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The agent design problem is as follows: given a specification of an environment, together
with a specification of a task, is it possible to construct an agent that can be guaranteed to
successfully accomplish the task in the environment? In this article, we study the com-
putational complexity of the agent design problem for tasks that are of the form Bachieve
this state of affairs^ or Bmaintain this state of affairs.^ We consider three general for-
mulations of these problems (in both non-deterministic and deterministic environments) that
differ in the nature of what is viewed as an Bacceptable^ solution: in the least restrictive
formulation, no limit is placed on the number of actions an agent is allowed to perform in
attempting to meet the requirements of its specified task. We show that the resulting decision
problems are intractable, in the sense that these are non-recursive (but recursively enu-
merable) for achievement tasks, and non-recursively enumerable for maintenance tasks. In
the second formulation, the decision problem addresses the existence of agents that have
satisfied their specified task within some given number of actions. Even in this more
restrictive setting the resulting decision problems are either PSPACE-complete or NP-
complete. Our final formulation requires the environment to be history independent and
bounded. In these cases polynomial time algorithms exist: for deterministic environments
the decision problems are NL-complete; in non-deterministic environments, P-complete.
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1. Introduction

We are interested in building agents that can autonomously act to accomplish
tasks on our behalf in complex, unpredictable environments. Other researchers with
similar goals have developed a range of software architectures for agents [23]. In this
article, however, we focus on the underlying decision problems associated with the
deployment of such agents. Specifically, we study the agent design problem [22]. This
problem may be informally stated as follows:

Given a specification of an environment, together with a specification of a task that
we desire to be carried out on our behalf in this environment, is it possible to
construct an agent that can be guaranteed to successfully accomplish the task in the
environment?
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The type of task to be carried out is crucial to the study of this problem. In this
article, we address ourselves to the two most common types of tasks encountered in
artificial intelligence: achievement tasks (where an agent is required to achieve some
state of affairs) and maintenance tasks (where an agent is required to maintain some
state of affairs).

In [22], it was proved that in the most general case, the agent design problem for
both achievement and maintenance tasks is PSPACE-complete. In this research note, we
extend the results of [22] considerably. We begin by formally defining what we mean
by agents and environments, and introduce achievement and maintenance design
tasks. We then consider a number of different requirements for what constitutes a
Bsuccessful^ agent: informally these requirements pertain to whether or not some limit
is placed on the total number of actions that an agent is allowed to perform in order to
accomplish its task. Achievement and maintenance tasks turn out to be equivalent via
LOGSPACE reductions except in the setting when no upper limit is placed on the
number of actions allowed and unbounded environments may occur as instances. We
show in section 3.1 that unless Bsuccessful^ agents are compelled to complete their
tasks within some number of steps, the agent design problems are provably intractable
(i.e., intractable irrespective of assumptions regarding classical open questions in
computational complexity theory, e.g., P ¼ ?NP, P ¼ ?PSPACE etc.).

In section 3.2, we focus on finite agent design problems, whereby agents must
achieve some state of affairs within at most some number of steps (finite achievement
tasks) or maintain a state of affairs for at least some number of steps (finite main-
tenance tasks). In particular, we identify the following environmental characteristics
that can affect the complexity of the (finite) agent design problem:

Y determinism refers to whether or not the next state of the environment is uniquely
defined, given the history of the system to date and the agent’s current action;

Y history dependence refers to whether or not the next state of the environment is
simply a function of the agent’s current action and the environment’s current state,
or whether previous environment states and actions can play a part in determining
the next state.

In section 4, we discuss related work and present some conclusions. Throughout
the article, we assume some familiarity with complexity theory [14].

2. Agents, environments, and runs

In this section, we introduce the formal setting within which we frame our
subsequent analysis. We begin with an informal overview of the framework we use
to model the agent design problem, and an informal introduction to the key properties
of agent systems that we wish to capture within this framework.

The systems of interest to us consist of an agent situated in some particular
environment: the agent interacts with the environment by performing actions upon it,
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and the environment responds to these actions with a change in state, corresponding to
the effect that the action has (see figure 1). The kinds of agents that we are interested in
modelling in our work do not simply execute a single action and them terminate;
rather, they are continually choosing actions to perform and then performing these
actions. This leads to viewing an agent’s interaction with its environment as a run Y a
sequence of environment states, interleaved with actions performed by an agent.

The agent is assumed to have some task (or goal) that it desires to be ac-
complished, and we thus aim to construct agents that are successful with this task. That
is, an agent is successful if it chooses to perform actions such that the task is
accomplished. But we are not interested in agents that might possibly be successful
with the task Y we want agents that can reliably achieve it. That is, we want agents that
will choose to perform actions such that no matter how the environment behaves, the
task will be accomplished.

We refer to the problem of deciding whether such an agent is possible for a given
task and given environment as the agent design problem. In short, the aim of this paper
is to investigate the computational complexity of this problem.

Of particular interest is what properties of the environment or agent can make
this problem Beasier^ or Bharder^ (we use these terms loosely Y of course, the precise
status of many important complexity classes, and in particular, whether they really are
easier or harder, remains a major open problem in the theory of computational
complexity [15]). So, what properties do we hope to capture in our models? The first
property is the extent to which the agent can control the environment. In general, an
agent will be assumed to exert only partial control over its environment. We capture
this idea in our framework by the assumption that environments are non-deterministic:
the environment can respond in potentially different ways to the same action
performed by the agent in the same circumstances. If the same action performed by
an agent in the same circumstances is always the same, then we say that the
environment is deterministic. In deterministic environments, an agent exerts more
influence over its environment, and as a consequence, we might expect the agent
design problem for deterministic environments to be Beasier^ than the corresponding
problem for non-deterministic environments. As we will see, this intuition is largely
borne out by our results.

environment

responds with 
changes in 
state

agent

environment

agent performs
actions on its

environment

Figure 1. Agent and environment.
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The second aspect that we intend to capture is the Bpower^ of the environment.
We mean this in the sense of whether or not the environment can remember what has
happened previously. If an environment has Bno memory^ (in our terminology, is
history independent), then the possible effects that an action has are determined solely
with respect to the current state that the environment is in and the action that the agent
currently chooses to perform. Intuitively, such environments are simpler than history-
dependent environments, in which the entire history of the system to date can play a
part in determining the effects of an action.

A final issue we are concerned with modelling is whether the environment is
unbounded or bounded. By this, we mean whether the run of any agent is guaranteed
to terminate or not; and if so, whether any specific bounds are placed on the possible
length of such runs. We shall largely concerned with bounded environments, because,
as we shall see, unbounded environments tend to lead to formally undecidable agent
design problems.

We model the behaviour of an environment via a state transformer function.
This function captures how the environment responds to actions performed by
agents, and also implicitly represents whether or not the environment is bounded or
unbounded, history dependent or history independent, and deterministic or non-
deterministic.

Formally, we start by assumed that the environment may be in any of a finite set
E ¼ fe0; e1; . . . ; eng of instantaneous states. Agents are assumed to have a repertoire
of possible actions available to them, which transform the state of the environment.
Let Ac ¼ f!0; !1; . . . ; !kg be the (finite) set of actions. The behaviour of an envi-
ronment is defined by a state transformer function, " . This function allows for non-
determinism in the environment: a number of possible environment states can result
from performing an action in apparently the same circumstances. However, in our
case, " is not simply a function from environment states and actions to sets of
environment states, but from runs and actions to sets of environment states. This
allows for the behaviour of the environment to be dependent on the history of the
system Y the previous states of the environment and previous actions of the agent can
play a part in determining how the environment behaves.

To avoid excessive repetition, the following notational conventions are used. For
H, any set defined by a relationship of the form H ¼ [1

i¼0 HðiÞ, where HðiÞ \ HðjÞ ¼ ;
whenever i 6¼ j, HðrkÞ denotes the subset [k

i¼0 HðiÞ of H.
Where t¼ t1t2 $ $ $ tk $ $ $ tn is a finite sequence, lastðtÞwill denote the last element, tn.

