
Annals of Mathematics and Artificial Intelligence 41: 135–169, 2004.
 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Rapid prototyping of large multi-agent systems through
logic programming

W. Vasconcelos a,∗ , D. Robertson b , C. Sierra c , M. Esteva c , J. Sabater c and
M. Wooldridge d

a Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
E-mail: wvasconcelos@acm.org

b Centre for Intelligent Systems and their Applications (CISA), Division of Informatics,
University of Edinburgh, Appleton Tower, Crichton Street, Edinburgh EH8 9LE, United Kingdom

E-mail: dr@inf.ed.ac.uk
c Artificial Intelligence Research Institute (IIIA), Consejo Superior de Investigaciones Científicas (CSIC),

Campus UAB, 08193, Bellaterra, Catalonia, Spain
E-mail: {siera,marc,jsabater}@iiia.csic.es

d Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, United Kingdom
E-mail: mjw@csc.liv.ac.uk

Prototyping is a valuable technique to help software engineers explore the design space
while gaining insight on the dynamics of the system. In this paper, we describe a method
for rapidly building prototypes of large multi-agent systems using logic programming. Our
method advocates the use of a description of all permitted interactions among the components
of the system, that is, the protocol, as the starting specification. The protocol is represented
in a way that allows us to automatically check for desirable properties of the system to be
built. We then employ the same specification to synthesise agents that will correctly follow
the protocol. These synthesised agents are simple logic programs that engineers can further
customise into more sophisticated software. Our choice of agents as logic programs allows us
to provide semi-automatic support for the customisation activity. In our method, a prototype is
a protocol with a set of synthesised and customised agents. Executing the prototype amounts
to having these agents enact the protocol. We have implemented and described a distributed
platform to simulate prototypes.

1. Introduction

Rapid prototyping offers a means to explore essential features of a proposed sys-
tem [9,27,35], promoting early experimentation with alternative design choices and al-
lowing engineers to pursue different solutions without efficiency concerns [9]. In [25]
we find reports of many successful experiments of rapid prototyping. Multi-agent sys-
tems (MASs, for short) are harder to design than centralised systems [65] and tools and
methods to support the development of MASs are in urgent need [30].

∗ Corresponding author.

136 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

Figure 1. Overview of proposed method for rapid prototyping.

In this paper we describe a method for rapidly building prototypes of large MASs
using logic programming. Our approach is based on a global protocol depicting all inter-
actions that take place in the MAS. The format and order of all interactions are formally
specified as a kind of non-deterministic finite state machine. This formalism can be used
to check for desirable properties in the protocol. An advantage we exploit is that this
global protocol can be used to automatically synthesise the agents that will comprise the
system. Our approach to prototyping MASs reflects the modelling methodology intro-
duced in [60] and consists of the following steps:

1. Design of a Global Protocol – in this initial step we prescribe the design of a global
protocol, that is, a precise description of the kinds and order of messages that the
components of the MAS can exchange. For this description we have used a form
of non-deterministic finite state machines, called electronic institutions (or simply
e-institutions) [18,39]. We explain more about this in section 2.

2. Synthesis and Customisation of Agents – this step addresses the automatic synthesis
of agents as logic programs complying with the global protocol. Although simple,
these synthesised agents are in strict accordance with the protocol from which they
originate: their behaviours conform to the specification of the global protocol. To
allow for the variability of the components of a MAS and to help engineers explore
the design space of individual agents, we offer means to customise the synthesised
agents into more sophisticated pieces of software, using logic program transformation
techniques. We explain this step in section 3.

3. Definition of Prototype – a prototype consists of an e-institution and a set of cor-
responding customised agents. Designers may deliberately leave empty slots in the
customised agents where different design possibilities may be pursued. These slots
can be completed differently giving rise to distinct prototypes. In section 4 we de-
scribe this step.

4. Simulation and Monitoring of the Prototype – the last step is the simulation of the
prototype and the collection of results. We offer means for the enactment of an elec-
tronic institution: the agents are started as self-contained and asynchronous processes
that communicate by means of message-passing. This step is described in section 5.

These steps are illustrated in figure 1. In the diagram, we also included a verification
activity: the same specification for the global protocol can be used to check for desirable
properties (or the absence of undesirable properties) – we explain this step in section 2.

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 137

We describe the steps above in sections 2–5. We compare our approach with related
work in section 6 and in section 7 we discuss the ideas presented, draw conclusions and
give directions for future work.

1.1. A typical scenario for MAS prototyping

MASs consist of many components which interact dynamically, each with its own
thread of control, and engaging in complex coordination protocols. MASs are more
complex to correctly and efficiently engineer than stand-alone systems which use a sin-
gle thread of control. They are becoming, in these days of cheap, fast, and reliable
interconnections amongst computers, a common way of carrying out computations.

Let us consider a scenario in which we want to design a virtual marketplace [53]
where agents come to buy and sell goods. Our virtual marketplace, much like the Kasbah
system depicted in [11], will be populated by agents started by users (humans or their
software agents) who wish to sell or buy goods. The agents that buy and sell are designed
to be personalised to the needs of the user. Parameters such as which goods to trade, the
highest price a buyer agent is prepared to pay, the lowest price a seller agent will accept
to sell the goods, time constraints, negotiation strategies, and so on, should be fixed by
the users prior to the agent joining the marketplace.

In order to explore the design space when building such a system, rapid prototyping
is essential. Even though individual agents may be developed in isolation, it is frequently
impossible to predict the overall behaviour of the system a priori: its behaviour can only
be understood through empirical investigation. Furthermore, to gain an insight into how
the interplay among the internal features of the individual agents influences the overall
dynamics of the system, the prototypes ought to offer convenient ways to change these
features and to examine any resulting changes in the collective behaviour of the agents.

2. Global protocols via electronic institutions

A defining property of a MAS is the communication among its components: a MAS
can be understood in terms of the kinds and order of messages its agents exchange [65].
We adopt the view that the design of MASs should thus start with the study of the
exchange of messages, that is, the protocols among the agents, as explained in [60].
Such protocols are called global because they depict every possible interaction among
all components of a MAS. The ultimate goal of our approach is to use the protocol
specification to synthesise the individual components of a MAS and then run them (as
explained below). The kinds and order of messages exchanged among the components
of the system are all explicitly represented, and give rise to the actual agents that will
ultimately enact the protocol.

Our global protocols are represented using electronic institutions (e-institutions, for
short) [18,39]. E-institutions are a variation of non-deterministic finite state machines
[29] (NDFSM, for short). An advantage of using a finite-state machine formalism to rep-
resent protocols is that we can use automated techniques to check for properties (or their

138 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

absence). For instance, protocols should not have “sinks”, that is, states (other than final
states) which the system reaches and is never able to leave; there should not be unreach-
able states in a protocol; and so on. Such properties can be checked with standard graph
algorithms. If our protocols were described in a more sophisticated formalism with a
more operational semantics, e.g., in a programming language, such checks might not be
easily done. Another advantage is that we can use the representation of our protocols
to synthesise the agents that will comprise the MAS. We exploit this advantage in our
approach. This is explained in detail in section 3.2 below. Again, more sophisticated
notations would make this synthesis process a lot more complex, if not impossible.

We shall present e-institutions here in a “lightweight” version in which those fea-
tures not essential to our investigation will be omitted – for a complete description of
e-institutions, readers should refer to [18,46]. Our lightweight e-institutions are defined
as sets of scenes related by transitions. We shall assume the existence of a communi-
cation language CL among the agents of an e-institution as well as a shared ontology
which allow them to interact and understand each other. We first define a scene:

Definition 1. A scene is a tuple S = 〈R,W,w0,Wf , WA, WE,�, λ〉 where

– R = {r1, . . . , rn} is a finite, non-empty set of roles;

– W = {w0, . . . , wm} is a finite, non-empty set of states;

– w0 ∈ W is the initial state;

– Wf ⊆ W is the non-empty set of final states;

– WA is a set of sets WA = {WAr ⊆ W, r ∈ R} where each WAr , r ∈ R, is the set of
access states for role r;

– WE is a set of sets WE = {WEr ⊆ W, r ∈ R} where each WEr , r ∈ R, is the set of
exit states for role r;

– � ⊆ W × W is a set of directed edges;

– λ : � �→ CL is a labelling function associating edges to messages in the agreed lan-
guage CL.

A scene is a protocol specified as a finite state machine where the states represent
the different stages of the conversation and the directed edges connecting the states are
labelled with messages of the communication language. A scene has a single initial state
(non-reachable from any other state) and a set of final states representing the different
possible endings of the conversation. There should be no edges connecting a final state
to any other state. Because we aim at modelling multi-agent conversations whose set
of participants may dynamically vary, scenes allow agents to join or leave at particular
states during an ongoing conversation, depending on their role1. For this purpose, we
differentiate for each role the sets of access and exit states.

1 It is worth pointing out that roles in e-institutions are more than labels: they help us abstract from in-
dividual agents and define a pattern of behaviour that any agent that adopts a role ought to conform to.
Moreover, all agents with a same role are guaranteed the same rights, duties and opportunities [18].

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 139

Figure 2. Simple Agora Room scene.

To illustrate this definition, in figure 2 we provide a simple example of a scene for
an agora room in which an agent willing to acquire goods interacts with a number of
agents intending to sell such goods. This agora scene has been simplified – no auctions
or negotiations are contemplated. The buyer announces the goods it wants to purchase,
collects the offers from sellers (if any) and chooses the best (cheapest) of them. The sim-
plicity of this scene is deliberate, in order to make the ensuing discussion and examples
more accessible. A more friendly visual rendition of the formal definition is employed
in the figure. Two roles, buyer and seller, are defined. The initial state w0 is denoted by a
thicker circle (top left state of scene); the only final state, w3, is represented by a pair of
concentric circles (bottom left state). Access states are marked with a “�” pointing to-
wards the state with a box containing the roles of the agents that are allowed to enter the
scene at that point. Exit states are marked with a “�” pointing away from the state, with
a box containing the roles of the agents that may leave the scene at that point. The edges
are labelled with the messages to be sent/received at each stage of the scene. A special
label “nil” has been used to denote edges that can be followed without any action/event.

We now provide a definition for e-institutions:

Definition 2. An e-institution is the tuple E = 〈SC, T , S0, S�,E, λE〉 where

– SC = {S1, . . . , Sn} is a finite, non-empty set of scenes;

– T = {t1, . . . , tm} is a finite, non-empty set of transitions;

– S0 ∈ SC is the root scene;

– S� ∈ SC is the output scene;

– E = EI ∪ EO is a set of arcs such that EI ⊆ WES × T is a set of edges from all
exit states WES of every scene S to some transition T , and EO ⊆ T × WAS is a set of
edges connecting all transitions to an access state WAS of some scene S;

– λE : E �→ p(x1, . . . , xk) maps each arc to a predicate representing the arc’s con-
straints.

