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Abstract. Sequential auctions are an important mechanism for busefigig
multiple objects. Existing work has studied sequentiatians for objects that are
exclusively either common value or private value. Howeiremany real-world
cases an object has both features. Also, in such cases imearovalue depends
on how much each bidder values the object. Moreover, a biglefegrally does not
know the true common value (since it may not know how much thercdidders
value it). Given this, our objective is to study settings thave both common and
private value elements by treating each bidder’s inforamatibout the common
value asuncertain Each object is modelled with two signals: one for its common
value and the other for its private value. The auctions andgcted using English
auction rules. For this model, we first determine equilitriidding strategies for
each auction in a sequence. On the basis of this equilibrenind the expected
selling priceand thewinner's expected profitor each auction. We then show
that even if the common and private values of objects areildlised identically
across all objects, the selling price and the winner's paofit not the same for
all of them. We show that, in accordance with Ashenfeltexjgegimental results
[1], the selling price for our model can decline in later aoies. Finally, we show
that the selling prices and the winner’s expected profitsiingent-based setting
can differ from those in an all-human setting.

1 Introduction

Market-based mechanisms such as auctions are now beintywtddied as a means
of buying/selling resources in multiagent systems. Thitakg is occurring because
auctions are both simple and have a number of desirable piep&ypically the most
important of which are their ability to generate high revesito the seller and to allo-
cate resources efficiently) [19, 4, 21]. Now, in many casesiilimber of objects to be
auctioned is greater than one. There are two types of awdia are used for multiple
objects:combinatorial auction$18] andsequential auctionfg, 3, 11]. The former are
used when the objects for sale are available at the sameuihike the latter (which
are the main focus of this paper) are used when the objectsrieavailable at differ-
ent points in time. In the sequential case, the auctionsarducted at different times,



therefore a bidder may participate in more than one auckioguch a scenario, it has
been shown that although there is only one object beingenstiat a time, the bidding
behaviour for any individual auction strongly depends anahctions that are yet to be
conducted [6, 3]. For example, consider sequential austionoil exploration rights.
In this scenario, the price an oil company will pay for a gieeea is affected not only
by the area that is available in the current round, but alsthéyareas that will become
available in subsequentrounds of leasing. Thus, it wouldbksh for a bidder to spend
all the money set aside for exploration on the first round a$ileg, if potentially even
more favourable sites are likely to be auctioned off subsatiy

Against this background, a key problem in the area is to sthdystrategic be-
haviour of bidders in each individual auction. To date, iderable research effort has
been devoted to this problem, but an important shortcomfrexisting work on se-
guential auctions is that it focuses on objects that areeeihclusively private value
(different bidders value the same object differently) oclagively common value (an
object is worth the same to all bidders) [15,22,17, 10, 6}tlkermore, some of this
work also makes the complete information assumption [LH@&vever, most auctions
are neither exclusively private nor common value, but imgan element of both [12].
Again, consider the above example of auctioning oil-drglrights. This is, in general,
treated as a common value auction. But private value diffeze may arise, for exam-
ple, when a superior technology enables one firm to expleititihts better than others.
Also, in such cases, the common value (which is the samelftireabidders) depends
on how much each bidder values the object. Moreover, gdpemaking an individual
bidder does not know the true common value, since it is ulyliikkeknow how much the
other bidders value it. On the other hand, the private valaghidder is independent of
the other bidders’ private values.

Given this, our objective is to study sequential auctiondtie general case where
there are both common and private value elements. We do yhisddelling each ob-
ject with a two-dimensional signal: one for its common vadunel the other for its pri-
vate value component. Each bidder’s information about tihemon value isincertain
Also, each bidder needs at most one object. The auctionadcted using English
auction rules. For this model, we first determine equilibrioidding strategies for each
auction in a sequence. On the basis of this equilibrium, we tlire expected selling
price and thewinner’s expected proffor each auction. We show that even if the com-
mon and private values are distributed identically acrdisskgects, the selling price
and the winner’s profit are not the same for all of the@pecifically, we consider an
example scenario and show that in accordance with Ashenfeémpirical result [1],
the selling price for our model can decline in later auctidfinally, we show that the
selling prices and the winner’s expected profits in an agpased setting differ from
those in an all human setting. This happens because thesetivas differ in terms of