Definition 1. An environment is a quadruple Env ¼ hE; e0;Ac; "i, where E is a finite
set of environment states with e0 distinguished as the initial state; and Ac is a finite set
of available actions. Let SEnv denote all sequences of the form:

e0 $ !0 $ e1$ !1 $ e2 $ $ $

where e0 is the initial state, and 8i, ei 2 E, !i 2 Ac.
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Let SE be the subset of such sequences that end with a state. The state trans-
former function " is a total mapping

" : SE % Ac ! }ðEÞ

We wish to focus on that subset of SE representing possible sequences of states and
actions which could arise, i.e., if s 2 SE and "ðs; !Þ ¼ ;, then certainly no sequence in
SE having s $ ! as a prefix can result from the initial state. In order to make this
precise, we define the concept of a run.

The subset of SE defining the runs in the environment Env, is

REnv ¼
[1

k¼0

RðkÞ
Env

where, Rð0Þ
Env ¼ fe0g, and

RðkÞ
Env ¼

[

r2Rðk&1Þ
Env

[

f!2Acj"ðr;!Þ6¼;g
fr $ ! $ e j e 2 "ðr; !Þg if k > 0

Thus, RðkÞ
Env, is the set of histories that could result after exactly k actions from the

initial state e0. Similarly, RðrkÞ
Env indicates the set of histories that could result after at

most k actions from the initial state.
An environment is k-bounded if Rðkþ1Þ

Env ¼ ;; it is bounded if k-bounded for some
finite value k, and unbounded otherwise.

We denote by RAc the set fr $! j r 2 REnvg so that, with a slight abuse of nota-
tion, we subsequently interpret " as a total mapping, " : RAc ! }ðEÞ.

A run, r, has terminated if for all actions! in Ac, "ðr $ !Þ ¼ ;, thus if r 2 RðkÞ
Env has

terminated then r does not form the prefix of any run in Rðkþ1Þ
Env . The subset of RðkÞ

Env
comprising terminated runs is denoted TðkÞ

Env, with TEnv the set of all terminated runs.
We note that if Env is k-bounded then all runs in RðkÞ

Env have terminated.
The length of a run, r 2 REnv, is the total number of actions and states occurring

in r and is denoted by jr j. In a k-bounded environment, all runs have length at most
2k þ 1 i.e., k þ 1 states and k actions.

It should be noted that for any environment, Env, and run r in RðkÞ
Env: r has either

terminated (that is, for all actions, !, "ðr $ !Þ ¼ ;) or there is at least one action ! for
which r $ ! is a (proper) prefix of some non-empty set of runs in Rðkþ1Þ

Env .
The state transformer function, " , is represented by a deterministic Turing

machine program description T" with the following characteristics: T" takes as its
input a run r 2 RAc and a state e 2 E. If T" accepts within jrj steps then e 2 "ðrÞ; if T"
has not accepted its input within this number of steps, then e 62 "ðrÞ. The requirement
that T" reach a decision within jrj moves is not as restrictive as it appears: we may
admit programs, T" , that require jrjk steps to decide e 2 "ðrÞ, by constructing a new
environment, PadðEnvÞ from Env, in which runs r 2 REnv are Bembedded^ in runs #ðrÞ
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of length OðjrjkÞ in RPadðEnvÞ, in such a way that "ðrÞ ( "Padð#ðrÞÞ and "PadðsÞ is
computable in jsj jEPadj steps.

It is also worth commenting on the notion of history dependence. Many envi-
ronments have this property. For example, consider the travelling salesman problem
[14, p. 13]: history dependence arises because the salesman is not allowed to visit the
same city twice. Note that it is possible to transform a history-dependent bounded
environment into a history-independent one, by encoding information about prior
history into an environment state. However, this can only be done at the expense of an
increase in the number of environment states. Intuitively, given a history-dependent
environment with state set E, which has an associated set of runs, we would need to
create jR % Ej environment states. Since jR j could be exponential in the size of
Ac % E, this could lead to an exponential blow-up in the size of the state space.

We view agents as performing actions upon the environment, thus causing the
state of the environment to change. In general, an agent will be attempting to Bcontrol^
the environment in some way in order to carry out some task on our behalf. However,
as environments may be non-deterministic, an agent generally has only partial control
over its environment.

Definition 2. An agent, Ag, in an environment Env ¼ hE; e0;Ac; "i is a mapping

Ag : REnv ! Ac [ f)g

The symbol ) is used to indicate that the agent has finished its operation: an
agent may only invoke this on terminated runs, r 2 TEnv, an event that is referred to as
the agent having no allowable actions.

We stress that our definition of agent does not allow the termination action, ) to
be invoked on r if there is any allowable action ! defined for r. While this may seem
restrictive, it reflects the fact that agents may not choose to halt Barbitrarily^. It may be
noted that an agent, Ag, having no allowable action for a run r in RðAg;EnvÞ is
equivalent to r being terminated, i.e. in TðAg;EnvÞ ( TEnv.

In general, the state transformer function " (with domain RAc) is non-de-
terministic: for a given, r, "ðrÞ describes a set of possible next states for the en-
vironment. The interpretation is that exactly one of these states will result, but which
one is unpredictable. In contrast, our view of agents is deterministic: for a given
r 2 REnv, the agent prescribes exactly one action with which to continue a run.

Definition 3. A system, Sys, is a pair hEnv;Agi comprising an environment and an
agent operating in that environment. A sequence s 2 REnv [ RAc is called a possible
run of the agent Ag in the environment Env if

s ¼ e0 $ !0 $ e1 $ !1 $ $ $
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satisfies

1. e0 is the initial state of E, and !0 ¼ Agðe0Þ;

2. 8k > 0,
ek 2 "ðe0 $ !0 $ e1 $ !1 $ $ $!k&1Þ where
!k ¼ Agðe0 $ !0 $ e1$!1 $ $ $ ekÞ

Thus, with " being non-deterministic, an agent may have a number of different
possible runs in any given environment.

We use RðAg;EnvÞ to denote the set of runs in REnv that are possible runs of an
agent Ag in the environment Env, and TðAg;EnvÞ the subset of RðAg;EnvÞ that are
terminated runs, i.e. belong to TEnv.

3. Tasks for agents

As we noted above, we build agents in order to carry out tasks for us. The task to
be carried out must be specified by us. A discussion on the various ways in which we
might specify tasks for agents appears in [22], but for the purposes of this article, we
will be concerned with just two types of tasks:

1. Achievement tasks: are those of the form Bachieve state of affairs ’^.

2. Maintenance tasks: are those of the form Bmaintain state of affairs  ^.

Intuitively, an achievement task is specified by a number of goal states; the
agent is required to bring about one of these goal states (we do not care which one).
Achievement tasks are probably the most commonly studied form of task in artificial
intelligence.

Just as many tasks can be characterised as problems where an agent is required to
bring about some state of affairs, so many others can be classified as problems where
the agent is required to avoid some state of affairs. As an extreme example, consider a
nuclear reactor agent, the purpose of which is to ensure that the reactor never enters a
Bmeltdown^ state. Somewhat more mundanely, we can imagine a software agent, one
of the tasks of which is to ensure that a particular file is never simultaneously open for
both reading and writing. We refer to such tasks as maintenance tasks.

We wish to express questions regarding whether a suitable agent exists as de-
cision problems. An instance of such a problem must certainly encode both the en-
vironment Env and the set of states to be achieved or avoided. In addition to these,
however, we have to consider another issue concerning what constitutes a Bsuccessful^
agent.

We can consider, in the least Brestrictive^ setting, the question of whether an
agent, Ag, exists whose every run eventually achieves (always avoids) some specified
set of states. It should be noted that in a bounded environment, every run, r in REnv

forms the prefix of some (non-empty set of) terminated runs in TEnv. In the context of
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what forms an instance of the decision problem, if it is assumed that the environment
is bounded, then the actual bound, i.e., the least value k for which Rðkþ1Þ

Env ¼ ;, does not
have to be encoded as part of the instance.

So we can define decision problems for achievement and maintenance tasks as,

Definition 4. The decision problem ACHIEVEMENT AGENT DESIGN (AD) takes as input
a pair hEnv;Gi where G ( E is a set of environment states called the Good states.
ADðhEnv;GiÞ returns true if and only if there is an agent, Ag, and value nag 2 IN, with
which

8r 2 RrnagðAg;EnvÞ9s 2 RrnagðAg;EnvÞ9g 2 G such that
r is a prefix of s
and
g occurs in s

8
<

:

This definition expresses the requirement that a Bsuccessful^ agent must
(eventually, hence within some finite number of actions Y nag) reach some state in G
on every run. In the form given, this decision problem applies both to unbounded
and bounded environments; however, in the latter case, we can simplify the condition
governing an agent’s success to

8r 2 TðAg;EnvÞ9g 2 G g occurs in r

That is, only terminated runs need be considered.

