗\{C}) ∪ t(C) // replace C with the two coalitions in t(C)

16 Go to line 13 and start with the new CS∗

17 return CS∗

4. Improving the DP algorithm

In this section, we present the first contribution of this article, which is an optimal version of DP. More specifically, in 
Section 4.1 we demonstrate that there exists a strong link between the way DP works and the way nodes are connected in 
a certain graph. Based on this link, we analyse in Section 4.2 the effect of avoiding certain operations of DP. Building upon 
this analysis, we present in Section 4.3 our optimal dynamic programming (ODP) algorithm—a modified version of DP that 
avoids all the redundant operations of DP, without losing the guarantee of finding an optimal solution.

4.1. The link between DP and the coalition structure graph

To obtain a deeper understanding of how DP works, we consider the coalition structure graph [38]. In this undirected 
graph, every node represents a coalition structure. These nodes are categorised into n levels, namely "A

1 , . . . , "A
n , so that 

level "A
i is composed of the nodes that represent coalition structures containing exactly i coalitions each. An edge connects 

two coalition structures if and only if (1) they belong to two consecutive levels "A
i and "A

i−1, and (2) the coalition structure 
in "A

i can be obtained from the one in "A
i−1 by splitting one coalition into two. Fig. 4 shows a four-agent example of the 

coalition structure graph. It also shows the values of all coalition structures based on the characteristic function from 
Fig. 3.

This graph enables us to visualise how DP works. To this end, observe that every movement upwards in the graph 
(between adjacent nodes) corresponds to splitting one coalition into two (see Fig. 4). Based on this observation, we can 
divide the work of DP into three main tasks, which can all be seen on the graph.

1. Task 1: evaluate all the movements in the graph: For every coalition C with |C | ≥ 2, the algorithm evaluates every 
partition {C ′, C ′′} ∈ "C by computing f (C ′) + f (C ′′) (see line 9 of the pseudocode). This can be interpreted as evaluating 
every movement that involves splitting C in two. Since the algorithm does this for every possible coalition of size s ≥ 2, 
all the movements in the graph are eventually evaluated.

2. Task 2: store the most beneficial movements: In lines 8–11, the algorithm determines, for every coalition C , whether 
it is beneficial to make a movement that involves splitting C and, if so, what is the best such movement (this decision 
is stored in t(C)). In terms of the coalition structure graph, this step can be interpreted as follows. Setting t(C) = {C}
means that, from any node representing a coalition structure CS ∋ C , it is not beneficial to make a movement that involves 
splitting C . On the other hand, setting t(C) = {C ′, C ′′} means that, from any node representing CS ∋ C , one of the most 
beneficial movements is to split C into C ′ and C ′′ .

3. Task 3: move upwards in the graph: This occurs in lines 12 to 16. Here, DP first initialises CS∗ by setting CS∗ = {A}. 
This means that DP starts at the node that represents {A}, i.e., the bottom node in the graph. After that, DP selects 
some coalition C ∈ CS∗ with t(C) ̸= {C} (if such a coalition exists), and replaces it with t(C). By doing this, DP makes 
a movement that involves splitting C into the two coalitions that are stored in t(C). This process is repeated until 
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Fig. 3. A four-agent example of how DP computes t(C) and f (C) for every C ⊆ A.

t(C) = {C} for all C ∈ CS. In other words, DP keeps moving upwards in the graph through a series of connected nodes—
a “path”—until it reaches a node after which no movement is beneficial. For instance, in our example from Fig. 3, the 
way DP reached {{a1}, {a2}, {a3, a4}} can be visualised as a sequence of movements through the dashed path in Fig. 4, 
where the first movement involved splitting {a1, a2, a3, a4} into {a1, a2} and {a3, a4}, and the second movement involved 
splitting {a1, a2} into {a1} and {a2}.

From this visualisation it is clear that, for every coalition structure CS with |CS| > 2, there are multiple paths that 
start from the bottom node of the graph and end with the node that contains CS. For example, in Fig. 4 one could reach 
{{a1}, {a2}, {a3, a4}} through three different paths, which are highlighted using dotted, dashed, and bold edges, respectively. 
Furthermore, if there are multiple paths that lead to the same optimal node, DP can reach this node through any of those 
paths. Indeed, we have not specified in which order the algorithm goes through the possible splits of C (line 8), and for 
every choice of {C ′, C ′′} from arg max{C ′,C ′′}∈"C

(
f (C ′) + f (C ′′)

)
there exists an order that results in t(C) being set to {C ′, C ′′}. 

For example, in Fig. 3, t({a1, a2, a3, a4}) was set to {{a1, a2}, {a3, a4}} because this was one of the movements evaluated to 
150. However, t({a1, a2, a3, a4}) could have been set to {{a1}, {a2, a3, a4}} instead, since this movement is also evaluated to 
150. If that happened, DP would have found, based on t({a2, a3, a4}), that it is beneficial to split {a2, a3, a4} into {a2} and 
{a3, a4}. As a result, the same optimal solution (i.e., {{a1}, {a2}, {a3, a4}}) would have been found, but through the dotted 
path rather than the dashed one.
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Fig. 4. The coalition structure graph of four agents. The figure also shows the value of every coalition structure based on the characteristic function from 
Fig. 3.

4.2. Analysing the effect of avoiding certain operations in DP

We have shown that DP evaluates all the movements in the coalition structure graph, stores the best ones in the table t , 
and then selects from t the movements that together form a path from the bottom node to an optimal node. We have 
also shown that DP is indifferent among the paths that lead to the same optimal node. All of these observations raise an 
important question: “what happens if DP is modified so that it only evaluates some of the movements in the graph?” Suppose that 
for a certain coalition C the algorithm did not evaluate some movement that involves splitting C into two coalitions, namely 
C1 and C2. That is, suppose that the term "C in line 8 of the pseudocode was replaced with "C \ {{C1, C2}}. In this case, 
the movement stored in t(C) would be the best out of all the movements that DP has evaluated (i.e., excluding the one in 
which C is split into C1 and C2). As a result, since DP always selects its movements from the table t , whenever a coalition 
structure CS ∋ C is reached, the movement to CS′ = (CS\{C}) ∪ {C1, C2} would no longer be an option. In other words, DP 
would ignore the existence of the edge that connects CS to CS′ , evaluate the movements through the remaining edges, and 
decide on its path accordingly. This can be visualised on the graph by removing the edge that connects CS to CS′ . Now, if CS′

happened to be the only optimal solution in the graph, and if the removed edge happened to be the only one leading to 
CS′ , then DP would no longer be able to find the optimal solution. We formalise this observation in the remainder of this 
section.

Given two disjoint coalitions C1 and C2, let mC1,C2 denote the movement that corresponds to splitting C = C1 ∪ C2
into C1 and C2. Observe that the movement mC1,C2 can be made through different edges in the coalition structure graph. 
More precisely, it can be made through any edge that connects a coalition structure CS ∋ C to the coalition structure 
CS′ = (CS\{C}) ∪ {C1, C2}. Further, let M denote the set of all possible movements in the coalition structure graph, i.e., 
M = {mC1,C2 : C1, C2 ⊆ A, C1 ∩ C2 = ∅}. Now, given a coalition C ⊆ A, a subset of movements M ⊆ M and two partitions 
π , π ′ ∈ "C , we write π M−→ π ′ if and only if π ′ can be reached from π via a single movement in M . That is, we set

π
M−→ π ′ iff π ′ = (π\{C1 ∪ C2}) ∪ {C1, C2} for some mC1,C2 ∈ M.

While M−→ expresses the notion of reachability with respect to single movements from M , the following definition gen-
eralises this notion to multiple movements.

Definition 5. Given a coalition C ⊆ A, a subset of movements M ⊆ M and two partitions π , π ′ ∈ "C , we say that π ′ is 
reachable from π via M , and write π M! π ′ , if and only if π ′ is either equal to π , or can be reached from π via one or more 
movements in M . More formally,

π
M! π ′ iff π = π ′ or π

M−→ π ′ or ∃{π1, . . . ,πk} ⊆ "C : π M−→ π1
M−→ · · · M−→ πk

M−→ π ′.
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Given a coalition C ⊆ A and a partition π ∈ "C , let us denote by Rπ
M the set of all partitions that are reachable from π via 

M , that is, Rπ
M = {π ′ ∈ "C : π M! π ′}. Observe that every partition in Rπ

M is either equal to π or reachable from π via at 
least one movement in M , in which case it must also be reachable from at least one of the partitions in {π ′ ∈ "C : π M−→ π ′}. 
Based on this observation, the set Rπ

M can be computed recursively as follows:

Rπ
M = {π} ∪

⋃

π ′∈"C :π M−→π ′

Rπ ′
M . (3)

Now, let us define f M(C) as the value of an optimal partition in R{C}
M . More formally, f M(C) = max

π∈R{C}
M

V (π). With this 
definition, we are ready to generalise Theorem 4 (the main theorem behind DP) by replacing f (C) and "C with f M(C) and 
R{C}

M , respectively.

Theorem 6. For every coalition C ⊆ A and for every subset of movements M ⊆ M it holds that

f M(C) =
{

v(C) if |C | = 1

max
{

v(C) , max{C ′,C ′′}∈R{C}
M

(
f M(C ′) + f M(C ′′)

)}
otherwise.

(4)

For the proof of Theorem 6, see Appendix C.
Now, we can analyse the effect of replacing every f (C) and "C in DP with f M(C) and R{C}

M , respectively. Let us call 
the resulting algorithm DPM . Theorem 6 implies that DPM computes f M(C) recursively for every C ⊆ A. When DPM termi-
nates, it has computed f M(A)—the value of the best coalition structure reachable from {A} via M . To identify this coalition 
structure, DPM uses the table t in the same way as DP does. This leads to the following corollary.

Corollary 7. For an arbitrary subset of movements M ⊆ M, the algorithm DPM outputs a coalition structure in arg maxCS∈R{A}
M

V (CS).

Having analysed the effect of avoiding the evaluation of certain movements in the coalition structure graph, we will now 
use this analysis to design an optimal version of DP.

4.3. The ODP algorithm

In this section, we present our optimal dynamic programming (ODP) algorithm—a modified version of DP that avoids all 
the redundant operations of DP, while maintaining the guarantee of finding an optimal solution. Of course, it would be 
possible to avoid all redundant operations by simply considering all movements, and checking them one by one to identify 
(and avoid) any movements that lead to an already-examined split. This, however, would require storing all movements, 
rather than just the most promising ones, as is currently the case. Instead, ODP identifies the relevant movements a priori, 
without any need for extra memory requirements, and without having to search for these relevant movements.

According to Corollary 7, given a subset of movements M , DPM finds an optimal coalition structure if and only if R{A}
M =

"A . We will now identify a “small” set of movements M for which this is the case. Recall that, given two coalitions 
C ′, C ′′ ∈ C A , we write C ′ < C ′′ if and only if C ′ precedes C ′′ lexicographically.6 Set

M∗ =
{

mC ′,C ′′ ∈ M : C ′ ∪ C ′′ = A or C ′ < C ′′ < A \ (C ′ ∪ C ′′)
}

. (5)

It turns out that, to find an optimal partition, it suffices to consider the movements in M∗ .

Theorem 8.

R{A}
M∗ = "A . (6)

Proof. It suffices to prove that for every k ≥ 2, every coalition structure CS = {C1, . . . , Ck} is reachable from some coalition 
structure CS′ with |CS′| = k − 1 via some movement in M∗ . Assume without loss of generality that C1 < · · · < Ck . We will 
show that CS is reachable from the coalition structure (CS\{C1, C2}) ∪ {C1 ∪ C2} via M∗ . To this end, it suffices to show that 
mC1,C2 ∈ M∗ .

First, suppose that k = 2. In this case, we have CS = {C1, C2}, and so C1 ∪ C2 = A. This means that mC1,C2 ∈ M∗ .
Now, suppose that k > 2. In this case, since C1 < · · · < Ck , we obtain C1 < C2 < (C3 ∪ · · · ∪ Ck), and hence C1 < C2 <

A \ (C1 ∪ C2). Thus, mC1,C2 ∈ M∗ in this case as well. ✷

6 We chose this particular ordering as it helps us prove Theorem 8. However, we do not imply that this is the only ordering that serves this purpose.
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We are now ready to define our algorithm, which we call ODP.

Definition 9. ODP is the version of DP that only evaluates the movements in M∗ , i.e., uses f M∗ instead of f . Formally, 
ODP = DPM∗ .

Theorem 8 together with Corollary 7 imply that ODP finds an optimal partition of A. We will now analyse the running 
time of this algorithm. First, we prove the following two important lemmas. The first lemma will be used in our implemen-
tation of ODP (see lines 5 to 25 of Algorithm 3 in Appendix B), while the second lemma states that ODP does not evaluate 
any redundant movements.

Lemma 10. For every coalition C ∈ C A such that {a1, a2} ! C , the ODP algorithm does not evaluate any of the possible ways of 
splitting C .