Transitions are special connections between scenes through which agents move,
possibly changing roles and synchronising with other agents. We illustrate the definition
above with an example comprising a complete virtual agoric market. This e-institution

140 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

Figure 3. E-institution for simple agoric market.

has more components than the above scene: before agents can take part in the agora
they have to be admitted; after the agora room scene is finished, buyers and sellers must
proceed to settle their debts. In figure 3 we show a graphic rendition of an e-institution
for our market. The scenes are shown in the boxes with rounded edges. The root scene
is represented as a thicker box and the output scene as a double box. Transitions are rep-
resented as triangles. The arcs connect exit states of scenes to transitions, and transitions
to access states. The labels of the arcs have been represented as numbers. The same
e-institution is, of course, amenable to different visual renditions.

The predicates p(x1, . . . , xk) labelling the arcs, shown above as numbers, typically
represent constraints on roles that agents ought to have to move into a transition, how
the role changes as the agent moves out of the transition, as well as the number of agents
that are allowed to move through the transition and whether they should synchronise
their moving through it. In the agoric market in figure 3, the arc label 3 is:

p3(x, y) ← id(x) ∧ role(y) ∧ y ∈ {seller, buyer} ∧ 〈x, y〉 ∈ Ags (3)

that is, transition t3 is restricted to those agents x whose role y is either seller or buyer –
information on such agents is recorded in the set Ags. The complementary arc label 3.1
leaving transition t3 is:

p3.1(x, z) ← 〈x, y〉 ∈ Ags ∧ y/z ∈ {seller/payee, buyer/payer} (3.1)

that is, those agents 〈x, y〉 ∈ Ags that moved into t3 may move out of the transition
provided they change their roles: seller agents in the Agora Room scene should become
payee agents in the Settlement scene, buyer agents should become payer agents.

2.1. Designing and representing e-institutions

Those wishing to design their own e-institutions can make use of a graphical editor,
Islander [16,37]. Users can prepare their e-institutions by drawing diagrams as figures 2
and 3 using a selection of icons and a repertoire of drawing operations. The graphical no-
tation is a means to present the formal definitions above and allow their more ergonomic
manipulation. We show in figure 4 a screenshot of Islander.

Graphically represented e-institutions are translated into a logical formalism [61]
implemented in Prolog [3], making our representation computer-processable. This
makes it easier to synthesise our simple agents, as we shall see below. We show in fig-
ure 5 our Prolog representation for the agora room scene graphically depicted in figure 2

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 141

Figure 4. Islander graphical editor for e-institutions.

roles(agora,[buyer,seller]). states(agora,[w0,w1,w2,w3]).
initial_state(agora,w0). final_states(agora,[w3]).
access_states(agora,buyer,[w0]). access_states(agora,seller,[w0,w2]).
exit_states(agora,buyer,[w3]). exit_states(agora,seller,[w1,w3]).
theta(agora,[w0,request(B:buyer,all:seller,buy(I)),w1]).
theta(agora,[w1,offer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora,[w1,nil,w2]).
theta(agora,[w2,offer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora,[w2,inform(B:buyer,S:seller,accept(I,P)),w3]).
theta(agora,[w2,inform(B:buyer,S:seller,reject(I,P)),w3]).
theta(agora,[w2,nil,w3]).
theta(agora,[w3,inform(B:buyer,S:seller,reject(I,P)),w3]).

Figure 5. Representation of agora room scene.

above. Each component of the formal definition has its corresponding representation.
Since many scenes may coexist within one e-institution, the components are parame-
terised by a scene name (first parameter). The � and λ components of the definition
are represented together in theta/2, where the second argument holds a list containing
the directed edge as the first and third elements of the list and the label as the second
element.

Any scene can be conveniently and economically described in this fashion.
E-institutions are collections of scenes in this format, plus the extra components of the

142 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

scenes([admission,agora,settlement,departure]).
transitions([t1,t2,t3,t4,t5]).
root_scene(admission). output_scene(departure).
arc([admission,w3],p1,t1). arc(t1,p1.1,[departure,w0]).
arc([admission,w3],p2,t2). arc(t2,p2.1,[agora,w0]).
arc([agora,w3],p3,t3). arc(t3,p3.1,[settlement,w0]).
arc([agora,w3],p4,t4). arc(t4,p4.1,[departure,w0]).
arc([settlement,w3],p5,t5). arc(t5,p5.1,[departure,w0]).

Figure 6. Representation of agoric market e-institution.

tuple comprising its formal definition. In figure 6 we present a Prolog representation for
the agora market e-institution. Of particular importance are the arcs connecting scenes
to transitions and vice-versa. In definition 2 arcs E are defined as the union of two sets
E = EI ∪ EO , EI connecting (exit states of) scenes to transitions, and EO connecting
transitions to (access states of) scenes. We represent the EI arcs as arc/3 facts the first
argument of which holds (as a list) a scene and one of its exit states, the second argu-
ment holds the predicate (constraint) pi which enables the arc, and the third argument
is the destination transition. For simplicity, we chose to represent the arcs of EO also
as arc/3 facts, but with different arguments: the first argument holds the transition, the
second argument holds the constraint that enables the arc, and the third argument holds
(as a list) a scene and one of its access states.

2.2. Checking properties of e-institutions

Scenes and transitions are means for breaking up complex interactions of a MAS
in a natural way. They can be seen as modules that can be combined together, provided
some conditions hold. Complex interactions should be split into smaller parts with a
coherent meaning: for instance, the part relating to admission, the part relating to the ac-
tual selling and buying, and so on. An immediate benefit in breaking up the interactions
of a complex MAS is that its design becomes more manageable. Additionally, modules
encourage reuse.

Checking properties automatically is an integral part of the formal specification
of computer systems [14,21]. The modular description of a complex MAS as scenes
and transitions allows useful checks to be performed with lower associated costs. The
decomposition of a complex protocol into sub-protocols helps deter the multiplication
of combinations of possible outcomes: a scene that has been checked for some property
will not be affected by the properties of any transition connected to it. Furthermore,
once a scene is checked, it need not be checked again when new parts are added to the
specification.

Our representation renders itself to straightforward automatic checks for well-
formedness. For instance, we can check whether all theta/2 terms are indeed de-
fined with elements of states/3, whether all arc/3 are defined either for access_
states/3 or exit_states/3, if all access_states/3 and exit_states/3
have their arc/3 definition, and so on.

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 143

1 connected_states(Sc,CSts):-
2 initial_state(Sc,W0), states(Sc,Sts), final_states(Sc,WFs),
3 setof(St,(member(St,Sts),path_states(Sc,W0,St,[])),RSts),
4 setof(RSt,(member(RSt,RSts),path_states(Sc,RSt,WFs,[])),CSts).

5 connected_scenes(CScs):-
6 root_scene(RSc), scenes(Scs), output_scene(FSc),
7 setof(Sc,(member(Sc,Scs),path_scenes(RSc,Sc,[])),RScs),
8 setof(Sc,(member(Sc,RScs),path_scenes(Sc,FSc,[])),CScs).

Figure 7. Fragment of program to check properties.

However, the representation is also amenable for checking important graph-related
properties using standard algorithms [12]. It is useful to check, for instance, if from the
initial_state/2 we can reach all other states/2, whether there are states/2
from which it is not possible to reach an exit_state/3 (absence of sinks), and so
on. We show in figure 7 a portion of a Prolog program to check for properties in
e-institutions. Predicate connected_states/2 (lines 1–4) obtains a list CSts of
connected states in scene Sc, that is, those states/2 that can be reached from the
initial_state/2 of the scene and from which a path_states/4 to one of the
final_states exists. This predicate works by finding all states/2 St to which
there is a path_states/4 from initial_state/2 W0 (line 3) and then it tests
(line 4) among these states, those from which a path to one of the final_states/2
exists. Predicate connected_scenes/1 (lines 5–8) returns a list CScs compris-
ing all the scenes that can be reached from the root_scene/1 and from which
there is a path to the output_scene/1. Its operation is similar to the predicate
connected_states/2 just described.

Predicates connected_states/2 and connected_scenes/1 rely, respec-
tively, on predicates path_states/4 and path_scenes/3. The goal path_
states(Sc,St,FSt,Path) holds if Path is a list of states representing a path be-
tween St and FSt, in scene Sc. Likewise, predicate path_scenes(Sc,FSc,Path)

holds if Path is a list of scenes representing a path between scene Sc and scene FSc.
Both path_states/4 and path_scenes/3 can cope with lists of final states/scenes,
that is, they may also take as a parameter a list of final (destination) states/scenes and
they hold if there is a path to one of the elements of this list. These predicates incorporate
the usual transitive formulation [7,50] to find a next state/scene and then recursively find
a path from this new state/scene to the destination, using the path built so far to avoid
loops.

3. Synthesis and customisation of agents

Our choice of a global protocol has the advantage that we can use it to synthesise
the agents that will comprise our MAS. This feature allows designers to experiment with
different variations of a specific global protocol, knowing that the corresponding proto-
type will be automatically generated. In [61] we introduced a simple way to synthesise

144 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

agents from our e-institutions. We devised a means to use the logical representation of
the e-institution in order to obtain a set of Horn clauses which capture the behaviours for
the agents participating in the e-institution. The synthesis obtains, for the roles of each
scene, a set of Horn clauses which represent the connections among the states and the
events, i.e., sending or receiving messages, associated with these edges.

The basic idea in this step is to automatically extract from an e-institution an ac-
count of the behaviours agents ought to have. This simplified account is called a skeleton:
it provides the essence of the agents to be developed. Our skeletons are devised from
the interaction specification (at the e-institution level) being much simpler to read than
full agent descriptions, thus encouraging their use as the initial design for sophisticated
reasoning agents. Engineers willing to develop agents to perform in e-institutions could
then be offered a skeleton which would be gradually augmented into a complete pro-
gram. Depending on the way skeletons are represented, semi-automatic support can be
offered when augmenting them into more complex programs.

Skeletons should ideally exist in a computer-processable format, by which we
mean that the behaviours represented by them should be reproducible by a computer.
This way we do not have to perform further transformations from an abstract format
onto more computationally-oriented representations – skeletons, after all, should guide
designers in the development of their agents. Our skeletons are simple logic programs:
the terse syntax, the precise declarative and procedural meanings and the ease with which
one can write meta-programs to obtain alternative executions are some of the advan-
tages of our approach. We explain more about the connection between skeletons and
e-institutions in section 3.1, and in section 3.2 we show how they can be synthesised.