Definition 5. The decision problem MAINTENANCE AGENT DESIGN (MD) takes as
input a pair hEnv;Bi where B ( E is a set of environment states called the Bad states.
MDðhEnv;BiÞ returns true if and only if, there is an agent, Ag, with which

8r 2 RðAg;EnvÞ8b 2 B; b does not occur in r

Thus, a successful agent must avoid any state in B on every run. As with the
formulation of ACHIEVEMENT AGENT DESIGN, the decision problem applies to both
unbounded and bounded environments, with

8r 2 TðAg;EnvÞ8b 2 B b does not occur in r

the condition governing success in the latter case.
These phrasings of the decision problems AD and MD do not impose any

constraints on the length of runs in RðAg;EnvÞ: of course, if Env is bounded, then this
length will be finite. It turns out, however, that significant computational difficulties
arise from these formulations.

As a result we also consider a rather more restrictive notion in which success is
defined with respect to runs in RðrkÞ

Env . In decision problem formulations for this class,
we could choose to supply the value of k (in unary) as part of the instance. The idea of
doing this would be to require that the input contains an object of size k. That is, in
supplying k in unary in the input, the input will itself contain an object containing k
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elements. (Simply specifying that we supply k as an input parameter is not in itself
enough, because the natural encoding for k would be binary, in which case the object
encoding k in instances would have only Oðlog2kÞ elements. For example, the unary
representation of 8 is 11111111 (an object Y a string Y containing 8 elements), whereas
the binary representation is 1000 (a string containing 4 elements).) However, we reject
this approach as being technically rather inelegant. We prefer to define decision
problems in which only runs involving at most jE% Acj actions are considered. We
note that this formulation, while encompassing all jE % Acj-bounded environments,
does not require instances to be so (or even to be bounded at all).

Definition 6. The decision problem FINITE ACHIEVEMENT DESIGN (FAD) takes as
input a pair hEnv;Gi as for AD. FADðhEnv;GiÞ returns true if and only if there is an
agent, Ag, with which,

8r 2 Tðr jE%Acj&1ÞðAg;EnvÞ [ RðjE%AcjÞðAg;EnvÞ9g 2 G such that g is in r

Definition 7. The decision problem FINITE MAINTENANCE DESIGN (FMD) takes as
input a pair hEnv;Bi as for MD. FMDðhEnv;BiÞ returns true if and only if there is an
agent Ag, with which,

8r 2 Rðr jE%AcjÞðAg;EnvÞ8b 2 B; b does not occur in r

We observe the following concerning the definitions of FAD and FMD. Firstly,
although examining only agents with runs in RðrjE%AcjÞ

Env appears very restrictive, this
limitation has no significant impact with respect to computational complexity: suppose
we wished to admit agents with runs in Rðr tÞ

Env for values t ¼ jE % Acjk, and defined
variations FADk and FMDk for such cases. Trivial reductions show that FADk r log

FAD and FMDk r logFMD: given an instance hEnv;Gi of FADk, simply create an
instance hEnvk;Gi of FAD by Bpadding^ the state set of Env with sufficiently many
new states n1; $ $ $ ; nm none of which is reachable from the initial state. This reduction
increases the size of an instance only polynomially.

We use the term critical run of the environment, to describe runs in the set

CEnv ¼ Tðr jE%Acj&1Þ
Env [ RðjE%AcjÞ

Env

with CðAg;EnvÞ Y the critical runs of an agent Ag in Env being

CðAg;EnvÞ ¼ Tðr jE%Acj&1ÞðAg;EnvÞ [ RðjE%AcjÞðAg;EnvÞ

As a second point, we note that formulations other than quantifying by,

8r 2 Tðr jE%Acj&1ÞðAg;EnvÞ [ RðjE%AcjÞðAg;EnvÞ

could be used, e.g., requiring the agent to have terminated after at most jE % Acj
actions, considering only terminated runs in RðjE%AcjÞðAg;EnvÞ but ignoring those runs
which have yet to terminate. Neither of these alternatives yield significant changes in
computational complexity of the specific design tasks we examine.
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For the FINITE AGENT DESIGN problems, the definition of Bsuccess^ employed
corresponds to:

* FINITE ACHIEVEMENT AGENT DESIGN: Bis there an agent which always reaches some
state in G after at most jE% Acj actions?^

* FINITE MAINTENANCE AGENT DESIGN: Bis there an agent which manages to avoid
every state in B for at least jE % Acj actions?^

Before proceeding, we present a short example to illustrate the ideas introduced
so far. Consider the example environment in figure 2. In this environment, an agent
has just five available actions (!0 to !4 respectively), and the environment can be in
any of six states (e0 to e5). Arcs between states in figure 2 are labelled with the actions
that cause the state transitions. Notice that the environment is non-deterministic (for
example, performing action !0 when in state e0 can result in either e2 or e3). History
dependence in the environment arises from the fact that the agent is not allowed to
execute the same action twice: the environment Bremembers^ what actions the agent
has performed previously. Thus, for example, if the agent arrived at state e3 by
performing action !0 from state e0, it would not be able to perform any action, since
the only action available in state e3 is !0. If, however, the agent had arrived at e3 by
performing !1 then !2 and then !3, then it would be able to perform !0.

Now consider the achievement problem with G ¼ fe3g. An agent can reliably
achieve G by performing !0, the result of which will be either e2 or e3. If e2 results,
then the agent need only perform !3.

There is no agent that can be guaranteed to succeed with the maintenance task
where B ¼ fe1; e2g, although there exists an agent that can succeed with B ¼ fe4g.

We now consider two variations of achievement and maintenance design
problems, which depend on whether or not the environment is deterministic Y that

e0

e1

e2

e3

e4

e5α0

α0

α1 α2

α3
α2

α0

α2

α4

α0

Figure 2. The state transitions of an example environment: Arcs between environment states are labelled
with the actions corresponding to transitions. This environment is history dependent because agents are
not allowed to perform the same action twice. Thus, if the agent reached e3 by performing !0 then !3, it

would be unable to return to e2 by performing !0 again.
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is, whether or not the next state of the environment is uniquely determined, given the
previous history of the environment and the current action performed by the agent:

non-det. " : RAc ! }ðEÞ, i.e., " maps from runs to sets of possible states. This is the
most general context introduced in Definition 1, in which " is non-deterministic.

det. " : RAc ! E [ f;g, i.e., " maps from runs to at most one next state. Thus, " is
deterministic: either there is no allowable continuation of a run, r, on a given action
! (i.e., "ðr $ !Þ ¼ ;) or there is exactly one state into which the environment is
transformed.

We use the notations ADX (MDX, FADX, FMDX) where X 2 fnon<det; detg to dis-
tinguish the different settings.

3.1. Provable intractability of AD and MD

The results of this subsection indicate why we shall mainly consider the finite
agent design variants.

Theorem 1. Let

Luniv ¼ f hM; xi j x is accepted by the Turing machine Mg

where M is a deterministic single tape Turing machine using a binary alphabet. Then:

Lunivr p ADdet

Proof. Let hM; xi be an instance of Luniv. We form an instance hEnvMx;Gi of ADdet,
for which hM; xi is in Luniv if and only if ADdetðhEnvMx;GiÞ returns true.

EMx ¼ fe0; accept; rejectg ; AcMx ¼ f!g ; G ¼ facceptg

"Mx is defined as follows:

"Mxðr $ !Þ ¼

; if lastðrÞ 2 faccept; rejectg
accept if r 2 RðkÞ

EnvMx
and M accepts x after exactly k moves,ðkU 0Þ

reject if r 2 RðkÞ
EnvMx

and M rejects x after exactly k moves,ðk U 0Þ
e0 otherwise

8
>><

>>:

Noting that there is at most one run in RðkÞ
EnvMx

for any k U 0 and that this is of the form
e0 $ ð! $ e0Þk, a Turing machine, T"Mx program computing "Mx simply checks if its
input run r is in RðkÞ

EnvMx
and then simulates the first k moves made by M on input x. This

machine is easily compiled in polynomially steps given hM; xi. It should be clear
that M accepts x if and only if there is an agent that achieves the state facceptg in
EnvMx. Ì
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The following corollaries are easily obtained via Theorem 1.