Proof. Consider a coalition C ∈ C A such that {a1, a2} ! C . We will prove that for all mC ′,C ′′ ∈ M such that C ′ ∪ C ′′ = C it 
holds that mC ′,C ′′

/∈ M∗ .
We will deal with each of the following complementary cases separately:

• Case 1: a1 /∈ C . This means that a1 ∈ A \(C ′ ∪C ′′). Therefore, we have C ′ ∪C ′′ ≠ A and A \(C ′ ∪C ′′) < C ′ . Thus, mC ′,C ′′
/∈ M∗

according to (5).
• Case 2: a1 ∈ C and a2 /∈ C . In this case, one of the two coalitions in {C ′, C ′′} contains neither a1 nor a2. Let this coalition 

be C ′′ . Now, since a2 ∈ A \ (C ′ ∪ C ′′), we have C ′ ∪ C ′′ ≠ A and A \ (C ′ ∪ C ′′) < C ′′ . This implies that mC ′,C ′′
/∈ M∗ according 

to (5). ✷

Lemma 11. For every coalition structure CS with |CS| ≥ 2, the ODP algorithm evaluates exactly one movement that leads to CS.

Proof. Consider a coalition structure CS = {C1, . . . , Ck} with k ≥ 2. Without loss of generality, we can assume that 
C1 < · · · < Ck . In our proof, we will distinguish between the following two cases:

• Case 1: k = 2. In this case, there is exactly one possible movement that leads to CS, which is mC1,C2 . Since C1 ∪ C2 = A, 
we have mC1,C2 ∈ M∗ .

• Case 2: k > 2. In this case, we have C1 < C2 < A \ (C1 ∪ C2), so mC1,C2 ∈ M∗ . It remains to show that no other movement 
in M∗ leads to CS. To this end, observe that a movement mCi ,C j ∈ M leads to CS only if Ci, C j ∈ CS. We will show that 
if {i, j} ̸= {1, 2}, then mCi ,C j /∈ M∗ . This is a direct consequence of the following observations.
◦ If 1 /∈ {i, j}, then C1 ⊆ A \ (Ci ∪ C j) and hence A \ (Ci ∪ C j) < Ci . Therefore, mCi ,C j /∈ M∗ .
◦ If 1 ∈ {i, j} and 2 /∈ {i, j}, then C2 ⊆ A \ (Ci ∪ C j) and either C2 < Ci (in which case A \ (Ci ∪ C j) < Ci ) or C2 < C j (in 

which case A \ (Ci ∪ C j) < C j). In either case, mCi ,C j /∈ M∗ . ✷

We will now establish a one-to-one correspondence between movements in M∗ and partitions of A into two and three 
parts.

Theorem 12. The number of movements in M∗ is equal to the number of coalition structures in "A
2 ∪ "A

3 —levels 2 and 3 of the 
coalition structure graph. That is,

∣∣M∗∣∣ =
∣∣"A

2

∣∣ +
∣∣"A

3

∣∣.

Proof. Fix a coalition structure CS = {C1, . . . , Ck} with k > 1, and assume without loss of generality that C1 < · · · < Ck . To 
establish a one-to-one correspondence between M∗ and "A

2 ∪ "A
3 , it is sufficient to make the following observations.

• Every movement mC ′,C ′′ ∈ M∗ with C ′ ∪ C ′′ = A leads to exactly one coalition structure, namely {C ′, C ′′}, which is in "A
2 . 

Similarly, every coalition structure {C1, C2} ∈ "A
2 is reachable via exactly one movement in M∗ , namely mC1,C2 . Thus, 

there is a one-to-one correspondence between "A
2 and {mC ′,C ′′ ∈ M∗ : C ′ ∪ C ′′ = A}. Therefore,

∣∣{mC ′,C ′′ ∈ M∗ : C ′ ∪ C ′′ = A}
∣∣ =

∣∣"A
2

∣∣. (7)

• Every movement mC ′,C ′′ ∈ M∗ with C ′ ∪ C ′′ ⊂ A leads to exactly one coalition structure in "A
3 , namely {C ′, C ′′, A \ (C ′ ∪

C ′′)}, as this is the only coalition structure in "A
3 that contains both C ′ and C ′′ . Similarly, every coalition structure 

{C1, C2, C3} ∈ "A
3 with C1 < C2 < C3 is reachable via exactly one movement in M∗ , namely, mC1,C2 . This means that 

there is a one-to-one correspondence between "A
3 and {mC ′,C ′′ ∈ M∗ : C ′ ∪ C ′′ ⊂ A}, and hence

∣∣{mC ′,C ′′ ∈ M∗ : C ′ ∪ C ′′ ⊂ A}
∣∣ =

∣∣"A
3

∣∣. (8)
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Combining equations (7) and (8), we obtain the desired result. ✷

We can use Theorem 12 to compute the size of M∗ (for the proof, see Appendix C).

Corollary 13. The number of movements in M is 1
2

(
3n + 1

)
− 2n, whereas the number of movements in M∗ is 1

2

(
3n−1 − 1

)
.

Corollary 13 shows that ODP evaluates roughly one third of the movements evaluated by DP.
More importantly, Theorem 12 can be used to show that it is not possible to evaluate fewer movements than those 

evaluated by ODP and still be guaranteed to find an optimal solution.

Theorem 14. For every subset of movements M ⊆ M such that |M| < |M∗| we have R{A}
M ≠ "A .

Proof. Suppose that R{A}
M = "A ; we will argue that in this case M has to contain at least |"A

2 | + |"A
3 | = |M∗| movements.

Consider an arbitrary coalition structure of size 2, say, CS2 = {C1, C2}. The only way to reach CS2 is to make the move-
ment mC1,C2 from {A}. Thus, since DPM reaches all coalition structures, we have mC1,C2 ∈ M . Further, observe that if {C1, C2}
and {C ′

1, C
′
2} are two different coalition structures of size 2, then mC1,C2 ≠ mC ′

1,C ′
2 .

Similarly, consider an arbitrary coalition structure of size 3, say, CS3 = {C1, C2, C3}. If M contains none of the move-
ments mC1,C2 , mC1,C3 , mC2,C3 , then DPM cannot reach CS3. Further, if {C1, C2, C3} and {C ′

1, C
′
2, C

′
3} are two different coalition 

structures of size 3, then the sets {mC1,C2 , mC1,C3 , mC2,C3 } and {mC ′
1,C ′

2 , mC ′
1,C ′

3 , mC ′
2,C ′

3 } are disjoint. Indeed, the only coalition 
structure of size 3 that can be reached by a movement in the former set is {C1, C2, C3}, whereas the only coalition structure 
of size 3 that can be reached by a movement in the latter set is {C ′

1, C
′
2, C

′
3}. Moreover, none of the movements in the 

set {mC1,C2 , mC1,C3 , mC2,C3 } can be used to reach a coalition structure of size 2, as we have |C1| + |C2| < n, |C1| + |C3| < n, 
|C2| + |C3| < n.

Now, if DPM can reach all coalition structures, then for each coalition structure of size 2 or 3 the set M contains a 
movement that reaches this coalition structure, and we have argued that all these movements must be pairwise distinct. It 
follows that if R{A}

M = "A , then |M| ≥ |"A
2 | + |"A

3 | = |M∗|, which is what we wanted to prove. ✷

Appendix B provides the pseudocode of ODP, and shows how to avoid storing the table t , thus leading to a significant 
reduction in memory requirements at the expense of a negligible increase in computation time.

5. The ODP-IP algorithm

Having detailed the ODP algorithm, we will now show how to combine it with the IP algorithm. Our starting point is 
the “vanilla” hybrid algorithm, which runs the two algorithms in parallel and terminates as soon as the faster of the two 
returns an answer. Our main contribution here is to modify ODP and IP so that they can assist one another during this 
process. Ideally, this should be done so that the two algorithms explore non-overlapping portions of the search space, while 
dividing the labour in an ad hoc manner (rather than a priori) to reflect the actual strengths of the two algorithms. For 
instance, if ODP happens to be twice as fast as IP on a given problem instance, then ODP must naturally end up putting 
twice as much effort as IP. Another desirable property would be to have some meaningful information flow between the 
two algorithms, rather than having each one working independently without acknowledging the presence of the other. Here, 
the goal would be to have some synergy between the two, making the overall outcome greater than the sum of its parts. 
The main challenge here stems from the fact that ODP and IP are based on entirely different design paradigms.

Against this background, we present in Section 5.1 a new representation of the search space, which provides the corner 
stone upon which our hybrid algorithm is built. Based on this, we show in Section 5.2 how to modify ODP such that it 
searches subspaces of the integer partition graph—those same subspaces that IP was originally designed to explore. After 
that, in Section 5.3 we show how to use the information provided by ODP to speed up IP’s depth-first search, while in 
Section 5.4 we show how to modify IP so that it searches multiple subspaces simultaneously, building upon ODP’s partial 
outcome. When combining the modified versions of ODP and IP, we obtain our hybrid algorithm, ODP-IP, a summary of 
which is provided in Section 5.5.

5.1. The link between DP and IP

Given the differences between ODP and IP, in terms of both the search-space representation and the search techniques 
that are being used, it is not trivial to determine how these two algorithms can be combined effectively, i.e., how to divide 
the search effort between the two algorithm in a meaningful way. As a starting step, we will draw a link between IP 
and DP (not ODP). In order to do so, we introduce yet another graph, which we call the integer partition graph. This is an 
undirected graph where every node represents an integer partition, and two nodes representing integer partitions I and I ′

are connected by an edge if and only if there exist two parts i, j ∈ I such that I ′ = (I \ {i, j}) 4 {i + j} (here 4 denotes the 
multiset union operation). A four-agent example is shown in Fig. 5(A).
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Fig. 5. The integer partition graph (A) and the coalition structure graph (B) for four agents. A movement in (B) corresponds to a movement in (A), and the 
removal of the dotted edges in (B) corresponds to the removal of the dotted edge in (A).

By looking at this graph, we can visualise the way DP searches the subspaces that are represented by different integer 
partitions. To this end, recall that the operation of DP can be interpreted as the evaluation of movements in the coalition 
structure graph. Furthermore, avoiding the evaluation of some of these movements can be interpreted as removing the 
edges through which these movements are made. Importantly, these same operations can also be visualised on the integer 
partition graph. Specifically, we make the following observations.

• By making a movement from a coalition structure CS to a coalition structure CS′ in the coalition structure graph, DP 
makes a movement from the integer partition I with CS ∈ "A

I to the integer partition I ′ with CS′ ∈ "A
I ′ in the integer 

partition graph. For example, the movement from {{a1}, {a2, a3, a4}} to {{a1}, {a2}, {a3, a4}} in Fig. 5(B) corresponds to 
the movement from "A

{1,3} to "A
{1,1,2} in Fig. 5(A).

• Removing all edges of the coalition structure graph that correspond to splitting a coalition of size s into two coalitions 
of sizes s′ and s′′ corresponds to removing every edge of the integer partition graph that connects an integer partition I
with s ∈ I to the integer partition I ′ = (I \ {s}) 4 {s′, s′′}. For instance, removing the dotted edges in Fig. 5(B) corresponds 
to removing the dotted edge that connects "A

{2,2} to "A
{2,1,1} in Fig. 5(A). This is because it is no longer possible to move 

from a coalition structure in "A
{2,2} to a coalition structure in "A

{2,1,1} .

This visualisation provides a link between DP and IP, since the latter deals with subspaces that are represented by integer 
partitions. Building upon this, we show in the next section how to divide the search effort between ODP and IP.

5.2. Searching subspaces using ODP

We have shown that, for a given triple of positive integers s, s′, s′′ with s′ + s′′ = s, avoiding the evaluation of all possible 
ways of splitting all coalitions of size s into two coalitions of sizes s′ and s′′ corresponds to removing edges from the integer 
partition graph—the graph that links DP and IP. The problem with ODP is that it avoids the evaluation of only some of the 
movements from coalitions of a given size. For instance, given n = 4 and s = 2, one can check that ODP avoids evaluating the 
movements from {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4} and {a3, a4}, but evaluates the movement from {a1, a2}. Because of this 
single movement from a coalition of size 2, we cannot remove the dotted edge from Fig. 5(A). To circumvent this, we will 
now present a size-based version of ODP that, for any three sizes s, s′, s′′ ∈ {1, . . . , n} such that s = s′ + s′′ , evaluates either all
or none of the movements in which a coalition of size s is split into coalitions of sizes s′ and s′′ . While the resulting version 
of DP still performs some redundant evaluations, we will later see that its performance is very close to that of ODP.
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Given two positive integers s′, s′′ ∈ Z+ , let Ms′,s′′ ⊆ M be the set that consists of every movement in which a coalition 
of size s′ + s′′ is split into two coalitions of sizes s′ and s′′ . That is, Ms′,s′′ = {mC ′,C ′′ ∈ M : |C ′| = s′, |C ′′| = s′′}. Furthermore, 
let us define M∗∗ ⊆ M as follows:

M∗∗ =

⎛

⎝
⋃

s′,s′′∈Z+:max{s′,s′′}≤n−s′−s′′
Ms′,s′′

⎞

⎠ ∪

⎛

⎝
⋃

s′,s′′∈Z+:s′+s′′=n

Ms′,s′′

⎞

⎠ . (9)

We will now show that, in order to find an optimal coalition structure, it suffices to evaluate all movements in M∗∗ . The 
proof of the following theorem is similar to that of Theorem 8, and can be found in Appendix D.