A skeleton should define all the basic behaviours agents should possess to success-
fully perform in the e-institution they are designed for. Our skeletons are simple logic
programs with very limited functionality: they store the current state of the computation,
and are able to move on to a next state, given certain conditions. However, e-institutions
are non-deterministic and there might be states of the computation from which more
than one next state is possible. When a rational agent follows an e-institution, any non-
determinism should be resolved by formal reasoning and decision-making procedures.
The augmenting process which skeletons undergo is aimed at “filling in” such capabili-
ties. Reasoning and/or decision-making procedures have to be appropriately added to the
initial skeleton, yielding more sophisticated agents that conform to the e-institution from
which they were extracted. Furthermore, any variation to be performed by the compo-
nents (such as the customisation of messages) is not specified in the e-institution. If, for
instance, a message offering an item is to be sent, the actual item which is offered is to
be defined by whichever agent actually participates in the e-institution. This variability
is another capability that ought to be added to the initial skeleton.

Our choice of logic programs to represent skeletons is also supported by the wealth
of research and results on automatic support and environments for logic programming
development [5,15,23,58]. Of particular importance to our proposal is the work on the
systematic approach to logic program development using skeletons and programming
techniques [5,33,45,49]. With this approach, an initial simple program which defines

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 145

the flow of execution (a skeleton) is augmented with more features (the programming
techniques). These are extra computations to be performed as the flow of execution,
defined by the initial skeleton, is followed. Since e-institutions prescribe the high-level
flow of execution of a MAS there is a natural affinity between e-institutions and skele-
tons.

The activity of customisation of the skeleton is thus given support: programming
techniques are added at the designer’s will, conferring on the program additional capabil-
ities. Program editing environments can be offered for this purpose, by which designers
shift the focus of their attention: rather than seeing programs as sequences of characters
(and adding or deleting them), programs are seen as “chunks” of constructs and oper-
ations over them. The addition of a parameter to a predicate, for instance, rather than
requiring the appropriate editing of lines and characters to include the new parameter
(with the likely risk of missing out on recursive calls or predicates with multiple defi-
nitions), becomes one single command which adequately alters all relevant parts of the
program. We explain in more detail the customisation activity in section 3.3.

3.1. Skeletons as logic programs

Given an e-institution, we want to automatically extract essential information de-
termining the behaviour of individual agents that will join in and interact with each other
for some specific purpose(s). We shall call the representation for this essential informa-
tion a skeleton of an agent.

The information obtained is to be used to restrict or define the possible behaviours
of agents joining an e-institution. The same e-institution can be employed for this pur-
pose, but we want simpler and more specialised versions aimed at the individuals that
will populate the enactment of the e-institution. The simplification and/or specialisation
of an e-institution, however, is in the sense of obtaining parts of the original NDFSM
that are relevant for specific agents. This process hopefully yields a smaller NDFSM.

The information of a NDFSM can be efficiently represented with any of the classic
data structures employed with graphs [12]. However, we need to add the dynamics of a
flow of execution to the static information of states and transitions. This flow of execution
captures the informal mechanism we use when we try to follow a NDFSM. NDFSMs are
abstract models that can be given different computational interpretations [29]: the same
automaton can be understood as a generator of correct output strings or as a device that
accepts or rejects input strings. We also want to add to our representation some form of
operational “meaning” of what happens when an edge is followed or triggered.

We propose logic programming for this purpose. The Horn clauses of logic pro-
grams are a compact formalism with precise declarative and procedural meanings. It
provides a simple and natural means to represent our NDFSM as well as the flow of
execution of such devices. Our proposal is exemplified in figure 8: a non-deterministic
state transition diagram is shown with its associated clauses. The meaning associated to

NDFSMs is the following: if s
l−→ t is an edge, then when the flow of the execution

is in s, it should make l happen and move to state t ; alternatively, the flow of execution

146 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

Figure 8. State transitions and Horn clauses.

should wait until l happens and then it should move to state t . Both these possibilities
can be captured with our Horn clause proposal: the appropriate definition of predicate
trans that checks if a transition is enabled can give rise to the different meanings.

A more intuitive way to represent an edge s
l−→ t is via the clause state(t) ←

trans(l) ∧ state(s). This representation, however, fails to capture the temporal ordering
between s and t , that is, the fact that the flow of execution can move from state s to
state t if it can prove that trans(l) holds. Clause state(s) ← trans(l) ∧ state(t), on the
other hand, capture this important relationship: if we use it to prove ← state(s) applying
SLDNF resolution [54], as implemented in Prolog [3], then the execution proceeds by
(i) matching ← state(s) with the head goal of the clause (i.e., flow of execution enters
state s); (ii) an attempt to prove trans(l) is made; and (iii) if trans(l) is successfully
proved, then the flow of execution tries to prove state(t) – this step amounts to moving
to state t . It is possible, though, to write a meta-interpreter [28,50] to use the more
intuitive (and logically sound) representation and still capture the temporal ordering, but
this would add complexity to our proposal.

Other forms of representation for NDFSMs such as adjacency matrices and ad-
jacency (linked) lists [12] address separately the static information, i.e., the states and
transitions, and the dynamic aspects of the model, i.e., how the static information is em-
ployed during computations with the NDFSM. Although such representations may be
equivalent in terms of expressiveness or even more efficient in terms of storage space
and retrieval speed, they are not so appropriate for our needs, that is, a minimal repre-
sentation for a NDFSM which should be used as an initial design for a program.

There are other advantages in using clauses as a representation. The simplic-
ity of this notation is complemented by the procedural meaning given by sound and
complete proof procedures such as SLDNF resolution [54], efficiently implemented
in different logic programming systems. If we assume this procedural interpretation,
then it is enough to show the clauses that comprise our NDFSM. Our representation
is thus an actual, albeit simple, logic program with a precise semantics. Given a
NDFSM M = (S,�, δ, s0, T), where S = {s0, . . . , sn} is the set of states (or vertices),
� = {l1, . . . , lm} is the set of labels of transitions (we have used the more generic
term “label of transitions” instead of an alphabet, as is the case in automata [29]),
δ : S × � �→ S is a (partial) transition function, s0 ∈ S is a special state, the initial
state and T ⊆ S is the set of terminal (or acceptance) states, then we can provide an
automatic translation to our clause representation. For any s, t ∈ S, l ∈ �, such that
δ(s, l) = t , then we have state(s) ← trans(l) ∧ state(t) in our clause representation.
Additionally, we can include clauses to record the initial and final states, completely
defining a NDFSM.

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 147

cl_arc(R,arc([Sc,St],P,T),Clause):-
satisfy(R,P),
Clause = (s([Sc,St,R]):-holds(P),s([T,R])).

cl_arc(R,arc(T,P,[Sc,St]),Clause):-
satisfy(R,P),
Clause = (s([T,R]):-holds(P),s([Sc,St,R])).

cl_theta(R,theta(Sc,[St,L,NSt]),Clause):-
L =.. [_,_:R,_,_],
Clause = (s([Sc,St,R]):-send(L),s([Sc,NSt,R])).

cl_theta(R,theta(Sc,[St,L,NSt]),Clause):-
L =.. [_,_,_:R,_],
Clause = (s([Sc,St,R]):-rec(L),s([Sc,NSt,R])).

cl_theta(R,theta(Sc,[St,_,NSt]),Clause):-
Clause = (s([Sc,St,R]):-s([Sc,NSt,R])).

Figure 9. Fragment of program to synthesise agents.

3.2. Synthesis of skeletons from e-institutions

In [61] we introduced a simple way to synthesise agents from our e-institutions.
We devised a means to use the logic representation of the e-institution in order to
obtain a simple set of Horn clauses which capture the behaviours for the agents par-
taking the e-institution. The synthesis obtains, for the roles of each scene, a set of
Horn clauses which represent the connection among the states and the events, i.e.,
sending or receiving messages, associated with these connections (edges). We show
in figure 9 part of a Prolog program to synthesise agents from an e-institution rep-
resented in the above logical form. Predicate cl_arc/3 uses the role (first argu-
ment) and an arc (second argument) to assemble an agent clause (third argument) of
the form s(LInfo1):-holds(Pred),s(LInfo2). Depending on which kind of arc
cl_arc/3 uses (cf. figure 6 and its discussion), that is, whether it uses an EI arc (con-
necting a scene to a transition) or EO (connecting a transition to a scene) then an appro-
priate clause is synthesised. The first clause of cl_arc/3 defines the format of clauses
for EI arcs; the second clause defines the format of clauses the EO . The satisfy/2
predicate ensures that agents with that role are allowed to follow the arc – this depends
on the predicate labelling the edge to/from a transition between scenes.

We have adopted the general format s(LInfo1):-Cond,s(LInfo2) for the
clauses of our synthesised agents. In LInfoi we keep a list with information on the
agent’s current state of computation: we aim at the minimum required information to
uniquely define it. In Cond we represent the condition to be fulfilled in order for the
agent to move from s(LInfo1) to s(LInfo2). We also aim at simplicity, so we do not
devise different clauses for distinct situations the agent is (within scenes, leaving a scene
and moving into a transition, or leaving a transition and entering a scene). We could
have devised different clauses for each such situation, but this would require different
means to cope with them during their execution.

148 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

s([agora,w0,buyer]):-
send(request(B:buyer,all:seller,buy(Item))),
s([agora,w1,buyer]).

s([agora,w0,seller]):-
rec(request(B:buyer,all:seller,buy(Item))),
s([agora,w1,seller]).

. . .

s([agora,w3,seller]):-
rec(inform(B:buyer,S:seller,reject(Item,Price))),
s([agora,w3,seller]).

s([admission,w3,seller]):- holds(p1),s([t1,seller]).
. . .

s([t5,buyer]):- holds(p5.1),s([departure,w0,buyer]).

Figure 10. Synthesised agent from e-institution.

We store in LInfoi a means to represent an agent’s state of computation within an
e-institution. Within a scene, the triple 〈S,w, r〉 where S is the scene, w is a state within
S and r is the role the agent has adopted, is sufficient to uniquely identify an agent’s state
of computation – we encode this as the list [Sc,St,R]. Likewise, within a transition,
the pair 〈t, r〉, where t is the transition and r is the role of the agent in the transition
uniquely depicts when an agent is at a transition – we encode this as the list [T,R]. By
using lists we can accommodate both cases using the same representation for a clause.