Corollary 1. ADdet is not recursive.

Proof. The language Luniv is not recursive (see, e.g., [4, p. 47]); since Theorem 1
shows Luniv to be reducible to ADdet, we deduce that ADdet is not recursive. Ì

Corollary 2. MDdet is not recursively enumerable.

Proof. Consider the language

co & Luniv ¼ fhM; xi j M does not accept xg
which is not recursively enumerable. Let hEnvMx;Bi be the instance of MDdet in which
EnvMx is defined as in Theorem 1 and B ¼ facceptg. Then MDdet returns true for
hEnvMx;Bi if and only if M does not accept x. Ì

It is, of course the case that many specific maintenance design problems within
unbounded environments can be solved by finitely specified for some Bnon-trivial^
cases: the corollary above merely indicates that one cannot hope to construct a general
algorithm that will recognise every such case. One instance of a maintenance design
problem in an unbounded environment that can be solved by such an agent is given in
the following.

Example. Set Env ¼ hE; e0;Ac; "i where E ¼ f0; 1; failg, e0 ¼ 0, Ac ¼ f!0; !1g. For
any s 2 SE, for which fail 62 s, stðsÞ is the binary word formed by the sequence of
states in f0; 1g visited by s, e.g., stðe0Þ ¼ 0. Letting f0; 1gþ denote the set of non-
empty binary words, the state transformer, " , is given by

"ðr $ !Þ ¼

; if lastðrÞ ¼ fail
fail if 9$ 2 f0; 1g*;w 2 f0; 1gþ$ stðrÞ + $www
0 if ! ¼ !0 and 8$ 2 f0; 1g*;w 2 f0; 1gþ; stðrÞ 6+ $www
1 if ! ¼ !1 and 8$ 2 f0; 1g*;w 2 f0; 1gþ; stðrÞ 6+ $www

8
>><

>>:

Now consider the maintenance design instance CubeFree ¼ hEnv; f failgi,
requiring the specification of an agent that always avoids the state f failg. Notice
that any such agent must have unbounded runs and that the fail state is forced
whenever the same sequence of states in f0; 1g is visited on three consecutive
occasions.

Let %kð$Þ denote the kth bit value in the binary word $ ¼ $1$2 $ $ $$n (1r kr n).
The agent, Ag defined for r 2 REnv by

AgðrÞ ¼
!0 if jstðrÞj is odd and %ðjstðrÞjþ1Þ=2ðstðrÞÞ ¼ 1

!0 if jstðrÞj is even and %jstðrÞj=2ðstðrÞÞ ¼ 0

!1 otherwise

8
><

>:
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So the sequence traversed by Ag from e0 ¼ 0 is 01001101001 $ $ $. The sequence
defined is the so-called ProuhetYThueYMorse sequence, [13, 18, 21] and can be shown
to be cube free, i.e., contains no subword of the form www for all w 2 f0; 1gþ. This
property of the agent, Ag, suffices to show that it always avoids the state fail. It is
obvious that the action to be taken by the agent at each stage is easily computable.

We note one historic application of this sequence was given by Euwe [5], in the
context of avoiding drawn positions in chess arising from the so-called BGerman
rule’’, under which a game is drawn if the same sequence of moves occurs three times
in succession.

Corollary 3. Define the language LBounded as,

LBounded ¼ fEnv j Env is a bounded environmentg

a) LBounded is not recursive.

b) LBounded is recursively enumerable.

Proof.

a) The Halting problem for Turing machines is easily reduced to LBounded using the
construction of EnvMx in Theorem 1.

b) Given Env, use a Turing machine program which generates each set RðkÞ
Env for

increasing k. If at some point this set is empty, Env is accepted. Ì

Theorem 2. ADX is recursively enumerable.

Proof. Given an instance hEnv;Gi of ADnon<det we can use (without loss of gener-
ality) a non-deterministic Turing machine program, M, that performs that following
actions:

1. k :¼ 0; Ak :¼ fe0g

2. Ak :¼ Ak & fr 2 Ak j r contains some g 2 Gg

3. If Ak ¼ ;, then accept hEnv;Gi.

4. k :¼ k þ 1; Ak :¼ ;;

5. for each r 2 Ak&1

Non-deterministically choose ! 2 Ac
if "ðr $ !Þ ¼ ; then reject hEnv;Gi
else Ak :¼ Ak [ [e2"ðr$!Þfr $ ! $ eg

6. Go to (2). Ì
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The results above indicate that the decision problems ADdet and MDdet are
provably intractable in the sense that effective decision methods do not exist.

3.2. The complexity of FAD and FMD in history-dependent environments

The corollary to Theorem 1 rules out any possibility of computationally effective
methods existing for ADX and MDX. In this subsection, we examine the variants FAD
and FMD. We recall that in these problems, only agents which perform at most jE %
Acj actions are considered. We first show that without loss of generality, it will suffice
to concentrate on finite achievement problems.

Theorem 3. For X 2 fdet; not<detg,
FADX +log FMDX

(i.e., FADX r logFMDX and FMDX r logFADX).

Proof. It is unnecessary to prove the two different cases separately, as will be clear
from the reductions used. Let

Qð&Þ
X ðhEnv; SiÞ ¼ FADXðhEnv; SiÞ if & ¼ 1

FMDXðhEnv; SiÞ if & ¼ 0

!

For a run r in REnv,

!ð&Þðr; SÞ ¼ 9 g 2 S such that g occurs in r if & ¼ 1
8 b 2 S b does not occur in r if & ¼ 0

!

In order to prove the theorem, it suffices to show

8& 2 f0; 1g Qð&Þ
X r log Qð"&&Þ

X

Let hEnv; Si ¼ hhE;Ac; e0; "i; Si be an instance of Qð&Þ
X . We construct an instance

hEnvð"&&Þi; Sð"&&Þ of Qð"&&Þ
X for which true is returned if and only Qð&Þ

X ðhEnv; SiÞ is true. The
instance of Qð"&&Þ

X has state set E[fendð0Þ; endð1Þg. Here endð0Þ and endð1Þ are new states.
The set of actions and start state are as for the instance of Qð&Þ

X . The set of states Sð"&&Þ is
given by fendð"&&Þg. Setting

Rð0Þ
Envð"&&Þ

¼ Rð0Þ
Env ¼ fe0g

for r 2 RðkÞ
Envð"&&Þ

(k U 0) and ! 2 Ac,

" ð"&&Þðr $!Þ ¼

fendð0Þg if r 2 CEnv and :!ð&Þðr; SÞ
fendð1Þg if r 2 CEnv and !ð&Þðr; SÞ
; if lastðrÞ 2 fendð0Þ; endð1Þg
"ðr $!Þ otherwise

8
>><

>>:
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First observe that every r 2 RðkÞ
Envð"&&Þ

either occurs in RðkÞ
Env or is such that lastðrÞ 2

fendð0Þ; endð1Þg and has terminated. Furthermore, Envð"&&Þ is ðjE % Acj þ 1Þ-bounded
(even if Env is unbounded). If & ¼ 0, then Qð"&&Þ

X is an achievement task with goal state
fendð1Þg; otherwise, it is a maintenance task with B ¼ fendð0Þg. If Ag succeeds with
respect to the instance of Qð&Þ

X then the agent Agð"&&Þ that follows exactly the same
actions as Ag witnesses a positive instance of Qð"&&Þ

X . On the other hand, if Agð"&&Þ is an
agent showing that the instance of Qð"&&Þ

X should be accepted, then all terminated runs r
of this agent must have lastðrÞ ¼ endð1Þ. The agent that behaves exactly as Agð"&&Þ will
always reach some state in S within jE % Acj actions (& ¼ 1), respectively avoid every
state in S for at least jE% Acj actions (& ¼ 0). We observe that: Envð"&&Þ is deterministic
if and only if Env is deterministic and uses only two additional states. The entire
construction can be built in LOGSPACE. Ì

We note that the construction used in Theorem 3 also applies between FAD and
FMD in the case when the size of critical runs is an arbitrary function of jE % Acj, e.g.,
f ðjE% AcjÞ ¼ 2jE%Acj, etc.

Theorem 4. If the state transformer function is history dependent, then:

a) FADnon<det and FMDnon<det are PSPACE-complete.

b) FADdet and FMDdet are NP-complete.