Theorem 15.

R{A}
M∗∗ = "A . (10)

Theorem 15 shows that DPM∗∗ finds an optimal coalition structure. Furthermore, while it clearly performs some redun-
dant evaluations, we will now argue that its running time is very close to that of ODP.

We will first show that DPM∗∗ evaluates none of the movements from a coalition of size s, where s ∈ {
⌊

2n
3

⌋
+1, . . . , n −1}. 

The proof of the following lemma is similar to that of Lemma 10, and can be found in Appendix D.

Lemma 16. The DPM∗∗ algorithm does not evaluate any of the possible ways of splitting a coalition of size s, where s ∈ {
⌊

2n
3

⌋
+

1, . . . , n − 1}.

We can now provide an upper bound of the number of movements evaluated by DPM∗∗ (for the proof, see Appendix D).

Theorem 17. The number of movements in M∗∗ is 1
2 3n−1 + o(3n).

Theorem 17 means that DPM∗∗ is essentially just as fast as ODP.
Next, we show how to further modify DPM∗∗ so that it searches subspaces of the integer partition graph. To this end, 

observe that DPM∗∗ works in three main steps:

• for s = 2, . . . , 
⌊

2n
3

⌋
, evaluate all mC ′,C ′′ ∈ M∗∗ with |C ′| + |C ′′| = s;

• for s = n, evaluate all mC ′,C ′′ ∈ M∗∗ with |C ′| + |C ′′| = s and compute t(A);
• make the best movements from {A} using the function getBestPartition(A, t(A)).

We modify DPM∗∗ by changing this sequence of operations as follows:

• initialise t(A) ← {A} and f M∗∗ (C) ← v(C) for all C ⊆ A;
• for s = 2, . . . , 

⌊
2n
3

⌋
: (1) evaluate all mC ′,C ′′ ∈ M∗∗ with |C ′| + |C ′′| = s; (2) evaluate all mC ′,C ′′ ∈ M∗∗ with {|C ′|, |C ′′|} =

{s, n − s}; (3) update t(A); (4) make the best movements from {A} using the function getBestPartition(A, t(A)).

In what follows, we refer to the resulting algorithm as the size-based version of ODP, or sb-ODP; its pseudocode is given in 
Algorithm 2. To understand the intuition behind these modifications, let us consider a 10-agent example, where sb-ODP has 
just finished evaluating the movements mC ′,C ′′ ∈ M∗∗ such that |C ′| + |C ′′| ∈ {2, 3}. At this moment, although some move-
ments in M∗∗ have not yet been evaluated, sb-ODP can reach some subspaces in the integer partition graph. This is illustrated in 
Fig. 6(A), where every movement not evaluated by ODP has been removed from the graph. As can be seen, some subspaces 
are reachable from "A

{10}—the bottom node in the graph. Consequently, based on Corollary 7, the best coalition structure in 
those subspaces can easily be identified: simply repeat the process of splitting the coalition(s) in {A} in the best way (out 
of all the ways that were evaluated by sb-ODP thus far) until no such splitting is beneficial. Similarly, as soon as the move-
ments mC ′,C ′′ ∈ M∗∗ with |C ′| + |C ′′| = 4 are evaluated, more edges are added to the graph, and so more subspaces become 
reachable from the bottom subspace (see Fig. 6(B)). Just as before, the best coalition structure in all of those subspaces can 
easily be identified. By repeating this process for every size s, sb-ODP gradually evaluates more and more subspaces, until 
it eventually searches the entire space.

We remark that, unlike DPM∗∗ , sb-ODP is an anytime algorithm: at any point in time CS∗∗ stores the best coalition 
structure identified so far, and the value of this coalition structure goes up as s increases. However, this improvement 
comes at a price: while DPM∗∗ evaluates each movement at most once, sb-ODP evaluates some of the movements twice. 
Specifically, a movement of the form mC ′,C ′′

with |C ′| + |C ′′| = n, |C ′| ≤ ⌊ 2n
3 ⌋, |C ′′| ≤ ⌊ 2n

3 ⌋, |C ′| < |C ′′|, is evaluated first 
for s = |C ′| and then for s = |C ′′|. Fortunately, the number of such movements is less than 2n−1 = o(3n), and all other 
movements in M∗∗ are evaluated once. Thus, we obtain the following corollary.
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Fig. 6. Illustration of how sb-ODP gradually covers all subspaces given ten agents. Fig. 6(A) illustrates the subspaces that are reachable when sb-ODP finishes 
evaluating the movements mC,C ′ ∈ M∗∗ with |C | + |C ′| ∈ {2, 3}. Fig. 6(B) illustrates reachable subspaces with the evaluated movements being mC,C ′ ∈ M∗∗

for |C | + |C ′| ∈ {2, 3, 4}.
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ALGORITHM 2: The size-based version of ODP.
Input: v(C) for all C ⊆ A.
Output: CS∗∗—the best solution found at a given point in time.

1 t(A) ← {A}; CS∗∗ ← {A} // initialisation
// First, initialise f M∗∗ (C) for every coalition, not just singletons

2 foreach C ⊆ A do
3 f M∗∗ (C) ← v(C)

// Second, compute f M∗∗ (C) for every coalition of size s = 2, . . . , 
⌊

2n
3

⌋

4 for s = 2 to 
⌊

2n
3

⌋
do

5 foreach C ⊆ A : |C | = s do
6 foreach s′, s′′ ∈ Z+ such that (s′ + s′′ = s) ∧ (max{s′, s′′} ≤ n − s′ − s′′) do
7 foreach {C ′, C ′′} ∈ "C : {|C ′|, |C ′′|} = {s′, s′′} do
8 if f M∗∗ (C) < f M∗∗ (C ′) + f M∗∗ (C ′′) then
9 f M∗∗ (C) ← f M∗∗ (C ′) + f M∗∗ (C ′′)

// update f M∗∗(A) and t(A)

10 temp ← t(A)

11 foreach {C ′, C ′′} ∈ "A
2 : {|C ′|, |C ′′|} = {s, n − s} do

12 if f M∗∗ (A) < f M∗∗ (C ′) + f M∗∗ (C ′′) then
13 f M∗∗ (A) ← f M∗∗ (C ′) + f M∗∗ (C ′′)
14 temp ← {C ′, C ′′}

// if t(A) was updated, then update CS∗∗

15 if temp ≠ t(A) then
16 CS∗∗ ← getBestPartition(A, t(A)) // see the pseudocode in Algorithm 4

17 return CS∗∗

Corollary 18. The sb-ODP algorithm performs 1
2 3n−1 + o(3n) evaluations.

So far in this section, we have developed a size-based version of ODP, and shown how to modify it so that it searches 
integer partition-based subspaces. This has the following important advantage: at any point in time during execution, the 
part of the space that is yet to be searched can also be represented as the union of integer partition-based subspaces. As a 
result, IP can focus on these subspaces, and avoid searching the ones that have been searched by ODP.7 This division of 
work (between ODP and IP) gives ODP-IP the ability to calibrate itself automatically so that the amount of search assigned 
to each of its two constituent parts (ODP and IP) reflects the relative strength of that part with respect to the problem 
instance at hand. This is particularly important since IP could be significantly faster than ODP in some cases, while in some 
other cases it could be significantly slower (see Section 6 for more details).

Now that we have shown how IP and ODP can share the workload without duplicating each other’s efforts, in the 
following sections we show how to further enhance this combination. In particular, we will focus on how IP’s performance 
can be improved by using the information that has been already computed by ODP.

5.3. Speeding up IP’s depth-first search

As mentioned in Section 3.1, every time IP reaches a certain depth d in the search tree of a subspace "A
I , it adds a 

coalition Cd to a set of disjoint coalitions {C1, . . . , Cd−1}. After that, it determines whether it is worthwhile to go deeper 
into the search tree. To do so, it checks whether inequality (1) holds. If not, then the set of all coalition structures in "A

I
that start with {C1, . . . , Cd−1} is considered promising, i.e., one of the coalition structures in this set could potentially have 
a value greater than V (CS∗∗)—the value of the best coalition structure found so far. In this case, IP goes deeper into the 
search tree. However, we will now show how, with the help of ODP, some coalition structures can still be pruned even if 
they are promising.

The basic idea is to modify IP so that, for any subset of agents C ⊆ A, it keeps track of the value of the best partition 
of C that it has encountered so far. This is done using a table w , with an entry for every possible coalition. In more detail, 
IP initially sets w(C) = v(C) for all C ⊆ A. After that, every time IP reaches a certain depth d, it performs the following 
operation:

7 From now on, whenever we talk about ODP-IP, we mean the combination of IP and sb-ODP. However, for readability, we will write “ODP” instead of 
“sb-ODP”.
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if w(

d⋃

i=1

Ci) <

d∑

i=1

v(Ci) then w(

d⋃

i=1

Ci) ←
d∑

i=1

v(Ci). (11)

Since IP performs this operation every time it goes one step deeper into the search tree, the information in w is kept 
up-to-date throughout the search. Now, to use this information, IP is modified so that, at depth d, it checks whether one of 
the following inequalities holds:

w(

d⋃

j=1

C j) >

d∑

j=1

v(C j), (12)

w(Cd) > v(Cd). (13)

If (12) holds, then {C1, . . . , Cd} is not an optimal partition of C1 ∪ · · · ∪ Cd , and so there does not exist an optimal coalition 
structure CS∗ such that {C1, . . . , Cd} ⊆ CS∗ . Similarly, if (13) holds, then {Cd} is not an optimal partition of Cd , and so there 
does not exist an optimal coalition structure CS∗ such that Cd ∈ CS∗ . In either case, every coalition structure containing 
{C1, . . . , Cd} can be skipped during the search. Note that this pruning occurs even if the set of all coalition structures that 
contain {C1, . . . , Cd} is promising. This is because the pruning here occurs whenever an optimal coalition structure cannot 
possibly appear among the coalition structures containing {C1, . . . , Cd}, even if one of these coalition structures is indeed better 
than CS∗∗—the best coalition structure found so far.

Now, knowing that ODP runs in parallel with IP, we can improve the above technique as follows. Instead of having IP 
use the table w , and ODP use another table, i.e., f M∗∗ , we modify IP so that it uses the same table as ODP. Formally, we 
replace w with f M∗∗ in (11), (12) and (13). This implicitly means that IP will make its decisions based not only on the best 
partitions that it has encountered, but also on those encountered by ODP.

To better understand the effect that ODP has on the new branch-and-bound technique, let us consider an example of 19
agents. With such a relatively small number of agents, ODP can compute optimal partitions of all coalitions of size 9 or less 
in a very short time (e.g., less than 0.2 seconds on a standard desktop PC, see Section 6 for more details). Now suppose that, 
after this short time, IP started searching the subspace "A

{2,2,2,2,1,1,3,3,3} . As mentioned earlier, IP goes deeper into the search 
tree as long as it encounters promising coalition structures. For instance, suppose that the set of all coalition structures 
containing {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9} happens to be promising. With the new branch-and-bound technique, and 
with the information now provided by ODP, this combination of coalitions would only be reached by IP if all of the following 
conditions hold:

• {{a1, a2}} happens to be an optimal partition of {a1, a2};
• {{a3, a4}} happens to be an optimal partition of {a3, a4};
• {{a1, a2}, {a3, a4}} happens to be an optimal partition of {a1, . . . , a4};
• {{a5, a6}} happens to be an optimal partition of {a5, a6};
• {{a1, a2}, {a3, a4}, {a5, a6}} happens to be an optimal partition of {a1, . . . , a6};
• {{a7, a8}} happens to be an optimal partition of {a7, a8};
• {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}} happens to be an optimal partition of {a1, . . . , a8};
• {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9}} happens to be an optimal partition of {a1, . . . , a9}.

The probability of all these events happening simultaneously is extremely low for reasonable distributions of coalitional 
values, even if the set of all coalition structures containing {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9} is promising. This example 
clearly demonstrates the great potential of this new branch-and-bound technique for speeding up the search.

5.4. Searching multiple subspaces simultaneously

In this section, we show how to modify IP so that it searches multiple subspaces simultaneously and thus avoids re-
peating certain operations. After that, we show how IP can use this technique more effectively using the partial outcome of 
ODP. For presentation clarity, we will postpone the formal description of this technique until after we have presented the 
basic idea through an example of five subspaces.