Predicate cl_theta/3, similarly, uses the role (first argument) and an intra-
scene � edge (second argument) to obtain an agent clause (third argument) of the
form s(LInfo1):-P(Label),s(LInfo2), P being either send/1 or rec/1. These
clauses are obtained depending on whether the sender is of the same role as the first
argument (first clause of cl_theta/3 – predicate send/1 is employed in this case)
or whether the receiver is of the same role (second clause of cl_theta/3 – predi-
cate rec/1 is used instead). If the role is not the sender nor the receiver (clause 3 of
cl_theta/3 – the exception of clause 1 and clause 2) then the assembled clause is of
the form s(LInfo1):-s(LInfo2). Auxiliary predicates are required to exhaustively
combine the roles of every scene with all appropriate edges and arcs to obtain the com-
plete agent.

We show in figure 10 some of the clauses synthesised from the e-institution of
figure 3, represented as in figures 5 and 6. The top clauses depict the agora scene. The
bottom clauses are the transitions among scenes. Additional predicate definitions are
required for message exchange and these are inserted at a later stage. An agent whose
predicates are all defined is a completely operational and executable Prolog program
which captures the behaviours within an e-institution.

The clauses define predicate s/1 which uses a list to represent the current state
of computation of an agent. As explained above, this list can either be of the form
[Sc,St,R] or [T,R] where Sc is the name of the scene, St is the identification of a
state within Sc, R is a role and T is a transition. Depending on the role of the agent, a
suitable action send/1 or rec/1, to send and receive a message, respectively, is chosen

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 149

Figure 11. Skeleton • technique = program.

for the clause within a scene. By using the clauses with the standard SLDNF resolution
mechanism [3] we get all possible behaviours of the agents in the e-institution.

3.3. Customising synthesised agents

The clauses synthesised from the e-institution describe all possible behaviours an
agent may have. Because it is an exhaustive process, all scenes, edges, transitions and
roles are considered. However, if we were to use the same clauses to define agents
which would enact an e-institution, they would all have precisely the same behaviours.
Although this might be desirable at times, we also want to offer means for designers to
add variability to the agents synthesised and use them in our prototypes.

3.3.1. Programming with skeletons and techniques
Automatic programming [4] has been a long-term goal of computer science in

general [31] and, in particular, software engineering: programs being obtained via the
rigorous manipulation (i.e., by a computer) of intermediate formalisms. Programming
is an activity that can be given different degrees of support: we can see a spectrum of
possibilities, ranging from completely automatic programming environments through to
the completely manual and unsupported text-editing scenario. Somewhere in between
these two extremes lie the programming assistants. These are tools that support human
programmers developing, reusing, documenting and maintaining their code [24,44].

Logic programming, with its terse syntax, concise semantics and formal under-
pinnings, is particularly suitable for such support tools. One particular approach incor-
porates the classic methodology proposed by Wirth [64] by means of which an initial
simple program is gradually refined and customised to the user’s needs. The initial pro-
gram is a skeleton and the refinements are techniques added to it [5]. Logic program
development can thus be seen as a transformation activity [58] in which legal operations
on a program (adding techniques) must preserve desirable properties (e.g., termination)
[43].

To illustrate the skeletons and techniques approach, using a particular form of logic
programming, viz. Prolog [3], we present an example in figure 11. We show, on the
leftmost box a skeleton s/1, to traverse a list and test for specific components – skeletons
define the flow of execution to be followed [5,33] by the programs that incorporate it.
The skeleton of the figure is shown being augmented with a technique t/1 (middle
box) which collects those components that satisfy a test. A technique augments the

150 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

functionalities of a skeleton (or program): additional computations are performed as the
flow of execution is followed. In our case, the resulting program p/2 (right box) builds
a list (second argument) with selected elements from the traversed list (first argument).
The “•” operator appropriately joins the two fragments, making sure that the base-case
(non-recursive) clauses appear together, and that the recursive clauses get “blended”
correctly.

In order to match the respective recursive clauses together, the X variable appearing
in both skeleton and technique ought to be the same – although a variable X appears
both in the skeleton and in the technique, the scope of a variable in Horn clauses is the
clause in which it appears [3]. The resulting program p/2 joins the functionalities of the
skeleton (a list is traversed and its items are tested for some property) and the technique
(those items that fulfil the test for some property are assembled together as a list). The
flow of control, that is, the program’s execution, is defined by the skeleton, whereas the
computations to be performed as the execution proceeds are added by the technique.

The above “•” operator stands for the low-level operations on the programming
constructs that take place for a complete program to be built. Although substantial sup-
port can be offered [5,58] human intervention is still needed at points. For instance, in
the example above it is required that the test/1 predicate be defined in order to have a
complete program. Even though a tool could offer a library of likely tests, users may still
want to develop their own routines. Again, help could be offered when auxiliary predi-
cates are being developed, and so on, until the program is complete. The programming
activity is thus redefined: an initial skeleton is chosen from an existing collection and
techniques are applied to gradually obtain a program with the desired flow of execution
and that performs the expected computations.

3.3.2. An extensible techniques-based programming environment
It is possible to develop a programming environment incorporating the skeletons

and techniques approach. In the case of Prolog, a high-level symbolic language that
allows programs to be conveniently manipulated by a program written in the same lan-
guage, this has been successfully done [5,58].

Techniques are represented in a declarative way, free of implementational detail
or particular usage in mind. The process of applying a technique is independently de-
fined. An immediate benefit of this approach is that techniques have a clean and concise
presentation format that would enable both engineers of the tool and its future users to
quickly recognise and understand them. An environment that makes such a distinction
is defined in [58] – we have adapted that proposal for our purposes here. Techniques are
represented as simple program transformation schemata [57,59]. These are rewrite rules
with program “templates”, that is, abstract constructs that stand for classes of programs.
We show in figure 12 an example of a technique represented as a transformation. The �Ai

constructs stand for vectors of arguments, that is, a possibly empty sequence of terms.
P and Q are meta-variables that abstract the actual predicate names. Construct c stands
for a generic constant name and f (x, y) for a generic functor with two arguments, the
second one of which is recursively defined. A program transformation is defined: if a

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 151

Figure 12. Programming technique represented as a rewrite rule.

program matches the left-hand side schema, then it can be rewritten as the right-hand
side. On the right-hand side schema, arguments are appropriately added to the program,
with the same effect of the programming technique of figure 11 above. The applica-
tion of transformations such as the one above is precisely defined by a semi-unification
algorithm [59]. Actual programming constructs are matched against the schematic con-
structs. This match will yield the new program with the prescribed added parts. Addi-
tional constraints on the schematic constructs can be defined, so as to narrow the possible
matches.

We have developed an extensible programming environment using the above pro-
posal. The environment is given an e-institution from which an initial skeleton is syn-
thesised. This initial skeleton is then customised in different ways by the user. We are
able to represent a comprehensive repertoire of program manipulation operations or-
ganised in the following three categories (in increasing order of complexity of captured
programming expertise):

– Program editing – operations such as insert/delete an argument in a predicate, in-
sert/delete goal in a clause, insert/delete clause in a program, and so on.

– E-institution editing – operations to restrict the clauses to specific scenes, states of a
scene, transitions and roles. Such operations take into account the inter-dependence
of concepts within the e-institution; for instance, if an agent has access to scene S1

then it may also need to have access to scene S2; if the user tried to restrict the clauses
to scene S1, a message would be issued.

– Program techniques – insertion of extra functionalities with a coherent mean-
ing/purpose, such as pairs of accumulators to carry values around, building recursive
data structures, and so on [50].

These operations require user intervention in order to be properly applied. Users must
determine where an argument is to be inserted, which transition, scene, or role is to be
removed from the program being built, and so on. Our environments also offer the means
to perform manual editing: the users are presented with the code for the program in a
text editor and they can alter the program in whichever way wanted; when the users are
finished, they select to save the changes and the program is stored with all the performed
manual changes.

Our environment allows new program manipulation operations to be added as
needed. Different presentations of programs and operations can be offered to the users,

152 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

s([agora,w0,buyer],Stock,Msgs):-
chooseItem(Stock,Item),
send(request(B:buyer,all:seller,buy(Item))),
updateMsgs(send,Msgs,buy(Item),NewMsgs),
s([agora,w1,buyer],Stock,NewMsgs).

s([agora,w0,seller],Stock,Msgs):-
rec(request(B:buyer,all:seller,buy(I))),
updateMsgs(rec,Msgs,buy(Item),NewMsgs),
s([agora,w1,seller],Stock,NewMsgs).

. . .

Figure 13. Augmented agent.

such as a brief explanation in English or a visual representation. Program building is
supplemented with means to run the devised code, debug and/or explain them, and have
their efficiency analysed and improved [58].

We show in figure 13 the first two clauses of the synthesised agent with an example
of the kinds of customisation via augmenting we allow users to perform within our envi-
ronment. In order to save space, we focus only on the two first clauses. Starting with the
synthesised clauses of figure 10 the user gradually adds features to the agent’s capabili-
ties. We show the added parts underlined. The first modification inserts a programming
technique which carries a Stock data structure around as the program execution pro-
ceeds; this data structure is employed to obtain, via predicate chooseItem/2, the value
of Item in the first clause. The definition for chooseItem/2 must be supplied. The
second modification concerns the addition of another technique to assemble a data struc-
ture Msgs. This data structure stores the messages sent and received, and is updated by
means of calls to predicate update/3 (which should also be supplied). The environ-
ment ensures that arguments are consistently inserted, and the user must provide suitable
definitions for any auxiliary predicates. The original set of behaviours of the synthesised
agent is preserved in our extended program above. Ideally this should always happen,
ensuring that agents will perform correctly and efficiently/intelligently.

3.3.3. Exploring and organising the design space
Given an e-institution E represented in the Prolog format explained in section 2.1

above, we can synthesise an initial skeleton �, a fully operational, albeit simple, Prolog
program. Our program editing environment offers an extensible repertoire of program
manipulation operations (represented generically as “�”), mapping a program to an-
other program. The environment records the sequence of operations performed: this
comprises the history of the preparation of a program. Users may backtrack to previous
points in order to change their design decisions. We show in figure 14 a diagrammatic
representation of this process: an e-institution E yields an initial skeleton � which is
operated upon via the � program manipulation operations, yielding programs �i . The
design space is infinite: the program manipulating operations are means to explore this
design space for the agents that will perform in the e-institution. The histories of differ-
ent agents are means to organise the explored design space.

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 153

Figure 14. Exploring and organising a design space.

meta((G,Gs)):-
meta(G), meta(Gs).

meta(G):-
system(G), call(G).

meta(G):-
setof(Body,clause((G:-Body)),Bodies),
chooseBody(Bodies,ChosenBody),
meta(ChosenBody).

Figure 15. Meta-interpreter for agents in Prolog.