Proof. As remarked earlier, we need only consider achievement design problems.
Recall that only runs in Rr jE%Acj

Env are relevant in deciding FADXðhEnv;GiÞ.
Part (a): It must be shown that: (i) FADnon<det 2 PSPACE, and (ii) a known

PSPACE-complete problem is polynomially reducible to it.
For (i), we give the design of a non-deterministic polynomial space Turing

machine program T that accepts exactly those instances of the problem that have a
successful outcome. The inputs to the algorithm will be the task environment hEnv;Gi,
together with a run r 2 RðkÞ

Env Y the algorithm actually decides whether or not there is a
successful agent continuing from r, i.e., more formally, if there is an agent, Ag, such
that every critical run in CðAg;EnvÞ having r as a prefix contains some state g 2 G.

This is first called with r set to the initial state e0 (the single run in Rð0Þ
EnvÞ. The

algorithm for T on input r 2 RðkÞ
Env is as follows:

1. if r ends with an environment state in G, then T accepts;

2. if there are no allowable actions given r, then T rejects;

3. if r 2 RðjE%AcjÞ
Env , then T rejects;

4. non-deterministically choose an action ! 2 Ac, and then for each e 2 "ðr $ !Þ
recursively call T with the input r $ ! $ e 2 Rðkþ1Þ

Env ;

5. if all of these accept, then T accepts, otherwise T rejects.
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Note that T may safely reject at Step (3): r has not been accepted at Step (1) and
any continuation will exceed the total number of actions that an agent is allowed to
perform. The algorithm thus non-deterministically explores the space of all possible
agents performing at most jE % Acj actions, guessing which actions an agent should
perform to bring about G. Notice that the depth of recursion will be at most jE% Acj.
Hence T requires only polynomial space. It follows that FADnon<det is in NPSPACE (i.e.,
non-deterministic polynomial space). It only remains to note that PSPACE ¼ NPSPACE

[14, p. 150], and so FADnon<det is also in PSPACE.
For (ii), we must reduce a known PSPACE-complete problem to FADnon<det. The

problem we choose is that of determining whether a given player has a winning
strategy in the game of generalised geography [14, pp. 460Y462]. We refer to this
problem as GG. An instance of GG is a triple # ¼ hN;A; ni, where N is a set of nodes,
A ( N % N is a directed graph over N, and n 2 N is a node in N. GG is a two-player
game, in which players I and II take it in turns, starting with I, to select an arc ðv;wÞ in
A, where the first arc v must be the Bcurrent node,^ which at the start of play is n. A
move ðv;wÞ changes the current node to w. Players are not allowed to visit nodes that
have already been visited: play ends when one player (the loser) has no moves
available. The goal of GG is to determine whether player I has a winning strategy.

GG has a similar structure to AD and we can exploit this to produce a simple
mapping from instances # ¼ hN;A; ni of GG to instances hEnv;Gi of FADnon<det. The
agent takes the part of player I, the environment takes the part of player II. Begin by
setting E ¼ Ac ¼ N and e0 ¼ n. We add a single element eG to E, and define G to be a
singleton containing eG. These give jE % Acj ¼ ðjNj þ 1ÞjNj. We now need to define
" , the state transformer function of the environment; the idea is to directly encode the
arcs of # into " . For r 2 Rðr ðjNjþ1ÞjNjÞ

Env and v 2 Ac ¼ N,

"ðr $ vÞ ¼
; if ðlastðrÞ; vÞ 62 A
feGg if fw j ðv;wÞ 2 A and w 62 rg ¼ ;
fw j ðv;wÞ 2 A and w 62 rg otherwise:

8
<

:

This construction requires a little explanation. The first case deals with the case where
the agent has made an illegal move, in which case the environment disallows any
further moves: the game ends without the goal being achieved. The second case is
where player I (represented by the agent) wins, because there are no moves left for
player II. In this case, the environment returns G, indicating success. The third is the
general case, where the environment returns states corresponding to all possible
moves. Using this construction, there will exist an agent that can succeed in the en-
vironment we construct just in case player I has a winning strategy for the cor-
responding GG game. Since nodes (i.e., states in E) cannot be revisited, any successful
agent, Ag, satisfies RðAg;EnvÞ ( RðrNþ1Þ

Env . Since the construction clearly takes poly-
nomial time, it follows that FADnon<det is complete for PSPACE, and we are done.

Part (b): For part (b), we first show that FADdet 2 NP. The non-deterministic
polynomial time algorithm for deciding the problem is as follows. Given an instance
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hEnv;Gi of FADdet, non-deterministically construct a run r 2 Rðr jE%AcjÞ
Env : this can be

done in non-deterministic polynomial time using T" . The instance of FADdet is
accepted if r contains some g 2 G.

To prove that the problem is NP-hard, we give a reduction from the directed
Hamiltonian cycle (DHC) problem to FADdet [14, p. 209]. An instance of DHC is
given by a directed graph H ¼ hV;F ( V % Vi; the aim is to determine whether or not
H contains a directed Hamiltonian cycle.

The idea of the reduction is to encode the graph H directly in the state
transformer function " of the environment: actions correspond to edges of the graph,
and success occurs when a Hamiltonian cycle has been found.

Formally, given an instance H ¼ hV;F ( V % Vi of DHC, we generate an
instance of FADdet as follows. First, create the set of environment states and initial
state as follows:

E ¼ V [ fsucceedg; e0 ¼ v0

We create an action !i; j corresponding to every arc in H, i.e., Ac ¼ f!i; j j hvi; vji
2 Fg. The set G is defined to be a singleton: G ¼ fsucceedg. With these, jE % Acj ¼
ðjVj þ 1ÞjFj. Finally, we define " in two parts. The first case deals with the first action
of the agent:

"ðe0 $ !0; jÞ ¼ vj if hv0; vji 2 F
; otherwise.

!

The second case deals with subsequent actions:

"ðr $ vi $ !i; jÞ ¼
; if vj occurs in r $ vi and vj 6¼ v0
succeed if vj ¼ v0 and every v 2 V occurs in r $ vi
vj ifhvi; vji 2 F

8
<

:

An agent can only succeed in this environment if it visits every vertex of the original
graph. An agent will fail if it revisits any vertex. Thus, for any successful agent,
Ag, RðAg;EnvÞ ( Rðr jVjþ1Þ

Env . Since the construction is clearly polynomial time, we are
done. (As an aside, notice that the environment created in the reduction is history
dependent.) Ì

We conclude this section noting one generalisation of Theorem 4(b).
Let %ðn; kÞ be the function defined over IN % IN by %ðn; 0Þ ¼ n and %ðn; kÞ ¼

2%ðn;k&1Þ (for k U 1). The complexity class NEXPkTIME is

NEXP
k
TIME ¼

[1

p¼0

NTIMEð%ðnp; kÞÞ

(hence, NP + NEXP0TIME, etc.).
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Let FADðkÞ be the extension of FAD, in which runs in Rðr %ðjE%Acj;kÞÞ
Env are of

interest (so that FAD + FADð0Þ).

Theorem 5. 8k U 0 FADðkÞ
det is NEXPkTIME-complete.

Proof. Given in Appendix. Ì

3.3. The complexity of FAD and FMD in history-independent environments

The definition of state transformer function (whether non-deterministic or
deterministic) is as a mapping from r 2 RAc to (sets of) states. In this way, the
outcome of an action may depend not only on the current state but also on the previous
history of the environment that led to the current state. We now consider the agent
design decision problems examined above, but in the context of history-independent
state transformer functions. In the non-deterministic case, a history-independent
environment has a state transformer function with the signature

" : E % Ac ! }ðEÞ

and, in deterministic environments

" : E% Ac ! E [ f;g:

In such environments, " is represented as a directed graph H"ðV;AÞ in which
each state e 2 E labels a single vertex in V and for which there is an edge hu;wi 2 A
labelled ! 2 Ac if w 2 "ðu; !Þ (non-deterministic case) or w ¼ "ðu; !Þ (deterministic).
We note that, by retaining the requirement for environments to be bounded, so that
RðjVjþ1Þ
Env ¼ ;, without loss of generality, we can regard H"ðV;AÞ as acyclic.

Theorem 6. If the state transformer function is history independent, then:

a) FADdet and FMDdet are NL-complete.

b) FADnon<det and FMDnon<det are P-complete.