! This study is important because Ashenfelter [1] showetbelining price anomatyin real-
world sequential auctions mean sale prices for identicg@atd decline in later auctions. In
contrast, for objects that are exclusively common/privatieie, the theoretical results of Mil-
grom and Weber [20, 14], and McAfee and Vincent [13] show agletely opposite effect.
Our objective is therefore to show that, for our model, tHérgeprices can decline in later
auctions.



competition- an agent-based setting results in relatively higher coitigre(i.e., more
bidders) [16].

Our paper therefore makes three important contributiortedostate of the art in
multi-object auctions. First, we determine equilibriundding strategies for sequential
auctions that involve both common and private value elem&wcond, we show that, in
accordance with Ashenfelter’s experimental results [18,gelling price can decline in
later auctions. Third, we show that the selling prices aedimner’s expected payoffs
in a series of auctions in an agent-based setting can difier those in an all-human
setting.

The remainder of the paper is organised as follows. Secties2ribes the auction
setting. Section 3 determines equilibrium bidding stregegin Section 4, we present
an example auction scenario to illustrate a decline in thimgerice of later auctions.
We also show that competition can affect the expected gafiiices and the winner’s
expected profits. Section 5 provides a discussion of howeasult relates with existing
work on sequential auctions. Section 6 concludes. Appewdia C provide proofs of
theorems.

2 The sequential auctions model

Single object auctions that have both private and commamevelements have been
studied in [8]. We therefore adopt this basic model and ekieto cover the multiple
objects case. Before doing so, however, we give an overvighedasic model.

Single object A single object auction is modelled in [8] as follows. Tharen > 3
risk neutral bidders. Theommon valu¢V;) of the object to thes bidders is equal, but
initially the bidders do not know this value. However, eadfder receives a signal that
gives an estimate of this common value. Biddet 1,...,n draws an estimatev;)
of the object’s true valudlf ) from the probability distribution functio) (v) with sup-
port [vr,, ve]. Although different bidders may have different estimaths, true value
(V1) is the same for all bidders and is modelled as the averadeedfitiders’ signals:
Vi = %Zle v;1. Furthermore, each bidder hasastwhich is different for different
bidders and this cost is itsrivate value Fori = 1,...,n, let¢;; denote biddei’s
signal for this private value which is drawn from the distitibn functionG(c) with
supportcr,, cg] whereer, > 0 andvy, > cg. Cost and value signals are independently
and identically distributed across bidders. Henceforth,will use the termvalueto
refer to common value anbstto refer to private value.

If bidderi wins the object and paysit gets a utility ofi; —¢;; —b, whereVy —¢;; is
1’s surplus. Each bidder bids so as to maximize its utilitytéd\that biddei receives two
signals {;; andc;;) but its bid has to be a single number. Hence, in order to deter
their bids, bidders need to combine the two signals irgseramanstatistic. This is done
as follows. Foti, a one-dimensional summary signal, callsdsurplug, is defined as:

Sit =va/n—ca 1)

2 Note thati’s true surplus id/; — ¢;1 which is equal tay;; /n — ¢i1 + 3., vj1/n. But since
. . g#i I .
vi1/n — ci1 depends ori's signals while}"; ; v;1/n depends on the other bidders’ signals,
the term §'s surplus’ is also used to meag /n — ¢;1.



which allowsi’s optimal bids to be determined in terms$f (see [8] for more details
about the problems with two signals and why a one-dimens&nalus is required).
In order to rank bidders from low to high valuatiorf@(v) andG(c) are assumed to
be log concavé Under this assumption, the conditional expectatibifs|S = z) and
E(v|S < z) are non-decreasing in. FurthermoreE(c|S = z) andE(c|S < z) are
non-increasing irx. In other words, the bidders can be ranked from low to highesl
on the basis of their surplus. We now extend this modetts 1 objects.