3.3.4. Coping with non-determinism using meta-interpreters
Besides the customisation described above, another manner of adding variability to

the synthesised agents concerns changing the policy of non-deterministic choices. The
clauses, when used with the standard way of implementing SLDNF resolution [3], offer
a default behaviour that will be followed by the agent. Any non-determinism involving
two or more clauses depicting the edges leaving one same state would be deterministi-
cally solved. In such a scenario the clauses are assumed to comprise an ordered sequence
and the first clause obtained in this sequence which is successfully proven will be the
one chosen. This feature, however, may not always be desired.

Logic programming has long been praised as a useful tool for meta-programming
[28,51] – a meta-program is a program whose data denotes another (object) program,
both of which are in the same language. We provide designers with a library of meta-
interpreters which allow the meta-reasoning about non-deterministic choices. We show
in figure 15 a simple meta-interpreter for our needs. Its two initial clauses are the
usual meta-interpreter definitions for conjuncts (first clause) and system built-ins (sec-
ond clause) [3]. The third clause generalises the usual meta-interpreter definition to
handle user-created predicates: those clauses (G:-Body) the head of which unifies
with goal G are all collected and one of their bodies Bodies is chosen via pred-
icate chooseBody/2 as the ChosenBody that will be further used in the meta-
interpretation. Predicate chooseBody/2 must be defined by the agent’s designer, and
should reflect the policies and attitudes of the agent regarding non-deterministic choices.

Interestingly, the use of meta-interpreters to control the execution of agents may
provide us with another way to approach agent development. In this approach, it is the
meta-interpreter that is gradually augmented: the synthesised skeleton is left unchanged
and techniques are instead applied to the meta-interpreter, augmenting its capabilities.
One advantage of applying techniques to meta-interpreters is that these are normally

154 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

compact pieces of code and hence are easier to alter and maintain. Another advantage
lies in their potential for reuse: the same (augmented) meta-interpreter can be used with
distinct skeletons from disparate e-institutions [61].

3.4. Working example: Agents for the agoric market

We now further develop our Agoric Market example to illustrate our approach and
introduce other features of our environment. Let us assume, for the sake of simplicity,
that the Admission, Settlement and Departure scenes are completely deterministic,
that is, they do not have more than one edge leaving a state. This feature will influ-
ence the parts of the synthesised agents responsible for their enactment of those scenes:
those parts will also be deterministic and hence will not require customisation. The
only customisation in these scenes concerns the value of variables in sent messages: the
synthesised skeleton may contain variables whose values await definition. The possible
values for variables in messages can be determined using the underlying assumed ontol-
ogy, but programmers must ultimately define how particular values will be assigned to
such variables, via suitable predicate calls.

During the customisation stage users experiment with different designs, applying
standard program editing commands to the synthesised agents, possibly with further
manual editing. Users may choose to leave parts (e.g., the value of a constant, the for-
mat of an arithmetic expression or a predicate) of the customised agent undefined, thus
ending up with a kind of open program [19]. In our environment, the undefined parts are
annotated with their possible values, as we explain below, and are used to prompt en-
gineers to consider their definition before the agent can be run. Through this approach,
engineers can fully define an agent (open) program by combining it with components
previously defined or with freshly devised parts. Engineers can provide alternative defin-
itions/values for the missing parts: these are associated with alternatives with descriptive
labels which will be used as an interface to define a prototype.

We notice that the Agora Room scene has non-determinism which has to be ex-
plicitly dealt with by the agents performing in it. We shall assume there is a finite set of
items with their corresponding suggested retail prices. Buyer agents will try to buy all
these items from the seller agents. Seller agents, as specified in the Agora Room scene,
must determine the price at which they desire to sell each item (label 2 of figure 3). This
feature allows for the study of design choices of the seller agents: these can be either
greedy, when their pricing policy maximises profit, or considerate, when their pricing is
low. The greedy/considerate design choice is, in fact, a continuum, but we have chosen
to make it discrete in order to simplify our analysis.

We have employed the augmented clauses shown in figure 13 to prepare two kinds
of agents, the seller and the buyer, by restricting their roles in the Agora Room scene
– these are the entries Seller and Buyer, respectively, shown in figure 18. The
alterations performed in both cases are very similar and are explained in detail below.
Two arguments Msgs and Stock, storing, respectively, the messages exchanged and the

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 155

s([agora,w1,seller],Stock,Msgs):-
member(request:buy(Item),Msgs),
pricing(Item,Price),
send(offer(S:seller,B:buyer,sell(Item,Price))),
updateMsgs(send,Msgs,offer:sell(Item,Price),NewMsgs),
s([agora,w2,seller],Stock,NewMsgs).

pricing(Item,Price):-
retailPrice(Item,RPrice),
$greed(Profit),
Price is RPrice + (RPrice * Profit).

designOption(predicate:greed/1,[greedy:greed(40),
considerate:greed(10)]).

Figure 16. Fragment of GenericSeller agent.

stock of item, were consistently inserted in the clauses with predicate calls to manage
them; these calls were further customised and provided with definitions.

3.4.1. A generic seller agent
When we customise our seller agents to deal with their pricing policy, we define

the functions which implement the respective policies and leave a slot with the possible
choices greedy or considerate. Depending on the choice taken, the distinct policies are
incorporated. We can also pursue the continuum alternative and have a slot for the profit
margin which will be a numeric value between 0 and 100 to be used by the seller agents
when assigning prices to items. We can be very specific and independently carry out the
alterations which will define the greedy and considerate policies, but we have noticed
that these are very similar, the only distinction being the percentage of profit to be added
to the price. Rather than designing the two kinds of seller agents independently, we
postpone the particular choices to a later stage. We show in figure 16 the clause of
the GenericSeller agent, where the pricing is established as well as the definition
of one of the auxiliary predicates and design options. The s/3 definition shows the
edge w1 → w2 when the seller agent responds to a buyer request: the actual request
request:buy(Item) is retrieved from the messages received Msgs, the price of
Item is established via predicate pricing/2, the offer is sent to the buyer agent, the
messages sent/received are updated via updateMsgs/4 and finally the seller agent
moves to state w2. Predicate retailPrice/2 maps each Item (first argument) to its
suggested retail price RPrice (second argument).

Predicate pricing/2 calculates the Price of Item but it requires the definition
of predicate greed/1 (marked with a “$” explained below) which obtains the profit
margin the agent is to adopt. The distinction between a greedy and a considerate seller
agent lies in the definition of greed/1. Both the continuum and the discrete possibilities
can be exploited with suitable definitions of greed/1.

The designOption/2 predicate highlights that greed/1 is yet to be defined.
When the user marks a programming construct with “$” our programming tool prompts

156 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

s([agora,w2,buyer],Stock,Msgs):-
minimalOffers($minMsgs,Msgs),
chooseOffer(Msgs,S,Item,Price),
send(inform(B:buyer,S:seller,accept(Item,Price))),
updateMsgs(send,Msgs,inform:sell(Item,Price),NewMsgs),
s([agora,w3,buyer],Stock,NewMsgs).

s([agora,w2,buyer],Stock,Msgs):-
rec(offer(S:seller,B:buyer,sell(Item,Price))),
updateMsgs(rec,Msgs,offer:sell(Item,Price),NewMsgs),
s([agora,w2,buyer],Stock,NewMsgs).

designOption(constant:minMsgs,[integer:(1,20)]).

Figure 17. Fragment of GenericBuyer agent.

her to specify what the construct is expected to be and what values it may have. This
is then represented in the program itself via predicate designOption/2: its first
argument states that a predicate greed/1 awaits definition and its possible defini-
tions are represented as a list (second argument of designOption/2) of pairs La-
bel:Definition. A more informative label, such as greedy and considerate,
can thus be associated to a definition. The labels are used to automatically synthesise an
interface to the parameter-tuning of our prototypes, as explained below.

3.4.2. A generic buyer agent
We have noticed that the Agora Room scene also allows for the customisation of

buyer agents. By examining the scene definition of figure 2, we can see that a buyer
agent has a non-deterministic choice: when it is in state w2 it can either remain in w2,
move to w3 via edge 3, move to w3 via edge 4 or move to w3 via edge nil. This part
of the scene allows us to customise different kinds of buyer agents, depending on how
we want them to behave. It might be useful to use a metaphor to introduce the different
behaviours: when the seller agents send out their offers, buyer agents may react in an
impetuous fashion and accept the first offer they get, that is, they follow edge 2 only
once (i.e., they receive only one offer) and then move to w3 via edge 3. Alternatively,
the buyer agents may react in a more cautious way and wait for a minimal number of
offers (i.e., loops in w2 via edge 2) before choosing (via edge 3) the cheapest of them.
Again, these extremes define a spectrum of possibilities: if we denote by n the number
of offers a buyer agent must get before it decides on one of them, then we have one
associated with the impetuous end of the spectrum and any number greater than 1 with
the cautious end. We can customise our buyer agents to incorporate these possible design
choices and leave a slot which allows them to be selected easily in order to assemble a
complete prototype.

We now proceed to customise the augmented clauses of figure 13, but this time
the clauses defining the behaviour of the agent in the agora scene are restricted to the
buyer role. In figure 17 we show a fragment of the buyer agent, viz., the clauses where
the offers are collected (second clause of s/3) and one of them is accepted (first clause

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 157

of s/3). We have engineered these clauses from those of figure 10, customised to meet
our needs: two arguments, Stock and Msgs have been inserted (as in the example of
figure 13) and predicates to manipulate them have been added; the remaining clauses
simply pass these arguments down recursively.

Messages are received in the second clause until minimalOffers/2 is satisfied
– this predicate ensures that the agent has received the minimal number minMsgs of-
fers. The programmer has, however, tagged minMsgs with a “$” to inform that the
actual value for this constant is a parameter. Predicate minimalOffers/2 counts
the number of offers received and checks that it is above minMsgs. The program-
mer, having flagged minMsgs with “$” is prompted for its possible values. In the case
above, the values have been specified as an integer between 1 and 20, stored in predicate
designOption/2. Our environment uses predicate designOption/2 to create a
suitable interface to help users define the minimum number of messages a buyer agent
must receive before deciding to buy.

4. Building MASs prototypes

A prototype of a MAS consists of an e-institution and agents to enact it. These
agents have been synthesised from the e-institution (or from parts of it) and the de-
signer has customised them by restriction, by augmenting, by meta-programming or by
a combination of these. This customisation is a means to explore the design space of
individual agents and by extension of the MAS as a whole. The designer selects some
of these agents to make up the prototype.

Our prototypes are defined as collections of populations of agents. Designers se-
lect from among the programs �i obtained during the customisation stage those that
will enact the e-institution and how many of each should make up the prototype. More
formally,

Definition 3. A population Pop is the pair Pop = 〈�,n〉 where � is a program and
n ∈ N is the number of individual copies of � that will comprise the population.