Recall that IP searches each subspace in a depth-first manner. The crucial idea behind the modification we are going 
to describe is that the first few levels of IP’s search tree for a given subspace "A

I can be exactly the same as those for 
several other subspaces.8 For instance, the first two levels are exactly the same in the search trees of the subspaces that are 
represented by the following ordered integer partitions: I1 = {2,4, 4}, I2 = {2,4, 1, 3}, I3 = {2,4, 2, 2}, I4 = {2,4, 1, 1, 2}, 
and I5 = {2,4, 1, 1, 1, 1}. Searching any of those subspaces in a depth-first manner (as IP does) involves constructing pairs 
of disjoint coalitions C1, C2 with |C1| = 2, |C2| = 4 (for more details, see Section 3.1). Now, instead of repeating this process 

8 Note that, for any given subspace "A
I , the shape of the search tree depends on the ordering of the integers in I , so we assume that for each I this 

ordering has been fixed in advance. Thus, effectively, in this section we treat I as a list rather than a multi-set.
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for every one of these five subspaces, we need only perform it once. More specifically, for every pair C1, C2 with |C1| =
2, |C2| = 4, we can perform the following steps:

1. Compute the value of {C1, C2, A \ (C1 ∪ C2)}—the only coalition structure in "A
I1

that contains C1 and C2.
2. Find the best partition of A \ (C1 ∪ C2) into two coalitions of sizes 1 and 3, and add those to {C1, C2}. This gives the 

best coalition structure in "A
I2

that contains C1 and C2.
3. Find the best partition of A \ (C1 ∪ C2) into two coalitions of sizes 2 and 2, and add those to {C1, C2}. This gives the 

best coalition structure in "A
I3

that contains C1 and C2.
4. Find the best partition of A \ (C1 ∪ C2) into three coalitions of sizes 1, 1 and 2, and add those to {C1, C2}. This gives the 

best coalition structure in "A
I4

that contains C1 and C2.
5. Compute the value of {C1, C2} ∪ai∈A\(C1∪C2) {{ai}}—the only coalition structure in "A

I5
that contains C1 and C2.

6. Select the best out of the coalition structures that were found in the above five steps.

This procedure returns the best coalition structure containing C1 and C2 in the set ∪5
i=1"

A
Ii

. By repeating this procedure for 
every pair C1, C2 with |C1| = 2, |C2| = 4, we can find the best coalition structure in ∪5

i=1"A
Ii

.
Next, we will show how to significantly speed up the above technique using the information provided by ODP. To this 

end, suppose that IP started searching "A
I1

, . . . , "A
I5

after ODP has finished evaluating the movements mC,C ′ ∈ M∗∗ with 
|C | + |C ′| ∈ {2, 3, 4}. This means that, for all C ⊆ A with |C | ∈ {2, 3, 4}, ODP has computed f M∗∗ (C). In this case, for every 
pair C1, C2 with |C1| = 2, |C2| = 4, it is possible to find the value of the best coalition structure containing C1 and C2 in 
∪5

i=1"
A
Ii

without having to examine the different partitions of A \ (C1 ∪ C2) as in the above six steps. Instead, we can now 
perform a single step, which is

1. Compute v(C1) + v(C1) + f M∗∗ (A \ (C1 ∪ C2)).

This is because in this example A \ (C1 ∪ C2) is a coalition of four agents, which means that ODP has already computed 
f M∗∗ (A \ (C1 ∪ C2)).

By repeating this step for every pair C1, C2 with |C1| = 2, |C2| = 4, we find a coalition structure

{C∗
1, C∗

2, C∗
3} ∈ arg max

CS∈"A
I1

v(C1) + v(C2) + f M∗∗(C3).

It remains to partition C∗
3 in the best way using the movements in M∗∗ (so far we only know the value of that par-

tition, which is f M∗∗(C∗
3); we do not yet know the partition itself). This can be done by simply replacing C∗

3 with 
getBestPartition(C∗

3, t(C∗
3)), which partitions C∗

3 by making the best out of all the movements that ODP has eval-
uated so far (see Algorithm 4). This process is illustrated in Fig. 7(A), where IP searches "A

I1
, and the partitioning of C∗

3

using getBestPartition is illustrated by the movements from "A
I1

to the other subspaces, i.e., "A
I2

, "A
I3

, "A
I4

, and "A
I5

.
In general, the modified version of IP proceeds as follows. As before, it picks the next subspace "A

I to evaluate based 
on its upper bound UBI . Next, it chooses an integer s in I9 such that ODP has already evaluated f M∗∗(C) for all coalitions 
C with |C | = s. It then goes over all coalition structures in "A

I , and evaluates them: the coalitions that match integers in 
I \ {s} are evaluated according to v , and the coalition that matches s is evaluated according to f M∗∗ . This has the effect of 
simultaneously searching all subspaces that are reachable from "A

I by splitting s. The resulting coalition structure can then 
be found using getBestPartition. To enhance readability, the details of this procedure are moved to Appendix E.

So far, we have shown how multiple subspaces can be searched simultaneously by partitioning exactly one coalition. 
However, one can partition multiple coalitions. This way, more subspaces can be searched simultaneously. For example, 
while searching "A

I1
, if IP evaluates every {C1, C2, C3} ∈ "A

I1
as f M∗∗(C1) + f M∗∗(C2) + f M∗∗(C3), then the result of this 

search will be a coalition structure CS′ = {C ′
1, C

′
2, C

′
3} that maximises f M∗∗ (C ′

1) + f M∗∗ (C ′
2) + f M∗∗ (C ′

3). By replacing every 
coalition C ′ ∈ CS′ with getBestPartition(C ′, t(C ′)), we end up with the best coalition structure in all the subspaces 
that are reachable from "A

I1
. This is illustrated in Fig. 7(B).

When searching multiple subspaces simultaneously, it is important to modify the branch-and-bound technique used 
by IP. To this end, recall that when searching a single subspace "A

I , IP encounters a new combination of disjoint coalitions 
every time it takes one step deeper into the search tree. For every such combination {C1, . . . , Cd}, IP computes an upper 
bound on the value of every coalition structure CS ∈ "A

I such that {C1, . . . , Cd} ⊆ CS. If this upper bound happens to be 
smaller than V (CS∗∗)—the value of the best solution found so far—then the combination is deemed unpromising. However, 
when searching multiple subspaces, e.g., "A

I1
, . . . , "A

I5
, the computation of the upper bound must take into consideration all 

of those subspaces. In our example, the upper bound must be on the value of every CS ∈ "A
I ∪ · · · ∪ "A

I5
with {C1, . . . , Cd} ⊆

CS. This makes it more difficult to discard branches of the search tree. Appendix E provides more details on how to split 

9 Recall that in this section I is treated as a list, so if I contains multiple copies of s, only one of them is selected.
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Fig. 7. IP searching multiple subspaces simultaneously after ODP has computed f M∗∗ (C) for |C | ∈ {2, 3, 4}. In Fig. 7(A), several subspaces are searched 
simultaneously by splitting exactly one coalition. In Fig. 7(B), more subspaces are searched simultaneously by splitting multiple coalitions.
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multiple integers, and compares this approach with the one where only a single integer is partitioned. We remark that in 
our experimental evaluation (Section 6) we always split a single integer.

Finally, note that the original IP algorithm ignores the order of the coalitions within a coalition structure. For 
instance, given a set of agents A = {a1, . . . , a10}, the coalition structures {{a1, a2}, {a3, a4, a5, a6}, {a7, a8, a9, a10}} and 
{{a1, a2}, {a7, a8, a9, a10}, {a3, a4, a5, a6}} are considered to be the same, and so only one of the them is generated. How-
ever, when multiple subspaces are searched simultaneously, the order matters. For instance, consider the example from 
Fig. 7(A). Here, since a coalition of size 4 will be replaced with its optimal partition, IP will have to evaluate every 
{C1, C2, C3} ∈ "A

{2,4,4} as v(C1) + v(C2) + f M∗∗ (C3). As can be seen, v({a1, a2}) + v({a3, a4, a5, a6}) + f M∗∗ ({a7, a8, a9, a10}) is 
different from v({a1, a2}) + v({a7, a8, a9, a10}) + f M∗∗({a3, a4, a5, a6}), and so both must be calculated.

5.5. Summary and complexity analysis of ODP-IP

Below is a summary of the main modifications that we have made to ODP and IP to enable them to help each other 
when running in parallel:

• Enable ODP to search subspaces of the integer partition graph: To do this, ODP uses f M∗∗ instead of f M∗ . Further, 
for s = 2, . . . , 

⌊
2n
3

⌋
, the algorithm: (1) evaluates all mC ′,C ′′ ∈ M∗∗ with |C ′| + |C ′′| = s, (2) evaluates all mC ′,C ′′ ∈ M∗∗

with {|C ′|, |C ′′|} = {s, n − s}, (3) updates t(A), and (4) makes the best movements from {A} using the function 
getBestPartition(A, t(A)). The pseudocode can be found in Algorithm 2.

• Speed up IP’s depth-first search: To do this, whenever a coalition Cd is added to a set of disjoint coalitions C1, . . . , Cd−1, 
check whether {Cd} and {C1, . . . , Cd} are the best partitions of Cd and C1 ∪ · · · ∪ Cd , respectively, that have been en-
countered by IP and/or ODP so far. If not, skip every coalition structure containing C1, . . . , Cd .

• Enable IP to search multiple subspaces simultaneously: When searching a subspace "A
I , identify the integer partitions 

that are reachable from I using the movements that have been evaluated by ODP thus far (e.g., see the dashed edges in 
Figs. 7(A) and 7(B)). Now, let I∗ ⊆ I be the integers in I that will be split to reach other integer partitions (e.g., I∗ = {4}
in Fig. 7(A) and I∗ = {2, 4, 4} in Fig. 7(B)). Then, for every coalition structure CS ∈ "A

I , evaluate every C ∈ CS to f M∗∗(C)

if the size of C corresponds to an integer in I∗ , otherwise evaluate it to v(C). Finally, modify IP’s branch-and-bound 
technique so that the upper bounds reflect the subspaces whose integer partitions are reachable from I by splitting the 
integers in I∗ . The details of this modification can be found in Appendix E.

We conclude this section with the following theorem, whose proof follows immediately from Corollary 18 and the observa-
tion that ODP-IP terminates as soon as one of ODP and IP does.

Theorem 19. Given n agents, ODP-IP runs in O (3n) time.

Having presented ODP-IP, in the following section we evaluate both of our algorithms, namely ODP and ODP-IP.

6. Performance evaluation

This section is divided into two parts: the first evaluates ODP, while the second evaluates ODP-IP.

6.1. Evaluating ODP

We know that DP evaluates 1
2

(
3n + 1

)
− 2n movements, while ODP evaluates 1

2

(
3n−1 − 1

)
movements (Corollary 13). In 

other words, ODP evaluates roughly 33% of the movements evaluated by ODP. Furthermore, we know that the size-based 
version of ODP (i.e., the version that is compatible with IP) evaluates 1

2 3n−1 + o(3n) movements (Corollary 18), i.e., in terms 
of performance it is more similar to ODP than to DP.

Fig. 8 compares those numbers, with n running from 5 to 40. It shows that, as the number of agents increases, the 
percentage of movements that are evaluated by the size-based version of ODP drops (compared to that of DP), and converges 
at around 37%. This is very close to the optimal reduction in movements, which is 33%. The reason behind the observed 
fluctuation is simply because the algorithm evaluates all splits of coalitions of size {1, 2, . . . , ⌊2n/3⌋}. Thus, the number of 
performed operations is influenced by the shape of the function ⌊2n/3⌋.

6.2. Evaluating ODP-IP

ODP-IP was developed in order to obtain the best features of ODP and IP, namely: (1) being anytime, (2) running in 
O (3n) time, and (3) being on average as fast as (and hopefully faster than) the faster of the two algorithms, ODP and IP. 
While our analysis in Section 5.1 showed that ODP-IP indeed has features (1) and (2), the following experiments are meant 
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Fig. 8. Percentage of movements evaluated by ODP and sb-ODP vs. DP.

to verify whether ODP-IP has feature (3). The algorithms were implemented in Java,10 and tested on a PC equipped with an 
Intel® Core™ i7 processor (3.40 GHz) and 12 GB of RAM.

Observe that the number of operations performed by ODP is not influenced by the characteristic function at hand, i.e., it 
depends solely on the number of agents. On the other hand, the number of operations performed by IP (and consequently 
by ODP-IP) depends on the effectiveness of IP’s branch-and-bound technique, which in turn depends on the characteristic 
function at hand. With this in mind, we compare the termination times of all three algorithms (ODP, IP, and ODP-IP) given 
different value distributions. Specifically, we consider the following distributions.

1. Uniform, as studied by Larson and Sandholm [17]: for all C ∈ C A , v(C) ∼ U (a, b), where a = 0 and b = |C |.
2. Normal, as studied by Rahwan et al. [30]: for all C ∈ C A , v(C) ∼ N(µ, σ 2), where µ = 10 × |C | and σ = 0.1.
3. NDCS (Normally Distributed Coalition Structures), as proposed by Rahwan et al. [32]: for all C ∈ C A , v(C) ∼ N(µ, σ 2), 

where µ = |C | and σ = √|C |. The rationale behind developing NDCS came from the authors’ observation that, with 
Uniform and Normal distributions, a coalition structure is less likely to be optimal if it contains more coalitions. In order 
to develop a test-bed that is free from this bias, the authors proposed NDCS and proved it to be the only coalition-value
distribution that results in normally-distributed coalition structure values. As a result, under NDCS, all coalition structures 
are equally likely to be optimal.

4. Modified Uniform, as proposed by Service and Adams [40]: Every coalition’s value is first drawn from U (0, 10 × |C |), 
and then increased by a random number r ∼ U (0, 50) with probability 0.2.

5. Modified Normal, proposed by Rahwanet et al. [34] as a natural counterpart to the Modified Uniform distribution. 
Under this distribution, each coalition’s value is first drawn from N(10 × |C | , 0.01), and then increased by a random 
number r ∼ U (0, 50) with probability 0.2.