Multiple objects®. For each of then > 1 objects, the bidders’ values are independently
and identically distributed and so are their costs. Thezeradistribution functions for
the common values, one for each object. Likewise, thereradistribution functions
for the costs, one for each object. Fo= 1,...,m, let@; : Ry — [0,1] denote the
distribution function for the value of thith object and?; : Ry — [0, 1] that for its
cost. Thus, each bidder receives its value signal fogth@bject from@; and its cost
signal fromG.

Furthermore, each bidder receives the cost and value sidoabkn auction just
before that auction begins. The signals for jftle object are received only after the
(j — 1) previous auctions have been conducted. Consequentlpuglththe bidders
know the distribution functions from which the signals arawdn, they do not know the
actual signals for thgth object until the previou§j — 1) auctions are over.

Them objects are sold one after anotherrinauctions that are conducted using
English auction rules. Furthermore, each bidder can winastmne object. The winner
for the jth object cannot participate in the remainimg— j auctions. Thus, i agents
participate in the first auction, the number of agents forjtheauction is(n — j + 1).
For objectsy = 1,...,m and bidderg = 1,...,n, letv;; andc;; denote the common
and private values respectively. The true common valueejti object (denoted;)
is:

1 n—j+1
V=t 3w @
n—j+1 =

For objectsj = 1,...,m and bidders = 1,...,n, let S;; = v;;/n — ¢;; denotei’s
surplus for objecy.

Note that the values/costs for our model are not correl&edh correlations oc-
cur across objects, if for a bidder (saythe value/cost of objegt = 2,...,m can
be determined on the basis @$ value/cost signal for the first object. However, in
many cases such a direct relation between the objects magxisdt Hence, we focus
on the case where different objects have different disidbufunctions. Furthermore,
although each bidder knows the distribution functions fnehich the values/costs are
drawn before the first auction begins, it receives its sigifalan object only just before

3 Log concavity means that the natural log of the densitieoixave. This restriction is met
by many commonly used densities like uniform, normal, cuase, and exponential, and it
ensures that optimal bids are increasing in surplus. Ageer&] for more details.

* Our model for multiple objects is a generalisation of [3]. W3] studies sequential auctions
for two private value objects, we study sequential auctfonsn > 2 objects that have both
private and common values.



the auction for that object begins. In the following sectia@ determine equilibrium
bidding strategies for this model.

3 Equilibrium bidding strategies

Them objects are auctioned i separate English auctions that are conducted sequen-
tially. The English auction rules are as follows. The auntier continuously raises the
price, and bidders publicly reveal when they withdraw frdma auction. Bidders who
drop out from an auction are not allowed to re-enter thatiancA bidder’s strategy for
thejth (forj = 1,...,m — 1) auctions depends on how much profit it expects to get
from the(m — j) auctions yet to be conducted. However, since there areromigjects
there are no more auctions after théh one. Thus, a bidder’s strategic behaviour during
the last auction is the same as that for a single object Enalistion. Equilibrium bid-
ding strategies for a single object of the type describectittiSn 2 have been obtained
in [8]. We therefore briefly summarize these strategies had tetermine equilibrium
for ourm objects case.

Single object For a single object with valugy, the equilibrium obtained in [8] is as
follows. A bidder’s strategy is described in terms of itspgus and indicates how high
the bidder should go before dropping out. Since 3, the prices at which some bidders
drop out convey information (about the common value) to ¢hebo remain active.
Supposék bidders have dropped out at bid levé|s< ... < b. A bidder’s (sayi’s)
strategy is described by functiofik (S;; b; - - - by, ), which specify how high it must bid
given thatk bidders have dropped out at levéls . . b, and given that its surplus is;.
Then-tuple of strategieéB(-), ..., B(-)) with B(-)) defined in Equation 3, constitutes
a symmetric equilibrium of the English auction.