This definition also caters for the case when a combination of a meta-interpreter
� and a synthesised/customised agent �′ is employed. In this case, we simply consider
the union � ∪ �′ of the clauses of the meta-interpreter and the clauses that make up the
agent to be run. We now define a prototype for a MAS:

Definition 4. A prototype P is a pair P = 〈E, {Pop1, . . . , Popn}〉 where E is an e-insti-
tution and Popi , 1 � i � n, comprise a set of populations of agents.

In a prototype, the agents of the populations must all stem from the same e-institu-
tion E . We explain below how this restriction is enforced when a prototype is assembled.

We have embedded the above concepts into an integrated environment for defining
prototypes of MASs. We have developed different versions [62,63] of this environment

158 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

Figure 18. Screen shot of environment showing a design space.

which uses a simple HTML [38] interface to guide its users in the activity of building
and running prototypes. Our environment receives as input e-institutions in the format
of figure 6. The e-institutions have a unique identification which our environment uses
to index the users’ activities. The environment provides support for checking properties,
for the synthesis and customisation of agents and the definition and execution of proto-
types, as explained below. All these activities are dependent on an input e-institution.
A number of distinct e-institutions can be input and exploited simultaneously without
any risk of mixing them up or their agents and prototypes.

Users select one of the input e-institutions which is shown in a simple textual form
with colours to differentiate its components. Users then proceed to check the e-insti-
tution for desirable properties: within our environment users may check e-institutions
for their well-formedness, absence of unreachable scenes, unreachable states and sinks
within scenes and unreachable transitions. The environment issues a report listing the
problems detected to help designers fixing the offending parts of the e-institution.

When an error-free e-institution is obtained, users may proceed to the synthesis and
customisation stage of the environment. The environment uses the representation of the
e-institution to synthesise an initial skeleton for the agents which will enact the protocol,
as explained in section 3.2. The skeleton is synthesised only once and stored with the
e-institution, and is displayed in a simple text form with distinct colours to differentiate
the information on the names of the e-institution, scene or transition, state and roles.

This initial skeleton is input to the customisation services, which aid users explore
the design space, as explained in section 3.3. The kinds and order of operations applied
to the skeleton and its ensuing versions are recorded to provide information on the history
of the agent’s construction. We present the explored design space in a simple textual
form, showing a hierarchy of more specialised programs. Because the design space
may grow considerably, we need to offer ways to hide details until they are needed: the
history information is hidden until the user clicks on it. We show a screen shot of our
environment in figure 18 below. The screen shot shows the Agoric Market e-institution
with the currently explored design space for its agents. We use hyperlinks [38] to hide
details – if users click on these, they are expanded and a “[hide]” option is offered to
“tuck away” the information. We can see a hierarchy of agents rooted in Skeleton, the
skeleton synthesised from the e-institution. Users give names to the partially developed

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 159

Figure 19. Console for Agoric Market prototypes.

programs: SellerAgent,GenericSeller,BuyerAgent and GenericBuyer.
The development history of the programs is shown as a history hyperlink: upon
clicking on it, users are presented with a sequence of names describing the operations
applied to obtain the program on the left. These operation names, upon clicked, are
further expanded. In the picture above, the SellerAgent has been obtained from
Skeleton via a restriction operation. This operation allows parts of the original
skeleton to be appropriately removed. In this case, we have restricted the skeleton to
incorporate only the role of a seller in the Agora Room scene.

4.1. Prototyping agoric markets

We show in figure 19 a screen shot of our environment presenting the design space
for a prototype definition. The options represented as designOption/2 predicates
further refine the presentation of the agents. Designers assemble a prototype by defining
and adding populations of agents: the field of column Qty represents how many indi-
viduals of that kind of agent should be in the population. Any extra parameters which
require user customisation are offered in the Parameters column. The add buttons
insert the respective population into the prototype definition. The Parameters col-
umn displays any parameters that must be set and their options. In our example, we
have the greedy and considerate seller agent and the levels (1–20) of caution that a buyer
agent can have.

We can exploit scenarios where there are more items than buyers, the exact amount
or fewer items than buyers, and compare the overall dynamics of the MAS in the runs
of the e-institution. All messages exchanged are recorded during the simulation, and
stored in files where they can be manipulated and shown in alternative graphical formats.
By experimenting with the number of each type of agent and monitoring the results
obtained, engineers can explore the overall dynamics of the MAS. A whole family of

160 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

prototypes can be quickly built by setting the parameters (i.e., providing values for the
slots). In our example, there is a trade-off between being an impetuous or a cautious
agent: the latter may be able to make better-informed decision by collecting offers, but
they may be beaten by the quicker former agents. Similarly, the greedy and considerate
seller agents have a trade-off: considerate sellers have a lower profit margin but they sell
more items than greedy sellers.

5. Simulation of prototypes

Our environment provides a means to rapidly build a MAS consisting of hundreds
of agents. These agents can offer controlled levels of variability which allows the sys-
tematic exploration of the dynamics of the system. Prototypes can be reused: once it is
defined, a prototype is stored and can be later retrieved and altered and put to use again.
After a prototype is defined (or altered), we can simulate it, recording information about
all messages exchanged among its agents. Agents may also leave “traces” of their exe-
cution behind, recording information on the tuple space. This information comprises the
result of the simulation and can be displayed in different formats.

After a simulation, the parameters may then be changed and another simulation
takes place, its results being recorded and adequately shown to the users. As designers
get a better understanding of the MAS, they can find the adequate “tuning” for the fea-
tures of the MAS, that is, the choice of parameters that yield desired behaviours. These
can then be incorporated to the design of the final implementation of the MAS. Alterna-
tively, depending on the possible values of the parameters to be explored, we can apply
automatic means to explore the parameter setting. The work in [48] investigates the cou-
pling of our method/environment with genetic programming to explore the parameters
of a prototype.

5.1. Enacting e-institutions

We have incorporated the concepts above into a distributed simulation platform
for e-institutions. This proof-of-concept platform, developed in SICStus Prolog [47],
simulates an e-institution using a number of administrative agents, implemented as in-
dependent processes, to oversee the simulation. These administrative agents look after
the agents taking part in the enactment which interact via a blackboard architecture,
using the SICStus Linda tuple space [10,47].

In order to develop the simulation platform, a suitable operational meaning for e-
institutions, which is not part of the original proposal [18,39], had to be defined. The
meaning of a scene is captured by those messages that are sent at each edge, as the agents
participating in the scene move between states. A certain degree of synchronisation
among those agents participating in the e-institution must be ensured.

An administrative agent admScene oversees the enactment of a scene, ensuring
that the participating agents synchronise their states. This synchronisation is achieved
via a semaphore in the tuple space which is updated by the admScene agent. We show

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 161

Figure 20. Enactment of Agora Room scene (wait stage).

Figure 21. Enactment of Agora Room scene (send stage).

in figure 20 a diagrammatic representation of edge (w1, w2) in the Agora Room scene
previously shown in figure 2, its label and the participating agents a1, a2 (sellers) and b1,
b2 (buyers) which have previously joined the scene – these agents are shown in state w1.
Our diagrammatic representation is purely for explanation purposes: when we write and
show that an agent is in a state s it means that its internal representation for the current
state is set to s.

On the right-hand side of the diagram above, we also show a fragment of the tuple
space, managed by the admScene agent. The tuple space consists on the semaphore in
the wait stage, and terms of the form t(MsgTemplate, SendStatus, RecSta-
tus), which the admScene agent has recorded. These terms represent the messages
MsgTemplate that can be sent by the agents. SendStatus and RecStatus are
flags which indicate, respectively, when a message has been successfully sent and re-
ceived; in such cases, the flag is set to “*”. To ensure that an agent does not try to
receive a message that has not yet been marked as sent but that may still be sent by some
agent, the admScene agent synchronises the agents in the scene: it first lets the sending
agents change state by moving along the corresponding edge, marking their messages as
sent. When all sending agents have moved, then the admScene agent lets the receiving
agents receive their messages and move to the next state of the scene.

The synchronisation among the agents of a scene is achieved via the semaphore
term in the tuple space. The participating agents trying to send a message must wait until
this semaphore has been set to “send” by the admScene agent. A participating agent
sends a message by first checking if there is a matching MsgTemplate in the tuple
space. The message is sent by assigning a value to any uninstantiated variables of the
term in the tuple space (represented above as anonymous “_” variables) and assigning a
“*” to the SendStatus. We show in figure 21 the same portion of the Agora Room
scene after the semaphore has been set to “send”: the seller agents a1 and a2 have sent
their messages and thus moved to state w2; the messages consist of goods c1 and c2

offered to the buyer agents at different prices; the SendStatus was adequately set to
“*”. Agent admScene creates templates for all messages that can be sent, but not all of
them may in fact be sent: in our example, the last tuple was not used.

162 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

Figure 22. Enactment of Agora Room scene (receive stage).

Finally, the participating agents may receive messages, as the admScene agent sets
the semaphore value to “receive”. The participating agents receive a message by
checking for a term in the tuple space that has been marked as sent and whose MsgTem-
plate matches the agents’ message format. We show in figure 22 the Agora Room after
agents b1 and b2 have received their messages and have moved to state w2. The tuples
have been marked as received, with RecStatus being set to “*”.

The participating agents are the agents previously synthesised and customised.
They are implemented as independent processes with their own thread of control. They
access the tuple space in a distributed fashion, assigning values to variables (that is,
sending messages) and retrieving values (that is, receiving messages), making use of
predicates defined via SICStus Prolog Linda built-ins [47]. The participating agents in-
form the admScene agent, also via the tuple space, of the state of the scene they are
currently at. With this information the admScene agent is able to “herd” agents from
one state to another, as it creates messages templates, lets the sending agents mark them
as sent and then lets the receiving agents mark them as received (also retrieving their
contents). Those agents that do not send nor receive can move between states without
having to wait for the semaphore. All agents though synchronise at every state of the
scene, that is, there is a moment in the enactment when all agents are at state wi , then
after sending and receiving (or just moving) they are all at state wi+1.

An enactment of an e-institution begins with the enactment of the root scene and
terminates when all agents leave the output scene. Engineers may specify whether a
scene can have many instances enacted simultaneously, depending on the number and
order of agents willing to enter it. We did not include this feature in our formal pre-
sentation because instances of a scene can be understood as different scenes: they are
enacted independently from each other, although they all conform to the same specifica-
tion. When a scene terminates, there is a record in the tuple space of all messages that
were exchanged as a result of the scene’s enactment. This is useful for following the
dynamics of the e-institution.