6. Exponential: for all C ∈ C A , v(C) ∼ |C | × Exp(λ), where λ = 1.
7. Beta: for all C ∈ C A , v(C) ∼ |C | × Beta(α, β), where α = β = 0.5.
8. Gamma: for all C ∈ C A , v(C) ∼ |C | × Gamma(k, θ), where k = θ = 2.
9. Agent-based Uniform, as proposed by Rahwan et al. [34]: Under this distribution, each agent ai is assigned a random 

“power” pi ∼ U (0, 10), reflecting its average performance over all coalitions. Then for every coalition C ∋ ai , the actual
power of ai in C is determined as pC

i ∼ U (0, 2pi), and a coalition’s value is computed as the sum of the powers of its 
members. That is, for all C ∈ C A , v(C) = ∑

ai∈C pC
i .

10 The open-source implementation is available at https :/ /github .com /trahwan /ODP-IP _and _InclusionExclusion.

https://github.com/trahwan/ODP-IP_and_InclusionExclusion
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10. Agent-based Normal, proposed in this article. As the name suggests, it is similar to the Agent-based Uniform distri-
bution except that every agent’s average and actual powers are drawn from normal, rather than uniform, distributions. 
Formally, for all ai ∈ A, pi ∼ N(10, 0.01) and for all ai and for all C ⊆ A such that ai ∈ C , pC

i ∼ N(pi, 0.01). Finally, for 
all C ∈ C A , v(C) = ∑

ai∈C pC
i .

For each of the above distributions, we plotted the termination times of ODP, IP, and ODP-IP given different numbers 
of agents (see Fig. 9). Here, time is measured in seconds, and plotted on a log scale. For each distribution and each number 
of agents, we took an average over multiple runs; the number of runs was chosen to ensure the error bars are sufficiently 
small. As can be seen, for all the aforementioned distributions, ODP-IP is faster than the fastest of the two other algorithms, 
by one or two orders of magnitude for some distributions. This illustrates that the modifications introduced to IP and 
ODP (see Sections 5.2, 5.3, and 5.4) allow the two algorithms to help one another, leading to a positive synergy when 
they join forces as in ODP-IP. Observe that these modifications involve the use of branch-and-bound techniques, whose 
effectiveness depends heavily on the characteristic function at hand. Consequently, the resulting synergistic effect varies 
from one value distribution to another. This applies both to the termination time (as we have seen in Fig. 9) and to the 
speed of improvement in the solution quality and established bounds during the runtime of ODP-IP (as we will see in the 
following figures).

Next, we evaluate the anytime property of ODP-IP. The results in Fig. 10 are shown for 25 agents. The x-axis in the 
figures corresponds to the percentage of time that has elapsed, with 0% being the time when the algorithm starts, and 100% 
being the time when it terminates. For every percentage of time t%, we report the following:

• Solution quality: This is computed as the ratio between the value of the “current” best solution (found at t% of the run-
time) and the value of the optimal solution (found at 100%). Formally, the solution-quality plot represents ( V (CS∗∗)×100

V (CS∗)
)%.

• Bound quality: This is computed as the ratio between the value of the “current” best solution and the maximum upper 
bound of all “remaining” subspaces (i.e., those that were not yet searched nor pruned).

With a few exceptions, the results show that if ODP-IP is interrupted before running to completion, it may still return a 
solution with relatively high quality and good guarantees (i.e., bound quality). Specifically, in terms of the guarantees that 
the algorithm places on its solution, we find that:

• with Agent-based Uniform and Modified Normal distributions, it takes a substantial percentage of the runtime until the 
guarantees reach 80%;

• with NDCS, Modified Uniform, Exponential, and Gamma distributions, the guarantees exceed 80% (or 90% in the NDCS 
case) after 10% of the runtime;

• with Normal, Agent-based Normal, Uniform, and Beta distributions, the guarantees exceed 99% after about 3% of the 
runtime.

In terms of solution quality, our results show that:

• with the Modified Normal distribution, it takes a substantial percentage of the runtime for solution quality to reach 
80%;

• with the Modified Uniform distribution, solution quality reaches 90% after 10% of the runtime;
• with all other distributions, solution quality reaches 95% (if not 100%) after 3% of the runtime.

Next, we evaluate the effectiveness of the two main optimisation techniques in ODP-IP. In particular, Technique 1 
improves the branch-and-bound approach used by IP (Section 5.3), whereas Technique 2 enables IP to search multiple 
subspaces simultaneously (Section 5.4). The results for 26 agents are shown in Table 1, where the shortest runtimes are 
highlighted in bold.11 As can be seen, the effectiveness of each technique varies from one coalition-value distribution to 
another. Moreover, due to the overhead of those techniques, for some distributions the performance can actually be slower 
than simply running ODP and IP in parallel (see, e.g., the runtime for the agent-based distributions when Technique 1 is 
deactivated). However, when both techniques are activated, it is faster to run ODP-IP (sometimes by nearly two orders of 
magnitude, e.g., given the modified-normal distribution) than to run ODP or IP alone, or even run them both in parallel.

Finally, observe that we do not benchmark our algorithms against integer-programming solvers. This is because Rahwan 
et al. [30] showed that even an industrial-strength solver such as ILOG’s CPLEX is not suited for complete set partitioning, 
where matrices tend to be very dense. In particular, Rahwan et al. showed that CPLEX is much slower than IP (let alone 
ODP-IP), and that it runs out of memory with about 18 agents.

11 The run time of IP is not available for the agent-based distributions. This is because IP so ineffective with such distributions that its average run-time 
will actually take months to be computed; see Fig. 9.
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Fig. 9. Time performance of ODP-IP vs. ODP and IP.
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Fig. 10. Solution quality and bound quality of ODP-IP.

6.3. Benchmarking against the inclusion–exclusion algorithm

In this section, we benchmark ODP-IP against the Inclusion–Exclusion algorithm of Björklund et al. [8]. As mentioned 
in the introduction, this is theoretically the state-of-the-art set partitioning algorithm in terms of worst-case runtime; it 
runs in time O (2n). In contrast, the running time of ODP-IP is O (3n). Thus, theoretically speaking, our algorithm should be 
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Table 1
Evaluating the effectiveness of two techniques of ODP-IP: Technique 1 improves the brand-and-bound of IP (Section 5.3), while Technique 2 enables IP to 
search multiple subspaces simultaneously (Section 5.4). The table shows runtime (in seconds) for 26 agents, taken for each coalition-value distribution as 
an average over 100 runs (error bars were relatively small, and were omitted to enhance readability).

IP DP sb-ODP ODP ODP & IP 
in parallel

ODP-IP w/o 
Technique 1

ODP-IP w/o 
Technique 2

ODP-IP

NDCS 1196 6127 3776 2206 1207 350 440 183
Uniform 76 6127 3776 2206 95 47 79 45
Normal 414 6127 3776 2206 442 142 322 127
Agent-based Uniform N/A 6127 3776 2206 2786 3851 1061 880
Agent-based Normal N/A 6127 3776 2206 2686 3737 1026 773
Modified Uniform 562 6127 3776 2206 419 304 17 31
Modified Normal 203 6127 3776 2206 263 56 4 3
Beta 54 6127 3776 2206 63 41 55 40
Gamma 437 6127 3776 2206 278 88 270 110
Exponential 346 6127 3776 2206 324 107 208 89

Sum over all distributions N/A 61 270 37 760 22 060 8563 8723 3482 2283

Fig. 11. Runtime for the Inclusion–Exclusion algorithm of Björklund et al. [8] in milliseconds, on a log-scale, given different numbers of agents.

significantly slower when solving a worst-case problem instance. Our goal in this section is to verify whether this happens 
in practice. Importantly, we test both algorithms on a worst-case problem instance, not on average instances. Thus, when we 
say “in practice”, we do not mean “on average”. Instead, we mean measuring the runtime on a PC, to account for any 
potential delays that were disregarded in the theoretical analysis.

We provide the pseudocode of the inclusion–exclusion algorithm in Appendix F, and provide the open-source Java im-
plementation at https :/ /github .com /trahwan /ODP-IP _and _InclusionExclusion. Fig. 11 depicts the runtime of the algorithm on 
a log scale, given different numbers of agents. It also depicts the functions y = 2x and y = 6x . As can be seen, the runtime 
growth rate resembles 6n , not 2n (we had to extrapolate the results beyond 11 agents, as the runtime became extremely 
slow). The reason behind this delay is that the algorithm encodes information in extremely large numbers, which may con-
tain hundreds, or even thousands of digits. To be more precise, for every coalition value, v(C), the algorithm needs to use 
the following number: (nn)v(C) . Furthermore, v(C) must be integer. Therefore, even if we use 64-bit integers, we can only 
handle cases of up to 6 agents with coalition values restricted to the set {0, 1, . . . , 6}. We have considered using Matlab, 
which is slower, but at least allows for much larger numbers, compared to Java. However, the maximum number that can 
be represented in Matlab is 1.8 ·10308, which means that we could handle at most 16 agents with coalition values restricted 
to the set {0, 1, . . . , 16}. Thus, in our implementation, we used BigInteger—a Java class that allows for integers that are un-
bounded in length. However, the algorithm of Bjorklund et al. needs to perform many operations with these large numbers, 
resulting in huge delays that are hidden by the asymptotic analysis. As a result, even for 15 agents, the algorithm needs 
about 1.5 · 1010 milliseconds (more than 5 months) to terminate. This is despite the fact that, in order to speed up the 
algorithm, we restrict the experiment to coalition values taken from the set {0, 1, . . . , 9}, which is obviously very restrictive 
(a larger range would increase the number of required digits dramatically, resulting in a very significant slowdown). On the 
other hand, the runtime of ODP-IP cannot possibly be slower than that of ODP, even on worst-case instances. The runtime 

https://github.com/trahwan/ODP-IP_and_InclusionExclusion
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of ODP (which depends solely on the number of agents, and is not affected by any variations in coalition values, as long as 
these can be represented by floating-point numbers) is only 0.01 seconds given 15 agents.

7. Related work

The term “complete set partitioning problem” was introduced by Lin [20] for a special class of set partitioning problems. The 
application that motivated this study was the structuring of corporate tax in the United States. In particular, several states, 
such as Ohio, allowed any corporation to file its annual unemployment compensation payment either on a subsidiary basis 
or by grouping subsidiaries into disjoint aggregations. The total unemployment compensation tax payment depended on 
particular aggregations chosen by the parent corporation. To provide an exact solution to this optimisation problem, Lin and 
Salkin [21,22] developed an integer programming algorithm with branch search enumeration [12] that runs in time O (2n2/2). 
Yeh [48] later showed that this algorithm is substantially slower than DP. The DP algorithm was later on re-discovered in 
the combinatorial-auctions literature, to solve the winner determination problem in cases where every possible bundle of 
goods has a (possibly zero-valued) bid placed on it [36]. Sandholm [37] provided further analysis of the complexity of this 
algorithm; in particular, he observed that its running time is polynomial in the size of the input (i.e., the number of possible 
subsets of goods). However, in contrast with our work, this analysis did not expose the redundant operations in DP.

The “complete” set partitioning problem differs from the “incomplete” version in terms of the input: in the complete 
version, the input consists of the values of all possible subsets, whereas in the incomplete version some values are listed 
explicitly, while others are assumed to be 0. Thus, the complete version usually involves tens of agents, with billions and 
billions of possible partitions. On the other hand, the incomplete version could involve, say, thousands of agents, and thou-
sands of subsets. Thus, the complete version has a much larger, and much more structured, input. This is a fundamental 
difference, rendering some techniques effective for one version, and ineffective for the other. Consider CPLEX, for example. 
It is very effective on the incomplete version, but very quickly runs out of memory for the complete version [32].