Proof. For part (a), deciding a history-independent instance hEnv; fsucceedgi of
ADdet is equivalent to deciding if there is a directed path in H" from e0 to succeed.
This is identical to the well-known NL-complete problem Graph Reachability [14,
p. 398].

For part (b) that FADnon<det 2 P follows from the algorithm LabelðvÞ, below, that
given HðV;AÞ and G ( V labels each vertex, v, of H with Btrue^ or Bfalse^ according
to whether a successful agent can be found starting from v.

Initially all vertices, v, have labelðvÞ unassigned.

1) If v has been labelled, then return labelðvÞ.

2) If v 2 G, labelðvÞ :¼ true; return true.
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3) AvailðvÞ :¼ f! j 9w withðv !! wÞ 2 Ag

4) If AvailðvÞ ¼ ;, labelðvÞ :¼ false; return false;

5) Choose ! 2 AvailðvÞ; AvailðvÞ :¼ AvailðvÞ n f!g;

6) labelðvÞ ¼
V

fwjv!!w2Ag labelðwÞ;

7) If labelðvÞ ¼ true then return true;

8) go to (4)

That this algorithm is polynomial-time follows from the fact that no edge of H is
inspected more than once. A similar method can be applied for FMDnon<det.

We now show that the MONOTONE CIRCUIT VALUE PROBLEM (MCVP) is re-
ducible in LOGSPACE to FADnon<det. An instance of MCVP consists of a sequence of
mþ n triples S ¼ ht1; t2; $ $ $ ; tn; tnþ1; $ $ $ ; tmþni. The triples ti for 1r ir n are called
inputs and have the form ðxi; 0; 0Þ with xi 2 ftrue; falseg. The remaining triples are
called gates and take the form ðopi; j; kÞ, with opi 2 f^;_g, j < i and k < i. A Boolean
value 'ðiÞ is defined for each ti as follows:

'ðiÞ ¼
xi if ti is an input of S
'ð jÞ _ 'ðkÞ if ti ¼ ð_; j; kÞ
'ð jÞ ^ 'ðkÞ if ti ¼ ð^; j; kÞ

8
<

:

An instance, S, is accepted if 'ðm þ nÞ ¼ true. MCVP was shown to be P-complete in
[7].

Given an instance S ¼ ht1; $ $ $ ; tn; tnþ1; $ $ $ ; tnþmi of MCVP we construct an
instance hEnvS;GSi of FADnon<det for which EnvS ¼ hVS;AcS; v0;HSðVS;ASÞi is
history-independent and non-deterministic, HSðVS;ASÞ being a directed acyclic graph
whose edges AS are labelled with actions from AcS. The construction will use working
space that is logarithmic in the number of bits needed to encode S.

We set, VS ¼ fq1; q2; $ $ $ ; qn; qnþ1; $ $ $ ; qnþmg [ facceptg, AcS ¼ f!; %g, v0 ¼
qnþm, and G ¼ facceptg. The edges AS and associated actions are given by

ðqi !! acceptÞ if ti ¼ ðtrue; 0; 0Þ
ðqi !! qjÞ; ðqi !! qkÞ if ti ¼ ð^; j; kÞ
ðqi !! qjÞ; ðqi !% qkÞ if ti ¼ ð_; j; kÞ

We claim that,

'ðiÞ ¼ true , There is an agent that succeeds in reaching accept starting in qi

We prove this by induction on i. For the inductive base, 1r ir n, 'ðiÞ ¼ true if the
input ti has the form ðtrue; 0; 0Þ. In this case, there is an edge labelled ! from the
corresponding state qi to the state accept. Similarly, if there is an edge ðqi !! acceptÞ
in AS, this could only be present though ti being ðtrue; 0; 0Þ, i.e., 'ðiÞ ¼ true.
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Assuming the claim holds whenever 1r ir nþ p, we show it holds for i > nþ
p. Consider the triple tnþpþ1. This must be a gate in S, tnþpþ1 ¼ ðopnþpþ1; j; kÞ. Since
j; k < nþ p þ 1, from the inductive hypothesis,

'ð jÞ ¼ true , There is an agent that succeeds in reaching accept starting in qj
'ðkÞ ¼ true , There is an agent that succeeds in reaching accept starting in qk

If opnþpþ1 ¼ ^ then 'ðnþ p þ 1Þ ¼ true only if both of 'ð jÞ and 'ðkÞ equal true.
Choosing the action ! in state qnþpþ1 would thereby yield an agent achieving accept.
In the same way, if there is an agent starting from qnþpþ1 that succeeds, since ! is the
only action available, it must be the case that successful agents can be defined from
both of qj and qk. Applying the inductive hypothesis, we deduce that 'ðnþ pþ 1Þ ¼
'ð jÞ ^ 'ðkÞ ¼ true.

If opnþpþ1 ¼ _ then 'ðn þ pþ 1Þ ¼ true only if at least one of 'ð jÞ, 'ðkÞ equals
true. If 'ð jÞ ¼ true the action ! can be chosen to succeed from qnþpþ1; otherwise, the
action % can be selected. To complete the inductive step, we observe that if qnþpþ1

leads to a successful agent, then this agent must either pass through qj (! chosen) or qk
(% chosen), thus 'ðnþ pþ 1Þ ¼ 'ð jÞ _ 'ðkÞ ¼ true.

Recalling that v0 ¼ qnþm, it follows that

'ðnþ mÞ ¼ true , There is an agent that reaches accept from v0

as required.
By a similar construction, we may show that MCVPr log FMDnon<det: the state

accept is replaced by a state reject with edges labelled ! directed into this from any qi
for which ti ¼ ð false; 0; 0Þ. S is accepted by MCVP if and only if an agent can be
defined from qnþm that always avoids the state frejectg. Ì

4. Related work and conclusions

In this article, we have shown that, depending on the properties of the envi-
ronment, the agent design problem ranges from undecidable (not recursively
enumerable, in the case of the maintenance design problem in unbounded environ-
ments) to tractable (NL-complete, in the case of achievement and maintenance design
problems in deterministic, history-independent environments). We conclude in this
section firstly by considering how our work relates to other similar work Y in
particular, to work in AI planning, to work on the complexity of concepts in game
theory, and finally, to work in mainstream computer science on the realisability of
temporal logic specifications.

4.1. Planning

In the AI literature, the most closely related work to our own is on the complexity
of the planning problem [1]. In an AI planning problem, we are given (i) a specification
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of a set of actions that are available for an agent to perform, (ii) a specification of a
goal to be achieved, and (iii) a specification of the current state of the environment.
The task of an AI planning system is then to produce as output a sequence of actions (i)
such that, if executed from the state as specified in (iii), will result in the goal (ii)
being achieved.

The main difference between our work and that on AI planning is with respect to
the representations used. To illustrate this, we will start with a description of STRIPS

planning [6, 9]. While STRIPS is in no sense a contemporary planning system, it is
nevertheless the common ancestor of contemporary AI planning systems, and illustrates
most of the ideas. As in our approach, STRIPS assumes a fixed set of actions Ac ¼
f!1; . . . ; !ng, representing the effectoric capabilities of the agent. However, in STRIPS,
these are specified via descriptors, where a descriptor for an action ! 2 Ac is a triple
ðP!;D!;A!Þ, where:1

& P! ( L0 is a set of logical sentences that characterise the pre-condition of ! Y what
must be true of the environment in order that ! can be executed;

& D! ( L0 is a set of logical sentences that characterise those facts made false by the
performance of ! (the delete list);

& A! ( L0 is a set of logical sentences that characterise those facts made true by the
performance of ! (the add list).

A STRIPS planning problem (over Ac) is then determined by a triple h$;O; (i,
where:

& $ ( L0 is a set of logical sentences that characterise the initial state of the world;

& O ¼ fðP!;D!;A!Þ j ! 2 Acg is an indexed set of operator descriptors, one for each
available action !; and

& ( ( L0 is a set of logical sentences representing the goal to be achieved.