By(zin) = E(vii — ¢i1|Sa = za1)
n—=k

k-1
1
By(@i1;by...bg) = E(vi1|Sin = ®i1) + - ZE(WHBy(sﬂ;bl; oy by) =byy1)
y=0

—E(ci|Sa = zin) (3)

wherez;; isi’s surplus. The intuition for Equation 3 is as follows. Giviensurplus and

the information conveyed in others’ drop out levels, theniigt a bidder is willing to go

is given by the expected value of the object, assuming thattzr active bidders have
the same surplus. For instance, consider the bid fun@®igi$;;) which pertains to the

case when no bidder has dropped out yet. If all other bidders ¥o drop out at level
By(Sp), theni's expected payoffdp = V1 — c;1 — Bo(So)) would be:

n—1
ep = Si1 + TE(’U|S = So) — Bo(So)

-1
=S + nTE(”|S = So) — E(v — c|S = So)

=851—-5



Using strategyBy, ¢ remains active until it is indifferent between winning andtting.
Similar interpretations are given B8, for & > 1; the only difference is that these
functions take into account the information conveyed ireashdrop out levels.

Let f* denote the first order statistic of the surplus for théidders and les?
denote the second order statisjf.ands? are obtained from the distribution functions
@1 andG, . For the above equilibrium, it has been shown that the biddtbrthe highest
surplus wins and the expected selling price (dendéR,,)) is [8]:

E(Py) = E(s?) (4)
and the winner’s expected profit (denotB(r,, )) is:
E(my) = E(f") — E(sT) (5)

On the basis of the above equilibrium for a single object, ednine equilibrium
for sequential auctions for the objects defined in Section 2 as follows.

Multiple objects. We will denote the first order statistic of the surplus fae jth (for
j = 1,...,m) auction asf}“’Jr1 and the second order statistic ﬁ,‘s‘”l. Also, we
denote a bidder’s cumulative ex-ante expected profit froati@wsj to m (wherel <

Jj < m) asqy. Finally, we denote the winner's expected profit for ke auction as

E(my;). The following theorem characterises the equilibriumvfor> 1 objects.
Theorem 1. Forj =1,...,m,lets; =1/(n— j + 1) and leta; be defined as:

m

a; =Y (Byx X,) 6)

Y=

whereX, = E(fp=vtY)—E(sp~vt)+ X, fory = 1,...,mandX,, 4, = 0. Then
the n-tuple of strategiegB(-),. .., B(-)) with B(-) defined in Equation 7 constitutes
an equilibrium for thejth (forj = 1,..., (m — 1)) auction at a stage wherke bidders
have dropped out:

B(J)(."L'z]) = E(Uz'j - cij|S,~j = .Z'z'j) - Oéj+1

j n—j+1—k
Bi@igibi,- - be) = nj_izHE(”iﬂSij = xi5) — E(cij|Sij = x45)
=
ﬂ:ﬂﬁgﬂw%@mwwmzmn
Qi+ )

For the last auction, the equilibrium is as given in Equati®mvith n replaced with
(n—m+1).

For the above equilibrium, the winner for thé¢h (for j = 1,...,m) auction is the
bidder with the highest surplus for that auction (see pré@hmorem 2 in the appendix
for details).



Theorem 2. Forthejth (forj = 1,...,m) auction, the expected selling price (denoted
E(P,;))is:

VI E(Puj) = E(s7 M) — gy (8)

E(Pym) = E(5%7m+1) 9)

Theorem 3. For the jth (for j = 1,...,m — 1) auction, the winner’s expected profit
(denotedE (7)) is:

E(nw;) = E(ff ) = B(s] ) + aj (10)

and for the last auction, the winner’s expected profit is:
E(mwm) = B(f ™) — E(sp ™) (11)

In the following section, we use the above equilibrium towhow the expected selling
price and the winner’s expected profit vary from auction totiun.

4 Selling price and winner’s profit

In Section 3, we determined equilibrium for the case wheeediktribution function for
the value (cost) was different for different objects. Insthiection, our objective is to
show that even if these distribution functions are idemhticaoss objects, the expected
selling price is not the same for all objects. We present ammgte auction scenario
which shows that in accordance with Ashenfelter's empinesult [1], the selling price
for our model can decline in later auctions. Also, since tléng prices and the win-
ner’s profits depend on the number of bidders, we show thag¢ddibrium outcome
in an agent-based setting (which has a relatively higherpetition [16]), differs from
that in an all human setting.