The rapid growth of the multi-agent systems research community in the 1990s led to renewed interest in the complete 
set partitioning problem. In this literature, the problem was called the “coalition structure generation problem”, and was 
studied in the context of partitioning agents into coalitions so as to maximise the social welfare. In this context, a number 
of exact, anytime algorithms were proposed, with the focus being on establishing a bound on the quality of their “interim”
solutions (i.e., the solutions that the algorithms return during execution, not after completion). These algorithms can be 
divided into two categories, based on the techniques they use:

• The first class of algorithms focuses on (1) proposing a criterion for dividing the search space into disjoint and exhaus-
tive subspaces, and (2) identifying a sequence in which these subspaces should be searched, so that the worst-case 
bound on solution quality is guaranteed to improve after each subspace. We will denote the chosen sequence of sub-
spaces by S1, . . . , Sk , and the bound established after searching S1 ∪ · · · ∪ Si by βi . This bound is based solely on 
comparing the coalition structures that have already been considered against those that are yet to be considered (i.e., 
those in Si+1 ∪ · · ·∪ Sk), without paying attention to the actual coalition values at hand. This makes such algorithms ap-
plicable in settings where only coalition structure values can be observed, not coalition values. This also makes the bounds 
independent of the coalition-value distribution, meaning that such algorithms can guarantee their bounds regardless of 
the distribution.
Any algorithm in this class can be extended (possibly in different directions) by specifying the technique(s) used to 
search the subspaces. Such technique(s) can capitalise on the extra information accrued during the actual search, which 
can be used, e.g., to avoid examining all solutions in a subspace, or to establish bounds other than, and hopefully better 
than, βi , i = 1, . . . , k. The advantage of such an extension is that it can place guarantees on its bounds; they cannot be 
worse than βi , i = 1, . . . , k.
The first algorithm in this class was put forward in the seminal article by Sandholm et al. [38], where the proposed 
sequence was S1 = "A

1 ∪ "A
2 and Si = "A

n−i+2 for i = 2, . . . , n − 1. Two particularly interesting bounds were β1 = n and 
β2 = ⌈n/2⌉; the authors proved that S1 and S2 are the smallest subsets of solutions that one can search to establish the 
tight bounds n and ⌈n/2⌉, respectively (unless, of course, one uses extra information obtained from the characteristic 
function at hand). An alternative algorithm was later suggested by Dang and Jennings [9], who proposed a different 
sequence, along with a different set of bounds, compared to Sandholm et al. This algorithm was able to establish certain 
bounds by going through a smaller number of solutions. Another algorithm was proposed by Rahwan et al. [33]; it 
represents every Si as a union of integer partition-based subspaces. Consequently, one can readily extend this algorithm 
by using IP (or ODP-IP) to search every Si .
All the algorithms in this class discussed so far are proposed for characteristic function games, where there are no 
influences among co-existing coalitions. Rahwan et al. [31] proposed the first algorithm for the more general class of 
partition function games (PFGs), i.e., games with externalities. In such games, the value of a coalition depends on the 
coalition structure it appears in. Rahwan et al. focused on two sub-classes of partition function games: (1) PFG+ , where 
externalities are non-negative, and (2) PFG− , where externalities are non-positive. Each of these two sub-classes is a 
generalisation of characteristic function games and, arguably, many realistic partition function games are either PFG+

games or PFG− games. This algorithm was later on extended by Banerjee and Kraemer [5] to settings where agents 
are grouped into categories, or “types”. Here, the authors assume that if two coalitions C1 and C2 merge, then the 
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externality imposed by this merge on a third coalition C3 is non-negative if the types of the agents in C1 ∪ C2 do not 
overlap with those of the agents in C3. Otherwise, the externality is non-positive. Let us denote this class of games by 
PFGtype . Banerjee and Kraemer [5] argue that this class is intuitive, and maps to a number of applications.

• The second class of anytime, exact algorithms focuses on finding, and recognising, an optimal coalition structure as 
quickly as possible. The main techniques used here are (1) branch-and-bound, where the aim is to identify, and thus 
avoid evaluating, unpromising combinations of coalitions, and (2) dynamic programming, where the aim is to avoid 
evaluating any combination of coalitions more than once.
Arguably, the first algorithm in this class is IP, due to Rahwan et al. [30,32], which uses branch-and-bound techniques as 
described in Section 3.1. A distributed version of IP was later on proposed by Michalak et al. [23] as the first distributed, 
exact algorithm for coalition structure generation.
Since the initial publication of ODP [28], an anytime version of the size-based version of ODP was proposed by Service 
and Adams [41]. In this version, an initial stage is added, whereby, for each coalition C , the algorithm identifies and 
stores the subset of C that has the highest value. The authors showed how, using this extra information, every time 
the algorithm finishes evaluating the splits of all coalitions of a certain size s, it can construct a coalition structure 
whose value is guaranteed to be within a bound r from optimal, where r = max{i : i ∈ Z, s ≤

⌊n
i

⌋
}. The termination 

time of this modified ODP is almost identical to that of the original ODP (except for the time required to run the added 
initial stage). This implies that the modified ODP algorithm is significantly slower than ODP-IP for all coalition-value 
distributions mentioned in Section 6.2 (see the difference in termination time between ODP-IP and ODP in Fig. 9). 
Moreover, the guarantees provided by Service and Adams’s modified ODP do not exceed 50% until termination, while 
the guarantees provided by ODP-IP often exceed 80% (or even 99%) after only 10% (or even 3%) of the termination time 
(see Fig. 10). Finally, Service and Adams’s modified ODP requires twice as much memory compared to ODP-IP, as it has 
to store the best subset of every coalition.
So far in this class, we focused on algorithms for characteristic function games. Next, we shift our attention to partition 
function games. Recall that in the presence of externalities, a coalition may have different values depending on the 
coalition structure it is embedded in. It is not difficult to show that in the most general case, where externalities are 
arbitrary, it is impossible to place any bound on the solution quality without examining every single coalition structure. 
However, for two common classes of partition function games, namely PFG+ and PFG− , Rahwan and Ramchurn [32], 
Rahwan et al. [35] proved that it is possible to compute upper and lower bounds on the values of any set of disjoint 
coalitions in linear time. These bounds can then be used to identify unpromising search directions using techniques 
similar to those used in IP. Similarly, Banerjee and Kraemer [5] proposed an extension of IP to handle externalities in 
PFGtype settings.

Another extension of ODP, which however is not anytime, is due to Voice et al. [46], who focus on the restricted coalition 
formation model proposed by Myerson [24]. In this model, the space of feasible coalitions is restricted by a graph G , where 
nodes represent agents and edges represent possibilities of collaboration; a coalition C is only feasible if the agents in C
induce a connected subgraph of G . A “feasible” coalition structure is then simply one where all coalition are feasible. Recall 
that we have shown in Theorem 6 that, for any set of movements between coalition structures, if DP only evaluates those 
movements, it will find the best coalition structure reachable using those movements. Voice et al. focused on the set of 
movements between feasible coalition structures (i.e., restricted by G). This provides significant speedups in computation 
when the graph is sparse.

In this article we focused on the classical representation of characteristic function games, where the value of every 
coalition C ⊆ A is returned by a characteristic function v : 2A → R. However, one can also study the optimal coalition 
structure generation problem for alternative representations, which are designed to efficiently capture situations where the 
characteristic function has some structure. For instance, Ueda et al. [44] studied coalition structure generation under the 
DCOP (Distributed Constraint Optimisation Problem) representation (where every agent has a set of actions to choose from), 
while Bachrach et al. [4,3] studied it under the skill-game representation (where every agent has a set of skills required to 
perform tasks). Ohta et al. [25] studied coalition structure generation under the Marginal Contribution Nets representation 
of Ieong and Shoham [14], where synergies between agents are described by a (possibly small) collection of weighted 
logical formulas. Furthermore, Ueda et al. [45] and Aziz and de Keijzer [2] considered this problem under the agent-type 
representation (where agents are grouped into categories, or “types”). A common denominator of all these works is that 
the proposed algorithms for the coalition structure generation problem capitalise heavily on features of the underlying 
representation. As ODP-IP is a general-purpose algorithm, it is unlikely to outperform these algorithms on problem instances 
where the alternative representation happens to compactly and efficiently represent the game. In such settings, ODP-IP can 
serve as a common benchmark to evaluate the potential speedups achieved by using specific representations.

While this article focuses on exact coalition structure generation algorithms, we mention a number of metaheuristic
algorithms, which do not guarantee that an optimal solution is ever found, nor do they provide any guarantees on the 
quality of their solutions. However, such algorithms are usually fast, and can therefore be applied when the number of 
agents is large. These include a greedy algorithm by Shehory and Kraus [42], a genetic algorithm by Sen and Dutta [39], a 
simulated-annealing algorithm by Keinänen [15], and an algorithm by Di Mauro et al. [11] that combines a greedy technique 
with another local-search technique.
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8. Conclusions and future work

Our goal in this article was to provide extensive theoretical analysis of the search space of the Complete Set Partitioning 
problem and to improve upon two fundamentally-different exact algorithms, namely DP and IP. We drew a link between 
the workings of DP and the coalition structure graph, which revealed that many of DP’s operations are redundant. Building 
upon this observation, we developed ODP—an optimal version of DP that avoids all redundant operations.

Although ODP and IP are based on different design paradigms, we developed a new search-space representation (namely, 
the integer partition graph) that exposes the possibility of having them combined into a single hybrid algorithm. Building 
upon this, we modified, and improved upon, both DP and IP, and combined the modified versions into a new algorithm 
called ODP-IP. Our analysis and empirical evaluation showed that ODP-IP possesses the strengths and avoids the weaknesses 
of both DP and IP: it is anytime, runs in O (3n) time, and is faster than both algorithms for a wide variety (10 in total) of 
value distributions considered in this article (with speedups reaching one or two orders of magnitude, given 25 agents). The 
community can benefit from the open-source implementation, which is made publicly available.12

While the focus in this article was on settings where there are no influences (or externalities) among co-existing 
coalitions, it would be interesting to see whether the underlying techniques of ODP-IP can be extended to settings with 
externalities, and to identify conditions under which such an extension can be efficient (in the spirit of Rahwan et al. [35]).
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are essential for proving the correctness of ODP. Furthermore, paper [28] did not include the optimal version of DP, 
where all redundant operations are removed. The aforementioned theorems, as well as the optimal version of DP, are 
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• While the basic idea of combining ODP and IP was presented in paper [27], the combination therein involved running 
ODP and IP in a sequential fashion. In more detail, ODP first computes the best partitions of all coalitions up to a certain 
size, m ≤ ⌊2n/3⌋. After that, ODP stops running, and IP starts running to build on ODP’s results. The problem was that 
the optimal value of m was very different from one coalition-value distribution to another, and there was no way to 
know a priori how to optimally choose the value of m. Furthermore, the worst-case complexity was greater than O (3n). 
Finally, there were cases where the hybrid performance was slower than that of IP and/or ODP.
In the current article, ODP and IP run in parallel, thus eliminating the need for any parameters. Furthermore, our new 
combination of algorithms runs in time O (3n). Finally, we propose a new method to speed up IP’s depth-first search 
(see Section 5.3), and carefully select the subspaces that must be simultaneously searched (see Appendix E). As a result, 
our hybrid is always faster than its constituent parts.

• While the idea of running ODP and IP in parallel has appeared in paper [34], it did not include the technique for 
searching several subspaces simultaneously. Furthermore, the evaluation section was limited in that it did not show 
how the bound and solution quality improves over the runtime of the algorithm.

Appendix A. Summary of notation

A the set of agents
ai an agent in A
n the number of agents in A
C A the set of all coalitions over A
C A

s the set of all size-s coalitions over A
C a coalition
CS a coalition structure
CS∗ an optimal coalition structure
CS∗∗ the best coalition structure found at a given point in time (i.e., the current best solution)
β the established bound on the quality of CS∗∗ , i.e., an upper bound on V (CS∗)

V (CS∗∗)
In the set of all integer partitions of n

12 The implementations used as part of this research (namely that of IP, DP, ODP, ODP-IP, and the inclusion–exclusion algorithm) are available at the 
following link: https :/ /github .com /trahwan /ODP-IP _and _InclusionExclusion.
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I an integer partition, i.e., a multiset of integers
"A the set of all coalition structures over A
"A

s the set of all coalition structures over A that consist of exactly s coalitions
"A

I the set of all coalition structures over A in which coalition sizes match the parts in the integer partition I
"C the set of all partitions of C
"C

s the set of all partitions of C that have exactly s parts
"C

I the set of all partitions of C in which set sizes match the parts in the integer partition I
" the set of all possible partitions, i.e., " = ∪C⊆A"C

π a partition, i.e., a set of pairwise disjoint coalitions
V (CS) the value of the coalition structure CS
V (π) the value of the partition π
v(C) the value of the coalition C
Maxs the maximum value among all coalitions of size s
Avgs the average value of all coalitions of size s
UB∗ an upper bound on the value of CS∗

UBI an upper bound on the value of the best coalition structure in "A
I

LB∗ a lower bound on the value of CS∗

LBI a lower bound on the value of the best coalition structure in "A
I

M the set of all possible movements in the coalition structure graph
M a subset of M
M∗ the subset of M that is evaluated by ODP
M∗∗ the subset of M that is evaluated by the size-based version of ODP
Ms′,s′′ the set of movements in M that correspond to splitting a coalition of size s′ + s′′ into two coalitions of sizes s′

and s′′ , respectively
mC1,C2 the movement that corresponds to splitting C = C1 ∪ C2 into C1 and C2
Rπ

M the set of all partitions that are reachable from π via M
f (C) the value of an optimal partition of C
f M(C) the value of a partition with the highest value in R{C}

M

Appendix B. Pseudocode of the ODP-IP algorithm

Algorithm 3 provides the pseudocode of ODP, while Algorithm 4 provides the pseudocode of getBestPartition—the 
function used in line 32 of Algorithm 3. Here, we use a hash table to access the characteristic function, where a coalition 
C acts as the key to the entry containing v(C). While this is clearly the most efficient data structure, for large problem 
instances the available memory might not be sufficient, in which case other data structures must be explored. However, we 
did not consider any such alternatives in this article.

We remark that, to save memory, we avoid storing the table t , i.e., we only store f M∗ (C) for all C ⊆ A, and then 
recompute t on-the-fly (see Algorithm 4). Observe that we need to compute the value of t for at most 2n − 1 coalitions 
during each execution of the algorithm, and, given the values of f (C ′) for all C ′ ⊆ C , we can compute t(C) in time 2|C | . 
Thus, this modification requires less than (2n − 1) × 2n additional operations, which is negligible compared to O (3n)—the 
runtime of ODP. In return, the algorithm only needs to store the characteristic function, v , instead of storing both v and t , 
resulting in 50% reduction in memory requirements compared to DP.