A plan # is a sequence of actions # ¼ ð!1; . . . ; !nÞ. With respect to a planning
problem h$;O; (i, a plan # ¼ ð!1; . . . ; !nÞ determines a sequence of nþ 1 world
models $0;$1; . . . ;$n where:

$0 ¼ $ and
$i ¼ ð$i&1 n D!iÞ [ A!i for 1r ir n :

A (linear) plan # ¼ ð!1; . . . ; !nÞ is said to be acceptable with respect to the problem
h$;O; (i if, and only if, $i&1 , P!i , for all 1r ir n (i.e., if the pre-condition of every
action is satisfied in the corresponding world model). A plan # ¼ ð!1; . . . ; !nÞ is
correct with respect to h$;O; (i if, and only if, it is acceptable and $n , ( (i.e., if the

1 We assume a classical logic L0 with logical consequence relation B,.^
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goal is achieved in the final world state generated by the plan). The planning problem
can then be stated as follows: Given a planning problem h$;O; (i, find a correct plan
for h$;O; (i.

Bylander was probably the first to undertake a systematic study of the complexity
of the planning problem; he showed that the (propositional) STRIPS planning problem
is PSPACE-complete [3]. Building on his work, many other variants of the planning
problem have been studied Y recent examples include [2, 10].

There are several key differences between our work and these approaches.
We first argue that most complexity results in the planning literature are bound to

particular representations of goals and actions, and in particular, most work uses
logical or pseudological representations. The STRIPS notation described above is one
example [3]; Baral et al. use the action description language A [2]; in the work of
Littman et al. the representation chosen is ST [10]. Now, suppose that one obtains a
particular planning complexity result, based on such a representation. How can one be
sure that the result obtained is an accurate reflection of the inherent complexity of the
decision problem, or whether they are at least in part an artifact of the representation.
To pick a deliberately extreme example, suppose we adopted the STRIPS representa-
tion, as described above, but used full first-order logic for our specifications of
environments, action descriptors, and goals. Then clearly, the associated planning
problem would be undecidable; but this would be an artifact of the representation, not
necessarily the underlying problem.

We have tried to avoid this problem by choosing a very general representation
for environments and actions. Thus, we represent achievement and maintenance tasks
through sets of states, rather than through a particular (e.g., logical) formalism. It
could be argued that this representation is itself misleading because it requires that
we enumerate in input instances all environment states and actions, and the state space
will typically be enormous. As a consequence, measuring complexity in comparison to
the input size is misleading. AI planning representations, in contrast, typically utilise
very succinct representations of states and actions, meaning that input instances to
planning problems are (in comparison to our approach) rather small. We acknowledge
this point, but do not believe it in any sense invalidates the approach, because the two
approaches are clearly measuring two different things. In the planning approach, we
measure the complexity with respect to some (typically succinct, typically logic-
based) representation, which may of itself affect the overall complexity of the
problem. In our approach, we measure complexity with respect to the size of state and
action space, which while generally being very large, at least have the advantage of
clearly not introducing complexity that is an artifact of the representation.

Another difference between our approach is that our agents are rather different to
plans, and in particular, the notion of an agent in our work (as a function that maps
runs to selected actions) is more general than the notion of a plan as it commonly
appears in the planning literature. Our agents are more akin to the notion of a strategy
in game theory (see below). The obvious advantage of our approach is that our results
are not bound to a particular plan representation. The obvious disadvantage is that
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having a positive answer to one of our agent design problems (e.g., knowing that there
exists an agent to carry out a task in some environment) does not imply that an agent
to carry out the task will be implementable, in the sense of [19].

4.2. Complexity and game theory

In the computational complexity literature, the most closely related problems are
those of determining whether or not a given player has a winning strategy in a
particular two-player game. PSPACE completeness appears to be the characteristic
complexity result for such problems [14, pp. 459Y480]. Also relevant is work on
games against nature. The stochastic satisfiability (SSAT) problem is perhaps the
canonical such problem. An instance of SSAT is given by a formula with the form:

9x1:Rx2:9x3:Rx4 $ $ $Qxn: ’ðx1; . . . ; xnÞ ð1Þ
where:

Y each xi is a Boolean variable (it does not need to be a collection of variables);

Y R is a Brandom^ quantifier, with the intended interpretation Bwith some randomly
selected value^; and

Y Q is 9 if n is odd, and R otherwise.

The goal of SSAT is to determine whether there is a strategy for assigning values to
existentially quantified variables that makes (1) true with probability great than 1

2, i.e.,
if

9x1:Rx2:9x3:Rx4 $ $ $Qxn: prob ½’ðx1; . . . ; xnÞ ¼ >. > 1

2

This problem is in fact PSPACE-complete. Note that the difference between two-player
games and games against nature is that in two player games, we assume that the
opponent will Bstrategize^ (i.e., think and act strategically and rationally, taking into
account what they wish to accomplish and how they believe we will act). In a game
against nature, we do not assume that the opponent (Bnature^) will strategize; rather,
we assume that they will act Brandomly.^

Our approach is clearly related to such problems, and indeed, one can understand
our agent design problems as a particular class of games against nature.

4.3. Realising temporal logic specifications

Probably the most relevant work from mainstream computer science has been on
the application of (linear) temporal logic to reasoning about systems (see, e.g., [11,
12]). Temporal logic is particularly appropriate for the specification of Bliveness^
properties (corresponding to our achievement tasks), and Bsafety^ properties
(corresponding to maintenance tasks). The realisability problem for temporal logic
asks whether, given a particular linear temporal logic formula ’, there exists a
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program that can guarantee to make ’ true (i.e., make ’ true Bno matter what the
environment does^). Since the satisfiability problem for linear temporal logic is
PSPACE-complete [20], we immediately obtain a lower bound on the complexity of the
realisability problem: if the program is allowed to completely control the environment,
then the realisability problem is PSPACE-complete, since the realisability question
amounts to simply asking whether the specification ’ is satisfiable. In the more
general case, however, where the program is not assumed to completely control the
environment, the problem is much more complex: it is complete for 2EXPTTIME

[16, 17].
Again, we note that, as with AI planning approaches, the representation used (in

this case linear temporal logic) itself introduces some complexity. That is, the real-
isability problem is so complex at least in part because the program specification
language (linear temporal logic) is so expressive.

4.4. Future work

There are many issues that demand attention in future work. One is the
relationship of our work to that of solving Markov decision problems [8]. Another key
problem is that of determining the extent to which our polynomial time results can be
exploited in practice. Yet another is on extending our task specification framework to
allow richer and more complex tasks.
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Appendix: Proof of Theorem 14

The decision problem denoted FADðkÞ takes as input a pair hEnv;Gi returning
true if and only if there is an agent, Ag, with which,

8r 2 Tðr%ðjE%Acj;k&1ÞÞðAg;EnvÞ [ Rð%ððjE%Acj;kÞÞðAg;EnvÞ9g 2 G such that g is in r

Recall that Theorem 14 stated:

8k / 0 FAD
ðkÞ
det is NEXP

k
TIME&complete

Proof. That FADðkÞ
det 2 NEXPkTIME follows by using a Turing machine program that

non-deterministically guesses a run r in REnv
ðr%ðjE%Acj; kÞ and then checks whether r

contains some state of G.
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To complete the proof, we use a generic reduction for languages in L 2 NEXPk

TIME to FADðkÞ
det.

Let L be any language in NEXPkTIME. Without loss of generality, it may be
assumed that instance of L are encoded using the binary alphabet f0; 1g. The choice of
L means that there is a non-deterministic Turing machine program (NTM), M, with the
following properties:

M1) For any x 2 L, there is an accepting computation of M on x.

M2) There is a function q : IN ! IN, such that qðnÞr%ðnp; kÞ and M takes at most
qðjxjÞ moves to accept any x 2 L.

It follows that deciding x 2 L reduces to the decision problem

NCOMPðkÞ
M ¼ fx j M has an accepting computation on x using r qðjxjÞ movesg

Without loss of generality, we may assume that

a) M on input x uses a single two-way infinite tape.

b) The non-deterministic state transition function of M prescribes exactly two possible
choices of move (except for halting states).