It must be noted that our objective here is not to provide apremensive study of
how the expected selling price varies, but only to illugr@tith an example) that there
exist cases where the variation predicted by our theoteaitalysis accords with the
experimental results of Ashenfelter [1].

Example auction scenario This example in intended to show that:

- the selling price declines in later auctions (this resalresponds with Ashenfel-
ter’'s empirical results [1]), and
- the winner's expected profit declines in later auctions.

In more detail, the setting for our analysis is as followse Tidders’ values are
identically distributed across objects and so are theitscdhe common values of all
m objects are drawn from a single distribution function. Thisction (sayQ : Ry —
[0,1]) is used to draw the common value of tfta (j = 1,...,m) object. Also, there
is a single distribution function (sa§ : Ry — [0,1]) for the cost of thejth (j =
1,...,m) object. As before, each bidder receives a value signatn(ff) and a cost
signal (from@G) for an auction just before that auction begins.
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Fig. 1. A varying selling price in a series of auctions for the noruatiatribution.
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Since there is a single distribution function for all obgave drop the subscripts
(for the order statistics) in Equations 8 and 9 and rewriggrttas:

E(Py;) = E(s" ) —aj44 (12)

whereE (P, ;) denotes the expected selling price for jitle auction. For the last auc-
tion, the selling price is:

B(Pym) = B(s™ ™) (13)

We determine the expected selling prices for the case whergalues and costs are
distributed normally. Recall that the normal distributistisfies the log concavity as-
sumption mentioned in Section 2. Both value and cost sigaralslistributed normally.
The normal distribution is denoted (i, ») wherey is the mean and is the variance.
The mean and variance are takenl@snd0.5 respectively for the value signals, and
2 and0.5 respectively for the cost signals. These two distributifams/alue and cost
signals ensure thaty, > 0 andvy > cg for more than99.8 percent of the popula-
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tion. Since the distribution for value i§(10,0.5) and that for cost isV'(2,0.5), the
distribution for the surplus (i.e., the difference of vahred cost) isV'(8, 1) [5].

The first and second order statistics for the standard natistaibution (i.e. V' (0, 1))
have been tabulated [9]. We use these tables to obtain tharfitissecond order statis-
tics for A'(8,1) as follows. Since the distribution§’(8,1) and A/ (0, 1) differ only in
their means, the first order statistics f61(8, 1) is obtained by adding to the first or-
der statistics forV' (0, 1). Likewise, the second order statistics 918, 1) is obtained
by adding8 to the second order statistics f&f(0, 1). Substituting these statistics in
Equations 12 and 13 we get the expected selling price for ebttiem auctions.

The variation in the selling price (i.e5(s"~#*1)) — a;.,) for different auctions is
shown in Figure 1. As shown in the figure, the expected sefliitge decreases from one
auction to the next. A bidder's ex-ante probability of wingithejth auction (i.e.3; =
1/(n—j+1))isincreasingiry. A bidder's cumulative ex-ante expected profit from auc-
tionsj tom (i.e.,a;) is shown in Figure 2. This profit decreases from one auctidhe
next. The winner’s expected profit (i.&(my,;) = E(f* 7)) — E(s"9+) + aj41)
also drifts downward as shown in Figure 3.
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The effect of competition In order to study the effect of competition, we fix the
number of objectsrt) and vary the number of bidders)(for the example scenario
described above. We know from Equations 12 and 13 that theoteg selling price
depends on th&(s"~+1) anda;. For the normal distribution, botE/(s”*!) and
o; decrease with [9]. Figure 4 is a plot of the expected selling price for difietn. As
seen in the figure, an increase in the number of biddgrtreases the selling price of
each of then objects. Figure 5 is a plot of the winner’s expected profitdifierentn.