Appendix C. Proofs for Section 4

Theorem 6. For every coalition C ⊆ A and for every subset of movements M ⊆ M it holds that

f M(C) =
{

v(C) if |C | = 1

max
{

v(C) , max{C ′,C ′′}∈R{C}
M

(
f M(C ′) + f M(C ′′)

)}
otherwise.

Proof. If |C | = 1, then no movement can be made from {C}. This means that R{C}
M = {{C}} and hence f M(C) = v(C).

Now, suppose that |C | > 1. Consider a partition {C ′, C ′′} ∈ "C and a set of movements M ⊆ M. Abusing notation, set

R{C ′}
M × R{C ′′}

M =
{
π1 ∪ π2 : π1 ∈ R{C ′}

M ,π2 ∈ R{C ′′}
M

}
.
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ALGORITHM 3: The Optimal Dynamic Programming algorithm (ODP).

Input: v(C) for all C ⊆ A.
Output: an optimal coalition structure CS∗ .
// First, compute f M∗ (C) for every singleton coalition

1 foreach C ⊆ A : |C | = 1 do
2 f M∗ (C) ← v(C)

// Second, compute f M∗ (C) for every coalition of size 2
3 foreach C ⊆ A : |C | = 2 do
4 f M∗ (C) ← v(C)

5 if f M∗ ({a1, a2}) < v({a1}) + v({a2}) then
6 f M∗ ({a1, a2}) ← v({a1}) + v({a2})
// Third, compute f M∗ (C) for every coalition of size s = 3, . . . , n − 1

7 for s = 3 to n − 1 do
8 foreach S ⊆ A \ {a1, a2} : |S| = s − 2 do // This is an efficient way of evaluating the splits of C into C ′, C ′′

such that: C ′ < C ′′ < A \ (C ′ ∪ C ′′). It only evaluates (some of) the splits of a coalition C that contains 
both a1 and a2. Here, S denotes the C after removing a1 and a2 from it.

9 C ← S ∪ {a1, a2}// observe that |C | = s
10 f M∗ (C) ← v(C)

11 foreach {S ′, S ′′} ∈ ("S ∪ {∅, S}) do
12 j ← minai∈A\C i // a j is the “smallest” agent outside C

13 A j ← {a3, . . . , a j−1}
14 if f M∗ (C) < v(S ′ ∪ {a1}) + v(S ′′ ∪ {a2}) then
15 f M∗ (C) ← v(S ′ ∪ {a1}) + v(S ′′ ∪ {a2})
16 if f M∗ (C) < v(S ′ ∪ {a2}) + v(S ′′ ∪ {a1}) then
17 f M∗ (C) ← v(S ′ ∪ {a2}) + v(S ′′ ∪ {a1})
18 if S ′ ∩ A j ≠ ∅ then // to ensure that S ′′ ∪ {a1, a2} < S ′ < A \ C
19 if f M∗ (C) < v(S ′) + v(S ′′ ∪ {a1, a2}) then
20 f M∗ (C) ← v(S ′) + v(S ′′ ∪ {a1, a2})

21 if S ′′ ∩ A j ≠ ∅ then // to ensure that S ′ ∪ {a1, a2} < S ′′ < A \ C
22 if f M∗ (C) < v(S ′ ∪ {a1, a2}) + v(S ′′) then
23 f M∗ (C) ← v(S ′ ∪ {a1, a2}) + v(S ′′)

24 foreach C ⊆ A : |C | = s, {a1, a2} ! C do
25 f M∗ (C) ← v(C)

// Fourth, compute f M∗(A) and t(A)

26 f M∗ (A) ← v(A)

27 t(A) ← {A}
28 foreach {C ′, C ′′} ∈ "A

2 do
29 if f M∗ (A) < f M∗ (C ′) + f M∗ (C ′′) then
30 f M∗ (A) ← f M∗ (C ′) + f M∗ (C ′′)
31 t(A) ← {C ′, C ′′}

// Finally, set CS∗ to be an optimal split of A
32 CS∗ ← getBestPartition(A, t(A)) // see the pseudocode in Algorithm 4
33 return CS∗

Observe that

R{C ′,C ′′}
M = R{C ′}

M × R{C ′′}
M . (C.1)

Since {C} contains exactly one coalition, namely, C , every partition reachable from {C} via a single movement in M
contains exactly two coalitions. Conversely, every partition in R{C}

M that contains exactly two coalitions is reachable from {C}
via at most one movement in M . Thus,

{
π ′ ∈ " : {C} M−→ π ′

}
=

{
{C ′, C ′′} ∈ R{C}

M

}
. (C.2)

Hence, we have

R{C}
M = {{C}} ∪

⋃

π ′∈":{C} M−→π ′

Rπ ′
M
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ALGORITHM 4: getBestPartition—a function used in ODP.

Input: C and t(C), where C ⊆ A. It is assumed that the table f M∗ has been computed.
Output: a best partition of C that is reachable via M∗ , i.e., a best partition in R{C}

M∗ .
// Check whether {C} is an optimal partition of C

1 if t(C) = {C} then
2 return {C}
3 else

// In this case, there are two coalitions in t(C), let us denote them as C1 and C2

4 π ← ∅ // initialisation
5 foreach Ci ∈ t(C) do // for each one of the two coalitions in t(C)

// First, compute t(Ci) (in lines 6 to 12)
6 if f M∗ (Ci) = v(Ci) then // i.e., if {Ci} is an optimal partition of Ci

7 t(Ci) ← {Ci}
8 else

// Identify two coalitions {C ′
i , C ′′

i } ∈ "Ci such that f M∗ (C ′
i ) + f M∗ (C ′′

i ) = f M∗ (Ci)

9 foreach {C ′
i , C ′′

i } ∈ "Ci do
10 if f M∗ (C ′

i) + f M∗ (C ′′
i ) = f M∗ (Ci) then

11 t(Ci) ← {C ′
i , C ′′

i }
12 break

// Having computed t(Ci), we now use it to compute an optimal partition of Ci, and then add that 
partition to π

13 π ← π ∪ getBestPartition(Ci, t(Ci))

// Now, π is the union of the optimal partitions of C1 and C2

14 return π

= {{C}} ∪
⋃

{C ′,C ′′}∈R{C}
M

R{C ′,C ′′}
M

= {{C}} ∪
⋃

{C ′,C ′′}∈R{C}
M

(
R{C ′}

M × R{C ′′}
M

)
,

where the first equality is based on (3), the second equality is based on (C.2), and the last equality is based on (C.1). 
Consequently, we obtain

f M(C) = max
π∈R{C}

M

V (π)

= max

⎧
⎨

⎩v(C) , max
{C ′,C ′′}∈R{C}

M

(
max

π∈(
R{C ′}

M ×R{C ′′}
M

) V (π)
)
⎫
⎬

⎭

= max

⎧
⎨

⎩v(C) , max
{C ′,C ′′}∈R{C}

M

(
max

π∈R{C ′}
M

V (π) + max
π∈R{C ′}

M

V (π)
)
⎫
⎬

⎭

= max

{

v(C) , max
{C ′,C ′′}∈R{C}

M

(
f M(C ′) + f M(C ′′)

)
}

. ✷

Corollary 13. The number of movements in M is 1
2

(
3n + 1

)
− 2n, whereas the number of movements in M∗ is 1

2

(
3n−1 − 1

)
.

Proof. For M, the argument is essentially provided by Yeh [48]; we reproduce it here for completeness. For each coalition 
C of size k, 2 ≤ k ≤ n, there are 2k−1 − 1 ways of splitting C into two non-empty coalitions, so DP evaluates 2k−1 − 1
movements from C . Thus, the total number of movements evaluated by DP can be written as

n∑

k=2

(
n
k

)(
2k−1 − 1

)
=

n∑

k=0

(
n
k

)
2k−1 − 1

2
− n −

n∑

k=0

(
n
k

)
+ 1 + n.

Using the fact that
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(1 + x)n =
n∑

k=0

(
n
k

)
xk

with x = 2 and x = 1, we conclude that DP evaluates 1
2

(
3n + 1

)
− 2n movements.

We will now consider M∗ . By Theorem 12, we have
∣∣M∗∣∣ =

∣∣"A
2

∣∣ +
∣∣"A

3

∣∣.

Now, recall that the number of ways to partition n elements into k parts—known as the Stirling number of the second kind
[43], and denoted by S(n, k)—is computed as follows:

S(n,k) = 1
k!

k−1∑

i=0

(−1)i
(

k
i

)
(k − i)n.

Thus, the number of movements that are evaluated by ODP is S(n, 2) + S(n, 3), which equals

1
2

(
3n−1 − 1

)
. ✷

Appendix D. Proofs for Section 5

Theorem 15.

R{A}
M∗∗ = "A . (10)

Proof. We will show that every coalition structure CS with |CS| ≥ 2 is reachable via M∗∗ from some other coalition structure 
CS′ with |CS′| = |CS| − 1. To this end, assume without loss of generality that CS = {C1, . . . , Ck}, where k ≥ 2 and |C1| ≤ · · · ≤
|Ck|. We will argue that mC1,C2 ∈ M∗∗ , and hence CS can be reached from the coalition structure (CS\{C1, C2}) ∪ {C1 ∪ C2}
via M∗∗ . Let s1 = |C1|, s2 = |C2|; by construction, we have mC1,C2 ∈ Ms1,s2 .

First, suppose that k = 2. In this case, we have CS = {C1, C2}, and so s1 + s2 = n. This means that Ms1,s2 is a subset of 
M∗∗ (see equation (9)).

Now, suppose that k > 2. We have |C1| ≤ |C2| ≤ |C3| ≤ n − |C1| − |C2|, so max{s1, s2} = s2 ≤ n − s1 − s2. This means that 
Ms1,s2 is a subset of M∗∗ in this case as well (again, see equation (9)). ✷

Lemma 16. The DPM∗∗ algorithm does not evaluate any of the possible ways of splitting a coalition of size s, where s ∈ {
⌊

2n
3

⌋
+

1, . . . , n − 1}.

Proof. We will prove that for every s ∈ {
⌊

2n
3

⌋
+ 1, . . . , n − 1} and for all s′, s′′ ∈ Z+ such that s′ + s′′ = s it holds that

⌈s/2⌉ > n − s. (D.1)

This immediately implies our claim: since s′ + s′′ = s, we have max{s′, s′′} ≥ ⌈s/2⌉ > n − s and hence Ms′,s′′ ∩ M∗∗ = ∅. Since 
the expression ⌈s/2⌉+ s is monotone in s, it suffices to prove equation (D.1) for the smallest value of s in {

⌊
2n
3

⌋
+ 1, . . . , n −

1}, i.e., for s0 =
⌊

2n
3

⌋
+ 1. We have s0 > 2n

3 , so 
⌈ s0

2

⌉
≥ s0

2 > n
3 , and thus 

⌈ s0
2

⌉
+ s0 > n

3 + 2n
3 = n. Rearranging, we obtain 

⌈ s0
2

⌉
> n − s0, which is what we wanted to prove. ✷

Theorem 17. The number of movements in M∗∗ is 1
2 3n−1 + o(3n).

Proof. Let M̂ = {mC ′,C ′′ : C ′ ∪ C ′′ ⊂ A} ∩ M∗∗ , and consider the mapping α : M̂ → "A
3 given by

α(mC ′,C ′′
) = {C ′, C ′′, A \ (C ′ ∪ C ′′)}.

Note that by construction of M̂ , for each mC ′,C ′′ ∈ M̂ the set A \ (C ′ ∪ C ′′) is not empty, so α(mC ′,C ′′
) is indeed an element 

of "A
3 , i.e., a partition of A into three non-empty parts.

To prove the theorem, we will show that (1) |M∗∗ \ M̂| = o(3n) and (2) |M̂| = 1
2 3n−1 +o(3n). Taken together, these claims 

show that

|M∗∗| = |M̂| + |M∗∗ \ M̂| = 1
2

3n−1 + o(3n) + o(3n) = 1
2

3n−1 + o(3n),

which is what we want to prove.
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The first of these claims is immediate: we have

|M∗∗ \ M̂| = |{mC ′,C ′′ : C ′ ∪ C ′′ = A}| = 2n−1 − 1 = o(3n).

To prove the second claim, we will show that for almost all coalition structures in "A
3 their pre-image under α consists 

of exactly one movement, and for the remaining coalition structures in "A
3 their pre-image under α contains at most 3

movements. To complete the proof, we then use the fact that

|"A
3 | = S(n,3) = 1

2

(
3n−1 − 2n + 1

)
= 1

2
3n−1 + o(3n)

(see the proof of Corollary 13).
In more detail, consider a coalition structure CS = {C1, C2, C3} in "A

3 , let s1 = |C1|, s2 = |C2|, s3 = |C3|, and assume 
without loss of generality that s1 ≤ s2 ≤ s3. If s2 < s3, then the only element of M̂ that is mapped to CS by α is mC1,C2 : 
indeed, we have mC1,C3 /∈ M̂ , mC2,C3 /∈ M̂ . If s1 < s2 = s3, then there are two elements of M̂ that are mapped to CS by α, 
namely, mC1,C2 and mC1,C3 . Finally, if s1 = s2 = s3, then there are three elements of M̂ that are mapped to CS by α, namely, 
mC1,C2 , mC1,C3 , and mC2,C3 .