Transitions are enacted in a similar fashion. The platform assigns an agent adm-
Trans to look after each transition. However, transitions differ from scenes in two ways.
Firstly, we do not allow instances of transitions. This is just a methodological restric-
tion, rather than a technical one: we want transitions to work as “meeting points” for
agents moving between scenes and instances of transitions could prevent this. Secondly,
transitions are permanent, that is, their enactment never terminates. Scenes (or their in-
stances), once enacted (i.e., all the agents have left it at an exit state), cease to exist, that
is, the admScene agent looking after it stops.

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 163

6. Related work

Our approach has parallels with [36], where logic programming is also exploited to
specify and simulate MASs. The approach of [36] is a more complex framework where
a number of design features are incorporated into the MASs and their agent components:
they use an object-oriented description for the overall architecture of the MAS as well
as a linear logic language for describing individual agents. Although these might be
appropriate choices, they may not meet the needs or the preferences of particular users.
The work in [13] extends that of [36], allowing the design of heterogeneous and open
MASs by incorporating a mediator system and a generic agent execution platform.

Computational logic has been widely advocated as a means to specify software,
offering distinct ways to analyse the specification and, when needed and appropriate,
to execute it [21]. Such features, exploited in the days of stand-alone, centralised sys-
tems, have also proved to be applicable to MASs [2,6,34]. A common problem with
those advocating logic programming for MASs is that they also tend to propose their
own architectures and logics which, albeit generic and expressive, may not be adequate
or appeal to everyone. In contrast, our work uses as building blocks very simple and
standard logic programming constructs in their usual syntax and semantics. Any higher-
level architectural restrictions on MASs can, however, be specified via e-institutions.
Furthermore, any logic program (implementing arbitrary deductive logics) can be used
to guide the synthesised agents as they make any non-deterministic choices.

Logics have been used as a unifying formalism to represent, reason about, model
and implement protocols in MAS. For instance, the work in [55,56] propose an alterna-
tive notation to specify many-to-many interactions among agents – the labels of edges
of a variation of e-institutions are formulae of a special-purpose first-order logics; they
are used to create models that can be checked for properties and also used in simula-
tions. Another related work is [1] where protocols are represented as social integrity
constraints, a restricted class of first-order logics. Special social integrity constraints
which refer to events in the past (backward expectations) give rise to interaction proto-
cols.

Our work has strong connections with agent-oriented software engineering [30] as
we cater for prototyping, an important stage in the design of complex systems. There
are similarities between ours and the work of [66] in that both try to bridge the gap
between formal models and implementations of multi-agent systems. Moreover, both
underlying formal models are finite state machines: the work in [66] uses G-nets, a type
of high-level Petri net [41].

6.1. Prototyping concurrent applications

MASs can be regarded as a special kind of concurrent system, one in which the
processes are agents with the generally agreed properties of proactiveness, persistence,
reactiveness, awareness of the environment, autonomy and interactivity with other agents
[20,52]. An important distinction between MASs and ordinary concurrent applications
concerns the nature of the interactions among the components. In MASs, the interactions

164 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

are at a higher level of sophistication, as in an electronic auction, a negotiation or an
argumentation [40]. Furthermore, the components of MASs are endowed with reasoning
capabilities which use the interactions and any information on the environment to guide
and adjust their behaviour.

We find in [27] a survey of programming languages and systems for prototyping
concurrent applications. The languages and systems surveyed are not directly applicable
to MASs because of the nature of interactions among components: these are too simple
and mostly exchange information rather than more complex knowledge representations,
normally associated with MASs. One can also notice an altogether lower level of ab-
straction for the intended systems with concerns on underlying protocols and message-
passing services. Notwithstanding, our approach resembles that of [8], in which simple
skeletons of programs are generated from special kinds of Petri Nets. However, in that
work only simple interactions are addressed, whereby information is passed around dis-
tributed algorithms.

7. Conclusions and future work

In this paper we have described an approach for rapidly prototyping large multi-
agent systems. We have incorporated this approach into an environment to support en-
gineers building their prototypes. The approach follows four steps, viz.:

1. Design of a global protocol, formalised as an electronic institution.

2. Synthesis of agents from the global protocol and their customisation.

3. Definition of a prototype consisting of populations of the previously synthe-
sised/customised agents to enact a global protocol.

4. Simulation and monitoring of the prototype.

After analysing the results from the simulation, users may go back to any of the previous
steps. This process gives rise to a virtuous lifecycle, as reported in [61]: the further
away from the simulation the step to be re-done is, the more dramatic the changes are to
the design of the MAS prototype. Our approach also offers a means to check for global
properties of the MASs to be built.

Our environment offers a means to carry out simulations of our prototypes. Each
agent becomes a self-contained asynchronous process which communicates via a tuple
space. The environment incorporates a platform to enact electronic institutions [55]
with administrative agents which ensure the kinds and order of messages sent are those
specified.

Being able to rapidly build prototypes of complex MASs allows engineers to ex-
periment with alternative design choices and to get a “feel” for the important features of
the components’ design and how these features affect the overall behaviour of the sys-
tem. When design features are sufficiently understood, and can be related to the system
dynamics, engineers can proceed towards more complete, stable and efficient versions

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 165

of the MAS. Ideally, a rapid prototyping environment should offer a means to automat-
ically transform a prototype into an efficient implementation [27,35]. Although in our
environment we have not made any provisions for such transformation, it is technically
possible to synthesise from the e-institution, for instance, a C or Java program for the
agents. However, the customisation stage is more difficult to achieve using the syntax
of C or Java, as it involves the manipulation and alteration of a program. Ideally, the
transformation should be delayed to the very last moment, but the Horn clauses of the
customised agents may be too complex for a straightforward translation onto another
programming language.

We might choose to view a prototype as an idealised (correct) version of the MAS
to be built. Following this idea, any foreign agent willing to join in the MAS does not
do so directly: they are assigned a synthesised “proxy” agent which is guaranteed to
follow our e-institution. Any choice points and other customisation possibilities of the
proxy agent are presented to the foreign agent which can adjust them to its needs. In this
case, the prototype becomes the inner kernel of the actual MAS and the foreign agents
are an outer layer. We are currently investigating how the synthesised agents could be
presented to foreign agents and customised as their proxy.

We are currently investigating alternative formalisms for global protocols, combin-
ing NDFSMs with logics. There are a number of likely candidates both for the NDFSM
and logics to label edges with. For the NDFSM, we are currently investigating Petri nets
[41] and conceptual graphs [42], as well as a specially engineered electronic institutions.
Likewise, for the logics we will investigate typed first-order logics and special-purpose
logics with explicit sets [55]. The aim is a combination which is expressive and natural
and with a clear and concise semantics that also allows properties to be proved as well
as the synthesis (and customisation) of components and the enactment of the system de-
scribed. We also want to bring into our initial specification and prototypes more features
of e-institutions left out of this current work, such as normative rules and more general
dialogic frameworks [17,18,39].

We have used our method to create prototypes for auction rooms [22,39] and ne-
gotiations [32,40], exploiting different organisational schemes such as supply networks
[26]. We have built experiments with up to 250 individually customised agents each
of which executed as a stand-alone Prolog process communicating via the shared tuple
space. Our customisation process and support tool scales up naturally: the hierarchical
relationships among agents will help designers concentrate on “families” or “species” of
agents with similar behaviours and their differences. The number of individual agents
that will define an instance of the MAS is a simple parameter that can be changed at will.

Once designers define a MAS, they can simulate its execution using our platform.
During this simulation engineers abstract away individual agents and observe their col-
lective behaviour. Engineers are encouraged to experiment with the parameters of their
prototypes and how they affect the overall behaviour of the MAS. At the point of sim-
ulation, a MAS is a collection of independent Prolog programs that run in parallel –
engineers need not and should not be looking at the actual programs comprising the
individual components of the MAS.

166 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

Our method has also been put to use in an altogether different context than the
one originally thought of: to create agent-based models for real-life scenarios. One of
the models we developed simulates a breast cancer referral procedure: patients, gen-
eral practitioners, specialists and scanning units are individual agents that interact with
each other to exchange information. With this model, we are able to exploit different
arrangements for patient referral, i.e., under what conditions should patients be referred
to specialists, alternative protocols and procedures with the different components of the
system, and alternative policies for handling waiting lists (queues, priority lists, and so
on).

Acknowledgements

This work was partially sponsored by the European Union, under contract IST-
1999-10208, research grant Sustainable Lifecycles in Information Ecosystems (SLIE),
and by the Spanish CICYT project eINSTITUTOR (TIC2000-1414). Thanks are due to
Chris Walton for proofreading earlier versions of this document and also for useful sug-
gestions. We would also like to thank the anonymous referees for their useful comments
that helped to improve this paper.

References

[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello and P. Torroni, Modeling interactions using social
integrity constraints: A resource sharing case study, in: Declarative Agents Languages and Technolo-
gies (DALT), Lecture Notes in Computer Science (Springer, 2004).

[2] J.J. Alferes, P. Dell’Acqua, E. Lamma, J.A. Leite, L.M. Pereira and F. Riguzzi, A logic based approach
to multi-agent systems, ALP Newsletter 14(3) (2001).

[3] K.R. Apt, From Logic Programming to Prolog (Prentice-Hall, U.K., 1997).
[4] A.W. Biermann, Automatic programming, in: Encyclopedia of Artificial Intelligence, Vol. 1 (Wiley,

New York, 1992).
[5] A.W. Bowles, D. Robertson, W.W. Vasconcelos, M. Vargas-Vera and D. Bental, Applying prolog

programming techniques, International Journal of Human–Computer Studies 41(3) (1994) 329–350.
[6] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi and F. Zini, Logic programming & multi-agent

systems: A synergic combination for applications and semantics, in: The Logic Programming Para-
digm: a 25-Year Perspective (Springer, 1999) pp. 5–32.

[7] I. Bratko, Prolog Programming for Artificial Intelligence, 3rd ed. (Longman Higher Education, 2000),
[8] G. Bucci and E. Vicario, Rapid prototyping through communicating Petri nets, in: Proc. 3rd Int’l

Workshop on Rapid System Prototyping, ed. N. Kanopoulos, Los Alamitos, CA, USA (1994) pp.
58–75.

[9] R. Budde, K. Kuhlenkamp, L. Mathiassen and H. Züllighoven (eds.), Approaches to Prototyping
(Springer, New York, 1984).

[10] N. Carriero and D. Gelernter, Linda in context, Communications of the ACM 32(4) (1989) 444–458.
[11] A. Chavez and P. Maes, Kasbah: An agent marketplace for buying and selling goods, in: Proc. 1st Int’l

Conf. on the Practical Applic. of Intell. Agents & Multi-Agent Technology (PAAM’96), Blackpool, UK
(1996).

[12] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (MIT Press, Cambridge,
MA, 1990).