As seen in the figure, an increase in the number of biddeérddcreases the winner’s
profit for each of then objects. In summary, for the normal distribution, an insei
competition (i.e., increase im) increases the selling price and decreases the winner’s
expected profit for each individual auction in a series. Sitlere is more competition
in an agent-based setting than in a human setting [16], theat&d selling prices are
higher for the former setting relative to the latter, while tvinner’s expected profits are
lower. In other words these two settings differ in terms @itkequilibrium outcomes.

5 Related Work

Existing work has studied the dynamics of the selling pritelgects for sequential
auctions [15, 20, 14, 3]. However, a key limitation of thisnwds that it focuses on ob-
jects that are either exclusively private value or exclelsicommon value. For instance,
Ortega-Reichert [15] determined the equilibrium for sadia auctions for two private
value objects using the first price rules. Weber [20] shovad in sequential auctions
of identical objects with risk neutral bidders who hold ipdadent private values, the
expected selling price is the same for each auction. On ther dtand, Milgrom and
Weber [14] studied sequential auctions in an interdepemnddnes model with affili-
ated signals. They showed that expected selling prices havedetey to drift upward.

5 Affiliation is a form of positive correlation. LeX1, X», ..., X, be a set of positively corre-
lated random variables. Positive correlation roughly nsetat if a subset oX;s are large,
then this makes it more likely that the remainiAgs are also large.

10



This may be because earlier auctions release informatiout #fee values of objects and
thereby reduce the winner’s curse problem.

In contrast to the above theoretical results, there has beere evidence in real-
world sequential auctions for identical objects — for ad aine auctions in particular —
that the prices tend to drift downward [1, 13]. Because teetéatical models mentioned
above predict either a stochastically constant or incnegprice, this fact has been
called thedeclining price anomalyMc Afee and Vincent [13] consider two identical
private value objects and using the second price sealeduled, rthey show that the
declining price anomaly cannot be explained even if the drisiire considered to be
risk averse. Furthermore, Mc Afee and Vincent acknowletige ¢éxtending their two
object model to a generalobject case is complex and they have not been able to come
up with such a generalisation. We therefore adopted the hpodposed by Bernhardt
and Scoones for two private value objects [3] and generhitde n > 2 objects with
both common and private values. Bernhardt and Scoones{¢8jeshthat if the number
of bidders for the first and second auctions arand (n — 1) respectively, the selling
price can decline (by considering an example scenario).madel is a generalization
of [3] since we considen > 2 objects with both common and private values and show
the decline in price for an example setting. Although the=otgj we consider have both
common and private values, each bidder receives its sidomaén auction just before
the auction begins. In other words, during an auction, tfaimation that bidders obtain
about the others’ value signals does not carry forward teegbent auctions. Hence,
as in the case of [3], our model too shows a decline in thensgfirice.

An important issue in the study of auctions with multi-dirsEmal signals is that
of efficiency of auctions. In general, auctions with mulitir@énsional signals have been
shown to be inefficient [4]. Since our model involves two dimsi@nal signals, we stud-
ied the efficiency property in [7]. This study shows that tlfficiency of auctions in
an agent-based setting is higher than that in an all humaingeThis is because of
the fact that an agent based setting leads to more comptitim an all human setting
[16].

6 Conclusions and future work

This paper has analyzed a model for sequential auctionshiects with private and
common values in an uncertain information setting. We fietetmined equilibrium
strategies for each auction in a sequence. Then we showesl/graif the value and cost
signals are distributed identically across objects, thesccordance with Ashenfelter’s
result [1], the expected selling price can decline in latgstians. Also, the winner's
expected profit can decline in later auctions. We also shalvat] due to differing
competition, the equilibrium outcome in an agent-baseiihggtliffers from that in an
all human setting.

There are many interesting directions for future work. t-iosir present focus was
on determining how the expected selling price varies in @&seaf English auctions.
However, in order to generalize our results, we intend temxtthe analysis to other
auction forms. Second, we studied the case where biddesiveelcthe cost and value
signals for an object just before the auction. In future, vileaxtend the analysis to the

11



case where the values and costs for the(last- 1) objects can be determined from the
signals for the first object (i.e., values and costs are p#yfeorrelated).
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Appendix

A Proof of Theorem 1

Proof. We consider each of the auctions by reasoning backwards.