Let x be an instance of NCOMPðkÞ
M with

M ¼ ðQ;%;#; q0; ); fqA; qRgÞ
% ¼ f0; 1g; # ¼ f0; 1;Bg
) : Q % # ! }ðQ% % % fL;RgÞ
x ¼ x1x2 $ $ $ xn 2 f0; 1gn

We construct an instance hEnvMx;Gi of FADðkÞ
det for which

EnvMx ¼ hEMx;AcMx; e0; "Mxi
x 2 NCOMPðkÞ

M , FADðkÞ
detðEnvMx;GÞ is true

The state set and actions of EnvMx are

EMx ¼ Q % # [ fhwrite; xii j 1r ir jxjg [ fe0g
AcMx ¼ %% fL;Rg [ fcopyg

Finally, EMx is padded with jxjp inaccessible states in order to ensure that

%ðjEMx % AcMxj; kÞU%ðjxjp; kÞ ¼ qðjxjÞ

(this will only increase the size of the instance hEnvMx;Gi polynomially).
We define "Mx so that the possible runs of the environment simulate the moves of

M when started with input x. To start the input, x is Bcopied^ so that it can be
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recovered from any run. The action copy of AcMx is used for this purpose. For
r 2 REnvMx ,

"Mxðr $ copyÞ ¼

hwrite; xiþ1i if r 2 RðiÞ
EnvMx

and i < jxj

hq0;Bi if r 2 Rð0Þ
EnvMx

and jxj ¼ 0

hq0; x1i if r 2 RðjxjÞ
EnvMx

; if r 62 Rðr jxjÞ
EnvMx

8
>>>>>>><

>>>>>>>:

The copy action is the only allowable action for runs in Rðr jxjÞ
EnvMx

, i.e.,

8! 2 AcMx n fcopyg 8r 2 Rðr jxjÞ
EnvMx

"Mxðr $ !Þ ¼ ;

To complete the description of "Mx, we define its behaviour on runs in RðiÞ
EnvMx

when
i > jxj.

The main idea is that any run r in RðjxjþiÞ
EnvMx

will encode one possible computation
of M on x after M has made exactly i& 1 moves. Thus, if M has an accepting
computation on x, an encoding of this will appear in Rðr %ðjEMx%AcMxj; kÞ

EnvMx
.

In order to do this, the idea of the configuration of M, associated with a run r is
needed. This is denoted *ðrÞ and defined for any run in RðjxjþiÞ

EnvMx
, when i > 0. Such a

configuration describes the (non-blank) portion of M’s tape, together with its current
state and head position.

For r 2 Rðjxjþ1Þ
EnvMx

,

*ðrÞ ¼
q0B if jxj ¼ 0

q0x1x2 $ $ $ xn if jxj > 0

!

Now, suppose r 2 RðjxjþiÞ
EnvMx

with i > 0 and that

*ðrÞ 2
qiBc1c2 $ $ $ cm
c1c2 $ $ $ cmqiB
c1c2 $ $ $ ct&1qi(ctþ1 $ $ $ cm

8
<

:

9
=

;

where cj 2 f0; 1g (1r jrm). The case m ¼ 0 corresponds to the input word x being
empty. In each case, M would be in state qi. For the first two possibilities, the head is
scanning the blank symbol immediately to the left (respectively, right) of the con-
tiguous block of non-blank symbols c1c2 $ $ $ cm. In the third case, some non-blank
symbol ( is being scanned.

If qi 2 fqA; qRg, then "Mxðr $ !Þ ¼ ; for all ! 2 AcMx.
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Otherwise, the state transition function, ) of M prescribes exactly two possible
moves, i.e.,

)ðqi;BÞ ¼ fhqð1Þ
j ; $ð1Þ;Dð1Þi; hqð2Þ

j i; $ð2Þ;Dð2Þg if *ðrÞ 2 fqiBc1 $ $ $ cm; c1 $ $ $ cmqiBg
)ðqi; (Þ ¼ fhqð1Þ

j ; $ð1Þ;Dð1Þi; hqð2Þ
j i; $ð2Þ;Dð2Þg if *ðrÞ ¼ c1 $ $ $ ct&1qi(ctþ1 $ $ $ cm

In these cases, the only allowable actions in AcMx are

h$;Di 2 fh$ð1Þ;Dð1Þ i; h$ð2Þ;Dð2Þig
and

"Mxðr $h$;DiÞ ¼

hqj;Bi if D ¼ L and *ðrÞ ¼ qiBc1 $ $ $ cm
hqj; c1i if D ¼ R and *ðrÞ ¼ qiBc1 $ $ $ cm
hqj; cmi if D ¼ L and *ðrÞ ¼ c1 $ $ $ cmqiB
hqj;Bi if D ¼ R and *ðrÞ ¼ c1 $ $ $ cmqiB
hqj; ct&1i if D ¼ L and *ðrÞ ¼ c1 $ $ $ ct&1qi(ctþ1 $ $ $ cm ðt > 1Þ
hqj;Bi if D ¼ L and *ðrÞ ¼ c1 $ $ $ ct&1qi(ctþ1 $ $ $ cm ðt ¼ 1Þ
hqj; ctþ1i if D ¼ R and *ðrÞ ¼ c1 $ $ $ ct&1qi(ctþ1 $ $ $ cm ðt < mÞ
hqj;Bi if D ¼ R and *ðrÞ ¼ c1 $ $ $ ct&1qi(ctþ1 $ $ $ cm ðt ¼ mÞ

8
>>>>>>>>>><

>>>>>>>>>>:

with the new configurations being,

*ðr$h$;Di$eÞ ¼

qjB$c1 $ $ $ cm if D ¼ L; *ðrÞ ¼ qiBc1 $ $ $ cm;
and e ¼ hqj;Bi

$qjc1 $ $ $ cm if D ¼ R; *ðrÞ ¼ qiBc1 $ $ $ cm;
and e ¼ hqj; c1i

c1 $ $ $ qjcm$ if D ¼ L; *ðrÞ ¼ c1 $ $ $ cmqiB;
and e ¼ hqj; cmi

c1 $ $ $ cm$qjB if D ¼ R; *ðrÞ ¼ c1 $ $ $ cmqiB;
and e ¼ hqj;Bi

c1 $ $ $ qjct&1$ctþ1 $ $ $ cm if D ¼ L; *ðrÞ ¼ c1 $ $ $ ct&1qi(ctþ1 $ $ $ cm;
and e ¼ hqj; ct&1i ðt > 1Þ

qjB$c2 $ $ $ cm if D ¼ L; *ðrÞ ¼ qi(c2 $ $ $ cm;
and e ¼ hqj;Bi ðt ¼ 1Þ

c1 $ $ $ ct&1$qjctþ1 $ $ $ cm if D ¼ R; *ðrÞ ¼ c1 $ $ $ ct&1qi(ctþ1 $ $ $ cm;
and e ¼ hqj; ctþ1i ðt < mÞ

c1 $ $ $ cm&1$qjB if D ¼ R; *ðrÞ ¼ c1 $ $ $ cm&1qi(;
and e ¼ hqj;Bi ðt ¼ mÞ

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

Given r 2 REnvMx the configuration *ðrÞ can be constructed in OðjrjÞ steps. To
complete the construction we set G ¼ fqAg % #.

We claim that x 2 NCOMPðkÞ
M if and only if Btrue^ is returned for the instance

hEnvMx;Gi of FADðkÞ
det defined above.
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Suppose x 2 NCOMPðkÞ
M . There must be a sequence h 0;  1; $ $ $ ;  ti of config-

urations (of M on input x) for which  iþ1 results from  i after a single move of M, the
state indicated in  t is qA and tr%ðjxjp; kÞ. The construction of EnvMx shows that we
can chose a sequence of actions for an agent Ag, with which the configuration of M,
*ðrÞ associated with the run r 2 Rðjxjþ1ÞðAg;EnvMxÞ is  0. Furthermore, the run ri 2
Rðjxjþ1þiÞðAg;EnvMxÞ satisfies  i ¼ *ðriÞ. Thus, the single terminated run r of Ag has
lastðrÞ equal to some state hqA; (i of EMx. We deduce that the sequence of actions used
to progress from the run fe0g 2 Rð0Þ

EnvMx
through to the (terminated) run rjxjþ1þt 2

Rðjxjþ1þtÞðAg;EnvMxÞ defines an agent accomplishing the achievement task specified by
G. It remains only to note that jxj þ 1þ tr%ðjEMx % AcMxj; kÞ.

In a similar manner, if hEnvMx;Gi is a positive instance of ADðkÞ
det then the se-

quence of actions performed by a successful agent, Ag, from the run in Rðjxjþ1Þ

ðAg;EnvMxÞ corresponds to a sequence of moves made by M that reach the accept state
qA.

To complete the proof it suffices to observe that a Turing machine program for
"Mx can be easily compiled from the Turing machine, M, and its input x: Ì
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