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 167

[13] P. Dart, E. Kazmierczak, L. Sterling, M. Martelli, V. Mascardi, F. Zini and V.S. Subrahmanian, Com-
bining logical agents with rapid prototyping for engineering distributed applications, in: Proc. 9th
Software Tech. & Engineering Practice (STEP’99), Pittsburgh, PA (1999).

[14] M. d’Inverno and M. Luck, Understanding Agent Systems (Springer, Berlin, 2001).
[15] M. Ducassé and J. Noyé, Logic programming environments: Dynamic program analysis and debug-

ging, Journal of Logic Programming 19, 20 (1994) 351–384.
[16] M. Esteva, D. de La Cruz and C. Sierra, ISLANDER: an electronic institution editor, in: Proc. 1st Int’l

Joint Conf. on Autonomous Agents & Multi-Agent Systems (AAMAS 2002), Bologna, Italy (2002).
[17] M. Esteva, J. Padget and C. Sierra, Formalizing a language for institutions and norms, in: Intelli-

gent Agents VIII, eds. M. Tambe and J.-J. Meyer, Lecture Notes in Artificial Intelligence, Vol. 2333
(Springer, Berlin, 2001).

[18] M. Esteva, J.-A. Rodríguez-Aguilar, C. Sierra, P. Garcia and J.L. Arcos, On the formal specification
of electronic institutions, in: Agent Mediated E-Commerce, eds. F. Dignum and C. Sierra, Lecture
Notes in Artificial Intelligence, Vol. 1991 (Springer, Berlin, 2001).

[19] P. Flener, K.-K. Lau, M. Ornaghi and J. Richardson, An abstract formalisation of correct schemas for
program synthesis, Journal of Symbolic Computation 30(1) (2000).

[20] A. Franklin and A. Graesser, Is it an agent, or just a program?, in: Intelligent Agents III (Springer,
Berlin, 1997).

[21] N.E. Fuchs, Specifications are (preferably) executable, Software Engineering Journal (1992) 323–334.
[22] P. Garcia, E. Gimenez, L. Godo and J.A. Rodriguez-Aguilar, Bidding Strategies for Trading Agents in

Auction-Based Tournaments, Lecture Notes in Computer Science, Vol. 1571 (1999).
[23] T.S. Gegg-Harrison, Learning prolog in a schema-based environment, Instructional Science 20 (1991)

173–192.
[24] A.T. Goldberg, Knowledge-based programming: A survey of program design and construction tech-

niques, IEEE Transactions on Software Engineering SE-12(7) (1986) 752–768.
[25] V.S. Gordon and J.M. Bieman, Rapid prototyping: Lessons learned, IEEE Software 12(1) (1995)

85–95.
[26] C.M. Harland, Supply chain management: Relationships, chains and networks, British Journal of

Management 7 (1996) 63–80.
[27] W. Hasselbring, Programming languages and systems for prototyping concurrent applications, ACM

Computing Surveys 32(1) (2000) 43–79.
[28] P.M. Hill and J. Gallagher, Meta-programming in logic progamming, in: Handbook of Logic in Arti-

ficial Intelligence and Logic Programming, Vol. 5 (1998) pp. 421–498.
[29] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation

(Addison-Wesley, Reading, MA, 1979).
[30] N.R. Jennings and M. Wooldridge, Agent-oriented software engineering, in: Handbook of Agent Tech-

nology (AAAI/MIT Press, 2000).
[31] W.H. Kautz, E.A. Voorhees and T.A. Jeeves, Automatic programming systems, Communications of

the ACM 1(8) (1958) 6–8.
[32] G.E. Kersten and S. Szpakowicz, Negotiation in distributed artificial intelligence: Drawing from hu-

man experience, in: Proc. 27th Annual Hawaii Int’l Conf. on System Sciences, eds. J.F. Nunamaker
and R.H. Sprague, Los Alamitos, CA (1994) pp. 258–270.

[33] M. Kirschenbaum, S. Michaylov and L. Sterling, Skeletons and techniques as a normative view of
developing logic programs, Australian Computer Science Communications 18(1) (1996) 163–178.

[34] R.A. Kowalski and F. Sadri, From logic programming towards multi-agent systems, Annals of Math-
ematics and Articial Intelligence 25(3-4) (1999) 391–419.

[35] Luqi, Computer aided system prototyping, in: Proc. 1st Int’l Workshop on Rapid System Prototyping,
Los Alamitos, CA (1992) pp. 50–57.

[36] M. Martelli, V. Mascardi and F. Zini, Specification and simulation of multi-agent systems in CaseLP,
in: Proc. of APPIA-GULP-PRODE (L’Aquila, Italy, 1992).

168 W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming

[37] E-Institutor Project: Islander graphical editor, IIIA-CSIC, Bellaterra, Catalonia, Spain (2002),
http://e-institutor.iiia.csic.es/e-institutor/software/islander.
html.

[38] C. Musciano and B. Kennedy, HTML & XHTML: The Definitive Guide, 4th ed. (O’Reilly, 2000).
[39] P. Noriega, Agent-mediated auctions: The fishmarket metaphor, Ph.D. thesis, Institut d’Investigació

en Intel.ligència Artificial (IIIA), Consejo Superior de Investigaciones Científicas (CSIC), Campus
UAB, Bellaterra, Spain (1997).

[40] S. Parsons, C. Sierra and N.R. Jennings, Agents that reason and negotiate by arguing, Journal of Logic
and Computation 8(3) (1998) 261–292.

[41] J.L. Peterson, Petri nets, Computing Surveys 9(3) (1977) 223–252.
[42] S. Polovina and J. Heaton, An introduction to conceptual graphs, AI Expert (1992) 36–43.
[43] M. Proietti and A. Pettorossi, Transformations of logic programs: Foundations and techniques, Jour-

nal of Logic Programming 19, 20 (1994) 261–320.
[44] C. Rich and Y.A. Feldman, Seven layers of knowledge representation and reasoning in support of

software development, IEEE Transactions on Software Engineering 18(6) (1992) 451–469.
[45] D. Robertson, A simple Prolog techniques editor for novice users, in: 3rd Annual Conference on

Logic Programming, Edinburgh, Scotland (1991).
[46] J.A. Rodríguez-Aguilar, On the design and construction of agent-mediated electronic institutions,

Ph.D. thesis, IIIA-CSIC, Spain (2001).
[47] SICS, SICStus Prolog user’s manual, Swedish Institute of Computer Science (2000), http://www.

sics.se/sicstus.
[48] C. Sierra, J. Sabater, J. Agustí and P. Garcia, Evolutionary computation and multiagent systems de-

sign, in: Proc. 1st Int’l Joint Conf. on Autonomous Agents & Multi-Agent Systems (AAMAS 2002)
(Bologna, Italy, 2002).

[49] L. Sterling and M. Kirschenbaum, Applying techniques to skeletons, in: Constructing Logic Programs
(Wiley, London, 1993).

[50] L. Sterling and E. Shapiro, The Art of Prolog: Advanced Programming Techniques, 2nd ed. (MIT
Press, 1994).

[51] L.S. Sterling and R.D. Beer, Meta-interpreters for expert system construction, Journal of Logic Pro-
gramming 6(1–2) (1989) 163–178.

[52] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan and R. Ross, Heterogeneous Agent
Systems (MIT Press/AAAI Press, Cambridge, MA, 2000).

[53] M. Tsvetovatyy and M. Gini, Towards a virtual marketplace: Architecture and strategies, in: Proc. 1st
Int’l Conf. on the Practical Applic. of Intell. Agents & Multi-Agent Technology (PAAM’96), Blackpool,
UK (1996).

[54] M.H. Van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language,
Journal of ACM 23(4) (1976) 733–742.

[55] W.W. Vasconcelos, Expressive global protocols via logic-based electronic institutions, in: Proc. 2nd
Int’l Joint Conf. on Autonomous Agents & Multi-Agent Systems (AAMAS 2003), Melbourne, Aus-
tralia. A longer version appears as Tech. Report AUCS/TR0301, Department of Computing Science,
University of Aberdeen, UK (2003).

[56] W.W. Vasconcelos, Logic-based electronic institutions, in: Proc. Declarative Agent Languages and
Technologies (DALT’03), Melbourne, Australia, Lecture Notes in Artificial Intelligence (Springer,
2003).

[57] W.W. Vasconcelos and N.E. Fuchs, An opportunistic approach for logic program analysis and optimi-
sation using enhanced schema-based transformations, Lecture Notes in Computer Science, Vol. 1048
(Springer, 1996).

[58] W.W. Vasconcelos and N.E. Fuchs, Prolog program development via enhanced schema-based transfor-
mations, Technical report, Department of Artificial Intelligence, University of Edinburgh. Presented
at the 7th Workshop on Logic Programming Environments, held in conjunction with ILPS’95, Seattle,
USA (1996).

W. Vasconcelos et al. / Rapid prototyping of large MASs through logic programming 169

[59] W.W. Vasconcelos and E.X. Meneses, A practical approach for logic program analysis and transfor-
mation, Lecture Notes in Computer Science, Vol. 1793 (Springer, 2000).

[60] W.W. Vasconcelos, D. Robertson, J. Agustí, C. Sierra, M. Wooldridge, S. Parsons, C. Walton and
J. Sabater, A lifecycle for models of large multi-agent systems, in: Proc. 2nd Int’l Workshop on
Agent-Oriented Soft. Eng. (AOSE-2001), Lecture Notes in Computer Science, Vol. 2222 (Springer,
2001).

[61] W.W. Vasconcelos, J. Sabater, C. Sierra and J. Querol, Skeleton-based agent development for elec-
tronic institutions, in: Proc. 1st Int’l Joint Conf. on Autonomous Agents & Multi-Agent Systems (AA-
MAS 2002), Bologna, Italy (2002).

[62] W.W. Vasconcelos, C. Sierra and M. Esteva, An approach to rapid prototyping of large multi-agent
systems, in: Proc. 17th IEEE Int’l Conf. on Automated Software Engineering (ASE 2002), Edinburgh,
UK (2002) pp. 13–22.

[63] W.W. Vasconcelos, C. Sierra and M. Esteva, An environment for rapid prototyping of large multi-agent
systems, Technical report, http://www.dai.ed.ac.uk/groups/ssp/slie. Presented at
AAMAS 2002 Demonstration Session, Bologna, Italy (2002).

[64] N. Wirth, Program development by stepwise refinement, Communications of the ACM 14(4) (1971)
221–227.

[65] M. Wooldridge, An Introduction to MultiAgent Systems (Wiley, London, 2002).
[66] H. Xu and S.M. Shatz, ADK: An agent development kit based on a formal design model for multi-

agent systems, Automated Software Engineering 10 (2003) 337–365.