— mth auction. To begin, consider thesth auction for which there argn — m + 1)
bidders. Since this is the last auction, an agent’s biddeftpliour is the same as
that for the single object case. Hence, the equilibrium liig &uction is the same
as that in Equation 3 with replaced with(n — m + 1). Forj = 1,...,m, let
a;; denote an agent's cumulative ex-ante expected profit frooticns j to m.
Recall that although the bidders know the distribution rffravhich the cost and
value signals are drawn) before the first auction beging, dnaw the signals for
the jth auction only after théj — 1) earlier auctions end. Sineg; is the ex-ante
expected profit (i.e., it is computed before the bidders dteair signals for thgth
auction), it is the same for all participating bidders. Thus will simplify notation
by dropping the subscriptand denotex;; simply asa; We know from Equation 5
that:

1
Qm = m(E(ﬂfz—mH) - E(S?n_mﬂ)) (14)
This is because all thes — m + 1) agents that participate in theth auction have
ex-ante identical chances of winning it. Note that the rigdnid side of Equation 14
does not depend anlIn other words, since bidders receive their signals forthie
auction after thém — 1)th auction, the ex-ante expected profit for thth auction
(before the(m — 1)th auction ends) is the same for all the— m + 1) bidders.

— (m — 1)th auction. Consider thdm — 1)th auction. During this auction, a bidder
bidsbif (V,,_1—¢m_1—b> ay)or(b <V, _1—cnm_1—an). Hence, a symmetric
equilibrium for the(m — 1)th auction is obtained by substitutigg= m — 1 in
Equation 7. We know from Equation 4, that the expected sppince for the single
object case is the second order statistic of the surplusdiffezence between the
equilibrium bids for the single object case and {me — 1)th auction of them
objects case ia,, (see Equations 3 and 7). Hence, the expected selling price fo
the (m — 1)th auction isE(s™~"*?) — a,,,. This implies that the winner’s expected

m—1

profit for the(m — 1)th auction is:

E(Tym-1)) = E(fp_71?) = E(si27?) + am (15)

m—1 m

— First (m — 2) auctions. Consider thgth auction wherd < j < m — 2. We now
find ay,...,a,—1. Since the number of bidders for thith auction is(n — j + 1)
and each bidder has ex-ante equal chances of winning, thalpitity that a bidder
wins thejth (for j = 1,...,m) auction (denoted;) is:

Bi=1/(n—j+1) (16)
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This implies that, foj = 1,...,m, «; is:
aj; = ﬂjE(ﬂ'wj) + o541 (17)

Generalising Equation 15 to the fifsh — 1) auctions, we get the winner’s expected
profit (E(m;)) as:

B(my) = B(f] ) = B(s]7) + ajn (18)
Consequently, a bidder’s optimal bid for tli#h auction is obtained by discounting
the single object equilibrium bid by;41. Hence, we get the equilibrium bids in
Equation 7.

B Proof of Theorem 2

Proof. It is important to note that for th¢th (j = 1,...,m) auction, the bids in The-
orem 1 are similar to those in Equation 3 (for the single dbjese), except that each
bid in the former case is obtained from the correspondingrbitie latter by shifting
the latter by the constant; ;. Sincea;; is the same for all participating bidders, the
relative positions of bidders for each of the auctions remains the same as that for
the corresponding single object case. Hence, for each ofithactions, the winner is
the bidder with the highest surplus for that auction. Consedjy, the expected selling
price for thejth (for j = 1,...,m — 1) auction iSE(P,;) = E(s?”“) — 1.
For the last auction (which is similar to a single object &, the selling price is:
E(Pyn) = E(snmH),

C Proof of Theorem 3

Proof. Themth auction is identical to the single object case. Hencegkipected profit
for this auction is
E(Trwm) = E(frrrtb_m—i_l) - E(srrzn—m—i-l)

Since the difference between the expected selling pricéhtosingle object case and
the jth (for j = 1,...,m — 1) auction of them objects case is; 1, the winner's
expected profit for thgth auction is:

Bmug) = B(f7 ) = B8} ) + ajn
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