Let

X = {{C1, C2, C3} ∈ "A
3 : |C1| ≤ |C2| < |C3|},

Y = {{C1, C2, C3} ∈ "A
3 : |C1| < |C2| = |C3|},

Z = {{C1, C2, C3} ∈ "A
3 : |C1| = |C2| = |C3|},

and set x = |X |, y = |Y |, z = |Z |. Since every movement in M̂ is mapped to some coalition structure in "A
3 by α, the 

argument above shows that |M̂| = x + 2y + 3z ≤ (x + y + z) + 2(y + z) = |"A
3 | + 2(y + z). We have observed that |"A

3 | =
S(n, 3) = 1

2 3n−1 + o(3n). Thus, to complete the proof, it suffices to show that y + z = o(3n).
Note that every coalition structure {C1, C2, C3} ∈ Y ∪ Z has the property that |C1| ≤ |C2| = |C3|. To obtain such a coalition 

structure, we can first choose the coalition C1, whose size is at most n/3, and then partition the remaining elements into 
two sets of equal size. Equivalently, we can first choose which elements will appear in C2 ∪ C3, and then partition the 
selected elements into two sets of equal size; note that the number of elements selected at the first step needs to be even 
and cannot be less than 2⌊ n

3 ⌋. It follows that

y + z ≤
⌊ n

2 ⌋∑

k=⌊ n
3 ⌋

(
n
2k

)(
2k
k

)

≤
⌊ n

2 ⌋∑

k=⌊ n
3 ⌋

(
n
2k

)
22k

√
πk

(1 + o(1))

≤ 1
√

π⌊n
3 ⌋

(1 + o(1))

⌊ n
2 ⌋∑

k=⌊ n
3 ⌋

(
n
2k

)
22k

≤ 1
√

π⌊n
3 ⌋

(1 + o(1))

n∑

j=0

(
n
j

)
2 j

= 3n
√

π⌊n
3 ⌋

(1 + o(1)) = o(3n).

This completes the proof. ✷

Appendix E. Analysing different methods of searching multiple subspaces simultaneously

This appendix provides further details on how IP can simultaneously search multiple subspaces using the information 
provided by ODP.

Assume that ODP has already finished evaluating all movements mC,C ′ ∈ M∗∗ with |C | + |C ′| ∈ {2, . . . , s∗}. Then, for 
any given subspace "A

I with I = {i1, . . . , ik}, we modify IP so that, instead of searching for a coalition structure in 
arg maxCS∈"A

I
V (CS), it performs the following steps:
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1. Identify X ∗—the set of all integer partitions whose corresponding subsets have not yet been searched and are reachable 
from "A

I using only the movements that have been evaluated by ODP so far. For instance, given I = {2, 4, 4} and s∗ = 4, 
the set X ∗ consists of all integer partitions that are reachable through the dotted edges in Fig. 7(B).

2. Identify I∗—the set of integer(s) in I that will be split in order to reach (some of) the subspaces in X ∗ . As mentioned 
in Section 5.4, one can choose either to split a single integer in I or to split multiple integers at once. We will consider 
both cases. Specifically, if exactly one integer will be split, pick an integer s ∈ I so that splitting s allows for reaching the 
largest number of integer partitions in X ∗, and set I∗ = {s}. On the other hand, if multiple integers will be split, choose I∗

so that splitting the integers in I∗ allows for reaching all the integer partitions in X ∗ . The subset of X ∗ that is reachable 
by splitting the integer(s) in I∗ will be denoted by Y∗. For instance, given I = {2, 4, 4} and s∗ = 4, if exactly one integer 
will be split, then we have I∗ = {4}, and Y∗ consists of the integer partitions that are reachable through the dashed 
edges in Fig. 7(A). On the other hand, if multiple integers will be split, then we have I∗ = {2, 4, 4}, and Y∗ consists of 
the integer partitions that are reachable through the dotted edges in Fig. 7(B).

3. Change the order of the integers in I and in every I ′ ∈ Y∗ . To this end, let i∗j denote the j-th element in I∗ . Furthermore, 
for every i∗j ∈ I∗ and every I ′ ∈ Y∗ , let S(I ′, i∗j ) be the subset of I ′ that results from splitting i∗j . Now, order the integers 
in I by putting the ones in I \ I∗ first, followed by i∗1, then i∗2, and so on until i∗|I∗| . Similarly, for every I ′ ∈ Y∗ , change 
the order of integers in I ′ by putting the ones in I ′ \ I∗ first, then those in S(I ′, i∗1), then those in S(I ′, i∗2), and so on 
until S(I ′, i∗|I∗|).

4. Search !A
I , where every {C1, . . . , Ck} ∈ !A

I is evaluated as follows:

|I\I∗|∑

j=1

v(C j) +
k∑

j=|I\I∗|+1

f M∗∗(C j). (E.1)

During this search, at every depth d, use the following modified branch-and-bound inequality:

min(d,|I\I∗|)∑

j=1

v(C j) +
d∑

j=min(d,|I\I∗|)+1

f M∗∗(C j) + UBd
I < V (CS∗∗), (E.2)

where UBd
I is an upper bound computed as follows:

UBd
I = max

⎛

⎜⎝
k∑

j=d+1

Maxi∗j , max
I ′∈Y∗

k∑

j=d+1

∑

s∈S(I ′,i∗j )

Maxs

⎞

⎟⎠ .

The result of this search is a coalition structure {C∗
1 , . . . , C∗

k } ∈ "A
I that maximises (E.1).

5. Replace every C∗
j such that j > |I \ I∗| with getBestPartition(C∗

j , t(C∗
j )). The result is a coalition structure in 

arg maxCS∈
(
{"A

I }∪Y∗) V (CS).

At first glance, it may seem that partitioning multiple integers is better than partitioning a single integer, because the former 
approach enables us to search more subspaces simultaneously. Surprisingly, however, it can actually be faster to partition 
one integer only. We will now explain why this may be the case.

The difficulty with splitting multiple integers is that it may interfere with our branch-and-bound technique. Specifi-
cally, recall that when we search subspaces one by one, we prune branches of the search tree by checking inequality (1)
(reproduced below for convenience).

d∑

j=1

v(C j) +
|I|∑

j=d+1

Maxi j < V (CS∗∗). (1)

In contrast, when searching multiple subspaces simultaneously, we use inequality (E.2), which holds less frequently than 
(1), because the left-hand side in (E.2) is greater than that in (1). This increase (in the left-hand side) can be seen as the 
price that must be paid in order to avoid searching every "A

I ′ with I ′ ∈ Y∗ separately later on.
The problem, however, is that this price is often too large. To see why, let us analyse the two modifications that are 

behind this increase.

• The first modification is when |I \ I∗| < d. In this case, every C j with j ∈ {|I \ I∗|, . . . , d} is evaluated as f M∗ (C j) rather 
than as v(C j).

• The second modification is in the upper bound on the values of the coalitions that will be added to C1, . . . , Cd . In 
particular, since every "A

I ′ with I ′ ∈ Y∗ is searched simultaneously with "A
I , the upper bound in (E.2) becomes UBd

I

instead of 
∑|I|

j=d+1 Maxi j .
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A key point here is that Y∗ does not necessarily contain all the integer partitions that are reachable from I; it only contains 
those representing subspaces that have not yet been searched. This important point is reflected in the second modification, but 
not in the first one. More specifically, in the second modification, a new upper bound is used that only takes into account "A

I
as well as "A

I ′ with I ′ ∈ Y∗ . However, in the first modification, every C j with j ∈ {|I \ I∗|, . . . , d} is evaluated as f M∗ (C j)—the 
value of the best partition of C j in all the subspaces that are reachable from "A

I , including those that have already been 
searched. In other words, this modification ignores the fact that certain subspaces have already been searched.

Now, let us analyse the case where I∗ contains exactly one integer. To this end, observe that if d = |I| −1, then there is no 
need to determine whether {C1, . . . , Cd} is promising. Instead, one can straight away construct the only coalition structure 
of size |I| containing C1, . . . , Cd—it suffices to put all the remaining agents in a coalition of their own. Thus, whenever the 
branch-and-bound technique is used, we always have d < |I| − 1. This implies that, when I∗ contains exactly one integer, 
we always have min(d, |I \ I∗|) = d. Consequently, inequality (E.2) can be written as follows:

d∑

j=1

v(C j) + UBd
I < V (CS∗∗).

This way, we get rid of the first modification, and only keep the second one, which takes into consideration only the 
subspaces that have not yet been searched, and are reachable from "A

I .

Appendix F. Pseudocode of the inclusion–exclusion algorithm

While Björklund et al. [8] provide a detailed description of their inclusion–exclusion algorithm, they do not include 
pseudocode for it. We therefore provide pseudocode for their algorithm in this appendix. Note that the algorithm is defined 
for situations where (1) the goal is to find the best partition containing at most k subsets, (2) there are k evaluation 
functions, f1, . . . , fk , and (3) the value of the i-th subset is given by the i-th evaluation function, f i . In our setting, we 
have k = n (since coalition structures are allowed to contain up to n coalitions) and f i = v for all i ∈ {1, . . . , k} (since all 
coalitions are evaluated using the same function, v). Thus, the pseudocode below is for the case where k = n and f i = v for 
all i ∈ {1, . . . , k}.

Pseudocode for the inclusion–exclusion algorithm.

Algorithm Inclusion-Exclusion(v, A)
1 B ← nn + 1
2 foreach S ⊆ A do // for every coalition
3 foreach c ∈ {1, . . . , n} do // for every colour
4 f ′

c(S) ← B v(S)

5 optimalValue ← findMaxWeight( f ′
1, . . . , f ′

n)// see the pseudocode of findMaxWeight
6 foreach i ∈ {1, . . . , n} do // for every agent ai ∈ A
7 foreach c = 1 to n do // try to assign colour c to ai, starting from colour 1, then 2, etc. (order 

matters)

8 foreach S ⊆ A do // define function f̃ ′
c(S) for every coalition S

9 f̃ ′
c(S) ← f ′

c(S) if ai ∈ S , and f̃ ′
c(S) ← B0 otherwise.

10 foreach j ∈ {1, . . . , n} do // define function F ′
j for every colour j

11 F ′
j ← f̃ ′

j if j = c, and F ′
j ← f ′

j otherwise.

12 valueAfterColouring ← findMaxWeight(F ′
1, . . . , F ′

n)// see the pseudocode of findMaxWeight
13 if valueAfterColouring = optimalValue then
14 colour(i) ← c// set c to be the colour of ai

15 foreach S ⊆ A : ai ∈ S do
16 foreach j ∈ {1, . . . , n} \ {c} do // for every colour j ̸= c
17 F ′

j(S) ← B0

18 f ′ ← F ′ // Now, f ′ is updated to reflect that c is now the colour of ai

19 break

20 foreach c ∈ {1, . . . , n} do // for every colour c
21 Sc ← {ai ∈ A : colour(i) = c}
22 return {S1, . . . , Sn} // Some of these subsets may be empty.
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Pseudocode of all procedures used by the inclusion–exclusion algorithm.

Procedure findMaxWeight( f1, . . . , fn)
1 t ← pn( f1, . . . , fn); B ← nn + 1; r ← 0
2 while Br < t do
3 r ← r + 1

4 return r − 1 // this is simply ⌊logB (t)⌋

Procedure pn( f1, . . . , fn)// sum of weighted partitions of A into n parts (some of which may be empty)
1 t ← 0
2 foreach X ⊆ A do
3 t ← t + (−1)|X|bn(X, f1, . . . , fn)

4 return t

Procedure bn(X, f1, . . . , fn)// auxiliary function for computing pn

1 return g(1, n, n, X, f1, . . . , fn)// initial call of the recursive function g

Procedure g(s, t, m, X, f1, . . . , fn)// auxiliary function for computing bn(X)

1 if s = t then
2 return zeta(A \ X, m, f1, . . . , fn)

3 else
4 r ← ⌊(s + t)/2⌋; temp ← 0
5 foreach m0 = 0 to m do
6 m1 ← m − m0
7 temp ← temp + g(s, r, m0, X, f1, . . . , fn) ∗ g(r + 1, t, m1, X, f1, . . . , fn)

8 return temp

Procedure zeta(Y , ℓ, f1, . . . , fn)// zeta-transform of f that only sums over subsets of size ℓ

1 return z(n, Y , ℓ, f1, . . . , fn)

Procedure z(i, Y , ℓ, f1, . . . , fn)// auxiliary function for computing zeta( f , Y , ℓ) using the fast Mobius transform
1 if i = 0 then
2 if |Y | = ℓ then
3 return f (Y )

4 else
5 return 0

6 else
7 if i ∈ Y then
8 t ← z( f , i − 1, Y , ℓ) + z( f , i − 1, Y \ {i}, ℓ)
9 else

10 t ← z( f , i − 1, Y , ℓ)

11 return t
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